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The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high
similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in
tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of
p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this
protein family.
FACTS:

● Distinct physiological roles/functions are performed by specific isoforms.
● The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73

are divided into two subdomains that are regulated by phosphorylation.
● Mdm2 binds to all three family members but ubiquitinates only p53.
● TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
● The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states.

During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became
destabilized and the transactivation domain split into two subdomains.

OPEN QUESTIONS:

● Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function
of genomic quality control in germ cells?

● What is the physiological function of the p63/p73 SAM domains?
● Do the short isoforms of p63 and p73 have physiological functions?
● What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
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INTRODUCTION
The world of the tumor suppressor p53 was firmly anchored
within the field of cancer biology but in the late 1990s this
exclusive connection was questioned by the discovery of two
proteins, p73 [1] and p63 [2–5], with high sequence similarity. All
three proteins share a very similar DNA binding domain (DBD) in
which virtually all amino acids that are known from p53 to contact
DNA are conserved [5]. The initial impulse of assigning both
proteins as additional tumor suppressor proteins was, however,
questioned by the analysis of the p73 [6]- and p63 [7, 8]-knock out
mice both of which show strong developmental abnormalities.
Genetic deletion of p73 in mice causes severe neurodevelop-
mental defects including hippocampal dysgenesis, hydrocephalus
and pheromone sensing impairments as well as chronic infections,
inflammation and infertility [6, 9–11]. Detailed analysis of these
mice have uncovered the role of p73 in development and
maintenance of neurons, its role of an essential transcription
factor for multiciliogenesis [12, 13], for sperm cell maturation
[10, 11] and regulation of metabolism [14, 15]. The p63-knock out
mouse suffers from even more severe developmental defects that

include limb truncations and lack of a multi-layered skin and other
epithelial structures [7, 8]. Analysis of wild type and knock out
mice showed that p63 is highly expressed in the basal layer of
stratified epithelial tissues, which is necessary to build up these
multi-layered structures [16, 17]. Further mouse studies identified
additional functions for p63 in metabolism [18–20], muscle
development [21–23] and in particular in genetic quality control
of oocytes [24]. These surprisingly diverse spectra of both proteins’
functions became clearer with the assignment of distinct isoforms
to specific cellular tasks. Both p73 [1, 25–28] and p63 [5] are
expressed in a whole array of different isoforms that are in both
cases created by a combination of different N-terminal promoters
and C-terminal splice variants (Fig. 1). For both genes the
expression in different human and mouse tissues [29, 30] was
investigated at the mRNA level that showed transcripts of several
isoforms in most tissues with a greater diversity for isoforms of
p73. However, the physiological importance of these different
transcripts and if they are translated into protein is not known.
Only for two p63 isoforms a physiological role is well defined: The
isoform that is found in the epithelial tissue is ΔNp63α [7, 8, 16],
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which lacks the N-terminal transactivation (TA) domain, while
TAp63α is the isoform expressed in oocytes [31, 32]. Both isoforms
contain three folded domains: the DBD, the oligomerization
domain (OD) and the sterile-alpha-motif (SAM) domain. TAp63γ,
that is found in muscle tissue lacks the C-terminal SAM domain
and contains a unique C-terminus [5]. All p63 isoforms differ only
in the presence or absence of sequences that are intrinsically
disordered in isolation. This is in stark contrast to some p53
isoforms that contain only parts of either the DBD or of the OD
[33–36] (Fig. 1). As these residual DBD and OD sequences can no
longer fold into a defined three-dimensional structure, these p53
isoforms contain large unstructured stretches, exposing in case of
the unfolded DBD aggregation prone sequences [37–40] that are
in wild type p53 hidden within the folded structure.
For p73 the assignment of physiological functions to well

defined isoforms is less clear. In the brain both TAp73 and ΔNp73
isoforms are often expressed in the same neuronal cell types
(except in the marginal zone which only expresses ΔNp73 [6]). In
general, TAp73 seems to promote terminal neuronal differentia-
tion by transcriptionally regulating neurotrophin receptor p75 [41]
and microRNA miR34a [42]. ΔNp73 on the other hand plays a pro-
survival role in discrete neuron types such as neurons in the
preoptic area, as well as vomeronasal, GnRH-positive and
Cajal–Retzius (CR) neurons [43]. Regulation of the transcriptional
program important for multiciliogenesis [12, 13] as well as for
contacts between developing sperm cells and nurturing Sertoli
cells [10, 11] is governed again by TAp73 and TAp73 also plays a
role in granulosa cells where it orchestrates a transcriptional
program important for cell adhesion and cellular contacts to
oocytes [44]. Finally, ΔNp73 is expressed in the basal layer of
epithelial tissues as well [30, 45, 46], albeit at lower levels than p63.

With respect to the C-termini, the most highly expressed isoform
seems to be in most cases the α-C-terminus. In contrast to p63,
however, the β-C-terminus is also often expressed to a significant
level (for example up to 20% in skin) [45].
Recent progress in our understanding of the specific conforma-

tions adopted by different isoforms have advanced our insight
into the regulation of their distinct functions. Here we review the
structures of the individual domains, their structural and
functional interplay with the sequences surrounding these
domains and discuss a potential evolutionary path. As the
conformation—function relationship is better understood for
p63 than for p73, a focus of this review will be on p63. As the
structure and function of p53 domains have been reviewed many
times [47–50], we include short comparisons and discuss
differences to the corresponding p53 domains but do not review
p53 related issues in detail.

DOMAINS
Transactivation domain
Of all domains of p63 the N-terminal TA domain shows the lowest
sequence identity to p53 but also to p73. Structurally the TA
domains of all three family members are intrinsically unfolded
when isolated [51, 52], but can show residual α-helicity in local
segments [53, 54] which increases to form α-helices upon binding
to interaction partners [55–66]. While usually p63 and p73 are
closer related to each other than either to p53, the structural
organization of the TA domain is the exception. The TA domains of
p53 and p73 are divided into two subdomains (residues forming
α-helices 16–25 and 47–55 in case of p53 and residues 15–20 and
61–65 in case of p73) [60, 67, 68]. Both subdomains of p53 and

Fig. 1 Domain organizations and isoforms in the p53 protein family. For p53, p63 and p73 all so far known isoforms are shown. TAD
transactivation domain, DBD DNA binding domain, OD oligomerization domain, SAM Sterile-alpha motif domain, TID transactivation
inhibitory domain. Except for TAp53α and Δ40p53α, all p53 isoforms contain incomplete segments of either the DBD or the OD which leads to
unfolding of the corresponding domains. For p73 isoforms with a truncated SAM domain have been found as well.
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p73 bind simultaneously to different sites on the Taz1 and Taz2
(transcriptional adapter zinc-binding) domains of the transcrip-
tional coactivator proteins CBP [68] (cyclic-AMP response element
binding protein (CREB) binding protein) and p300 [61, 67] (Fig. 2A).
The second subdomain of p53 (TAD2) interacts more strongly with
the Taz1/Taz2 domains [68, 69] than the first subdomain (TAD1)
but both synergize in the context of the full-length TA domain to
enhance the binding affinity [67, 69] and drive different
transcriptional programs [70–73]. In contrast to p53, in p73 the
first subdomain is dominant for interaction with Taz1/Taz2
domains [60] and binds to a different site on the p300 Taz2
domain (Fig. 2B) [61]. In addition to the α-helical section (residues
15–20) two aromatic residues (Y28 and F29) located C-terminally
to the α-helix contribute significantly to the interaction with the
Taz2 domain [61]. The binding site of the second subdomain
could not be determined unambiguously so far but likely involves
the weaker binding site occupied by TAD1 in the p53 TA
domain–Taz2 complex [61].
In p63 residues 8–25 form a single long helix that comprises the

entire TA domain and that combines elements of both
p53 subdomains [61]. No further sequences are required for high
affinity binding to the Taz2 domain of p300 (Fig. 2C). Structurally,
TAD2 of p53 and the TA domain of p63 occupy the same binding
site on the Taz2 domains of CBP and p300, albeit at an angle of
26o relative to each other. Since the TA domain of p63 is longer by
one helical turn it forms additional hydrophobic contacts with the
Taz2 domain.
Of all three family members the affinity of the TA domain of p73

to the Taz2 domain is the lowest, but can be enhanced by
phosphorylation of T14 [60]. Similar to p73, phosphorylation of the
p53 TA domain has been reported with multiple phosphorylation
events enhancing the affinity to CBP in an approximately linear
manner. Based on this observation a rheostat model has been
proposed that allows p53 to respond gradually and not switch like
to increasing levels of cellular stress [74]. In the case of p63, the
unmodified TA domain already shows high affinity to the p300
Taz2 domain. The difference in affinity between the p73 and p63
TA domains is mirrored by the low transcriptional activity of
TAp73β as compared to the high activity of TAp63γ in cellular
transcriptional activity assays on the p21 promoter. Replacing the
corresponding amino acids in the TA domain of p73 with residues
8–15 of the p63 TA domain confers the high transactivation poten-
tial and high affinity for the Taz2 domain of TAp63 onto TAp73
[61]. All these results predict that the transcriptional activity of the
bipartite TA domains of p53 and p73 are at least partially

regulated by phosphorylation while phosphorylation does not
seem to be required for p63. Instead, the transcriptional activity of
the longest TAp63α isoform is regulated via the oligomeric state
with the sequence that is equivalent to TAD2 of p53 and p73
playing a crucial role (see below) [61].
In addition to interaction with domains of p300 and CBP the TA

domains of all three family members also bind to the N-terminal
domain of the E3 ligase Mdm2 (Mouse double minute 2 homolog).
This interaction is very well characterized for p53 where it leads to
ubiquitination via Mdm2’s RING finger domain and proteasomal
degradation [75]. For this interaction the TAD1 subdomain is
responsible [56]. Both subdomains can also bind simultaneously to
TAZ1/TAZ2 (via TAD2) and to MDM2 (via TAD1) to form a ternary
complex [69]. In contrast to the clear picture of the role of Mdm2
for the regulation of the activity of p53, the functional importance
for p63 remains less clear [76–78]. Transcriptional repression [79]
as well as transcriptional enhancement [76] or having no effect
[77, 80] have been reported. For p73 binding of the TAD1 to
Mdm2 leads to inhibition of its transcriptional activity [81–83] and
probably contributes to the regulation of p73’s tumor suppressor
activity [84–86]. One noticeable difference between p63 and p73
on the one hand and p53 on the other hand is that interaction
with Mdm2 does not lead to ubiquitination and proteasomal
degradation. Any potential regulatory effect is therefore limited to
binding of Mdm2 to the TA domains and blocking interaction with
transcriptional co-activators CBP and p300. Since p73 interacts
with Mdm2 via its TAD1 subdomain and p63 contains only a single
undivided TA domain, blocking these sites that are also crucial for
interaction with CPB or p300 effectively inhibits transcriptional
activity. In p53 the situation is different with TAD1 interacting with
Mdm2 but not TAD2 which has a higher affinity for CBP/p300.
Structures of the TAD1 of p73 and the TA domain of p63 with the
N-terminal domain of Mdm2 have been solved [64] showing in
both cases a similar binding mode compared to TAD1 of p53,
involving the conserved FxxΦWxxL motif (Φ: Leu or Ile, x: any
amino acid). However, p63 forms only a short one turn helix, while
p73 and p53 fold into longer two turn helices which also results in
more than a tenfold lower affinity of p63 to Mdm2 [64, 87, 88] and
its hetero-oligomerization partner Mdmx [89] as compared to the
other two family members.

DNA binding domain
p53, p73 and p63 share the highest sequence identity in their DBD
reaching 65%. Despite this high sequence conservation transcrip-
tomic analysis has revealed differences in the genes regulated by

Fig. 2 Structures of the TA domains of all family members bound to the Taz2 domains of either CBP (p53) or p300 (p73 and p63). The
Taz2 domains are shown as gray surfaces with the underlying α-helices in dark gray. The TA domains are presented in red (p53), green (p73)
and blue (p63). In case of p53, both the TAD1 and TAD2 bind simultaneously (PDB code: 5HPD). The p73 TAD1 binds in a different location; the
position of the TAD2 could so far not unambiguously be identified (PDB code: 6FGS). p63 contains a single TA domain that is longer than the
individual TA subdomains of p53 and p73 and binds to the same site as the p53 TAD2, albeit with a slight reorientation (PDB code: 6FGN).
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the three proteins [90–92]. Furthermore, DNA binding studies
have demonstrated differences in the sequence preference of p53
and p63 [93–95]. In two studies a guanosine base is allowed in
position 5 of the p53 consensus sequence (RRRCWWGYYY; R= A
or G; W= A or T; Y= C or T). While p53 preferred in these studies

binding sites with a central CATG sequence, p63 binds strongly to
both CATG- and CGTG-containing sequences with the highest
preference for sequences containing the half-site 5′-RRRCGTGYYY-
3′ [94, 95]. Another study based on a SELEX analysis found
preferential binding to the core CATG sequence albeit with a
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preference for A/T-rich segments in the flanking regions (5′-(T/A)
(A/T)AC(A/T)TGTTT-3′) [93].
The structure of the p63 DBD has been solved in complex with

DNA with both a 10-bp DNA half-site response element (5′
AAACATGTTT3′) as well as with a 22-bp DNA full response element
containing a 2-bp spacer between both half-sites (5′AAACATGTTT-
TAAAACATGTTT3′) [96]. Both DNA sequences contain the CATG core
motif, flanked by A/T-rich sequences. The structures of the p53 and
p63 DBD are very similar (root mean square deviation of 0.9 Å in α-
carbon atom positions, Fig. 3A) and contact the DNA in a very similar
manner, although different DNA sequences were used in the
different studies of p53-DNA complexes [96–101]. Both domains
contain a loop-sheet-helix motif that consists of the L1 loop, a three-
stranded β-sheet (S2, S2′, S10) and the H2 α-helix (Fig. 3B). The
residues that contact the DNA are conserved between both proteins
with R311 (R280 in p53) providing essential contacts to the G7 base
in the major groove and A307 (A276 in p53) and Cys308 (C277 in
p53) interacting with the methyl group of T8. Further contacts are
provided by Arg304 (R273 in p53) interacting with the backbone
phosphate of T6 and the A307 (A276 in p53) amide group binding
to the phosphate backbone of G7 (Fig. 3C, D). In contrast to the p53-
DNA structures, the L1 loop is more disordered and the contact of
K149 (K120 in p53) is missing. K120 of p53 is not one of the
mutational hotspots and this residue as well as the L1 loop can be
bound by iASPP which modulates the sequence specificity of DNA
binding and shifts the p53 based transcriptional program, affecting
genes involved in life/death decisions [102]. Outside of the loop-
sheet-helix motif, residues in the L3 loop provide further DNA
contacts. Ser272 (S241 in p53) interacts with the phosphate
backbone of G7. Finally, the side chain of R279 potentially interacts
with the DNA phosphate backbone of T20 or T21, but the distance is
too far for a standard salt bridge. The corresponding residue in p53,
R248, is the most frequently mutated residue found in cancer cells
[103] and makes contacts in the minor groove of the A/T-rich region
flanking the core CATG sequence which results in a narrowing of the
minor groove [97].
In principle, the OD ensures that all family members interact

with the DNA as tetramers, thus increasing binding affinity
(exceptions are TAp63α and Cep1, see below). In addition, the
individual DBDs can interact with each other using different
interfaces. Cooperative binding of two DBDs to one half site is
known from p53 where R181 and E180 in the H1 α-helix form two
salt bridges between two monomers [104] to which P177 and
H178 on the H1 α-helix as well as M243 in the L3 loop further
contribute hydrophobic contacts [100, 101]. In p63 R181 is
replaced with a leucine residue and accordingly the isolated p63
DBD does not show cooperative binding to DNA but requires
either its own OD or an artificial oligomerization system (e.g.,
fusion to GST) [104, 105]. This results in a ~ three orders of
magnitude lower binding affinity of the p63 DBD to DNA
compared to the p53 DBD [96, 106]. Nevertheless, close contacts
between two p63 DBDs bound to a half site have been identified
in the crystal structures involving Asn207 that forms inter-
monomer hydrogen bonds as well as Leu210 (both located in
helix 1) and Val274 (located in loop L3) that are part of a small
inter-monomer hydrophobic patch [96].

Crystal structures of the p53 DBD bound to various DNA
oligomers have shown that protein-protein contacts also exist
between two dimers, thus forming an additional tetramerization
interface [98, 99, 101, 107], that however differs between
individual complexes depending on the spacer length between
the two half sites [100]. For p63 additional protein-protein
contacts between dimers have been identified as well. Such
contacts are visible, however, only in the crystal structure with the
10 bp DNA and are not observed in the structure of the 22 bp DNA
with a 2 bp spacer between the two half sites [96]. Consequently,
the affinity of the p63 DBD to this 22 bp DNA is even lower than to
DNA without the spacer showing that dimer-dimer contacts
contribute to DNA binding [108]. In contrast to the interface
between two monomers within a dimer, the interface between
dimers varies and several different interfaces have been observed
in the crystal structure with the 10 bp DNA, which are also affected
by crystal contacts [96]. Further crystal structures of the p63 DBD
in complex with different DNA oligomers containing sequence
variations in the spacer between the two half sites have
demonstrated that the sequence of this spacer is important for
the overall geometry of the protein-DNA complex [108]. Replacing
the AT sequence with a GC spacer abolishes the superhelical DNA
trajectory. These investigations underscore the importance of the
DNA sequence and suggest that p63 may bind to superhelical
DNA packed in nucleosomes. This ability to bind to DNA bound by
nucleosomes was also reported for p53 that can bind to the distal
p21 response element of mononucleosomal DNA if the binding
site is not close to the diad center of the nucleosome [109]. As the
ΔNp63α isoform plays an important role as an organizer of the
chromosomal landscape in epithelial cells (see below), this ability
might be important for its function.
The structure of the isolated DBD has been solved by liquid

state NMR spectroscopy [110] as well showing some slight
differences in the L1 loop, the L2 loop and the orientation of
the H2 α-helix. These investigations have also revealed that the
thermostability of the p63 DBD is with a melting temperature of
~60 °C significantly higher than the melting temperature of the
p53 DBD (~43 °C) [105, 110, 111] and that of the p73 DBD (~50 °C)
[111, 112]. Analysis of the hydrophobic cores of both p63 and p53
have shown that the core of p53 is less well packed with some
cavities and unmatched polar residues [110]. Interestingly, these
sites have been mutated in stability-optimized p53 variants
[113, 114]. Since the p63 DBD is evolutionary older (see below)
this result predicts that the low thermostability of p53 evolved
later during evolution, potentially to support the fast degradation
of cellular p53 which is under normal conditions kept at low
levels [75].
Crystal structures were also published for the isolated p73 DBD

[115], its complex with the pro-apoptotic protein ASPP2 (Apop-
tosis-Stimulating of p53 Protein 2) [115] and of the DBD in
complex with DNA oligomers containing different sequences and
spacer lengths between the two half sites [116, 117]. Recognition
of the DNA sequence is very similar to the pattern observed for
p63 and p53 with Lys138, Cys297 and Arg300 providing key
contacts (Lys120, Cys277, and Arg280 in p53) (Fig. 3D). Interest-
ingly, this study also found that the spacer length and sequence

Fig. 3 Structure, organization, and sequence similarity of the p53 family DBDs. A p53 (red, PDB code: 2AC0), p63 (blue, PDB code: 3QYM)
and p73 (green, PDB code: 3DV0) DBDs consist of an immunoglobulin-like β-sandwich of two β-sheets as the domain scaffold and exhibit high
structural homology. B Two different orientations of the superimposed p53 family DBDs with explicit labeling of the loop-sheet-helix DNA
recognition element created by the L1 loop (yellow), the S2-S2’-S10 sheet (blue) and the H2 helix (red). The loop L3 that provides additional
contacts is labeled in cyan. C Close-up of the interaction of the p63 DBD with the DNA. Critical amino acids are indicated. D The DBDs show
high sequence identity and conservation of secondary structural elements and residues involved in scaffold assembly and DNA binding. They
are composed of ten β-strands (S1–S10), three helices (Ha, H1 and H2) and four relevant loops (L1, L2A, L2B and L3). Residues directly
contacting DNA and coordinating the structural important zinc ion are framed in green and purple, respectively. Amino acids responsible for
thermodynamic stability differences are highlighted in gray. The two charged residues, which are forming a salt bridge in the intra-dimer
interface of p53 and that are crucial for its DNA binding cooperativity, are marked in brown.
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has a more pronounced effect on the transcriptional activity of
p73 than on the transcriptional activity of p53, probably due to
differences in contacts between the DBDs across the tetrameriza-
tion interface. While the amino acids that directly contact the DNA
are highly conserved within the p53 protein family, the sequences
that provide protein-protein contacts important for forming
dimers or tetramers when bound to DNA are less than 50%
conserved between p73 and p53 [116]. Like in p63, the p53 salt
bridges in helix H1 are missing and Met243 is replaced with
Val263 in p73 which results in an overall smaller dimeric interface.

The spacer length between both half sites influences in particular
the interface between two dimers but also the dimeric interface
between two monomers. The crystal structures of the p73 DBD
bound to half sites separated by spacers with different lengths
have revealed that—in contrast to p63—up to a 2 bp spacer a
tetrameric interface exists. The increasing distance and different
angle between the two dimers causes changes in the tetramer-
ization interface and distortions of the DNA by partial unwinding
within the spacer base pairs. How these structural changes
translate into the reduced transcriptional activity of p73 (relative

Fig. 4 Structures of the oligomerization domains of all p53 family members. A The p53 oligomerization domain (OD) contains a β-strand S1
followed by an α-helix H1 (red). The p63 and p73 ODs are elongated by an addition helix H2 (blue and green). For p53 the residues
constituting the nuclear export signal (NES) are depicted as sticks. In all three structures S1 is separated from H1 by a structurally important
Gly residue. B Four monomers assemble into tetramers as a dimer of dimers with a D2 symmetry. One dimer is built by the formation of an
antiparallel intermolecular β-sheet and an antiparallel two helix bundle. The hydrophobic surface presented by the helices engages in
tetramerization leading to a four-helix bundle, thereby burying the NES. The second helix H2 of p63 and p73 stabilizes the tetramer further by
reaching across the tetramerization interface and clutching the respective opposite dimer. The tetramerization interfaces are depicted by
dashed lines (PDB code 1SAF, 4A9Z and 2KBY).
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to p53) when bound to DNA with a spacer between the two half
sites is, however, not understood but may contribute to the
differences seen in transcriptional programs between the p53
family members [90, 118].

Oligomerization domain
The ODs of all three members of the p53 family are dimers of
dimers [119, 120]. The basic module consists of an antiparallel β-
sheet formed by two monomers that is stabilized by two α-
helices, one from each monomer, that also arrange in an
antiparallel orientation (Fig. 4A). The link between the β-strand
and the C-terminally following α-helix is tight with only a single
glycine residue between both structural elements [119, 120]. Two
of these modules form the final tetramer via the α-helical
interface (Fig. 4B). Initially, structure determination of the p73 OD
showed that this motif is extended by a second α-helix at the
C-terminus [121, 122] that was later shown to exist in p63 as well
[123]. This additional C-terminal α-helix reaches across the
interface between both dimers and further stabilizes the
tetrameric state (Fig. 4B). While this helix can be cleaved without
unfolding the OD, its removal destabilizes the tetramer and shifts
the equilibrium toward dimers [121, 122]. Surprisingly, further
interaction studies have revealed that a mixture of p63 and p73

forms mixed tetramers with a p632:p732 tetramer being the
thermodynamically most stable state (even more stable than
both homo-tetramers) [121, 122]. The reason for this increased
stability of the hetero-tetramer was identified from structure
determination which demonstrated that the hydrophobic
residues at the C-terminus of the second α-helix of p73 can
interact with a hydrophobic patch at the β-strand of p63 [46].
Since p63 and p73 both are expressed in the basal layer of some
epithelial tissues, specific functions for this hetero-tetramer
might exist [30, 46]. The structural difference between the p53
OD on the one hand and the p63 and p73 ODs on the other hand
also prevents stable interaction between p53 and the other
family members [121, 122].

Sterile-alpha-motif domain
The SAM domain which forms a compact structure consisting of
five helices (four regular α-helices, one 310-helix; Fig. 5A, B) exists
only in p63 and p73 but is missing in p53 [124–126]. In general,
SAM domains are found in a large variety of different proteins
ranging from cell surface receptors (e.g., ephrin receptors),
tankyrases to kinases and transcriptional repressors [127–130].
They have been implicated in homo- and hetero-oligomerization
[131, 132]. The SAM domains of p63 and p73, however, show no

Fig. 5 Structures of the p63 and p73 SAM domains. A The p63 SAM domain (blue; PDB code: 2Y9T) and the p73 SAM domain (green; PDB
code: 1COK) are shown in different orientations. The domains each consist of four α-helices and one 310-helix. B Superposition of the p63 and
p73 SAM domains showing the high structural similarity. C Comparison of the p63 and p73 sequences of the SAM domains with indicated
secondary structure elements. The two stretches in the p63 SAM domain with a high aggregation propensity are marked with gray. These
sequences cause aggregation initiated by mutations in the SAM domain in patients suffering from ankyloblepharon-ectodermal defects-cleft
lip/palate (AEC) syndrome.
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tendency to homo-oligomerize [124, 126, 133]. The specific
function of the p63 and p73 SAM domains still remains obscure.
They have been proposed to bind to lipids [134], in particular
ganglioside GM1 [135], as well as Mdm2 [136], the cyclin-
dependent kinase binding protein Cables1 [137], the APOBEC1-
binding protein ABBP1 [138] and the Rho GTPase activating
protein DLC2 [139] but so far no consistent model of the function
of these SAM domains has emerged.
Interestingly, mutations in the SAM domain of p63 have been

linked to a developmental syndrome in human patients, the
ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syn-
drome [140, 141]. Patients suffer from ankyloblepharon, con-
genital erythroderma, skin fragility, atrophy, palmoplantar
hyperkeratosis, and extensive skin erosions [142]. Structure
determination of the disease causing SAM domain mutant
L514F has not revealed significant structural changes that could
explain the disease phenotype [143]. Investigation of the
thermodynamic stability of this as well as other SAM domain
mutants has shown that all are thermodynamically less stable
[143, 144]. However, some of them, including the L514F mutant,
still have melting temperatures that are much higher than for
example the melting temperature of the p53 DBD and within the
same range as the p63 DBD [110]. The disease mechanism only
became evident through refolding experiments of thermally
unfolded SAM domains. While the wild type SAM domain refolds
readily, the L514F mutant SAM domain does not refold but instead
aggregates [143]. Analysis of the amino acid sequence of the SAM
domain revealed the existence of two aggregation prone stretches
that are usually hidden in its hydrophobic core (Fig. 5C). In SAM
domain mutants these stretches get exposed leading to aggrega-
tion of p63 and possible co-aggregation with other factors which
is the underlying molecular mechanism of the AEC syndrome.

These results further explain why frameshift mutations in the
C-terminus of p63 also can cause the AEC syndrome. In all these
cases, the newly synthesized sequences contain aggregation
prone peptides [143].

Transactivation inhibitory (TI) domain
The α-C-terminus of p63 contains a functional domain (amino
acids 597–614) that is important for regulating the transcriptional
activity of TAp63α [145]. The peptide itself is intrinsically
disordered when isolated but forms a β-strand within the inactive
dimeric structure of TAp63α (see below). Within the ΔNp63α
isoform the TI domain remains accessible and can interact with
the histone deacetylases HDAC1 and HDAC2 which contribute to
transcriptional repression [146, 147]. C-terminal to the TI domain
follows a sequence of 28 amino acids that is structurally not
necessary for forming the inactive state of TAp63α [148] but
contains a classical sumoylation site (IKEEGE) at the very
C-terminus. Sumoylation of this site as well as other locations
within the p63 sequence have been identified [149] and
mutations that destroy the sumoylation site are linked to split-
hand/foot malformation in human patients [150]. Mutational
investigations in cell culture studies have suggested that
sumoylation could reduce the cellular concentration of p63
[149, 151]. If this occurs via the SUMO-targeted ubiquitin ligase
pathway [152–155] or other pathways remains to be investigated.
p73 contains a very similar sequence with a classical sumoyla-

tion site at its C-terminus (IKEEFT) as well. This site was shown to
be the main modification site with SUMO in p73α by PIAS-1 [156]
and sumoylation at the C-terminus results in faster proteasomal
degradation [157]. Furthermore, sumoylation causes p73 to be
preferentially found in detergent-insoluble fractions and thus
might influence its subcellular localization, by targeting p73 for

Fig. 6 Model of the autoinhibitory complex of the inactive TAp63α dimer. A TAp63α is kept in an inactive dimeric conformation unable to
bind DNA and transactivate target genes. Several (sub-)domains are involved in formation of the dimer: the transactivation (TA) domain, the β-
strand T1, the β-strand T2, the oligomerization domain OD and the transcriptional inhibitory (TI) domain. The TA domain forms an α-helix, T1,
T2 and the TI domain β-strands. The hydrophobic core motifs mediating the inter- and intramolecular interactions between these subdomains
are highlighted in bold. B The current model of the inactive TAp63α dimer proposes the blockage of the tetramerization interface of the OD.
The β-strands of T1, T2 and TI domain of two p63 molecules form a six-stranded antiparallel β-sheet that utilizes its hydrophobic side to
interact with the also hydrophobic tetramerization interface of an OD dimer (orange). The helical TA domain simultaneously binds the
interface of the OD which is normally bound by the second helix of the OD of the opposing dimer (green). Thereby both interfaces used for
efficient dimerization of two OD dimers (blue and gray) to form a stable tetramer are blocked. C In the detailed model of the autoinhibitory
complex, the six-stranded β-sheet sits on top of the tetramerization interface of the dimeric OD and both TA domains reach around the OD
blocking the binding site of the second helix of the OD.
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example to PML nuclear bodies as it is also observed for p53 [158]
(however, the importance of sumoylation for subcellular targeting
of p53 is debated [159]).
The TI domain of p63 also plays a role in patients with the AEC

syndrome (see above in paragraph “Sterile-alpha-motif domain”).
The TI domains of both p63 and p73 have a low intrinsic
aggregation propensity [39]. Some of the AEC syndrome missense
mutations that occur in the p63 TI domain enhance this
aggregation propensity by removing “aggregation gatekeeping
residues” that in the wild type protein inhibit aggregation [143].
The low aggregation tendency of the TI domains can also result in
co-aggregation with the unfolded DBD of p53 carrying destabiliz-
ing cancer mutations [39].

ISOFORMS
ΔNp63α and ΔNp73α
ΔNp63α is an isoform that is expressed from a promoter situated
upstream of exon 3′. Due to the shifted start site the N-terminal 69
residues of TAp63α are replaced with 14 unique amino acids [5].
The lack of the N-terminal TA domain (residues 8–25) reduces the
transcriptional activity of ΔNp63α on promoters of classical p53
target genes such as Ccgn1 (p21) or Bax [5]. Transcriptional activity
has been measured on epithelial cell specific promoters such as
K14 [17, 160]. The function of ΔNp63α, however, seems to be not
that of a classical transcription factor but that of an organizer of an
epithelial cell specific chromatin landscape [161–166]. ChIP-seq
experiments have revealed that this isoform binds to several

Fig. 7 Model of the phosphorylation dependent activation of TAp63α. A The dimeric and inactive TAp63α is highly expressed in oocytes
during dictyate arrest. B Anti-cancer therapy with chemotherapeutic agents or γ-irradiation causes DNA damage. Doxorubicin or γ-irradiation
directly induces DSBs. Cisplatin, however, creates covalent inter- and intra-strand DNA adducts, which are then turned into DSBs by the
nucleotide excision repair (NER) pathway. The kinase ATM is recruited and activated by DSBs and activates its downstream kinase Chk2 by
phosphorylation. Chk2 in turn phosphorylates TAp63α at a single residue (S582) creating a consensus sequence for the constitutively active
kinase CK1. CK1 then consecutively phosphorylates S585, S588, S591 and T594 as with each step it creates a new consensus sequence to
phosphorylate the next residue at position i+ 3. The accumulated negative charge of the phosphate groups triggers the formation of an
active tetramer inducing the transcription of the pro-apoptotic Bcl-2 family members PUMA and NOXA [181]. This leads to apoptosis of the
primordial follicles and ultimately to premature ovarian insufficiency (POI) upon cancer therapy [188, 189, 230–232]. C The priming kinase
Chk2 and the executioner kinase CK1 phosphorylate serine and threonine residues in a consecutive manner. In the autoinhibitory complex
the phosphorylated sequence is adjacent to the TI domain and thereby in proximity to the negatively charged residues following the β-strand
T2 (D61, D63 and D66). The charge repulsion with these residues breaks open the autoinhibitory complex leading to irreversible
tetramerization.
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thousand sites in the genome with a preference for enhancer and
super enhancer sites [161, 167–174]. Interestingly, many of these
sites differ between mouse and human keratinocytes and might
be related to the observable phenotypic skin differences between
both species [171]. To fulfill this function, a direct transcriptional
activity is not necessary but interaction with the DNA as well as
cooperation with other transcription factors [164]. This task
requires high affinity DNA binding which is achieved by a
constitutive open, tetrameric conformation in which the DBDs are
flexibly tethered via the OD. NMR investigations have confirmed
that the DBDs rotate freely and independently [148]. Similarly,
ΔNp73α was shown to be an open tetramer competent to bind to
DNA [175].

TAp63α and TAp73α
TAp63α is highly expressed in mammalian oocytes that are
arrested in prophase of meiosis I [24, 32]. In mice its expression
can be detected from day E18.5 on when oocytes have completed
the repair of DNA double strand breaks (DSBs) induced by the
enzyme Spo11 [176, 177]. These DNA DSBs get repaired by the
process of homologous recombination [178] with some of the
repair events resulting in cross-overs. These cross-overs are
essential for a correct pairing of homologous chromosomes and
thus reliable chromosome separation during meiosis. At the end
of this process the expression of TAp63α increases and at day P5
virtually all oocytes have entered the dictyate arrest phase and
show strong expression [24]. This expression level remains high
until oocytes are recruited for ovulation. To ensure that during the
long arrest phase—which can last in humans up to ~50 years—
the pro-apoptotic transcription factor TAp63α does not induce cell
death the transcriptional activity of this isoform is tightly
controlled. This is achieved by adopting a closed and only dimeric
conformation [179] (Fig. 6). While the structure of the inhibited
state is not determined yet, extensive biochemical analysis has
provided a detailed model of its conformation [148]. In this model
the C-terminal TI domain plays a key role. Within the dimer, the
two TI domains form an antiparallel β-sheet. This β-sheet gets
extended by two strands (T1 and T2) from the sequence located
between the TA and the DBD domains, thus creating a six-
stranded antiparallel β-sheet [148]. The sequence containing the
T1 and T2 β-strands correspond to the region of the TAD2 of p53
and p73 (see above). Interestingly, the interaction between the TI
domain and one of the β-strands from the N-terminal sequence
(T2) was confirmed by the Alphafold2 calculations, which
however, are based on a monomer and can therefore only
partially recapitulate all interactions necessary to stabilize the
closed dimeric state [180]. The six-stranded antiparallel β-sheet
has two completely different faces: one is very hydrophobic, the
other one highly charged. According to the current model [148],
the hydrophobic face interacts with the tetramerization interface
of the OD, which is created by removing one of the dimers and is
also hydrophobic (Fig. 6). Blocking this tetramerization interface
prevents the interaction of two dimers via their helices. The
position of the second helix that in the structure of the tetrameric
OD interacts with elements of the other dimer (reaching across
the tetramerization interface, see above and Fig. 4) [121–123] is
currently not known and potentially it is even unfolded. The
N-terminal α-helical TA domain is also important for stabilizing this
closed conformation: it probably also binds to the OD, potentially
occupying the position of the second helix of the OD. Mutating
key hydrophobic residues (F16, W20, L23, these residues
correspond to the amino acids that in p53 bind to Mdm2 [56])
within the TA domain destabilizes the conformation and results in
the formation of an open tetrameric state [179]. As these amino
acids are also key residues that interact for example with the Taz2
domain of p300 [61] and with other transcriptional activators,
burying them in the closed state blocks interaction with the
transcriptional machinery. In addition, the DNA binding affinity is

strongly reduced [179]. By combining both effects—blocking
interaction with the transcriptional machinery and inhibiting DNA
binding—a strong total inhibition is achieved which explains why
oocytes can survive for long times despite the high content of
TAp63α.
Activation of this closed dimeric state to the open tetrameric

state that can bind to DNA and initiate a pro-apoptotic program
[181] requires phosphorylation (Fig. 7). The first kinase that was
identified to phosphorylate TAp63α directly was checkpoint kinase
2 (Chk2) [182]. Chk2 phosphorylates S582 which is located in a
loop connecting the SAM and TI domains. This phosphorylation
itself does not influence the conformation, TAp63α remains in the
closed dimeric state [183]. However, pS582 recruits another kinase,
Casein kinase 1 (CK1) that adds four more phosphate groups
sequentially (Fig. 7) [183]. CK1 usually requires pre-phosphorylated
sites and adds phosphate groups at the i+ 3 position relative to
the initial phosphate [184–186]. In p63, this results in phosphory-
lated sites at S585, S588, S591 and T594. This accumulation of
negative charge just N-terminal to the TI domain leads to
electrostatic repulsion with a group of three aspartic acid residues
located next to the T2 β-strand. Activation to the open tetrameric
state is irreversible, removal of all phosphate groups in the
tetrameric state does not reestablish a closed dimeric state [179].
Likewise, experiments with urea have shown that moderate
amounts of the denaturant result in the formation of the
tetrameric state (without unfolding of the DBD, OD or SAM
domains) but subsequent removal of urea does not lead to closed
dimers [148]. These experiments have shown that the closed
dimeric state of TAp63α constitutes a kinetically trapped high
energy state and that the activation process follows a spring-
loaded activation mechanism [148].
This irreversibility of the activation paired with the importance

of the process (excessive oocyte death does not threaten the
individual but the next generations) requires tight regulation.
Surprisingly, only Chk2 is activated (by ATM) while CK1 is thought
to be a constitutively active kinase [186]. This would make the
decision about life and death in oocytes be dependent only on the
activation state of Chk2. Detailed kinetic studies have, however,
shown that the third phosphorylation event by CK1 (phosphoryla-
tion of S591) is significantly slower than phosphorylation of the
first two sites (S585, S588) [187]. At the same time, this third
phosphorylation event is required for tetramerization, while the
fourth one (T594) is dispensable [183]. Activated, tetrameric
TAp63α gets degraded fast and thus the kinetics of activation sets
the threshold of DNA damage required for eliminating the
compromised oocyte.
Most likely, the original role of TAp63α was to eliminate all

oocytes that had not repaired the Spo11 induced DNA DSBs at the
beginning of the dictyate arrest phase. However, TAp63α remains
expressed in oocytes throughout the entire dictyate arrest phase
and DSBs caused by other processes during that period result in
activation of TAp63α. This is in particular a problem for patients
treated for cancer or autoimmune diseases with chemotherapy or
irradiation [24, 183, 188–193]. Activation of TAp63α in oocytes
results in the loss of the pool of primary oocytes and thus leads to
infertility and premature induction of menopause (Fig. 7). The
dramatic effect of activated TAp63α for female fertility has also
been demonstrated by the identification of mutations that create
constitutively tetrameric (and therefore activated) TAp63α forms
in human patients suffering from premature ovarian insufficiency
[163, 194–197].
The high sequence identity between the p63 and p73 TI domains

suggested that TAp73α might also adopt a closed and only dimeric
conformation. Analysis of the oligomeric state, however, revealed that
all p73 isoforms are constitutively tetrameric [175]. Domain swap
experiments between p63 and p73 further demonstrated that
replacing the p63 TI domain in TAp63α with the p73 TI domain
leads to a closed dimeric conformation of the chimeric protein,
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proving that the p73 TI domain is in principle capable of supporting a
closed state [61]. Further investigations have shown that the decisive
difference between p63 and p73 is the N-terminal region and in
particular residues 2–69. In p73 this sequence contains the bipartite
TA domain while in p63 this sequence forms the N-terminal TA
domain and the β-strands T1 and T2, which are part of the inhibitory
β-sheet. Replacing the N-terminal region of TAp73α with the
corresponding p63 sequence indeed resulted in the formation of a
closed dimeric state of p73 [61]. These results also demonstrate that
during evolution an originally inhibitory element (the β-strands) in
p63 became an activating element (the second TA domain) in p73.
This second TA domain finally became the dominant one in p53,
while the original TA domain adopted an important role in regulation
of p53’s activity via binding to Mdm2 [56].

TA*p63α and GTAp63α
TAp63α is not the longest p63 isoform. Using a start site in exon 1,
TA*p63α has an N-terminal extension of 39 amino acids (the
transcriptional start site for TAp63α is in exon 2 [5]). Biophysical
investigations have demonstrated that this extension stabilizes
the closed dimeric state relative to TAp63α and at the same time
provides a higher transcriptional activity in the open tetrameric
state [198]. Thus, it seems to enhance the difference between the
off- and the on-state of p63. Structurally, two helices are predicted
for the extra 39 amino acids and are also predicted to form a TA
domain. The exact function of this isoform and where it is
expressed is currently not known. It can be detected on the mRNA
level in different cells and at the protein level for example in the
SUM159 cancer cell line [198]. Interestingly, a recent publication
has shown that mutation of the start codon of TA*p63α causes a
syndrome in human patients characterized by cleft tongue and
muscular hypotonia, suggesting that the TA* isoforms might play
a role during development [199].

A similar isoform is GTAp63α. It differs from TA*p63α by
replacing the first 21 amino acids with 19 unique residues [198].
Both isoforms, however, share the 18 amino acids directly
N-terminal to the start of TAp63α. The GTAp63α isoform was
identified in male germ cells of humans and great apes and is
created by incorporation of the 5′ LTR sequence of the human
endogenous retrovirus 9 (ERV9) into the genome [200] which
created an upstream exon, named U1. It might play a similar role
in genetic quality control in male germ cells as TAp63α in female
oocytes. In mice, however, p63 does not seem to be important in
male germ cell quality control as activating mutations that create
constitutively tetrameric and active p63 forms render female mice
infertile but do not affect fertility of male mice [194, 201].
For p73 similar N-terminal extensions have so far not been

reported.

TAp63β and TAp73β
The β-isoforms of p63 and p73 are created by alternative splicing
at the 3′ end of the p63 mRNA which removes at the protein level
the SAM domain except for the three N-terminal amino acids of
the first α-helix. This splicing also removes the inhibitory TI domain
and thus makes all β-isoforms constitutively tetrameric. While no
physiological functions for the p63β proteins are known (although
mRNA transcripts are found in several tissues [30]), the TAp73β
isoform is expressed in several tissues along with TAp73α. The
specific function of the p73 α-C-terminus was investigated with a
mouse model in which the exon 13 was deleted, thus expressing
only the β-isoforms [202]. This mouse model (Trp73Δ13/Δ13) suffers
from severe hippocampal dysgenesis, reduced synaptic function-
ality and impaired learning and memory capabilities caused by the
depletion of CR cells [202]. In contrast to these neuronal defects
no effect was seen for the development of the airway ciliated
epithelium, suggesting that the α-C-terminus—and in particular

Fig. 8 Structural comparison of the ODs of different invertebrate and vertebrate species. The structures of the p53 ODs of different
invertebrate species are compared with the ODs of human p53 (PDB code: 1SAF), p63 (PDB code: 4A9Z) and p73 (PDB code: 2KBY) as well as
with p53 from Danio rerio (zebrafish; PDB code: 4D1M). In the structure of Cep-1 from Caenorhabditis elegans (PDB code: 2RP5) the OD forms
only a dimer that is tightly coupled to a SAM domain (yellow). In the structure of the OD from Drosophila melanogaster (PDB code: 2RP4) each
secondary structure element known from human p53 is doubled. The extra β-sheets and α-helices per monomer are shown in red. The OD of
p53/p73-b from the tunicate Ciona intestinalis (PDB code: 2MW4) is structurally similar to human p63 and p73 showing a second helix, despite
the replacement of amino acids crucial for forming this second helix in vertebrate species. The structure of the p53 OD from Danio rerio
contains a second helix that, however, is differently orientated compared to the second helices in human p63 and p73.
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the SAM and TI domains—is dispensable for multiciliogenesis
[203].

TAp63γ and TAp73γ
The γ-C-terminus is created by alternatively splicing of exon 10 to
the γ-specific exon 10′, thereby adding 38 γ-specific residues
directly C-terminal to the OD [5]. For p63 this isoform was shown
on the mRNA level to be the dominant isoform in skeletal muscle
[30]. If the γ-isoforms are also expressed on the protein level, is,
however, not known. Several publications have discussed roles of
TAp63 in skeletal and cardiac muscle development and disease
[21–23, 30] as well as preventing aging and maintaining adult skin
stem cells [204], the regulation of Dicer [31] as well as induction of
senescence and suppression of tumorigenesis [205, 206]. Unfortu-
nately for most studies the exact C-terminal splice isoform was not
identified (it could be either TAp63α, TAp63β, TAp63γ or a mixture
of all). In these studies inactivation of TA-specific isoforms were
reported to change the transcriptional profiles of the investigated
tissues and cells. As TAp63α would most likely adopt an inactive
dimeric conformation these changes of the transcriptional profile
suggest that TAp63γ (or maybe TAp63β) is the dominant isoform
in these processes. Changes in the transcriptional profile would be
difficult to explain if the transcriptionally repressed TAp63α
isoform would be the dominant one. How TAp63γ that is at least
in cell culture constitutively tetrameric, transcriptionally very
active and pro-apoptotic [5, 179] contributes to the described
processes and the precise role of the short γ-C-terminus remains
to be studied. For the p73γ isoforms no physiological function has
been convincingly demonstrated yet. Likewise, a physiological
function for all even shorter p63 and p73 isoforms still has to be
identified (although in particular for p73 shorter isoforms are
detected on the mRNA level in different tissues [29, 30]).

EVOLUTION OF THE P53 PROTEIN FAMILY
The identification of p53 homologs in short lived invertebrates has
sparked the interest in the evolution of the p53 family [48, 207–212].
In these organisms, tumor suppression is due to the short life span
that prevents the accumulation of mutations, the limited amount of
renewable tissues and the early sexual maturation and reproduction
not a relevant problem. Consequently, the p53 homolog in C.
elegans, Cep-1 [213, 214], for example, is found in the germ cells of
this worm, strongly suggesting that germ cell quality control is the
origin for the development of the entire p53 family. As germ cells
are potentially immortal—they are not only the source for the
somatic cells of the next generation but also for the germ cells of all
following generations—keeping the genetic information of oocytes
(and potentially also sperm cells) under strict quality control became
advantageous. Once the life span of the organism started to exceed
the life span of individual cells and evolution “invented” renewable
tissue, the occurrence of somatic tumors became an evolutionary
pressure which resulted in the development of p73 and in particular
of p53 as tumor suppressor genes.
This hypothesis also means that the function of TAp63α in

oocytes evolutionary precedes the function of ΔNp63α in
epithelial stem cells. Structure determination of the folded
domains of the C. elegans p53 homolog Cep-1 support the
hypothesis of the germ cell quality control by p63 being the
evolutionary origin. These investigations have shown that the DBD
is again very similar to the DBDs of p53 and p63 with a similar
DNA sequence preference [215]. The OD, however, forms only
constitutive dimers that do not have the ability to create tetramers
(Fig. 8) [216]. Instead, the OD is structurally coupled to a SAM
domain that in mammalian family members exists in p63 (and
p73) but not in p53. The Cep-1 SAM and OD domains are linked by
a helix with extensive interactions with both parts and removal of

the SAM domain destabilizes the OD. The inability to form
tetramers is based on the replacement of important hydrophobic
amino acids in the tetramerization interface of the p53 OD (M340,
A347, and L348) with charges amino acids (K544, R551, and E552).
Mutation of these charged amino acids to hydrophobic residues
induces tetramerization [216].
Other invertebrate p53 homologs have evolved additional

variations of the OD. In the OD of Dmp53 [217–219], the homolog
of Drosophila melanogaster, each secondary structure element of
the p53 OD is doubled: each monomer not only comprises an
additional C-terminal helix as is the case in the ODs of p63 and
p73, it contains also an additional N-terminal β-strand (Fig. 8). In
the case of the Dmp53 OD each of these additional secondary
structure elements is necessary for the stability of the entire
domain. In contrast to p63 and p73, the second helix does not
reach across the tetramerization interface but is located antipar-
allel to the first helix of each monomer.
In germ cells of Drosophila, different Dmp53 isoforms that differ

by the length of the N-terminus and that are created by the use of
alternative promoters and RNA splicing have been found
[220, 221]. Only the shorter isoform (called Dmp53A) activated
apoptosis in response to ionizing radiation [222], suggesting that
autoinhibitory and regulatory elements likely exist in this insect
family member as well.
While the existence of the N-terminal β-strand in the Dmp53

OD and the SAM domain at the C-terminus of the Cep-1 OD are
so far unique features of these proteins, a second helix within
the OD has been found in many other members of the p53
family [210]. Vertebrates have in general all three family
members. Interestingly, structure determination of the OD of
p53 from zebrafish has shown that it also contains a second
helix, that is, however, tilted by 50° relative to the second helix
in p63/p73 (Fig. 8) [210]. Further sequence analysis suggests that
some bony fish retain the second helix in their OD while it was
lost in other fish families (Acanthomorpha, spiny-rayed fishes)
[210]. As the second helix in p53 is also missing for example in
mammals, it seems that the second stabilizing helix was lost
independently several times during evolution [210] and
replaced with a disordered region that in human p53 is used
as an integrator hub for countless posttranslational modifica-
tions and that is probably linked to acquiring additional
functionality in somatic cells [223–226]. Stability of the core
p53 OD was achieved by tighter packing and the establishment
of the crucial Arg337-Glu352 salt bridge that stabilizes the
primary dimer and thus also supports the formation of stable
tetramers even without the additional helix [210].
Gene duplication and evolutionary loss of the second helix

occurred also in invertebrates. Structural information on the OD is
available for the two p53 family members found in Ciona intestinalis
[209, 227], an organism that belongs to the tunicates and that
represents the closest living relatives of vertebrates [228]. The C.int.
p53/p73-a named protein does not contain a second helix while the
C.int. p53/p73-b named protein contains the second helix [229].
This second helix, however, lacks the typical signature amino acids
that are known to form the second helices of vertebrate p53 [210]:
the N-terminal Pro residue that caps the helix is shifted by one
position in the Ciona protein and a Tyr-Arg di-peptide toward the
end of the helix is replaced with a Cys-Cys sequence [229].
Interestingly, the sequence that directly C-terminally follows the OD
of C.int. p53/p73-a and that is disordered at 25 °C becomes more
rigid at 10 °C indicating that a second helix in this region might
form at lower temperature [229]. As helix formation could in
principle also be initiated by posttranslational modifications, this
observation suggests that in some species a stabilizing second helix
might get induced and stabilization of tetramers might be
posttranslationally regulated.
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