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Supplementary	Note	1.	Brief	introduction	of	ODNP	theory	for	the	general	audience	

ODNP	is	a	result	of	e-N	cross-relaxation.	In	the	case	of	a	spin	pair	by	one	electron	and	one	13C	

nucleus	spins,	we	consider	an	energy	diagram	2*2	states	(electron	α	and	β	states	and	13C	α	

and	β	states).	The	spin	dynamics	of	 I	 (13C)	and	S	 (electron)	are	coupled	 in	 this	 system	via	

cross-relaxation	rates	RIS	and	can	be	described	phenomenologically	by	Solomon	equation:	

	

!
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where	R1S,	R1I	and	RIS	are	longitudinal	relaxation	rates	of	S-spin,	I-spin	and	the	I-S	spin	pair	

cross-relaxation	rates,	respectively.	

In	a	steady	state	and	assuming	the	electron	spin	S	is	only	partially	saturated	by	microwave,	

the	explicit	form	of	Solomon	equation	can	be	simplified	as:	
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where	s	stands	for	the	saturation	factor.	

The	ODNP	enhancement	(of	steady	state	that	assumes	adequately	long	interscan	delay)	can	

be	obtained	from	this	equation:	
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where	the	13C	relaxation	rate	R13C	contains	the	paramagnetic	contributions.		

	

!!"! = !!"!!"# + !!"!!"#"	

	

We	than	rewrite	the	above	equation	as	
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where	ζ	 is	coupling	factor	and	f	 is	leakage	factor.	When	the	13C	T1	relaxation	is	dictated	by	

the	 paramagnetic	 effect,	 leakage	 factor	 f	 is	 close	 to	 1.	 The	 coupling	 factor	 presents	 the	
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competition	between	e-13C	 cross-relaxation	and	paramagnetic-enhanced	 13C	T1	 relaxation.		

The	cross-relaxation	rate	RIS	can	be	further	dissected	as	below:		

!!"=!!" − !!" = !!"!"#$%&' − !!"!"#$%&' − !!"!"#$#% 	
	

As	shown	by	the	scalar	spin-spin	interaction	Hamiltonian,	the	scalar	interaction	only	drives	

ZQ	 relaxation	 here.	 Therefore,	 the	 ODNP	 enhancement	 on	 13C	 is	 always	 positive	 if	 scalar	

interaction	is	dominating.		

This	equation	links	the	macroscopic	relaxation	rates	with	microscopic	spin-spin	fluctuations.	

All	these	cross-relaxations	are	driven	by	the	fluctuation	of	respect	spin-spin	interactions.	In	

the	case	of	rapid	isotropic	fluctuation,	the	macroscopic	ZQ	scalar	relaxation	can	be	linked	to	

the	microscopic	fluctuations	as	below1,2:	
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where	A	stands	for	the	scale	of	hyperfine	interaction,	S	is	the	quantum	spin	number	and	τs	is	

the	autocorrelation	 time	of	 fluctuation	of	 spin-spin	scalar	 interaction.	The	spectral	density	

function	should	be	in	dimension	T-1.	Here	the	Lorentzian	spectral	density	function	is	yielded	

from	 the	 exponential	 autocorrelation	 function.	 These	 forms	 can	 only	 be	 held	 for	 the	 idea	

Ornstein-Uhlenbeck	 process	 (S9).	 While	 the	 mode	 of	 the	 fluctuation	 does	 not	 match	 this	

simplest	 picture,	 the	 modification	 of	 the	 spectral	 density	 is	 required.	 One	 simple	

modification	of	the	above	model	is	so-called	“pulse”	model3,4,	 in	which	the	pulse-composed	

Poisson	process	yields	an	exponential	spectral	density	function:		

	

!!"! ! = 4 ! !!!!
!!

exp (−!!!!! )	

	

where	<a>	is	the	amplitude	of	the	scalar	hyperfine	pulse,	τp-1	is	the	frequency	of	pulses	and	

τw	is	the	width	(similar	to	correlation	time)	of	the	pulse.	

In	 our	 long-living	 radical-substrate	 complexes,	 the	mode	 of	 the	 Fermi	 contact	 fluctuation	

driving	the	scalar	cross-relaxation	processes	is	even	much	more	complex.		In	particular,	the	

autocorrelation	 function	 of	 the	 fluctuation	 is	 not	 simple	 exponential	 forms	 and	 the	
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corresponding	 spectral	 density	 function	 is	 very	 complex.	 The	 processes	 featuring	 the	

complex	auto-correlation	functions	can	be	described	more	precisely	via	the	autoregressive	

model	(see	S9	below	for	more	details).	Here	we	derive	an	approximated	version	to	link	the	

spectral	density	of	 such	 complex	processes	with	 scalar	ZQ	 relaxation	 time.	 In	our	 systems	

the	memory	time	(101	fs)	is	relative	shorter	than	the	Fermi	contact	fluctuation	(spin-density	

fluctuation,	10-1	ps)	and	both	are	much	shorter	than	the	e-13C	cross-relaxation	time	(10-1	to	

101	s).	

	

 !!"!#$% <  !!"#$% ≪ !!"!"#$#% 	
	

So	we	have	taken	the	scalar	relaxation	theory	 in	[1]	as	an	approximation	and	incorporated	

an	“arbitrary”	form	of	spectral	density:	
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where	X	 is	 the	conversion	factor	 from	spin	density	to	hyperfine	coupling	constant,	Gρ(0)	 is	

the	spin-density	autocorrelation	function	at	zero	time	shift,	jρ(ωZQ)	is	the	spectral	density	at	

the	ZQ	frequency.	

	

	

Supplementary	Note	2.	Lifetime	of	indole-TEMPO	complex	

Here	we	consider	the	reaction	

	
The	rate	constants	k1	and	k-1	defines	equilibrium	constant	K:	

	

! = !!
!!!

	

	

The	 up-limit	 of	 the	 formation	 rate	 of	 indole-TEMPO	 complex	 is	 defined	 by	 the	 diffusion-

limited	molecular	collision	in	solution:	

	

indole + TEMPO indole    TEMPO...k1
k-1
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2!"
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in	which	η	is	the	viscosity	of	solvent	and	r	presents	the	molecular	radius.	

The	radius	of	indole	and	TEMPO	molecules	are	3.4	Å5,6.	Therefore	the	up-limit	of	k1	in	CCl4	at	

300	K	is:	

	

max !! = 8!"
3! = 7.4×10! ! ⋅!"#!! ⋅ !!!	

	

The	equilibrium	constant	K	was	reported	in	Ref.	[7].	Taking	this	value,	the	minimal	lifetime	

of	indole-TEMPO	complex	can	be	obtained:	

	

min !!"#$%&' = 1
max !!!

= Κ
max !!

= 0.89 
7.4×10! ! = 120 !"	

	

Since	 the	 equilibrium	 constant	 of	 the	 indole-TEMPO	 complex	 was	 determined	 from	 the	

paramagnetic	 effects,	 the	 estimated	minimal	 lifetime	 of	 indole-TEMPO	 should	 be	 qualified	

enough	for	the	discussions	in	this	work.			

	

Supplementary	Note	3.	Binding	affinity	and	lifetime	of	CCl4-TEMPONE	complex		

First,	 the	 binding	 affinity	 of	 CCl4-TEMPONE	 complex	 was	 approximated	 from	 the	

experimental	 molar-free	 carbon	 paramagnetic	 shift	 (!!"#" )	 and	 carbon	 Fermi	 contact	
hyperfine	constant	A/h	(4.65	MHz)	from	the	previous	DFT	calculations	in	Gauss.8	The	Fermi	

contact	shift	δcon	of	CCl4	in	CCl4-TEMPONE	complex	can	be	calculated	as:	

	

!
ℎ ( !!" ) = !!!!!!!!!!"!

3! ∗ ℎ ! = 1.124×10! !   	

	

δ!"# =
!!!!!!!!(! + 1)

9!" ! = 1.186×10! !   	

	

where	hyperfine	coupling	constant	A/h	is	in	MHz	and	spin	density	ρ	is	in	atomic	unit	(Bohr	

radius	as	the	distance	unit)	as	also	used	in	the	Gaussian	program.	The	contact	shift	δcon	is	in	

ppm	and	the	δcon	–	ρ	conversion	applies	ubiquitously	for	any	types	of	nuclear	spins.	We	take	

S	=	½	and	T	=	298	K	for	our	case.	

Using	 the	 above	 equations,	 we	 have	 the	 spin	 density	 on	 CCl4	 carbon	 is	 4.14*10-3	 and	 the	

corresponding	 Fermi	 contact	 shift	 would	 be	 1.57*103	 ppm.	 The	!!"#"	is	 only	 25.7	 ppm,	
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which	is	much	smaller	than	the	Fermi	contact	shift,	and	could	contain	a	dipolar	contribution.	

We	can	therefore	estimate	the	up-limit	of	the	binding	affinity	of	CCl4-TEMPONE	complex	as	

	

! ≈ !!"#"
!!!"

= 1.6×10!!!!!	

	

Similar	to	S7,	we	take	the	radius	of	CCl4	(2.45	Å9)	and	TEMPONE	(3.5	Å10),	we	estimate	the	

lifetime	of	 indole-TEMPO	complex	 as	2.1	ps,	which	 is	 line	with	 the	magnitude	of	 previous	

results11.	

	

Supplementary	Note	4.	Brief	introduction	on	the	spin	density	fluctuation	-	

autocorrelation	function,	spectral	density,	autoregressive	AR	model	

The	spin	density	trajectory	from	QM/MM	MD	trajectory	of	a	single	molecular	complex	ρ(t)	

can	 be	 Fourier	 transformed	 to	 a	 frequency	 spectral	 the	 profile	 of	 which	 is	 the	 spectral	

density	 function	 of	 the	 random	 process	 (Supplementary	 Figure	 4).	 Alternatively,	 the	

autocorrelation	 function	 Gρ(t)	 and	 the	 normalized	 form	 gρ(t)	 of	 ρ(t)	 can	 be	 calculated	

following:	

	

!! ! =< ! !! ! !! + ! >	
	

!! ! = < ! !! ! !! + ! >
< ! !! ! !! > 	

	

The	Fourier	transform	of	autocorrelation	function	yields	spectral	density	function	Jρ(t)	and	

its	normalized	form	jρ(t)	(Supplementary	Figure	4)		

	

!! ! = ℱ[!! ! ] = ℱ[!! ! ∙ !! 0 ] = !! 0 ∙ ℱ[!! ! ] = !! 0 ∙ !!(!)	
	

!! ! = ℱ[!! ! ]	
	

If	the	distribution	of	ρ(t)	follows	a	normal	distribution,	the	corresponding	process	is	called	a	

Gaussian	 (random)	 process.	 While	 a	 Gaussian	 process	 shows	 an	 exponential	 correlation	

function,	 this	 special	 process	 is	 also	 called	 Ornstein-Uhlenbeck	 process	 that	 is	 the	 most	

common	model	of	the	random	fluctuations	adapted	in	the	majority	of	relaxation	theories	in	

magnetic	 resonance	 field.	 The	Ornstein-Uhlenbeck	process	 is	 a	Markovian	process,	 namely	

the	evolution	of	the	current	state	of	the	system	is	solely	determined	by	the	current	status	of	

the	state.	A	Markovian	process	has	no	memory	effect	(“memoryless”).	The	spectral	density	

function	 of	 an	 exponential	 autocorrelation	 function	 is	 a	 Lorentzian	 function,	 which	 is	 the	
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most	 seen	 form	 in	NMR	 relaxation	 theories.	However,	 the	deviation	of	ρ(t)	 from	 the	 ideal	

Ornstein-Uhlenbeck	 process	would	 break	 down	 the	 simplified	 Lorentzian	 spectral	 density	

function.	A	simple	example	is	the	so-called	pulse	model3,4,	in	which	the	fluctuation	is	in	the	

format	 of	 a	 pulse-composed	 Poisson	 process,	 yields	 a	 peak	 at	 a	 non-zero	 frequency.	 The	

deviation	from	the	ideal	Ornstein-Uhlenbeck	can	occur	more	generally	than	the	pulse	model.	

First,	 if	 the	distribution	of	ρ(t)	 in	may	not	 follows	a	symmetric	normal	distribution,	which	

can	 be	 caused	 by	 e.g.	 an	 asymmetry	 barrier	 governing	 the	 dynamic	 process.	 Second,	 a	

random	process	can	possess	a	memory	effect	e.g.	in	the	presence	of	restraints	defined	by	the	

previous	 steps	 or	 under	 the	 “slow”	 impacts	 that	 require	 certain	 time	 to	 propagate	 to	 the	

interested	site.	Such	behaviors	often	emerge	 in	highly	coupled	systems.	A	random	process	

with	memory	effect	is	called	a	non-Markovian	process.	To	describe	this	memory	effect,	the	so-

called	memory	function	Kg(t)	can	be	derived	following:	

	

!
!" !! ! = − !! !

!

!
!!(! − !) !"	

	

Here	Kg(t)	is	also	sometimes	called	memory	kernel.	The	solution	Kg(t)	of	the	above	Volterra	

integral	 equation	 for	 an	 exponential	 gρ(t)	 is	 a	 δ-function,	 which	 indicates	 a	 zero-memory	

effect.	While	gρ(t)	describes	a	non-Markovian	process,	the	corresponding	Kρ(t)	shows	a	finite	

decay.	(Supplementary	Figure	4)	

In	 a	 highly	 simplified	 picture,	 a	 random	 Ornstein-Uhlenbeck	 process	 drives	 the	 spin	

relaxation	when	 the	 correlation	 time	of	 the	 random	process	 approaches	 the	 characteristic	

frequency	 (e.g.	 e-13C	 ZQ	 frequency	 for	 the	 scalar	 cross-relaxation)	 of	 the	 specific	 spin	

Hamiltonian	 responsive	 for	 the	 relaxation.	 In	 this	 picture,	 the	 random	 process	 (e.g.	 a	

molecular	 motion)	 opens	 the	 relaxation	 channel	 for	 dissipating	 the	 spin	 energy	 to	 the	

environment	(or	so-called	“lattice”).	The	stochastic	feature	often	indicates	that	such	a	process	

is	 coupled	 to	 a	 large	degree	of	 freedom	and	 therefore	 ensures	 the	presence	of	 a	 lattice	 to	

which	the	spin	energy	can	dissipate	efficiently.	Here,	the	stochastic	process	can	be	viewed	as	

a	 “superposition”	of	a	 large	number	of	 individual	processes	 that	seems	coupled	due	 to	 the	

complexity	(high	degrees	of	freedom)	of	the	system	(“lattice”).					

In	our	QM/MM	simulations,	peaks	appear	 in	 low	THz	frequency	regime	that	also	hits	e-13C	

ZQ	 frequency.	Conceivably	 the	 local	 coupling	of	 spin	 interactions	 and	 the	 low	THz	motion	

takes	 place.	 Different	 from	 the	 IR	 modes	 that	 are	 often	 originated	 from	 highly	 localized	

molecular	motions,	THz	modes	arise	commonly	 from	the	collective	motions	 involve	higher	

degrees	 of	 freedom	 IR	 motions.	 The	 presence	 of	 THz	 oscillation	 features	 at	 various	

molecular	 interfaces	 (indole/TEMPO,	 TEMPO/CCl4)	 suggests	 the	 further	 extension	 of	 the	

coupling	network.(Supplementary	Figure	7m-a)	In	our	system,	the	coupling	of	certain	low-
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THz	modes	to	the	environment	is	likely	present	as	indicated	by	the	significant	breath	of	the	

modes	that	are	beyond	the	resolution	of	the	Fourier	transform.(Supplementary	Figure	7)	

To	resolve	the	complex	pattern	of	autocorrelation	functions	derived	from	our	QM/MM	MD	

simulations,	we	have	turned	to	the	time	series	analysis	with	a	rather	generally	used	model	

called	autoregressive	model	(AR).	AR	model	describes	the	time	evolution	of	spin	density	ρ(t) 

following the hypothesis: 

 

! !! = !(!!) + !!
!

!!!
! !!!! 	

	

where	ρ(tn)	is	related	to	p	previous	steps	with	coefficient	θ1(previous	point)	to	θp(previous	

pth	point)	and	σ(t)	is	the	random	noise	with	zero	average	and	variance	σ2.	In	a	discrete	form	

such	 as	 the	 QM/MM	MD	 simulation,	 an	 Ornstein-Uhlenbeck	 process	 can	 be	 described	 by	

memoryless	AR(1)	model.	AR	of	higher	orders	contains	a	memory	effect.		

We	can	apply	Z-transform	to	AR(p)	model:		

	

! ! (1 + !!
!

!!!
!!!) = !(!)	

	

! = exp (!"!!)	
	

where	Ts	is	the	sampling	period,	and	ω	is	frequency�	

The	 spectral	 density	 function	 (square	 root	 of	 power	 spectrum)	 can	 be	 expressed	 in	 the	

following	form:	

	

! ! = !
1 + !!!

!!! exp (−!"#!!)
	

	

The	AR(p>1)	models	show	three	unique	characteristics	relevant	to	our	data	analysis.	First,	

the	 autocorrelation	 function	 of	 an	 AR(p>1)	 model	 shows	 both	 an	 initial	 decay	 and	 the	

sinusoidal	waves.	Second,	the	spectral	density	function	(or	its	squared	power	spectrum)	of	

AR(p>1)	model	show	p/2	peaks.	Third,	the	damping	factor	D,	frequency	Ω	and	phase	φ	of	the	

sinusoidal	 waves	 in	 power	 spectrum	 are	 determined	 by	 the	 factors	 θi.	 For	 example,	 in	 a	

simple	AR(2)	model,	we	have12:	

	

! = −!! ,    ! = !"#!! !!
−2!! 

,    ! = !"#!! 1−!!
1+!!
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Supplementary	Note	5.	Estimation	of	zero-quantum	e-13C	scalar	cross-relaxation	rates	

from	QM/MM	MD	simulation	

In	 indole-TEMPO	complex  !!"!#$% <  !!"#$% ≪ !!" ,	 so	we	use	 the	conventional	 relaxation	
theory	 of	 the	 isotropic	 fluctuation	 of	 spin-spin	 scalar	 coupling1	 as	 an	 approximation	 for	

evaluating	the	impact	of	spin	density	fluctuation	obtained	from	QM/MM	MD	in	driving	e-13C	

ZQ	cross-relaxation.	We	have		

	

!!" =
2!!!!!!!!!!"!

3ℏ
!
∙ ! 0 ∙ !(!!")	

	

where	 the	 first	 term	scales	 the	spin	density	 to	Fermi	hyperfine	constant	as	defined	!/ℏ	(=	
2!!/ℎ).	 The	! 0 ∗ !(!)	is	 essentially	 equal	 to	 the	 spectral	 density	 of	 spectral	 density	
function	 ! ! 	of	 unnormalized	 spin	 density	 autocorrelation	 function	 !! ! . 	The	 ZQ	
frequency	ωZQ	 is	 equal	 to	 2π*fZQ	 (1.652	THz).	 The	 spectral	 density	 functions	 presented	 in	

Supplementary	 Figure	 7	 are	 in	 the	 unit	 of	 fs	 (10-15	 s).	 The	 estimated	 ZQ	 scalar	 cross-

relaxation	rates	are	listed	in	Supplementary	Table	6.	These	reates	are	mostly	in	the	order	of	

magnitude	of	10-1	to	101	s-1,	which	agrees	qualitatively	with	the	observed	DNP	enhancement	

factors.	

	

Supplementary	 Note	 6.	 The	 relevance	 of	 paramagnetic	 NMR	 in	 DNP	 inspired	 by	 a	

Google	search	

By	 taking	 the	 molecules	 “halogenated	 solvent”	 and	 “radical”	 investigated	 in	 a	 previous	

seminal	 ODNP	work8	 as	 the	 key	words,	 a	 Google	 search	 returned	 a	 collection	 of	 EPR	 and	

computational	chemistry	studies	on	these	catalogues	of	molecules.	Interestingly	this	search,	

likely	“biased”	by	the	personal	search	history,	also	suggested	a	paramagnetic	NMR	work	on	

relevant	molecular	 systems,13	which	 immediately	enlightened	us	about	an	overlooked	 link	

between	paramagnetic	NMR	and	ODNP	spectroscopy.	

	

Supplementary	Discussion.	Additional	factors	that	may	complicates	the	derivation	of	

ODNP	enhancement	from	paramagnetic	NMR	and	QM/MM	MD	results	

It	 appears	 that	 a	 simple	 correlation	 between	!!"#" ,	 the	 spectral	 density	 function	 of	 Fermi	
contact	 fluctuation	 and	 the	 ODNP	 enhancement	 is	 not	 straightforward	 (Supplementary	

Table	 6),	 which	 is	 likely	 due	 to	 multiple	 factors.	 The	!!"#"	parameter	 contains	 also	 the	
dipolar	contribution	and	is	impacted	by	macroscopic	magnetic	susceptibility,	therefore	only	

provides	a	qualitative	rather	than	the	quantitative	measure	of	spin	density.	The	frequency-

resolution	of	 the	 spectral	density	 function	derived	 from	our	QM/MM	MD	 trajectory	 is	 still	

limited	by	the	total	duration	(10	ps)	of	 the	simulation.	A	 follow-up	ab	initio	computational	
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study	aiming	a	 trajectory	beyond	100	ps	 is	 currently	underway.	Our	 first	glimpse	 into	 the	

more	 extended	 20-ps	 trajectory	 shows	 that	 the	 oscillations	 at	 102	 fs	 time	 scale	 indeed	

persist	 (Supplementary	 Figure	 5t,	 S6t).	 Beside	 the	 complexities	 in	!!"#" 	and	 computed	
spectral	 density,	 the	 observed	 ODNP	 enhancement	 also	 contains	 contributions	 from	 the	

other	hyperpolarization	transfer	pathways	including	the	direct	dipolar	e-13C	ODNP	and	the	

indirect	 e-1H-13C	 polarization	 transfer.	 The	 direct	 dipolar	 e-13C	 ODNP	 yields	 negative	 13C	

enhancement	 that	 could	 neutralize	 partially	 the	 positive	 scalar	 ODNP	 enhancement.	 This	

contribution	 is	 especially	 profound	 on	 the	 bridge	 carbons	 in	 indole	 and	 the	 carboxylate	

carbons	 in	amino	acids.	Similar	 to	 the	scalar	e-N	 interaction,	 the	dipolar	e-N	crosstalk	 in	a	

long-living	radical-substrate	complex	also	presents	rather	complex	dynamic	features,	not	to	

mention	 the	 breaking-down	 of	 the	 point-dipole	 approximation	 in	 the	 closely	 engaged	

radical-substrate	 complexes	with	delocalized	 spin	densities	 (Supplementary	Figure	11j-p).	

We	 have	 also	 observed	 in	 general	 the	 negative	 1H	 enhancement	 in	 our	 systems	

(Supplementary	Figure	1e-f,	 Supplementary	Table	3-S4).	 In	 fast-tumbling	 small	molecules,	

the	 negatively	 enhanced	 1H	 polarization	 could	 interconvert	 with	 the	 positive	 13C	

hyperpolarization	via	1H-13C	heteronuclear	NOE	(hNOE)	effect	(Supplementary	Figure	11u-

v).14-16	All	the	abovementioned	mechanistic	complexities	perplex	the	quantitative	prediction	

of	 ODNP	 enhancement,	 which	 consolidates	 the	 value	 of	!!"#"	as	 a	 qualitative	 but	 highly	
practical	indicator	of	scalar	ODNP	performance.		 	
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Supplementary	Table	1.	ODNP	NMR	samples	used	in	this	work	

Target	molecule	 Target	concentration	
(M)	

Radical*	 Solvent	

Indole	(U-13C)	 2.0	 TEMPO	 CCl4	
Indole	(2-13C)	 2.0	 TEMPO	 CCl4	

13CCl4	 ≈	20	 TEMPONE	 13CCl4	
imidazole	(2-13C,	U-15N)	 1.0	 TEMPO	 CDCl3	
imidazole	(2-13C,	U-15N)	 2.0	(pH*	=	11.0)	 TEMPOL	 D2O	

glucose	(U-13C)	 2.0	(pH	=	7.3)	 TEMPOL	 H2O	
glycine	(U-13C)	 2.0	(pH	=	6.1)	 TEMPOL	 H2O	
alanine	(U-13C)	 1.4	(pH	=	6.0)	 TEMPOL	 H2O	
serine	(U-13C)	 2.0	(pH	=	5.7)	 TEMPOL	 H2O	
proline	(U-13C)	 2.0	(pH	=	6.2)	 TEMPOL	 H2O	

*	radical	concentration	was	100	mM	for	all	samples	
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Supplementary	Table	2.	Summary	of	ODNP	NMR	spectra	of	indole,	imidazole	and	CCl4	acquired	on	HC	probehead	

*	all	chemical	shifts	are	referenced	indirectly	to	TMS	
†	this	peak	is	assigned	tentatively	
‡	not	resolved	(n.r.)	
¶	values	extracted	from	spectral	deconvolution	
§	no	stable	enhancement	values	can	be	obtained	due	to	the	severe	sample	heating	 	

compound	 solvent	 radical	 site	 chemical	shift*	

(ppm,	-	mw)	

chemical	shift*	

(ppm,	+	mw)	

1JCH	

(Hz)	

1JCC	

(Hz)	
DNP	

Enhancement	

indole	 CCl4	 TEMPO	 C2	 124.6	 123.3	 181	 67	 14.1	±	2.5	(13C2)	
26.2±	2.4	(U-13C)	

C3	 102.2	 101.4	 170	 62	 11.6	±	1.1	
C3a	 127.0	 127.0†	 -	 -	 -1.8	±	0.5	

C4/5/6	 119.7	 119.5	 n.r.‡	 n.r.‡	 5.4	±	0.2	
C7	 111.0	 109.9	 157	 62	 20.7	±	2.5	
C7a	 134.5	 135.0	 -	 -	 -2.1	±	0.5	
HN¶	 7.23	 7.04	 -	 -	 -9.5	±	0.0	
H2¶	 6.61	 6.31	 n.r.‡	 -	 -1.5	±	0.1	
H3¶	 6.41	 6.17	 n.r.‡	 -	 -8.7	±	0.0	
H4¶	 7.57	 7.30	 n.r.‡	 -	 -8.9	±	0.1	
H5/6¶	 7.07	 6.83	 n.r.‡	 -	 -10.9	±	0.0	
H7¶	 6.87	 6.60	 n.r.‡	 -	 -11.8	±	0.0	

CCl4	 CCl4	 TEMPONE	 C	 97.9	 91.7	 -	 -	 92.4	±	19.4	
imidazole§	 CDCl3	 TEMPO	 H2	 7.86	 7.57	 n.r.‡	 -	 -5.2	±	0.4	

H4/5	 7.30	 7.02	 n.r.‡	 -	 -4.0	±	0.2	
imidazole§	 D2O	 TEMPOL	 C2	 -	 136.2	 n.r.‡	 -	 >	0	(low	S/N)	

H2	 7.70	 7.36	 n.r.‡	 -	 -12.3	±	4.0	
H4/5	 7.33	 7.02	 n.r.‡	 -	 -18.7	±	1.7	
HDO	 4.70	 3.34	 -	 -	 -39.2	±	2.4	



	 13	

Supplementary	Table	3.	Summary	of	ODNP	NMR	spectra	of	water-soluble	compounds	acquired	on	FP	probehead	

compound	 solvent	 radical	 site	 chemical	shift*	

(ppm,	-	mw)	

chemical	shift*	

(ppm,	+	mw)	

1JCH	

(Hz)	

1JCC	

(Hz)	

DNP	

Enhancement	

imidazole	 D2O	 TEMPOL	 C2	 136.2	 136.0	 n.r.‡	 n.r.‡	 50	±	10	
H2/4/5	 7.12	(broad)	 7.64	 n.r.‡	 n.r.‡	 -5.0	±	0.3	
HDO	 4.70	 5.18	 -	 -	 -9.5	±	0.2	

glucose	 H2O	 TEMPOL	 C1	(β)	 96.1	 95.9	 154	 n.r.‡	 5.9	±	1.9	
	 	 	 C1	(α)	 92.2	 92.0	 156	 n.r.‡	 6.9	±	2.2	
	 	 	 C3	(β)	 76.0	 75.9	 n.r.‡	 59	 	

2.2	±	0.4	
(C2/3/4/5)	

	 	 	 C2	(β)	 74.2	 74.2	 n.r.‡	 59	
	 	 	 C3	(α)	 73.0	 73.1	 n.r.‡	 50	
	 	 	 C2	(α)/C4	(α+β)	 71.5	 71.5	 n.r.‡	 65	
	 	 	 C5(α+β)	 69.8	 69.9	 n.r.‡	 74	
	 	 	 C6	(α+β)	 61.1	 61.1	 136	 n.r.‡	 6.8	±	1.8	
	 	 	 	Hglucose	+	H2O	 4.70	 4.65	 n.r.‡	 -	 -8.3	±	0.2	

glycine	 H2O	 TEMPOL	 Cα	 41.8	 41.9	 141	 n.r.‡	 10.7	±	1.7	
C’	 172.5	 n.r.‡	 -	 n.r.‡	 ca.	-1†	

	 	 	 Hα	 3.16¶	 3.22¶	 n.r.‡	 n.r.‡	 10.0	±	0.1¶	
	 	 	 H2O	 4.70	 5.02	 n.r.‡	 -	 -9.8	±	0.1	

alanine	 H2O	 TEMPOL	 Cα	 50.8	 50.8	 134	 n.r.‡	 6.0	±	1.6	
Cβ	 16.7	 16.4	 131	 n.r.‡	 6.1	±	2.2	
C’	 175.9	 n.r.‡	 -	 n.r.‡	 ca.	-1†	
Hβ	 1.19	 n.r.‡	 n.r.‡	 n.r.‡	 n.r.‡	

Hα	+	H2O	 4.70	 4.48	 n.r.‡	 n.r.‡	 -10.2	±	0.1		
serine	 H2O	 TEMPOL	 Cα	 56.5	 56.2	 155	 n.r.‡	 6.0	±	0.1	

	 	 	 Cβ	 60.3	 60.0	 145	 n.r.‡	 6.5	±	0.1	
	 	 	 C’	 172.5	 n.r.‡	 -	 n.r.‡	 ca.	-1†	
	 	 	 Hserine	+	H2O	 4.70	 4.03	 n.r.‡	 n.r.‡	 -7.0	±	0.1	
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*	all	chemical	shifts	are	referenced	indirectly	to	TMS	
†	this	value	is	estimated	by	the	disappearance	of	C’	signal	on	ODNP	NMR	spectrum	
‡	not	resolved	(n.r.)	
¶	values	extracted	from	spectral	deconvolution	 	

Supplementary	Table	3.	continue	

compound	 solvent	 radical	 site	 chemical	shift*	

(ppm,	-	mw)	

chemical	shift*	

(ppm,	+	mw)	

1JCH	

(Hz)	

1JCC	

(Hz)	
DNP	

Enhancement	

proline	 H2O	 TEMPOL	 Cα	 61.3	 61.5	 144	 n.r.‡	 4.5	±	0.5	
	 	 	 Cδ	 46.3	 46.3	 145	 n.r.‡	 10.5	±	0.8	
	 	 	 Cβ	 29.1	 29.0	 128	 n.r.‡	 6.9	±	0.7	
	 	 	 Cγ	 23.8	 23.8	 133	 n.r.‡	 8.2	±	0.7	
	 	 	 C’	 174.5	 n.r.‡	 -	 n.r.‡	 ca.	-1†	
	 	 	 Hβ2/γ	 1.78	 1.98	 n.r.‡	 n.r.‡	 -2.9	±	0.2	
	 	 	 Hα/β1/δ	+	H2O	 4.70	 3.39	 n.r.‡	 n.r.‡	 -7.0	±	0.1	
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Supplementary	Table	4.	Summary	of	paramagnetic	shifts	and	ODNP	enhancements*	

compound	 solvent	 radical	 site	 Molar-free	paramagnetic	

chemical	shift	(ppm)	

DNP	

Enhancement	

indole	 CCl4	 TEMPO	 C2	 16.21	±	0.09	 14.1	±	2.5	(13C2)	
	26.2±	2.4	(U-13C)	

C3	 14.65	±	0.07	 11.6	±	1.1	
C3a	 11.66	±	0.07	 -1.8	±	0.5	

C4/5/6	 8.17	±	0.38	 5.4	±	0.2	
C7	 14.42	±	0.09	 20.7	±	2.5	
C7a	 10.19	±	0.07	 -2.1	±	0.5	

CCl4	 CCl4	 TEMPONE	 C	 25.69	±	0.07	 92.4	±	19.4	
(430	±	50)†	

CBr4	 CCl4	 TEMPONE	 C	 120.4	±	0.7	 128.9	±	12.9‡	
(600	±	60)†	

CHCl3	 CHCl3	 TEMPONE	 C	 46.13	±	0.63	 68.8	±	12.9‡	
(320	±	60)†	

diethyl	malonate	 diethyl	malonate	 TEMPONE	 C2	 13.38	±	0.11	 6.4	±	2.1‡	(30	±	10)†	
ethyl	acetoacetate	 ethyl	acetoacetate	 TEMPONE	 C2	 11.36	±	0.09	 3.9	±	0.2‡	(18	±	1)†	

	 	 	 C4	 10.85	±	0.08	 2.8	±	0.4‡	(13	±	2)†	
pyruvic	acid	 pyruvic	acid	 TEMPONE	 C3	 6.28	±	0.15	 2.8	±	0.4‡	(13	±	2)†	
imidazole	 D2O	 TEMPOL	 C2	 4.93	±	0.02	 50	±	10	
glucose	 H2O	 TEMPOL	 C1	(β)	 1.86	±	0.02	 5.9	±	1.9	

	 	 	 C1	(α)	 2.05	±	0.02	 6.9	±	2.2	
	 	 	 C3	(β)	 1.78	±	0.02	 	

2.2	±	0.4	(C2/3/4/5)		 	 	 C2	(β)	 1.43	±	0.02	
	 	 	 C3	(α)	 1.27	±	0.01	
	 	 	 C2	(α)/C4	(α+β)	 1.87	±	0.02	
	 	 	 C5(α+β)	 1.47	±	0.02	
	 	 	 C6	(α+β)	 3.06	±	0.02	 6.8	±	1.8	
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*	DNP	enhancements	in	organic	solvents	(white	background)	or	water	(gray	background)	were	measured	on	HC	probehead.or	FP	probehead	respectively.	All		
enhancement	values	are	determined	at	9.4	T.	
†	the	DNP	enhancement	in	parenthesis	was	reported	in	Ref.	[1].	
‡	the	DNP	enhancement	value	was	scaled	from	the	results	reported	in	Ref.	[1]	via	the	DNP	enhancements	determined	on	CCl4.	 	

Supplementary	Table	4.	Continue	
compound	 solvent	 radical	 site	 Molar-free	paramagnetic	

chemical	shift	(ppm)	
DNP	

Enhancement	
glycine	 H2O	 TEMPOL	 Cα	 2.98	±	0.03	 10.7	±	1.7	

	 	 	 C’	 0.68	±	0.01	 ca.	-1	
alanine	 H2O	 TEMPOL	 Cα	 1.93	±	0.02	 6.0	±	1.6	

	 	 	 Cβ	 3.27	±	0.02	 6.1	±	2.2	
	 	 	 C’	 0.68	±	0.01	 ca.	-1	

serine	 H2O	 TEMPOL	 Cα	 1.83	±	0.01	 6.0	±	0.1	
	 	 	 Cβ	 2.43	±	0.01	 6.5	±	0.1	
	 	 	 C’	 0.68	±	0.01	 ca.	-1	

proline	 H2O	 TEMPOL	 Cα	 2.11	±	0.04	 4.5	±	0.5	
	 	 	 Cδ	 3.52	±	0.04	 10.5	±	0.8	
	 	 	 Cβ	 3.06	±	0.04	 6.9	±	0.7	
	 	 	 Cγ	 3.59	±	0.05	 8.2	±	0.7	
	 	 	 C’	 0.27	±	0.01	 ca.	-1	
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Supplementary	Table	5.	Summary	of	spin	density	and	hyperfine	coupling	of	TEMPOL-amino	acid	complexes	by	DFT	

calculations	

substrate	 binding	

site	

H-bond	

length	(Å)	

H-bond	

angle	(o)	

ΔΔG†	

(kJ/mol)	

spin	density	|ρ|*104		(atomic	unit)	

N	 C’	 Cα	 Cβ	 Cγ	 Cδ	

glycine	 NH2	 2.092	 158.0	 0	 68.6		 23.2		 27.7	 -	 -	 -	
	 Cα	 2.400	 118.5		 7.65		 1.26		 7.44		 52.8		 -	 -	 -	

alanine	 NH2	 2.076		 164.8		 0.00		 71.8		 1.33		 6.88		 12.6		 -	 -	
	 Cα	 2.326		 131.3		 7.67		 0.33		 2.95		 13.3		 21.9		 -	 -	
	 Cβ	(CH3)	 2.447		 165.5		 8.74		 1.36		 0.18		 1.19		 20.3		 -	 -	

serine	 NH2	 2.098		 155.9		 0.00		 96.4		 0.09		 2.00		 2.30		 -	 -	
	 Cα	 2.294		 125.0		 0.18		 1.71		 5.5		 9.09		 1.40		 -	 -	
	 Cβ	 2.452		 163.0		 3.37		 4.24		 0.64		 3.88		 36.9		 -	 -	
	 OH	 1.815		 161.6		 -15.7	 0.22		 0.24		 5.90		 11.1		 -	 -	

proline	 NH	 2.125		 162.5		 0.00		 15.7		 4.22		 2.62		 0.74		 0.59		 1.43		
	 Cα	 2.307		 137.6		 3.82		 0.27		 0.05		 37.6		 13.22		 1.26		 1.20		
	 Cβ	 2.453	(Hβ1)	 137.8		 3.42  0.76		 29.5		 6.42		 70.03		 1.34		 7.14		
	 	 2.381	(Hβ2)	 161.7		 0.76 	 1.13		 0.52		 5.39		 45.2		 44.7		 2.33		
	 Cγ	 3.018	(Hγ1)*	 93.9		 3.84		 0.50		 7.48		 4.02		 60.9		 3.15		 9.80		
	 	 2.640	(Hγ2)	 153.9		 4.96		 3.01		 0.31		 6.41		 1.30		 51.9		 14.4		
	 Cδ	 2.661	(Hδ1)	 161.6		 8.31		 0.26		 1.35		 0.27		 1.18		 0.41		 1.15		
	 	 2.384	(Hδ2)	 157.6		 2.84		 0.37		 0.16		 0.26		 1.26		 0.33		 22.9		

†	referenced	to	the	energy	of	TEMPO-substrate(NH)	complex	
*	the	optimization	consistently	yields	a	structure	similar	to	the	Hβ1	complex	as	indicated	by	the	much	higher	spin	density	on	Cβ	than	Cγ	 	
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Supplementary	Table	6.	Summary	of	the	mechanistic	analysis	of	indole	ODNP	behaviors	based	on	paramagnetic	NMR	and	

QM/MM	MD	

†	jZQ	presents	the	“spectral	density”	at	ωZQ	on	the	spectral	density	function	Fourier	transformed	from	the	normalized	spin	density	autocorrelation	function.		
ωZQ=	ωe	–	ω13C	=	(263-0.1)*2π	GHz	=	1.652	THz	
‡	Rs,ZQ	is	the	scalar	coupling-driven	relaxation	 	

site	 molar-free	

!!"#"	(ppm)	
Average	spin	

density	

|ρ|*104	(atomic	unit)	

average	

A/h	

(MHz)	

G(0)*104	 jZQ*102

†	(fs)	

Rs,ZQ(s-1)
‡	

	QM/MM	

MD	

13C	T1	

(-	radical)	

13C	T1	

(+	radical)	

leakage	factor	

C2	 16.21	±	0.09	 3.26	 0.367	 4.55	 2.4	 0.77	 2.63	±	0.07	 0.85	±	0.08	 0.68	±	0.05	
C3	 14.65	±	0.07	 0.664	 7.46*10-2	 12.0	 1.9	 1.1	 3.01	±	0.09	 1.19	±	0.03	 0.60	±	0.00	
C3a	 11.66	±	0.07	 1.35	 0.152	 5.45	 5.2	 1.4	 15.3	±	1.0	 1.05	±	0.03	 0.93	±	0.04	

C4/5/6	 8.17	±	0.38	 5.83	(C4)	
32.3	(C4)	
8.19	(C4)	

0.655	(C4)	
3.63	(C5)	
0.921	(C6)	

2.05	(C4)	
1.48	(C4)	
12.6	(C4)	

2.1	 0.26	(C4)	
0.098	(C5)	
1.4	(C6)	

2.62	±	0.08	(C4)	
2.67	±	0.05	(C5)	
2.34	±	0.10	(C6)	

1.46	±	0.03	(C4)		
1.28	±	0.02	(C5)		
1.68	±	0.04	(C6)	

0.44	±	0.00	(C4)	
0.52	±	0.00	(C5)	
0.28	±	0.01	(C6)	

C7	 14.42	±	0.09	 1.83	 0.205	 785	 2.2	 85	 2.62	±	0.08	 1.37	±	0.04	 0.48	±	0.00	
C7a	 10.19	±	0.07	 0.579	 6.51*10-2	 98.3	 2.4	 12	 14.8	±	1.0	 1.07	±	0.02	 0.93	±	0.05	
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site	 molar-free	

!!"#"	(ppm)	
Rs,ZQ	(s-1)	

QM/MM	MD	

13C	T1	

(+	radical)	

leakage	factor	 coupling	factor	 RDQ	-		RZQ		(s-1)	

(back-fitted)	

ODNP	enhancement	

C2	 16.21	±	0.09	 0.77	 0.85	±	0.08	 0.68	 -0.013	(13C2)		
-0.024	(U-13C)		

-0.015	(13C2)	
-0.029		(U-13C)	

14.1	±	2.5	(13C2)	
26.2±	2.4	(U-13C)	

C3	 14.65	±	0.07	 1.1	 1.19	±	0.03	 0.60	 -0.012	 -0.010	 11.6	±	1.1	
C3a	 11.66	±	0.07	 1.4	 1.05	±	0.03	 0.93	 0.0020	 0.002	 -1.8	±	0.5	

C4/5/6	 8.17	±	0.38	 0.26	(C4)	
0.098	(C5)	
1.4	(C6)	

1.46	±	0.03	(C4)		
1.28	±	0.02	(C5)		
1.68	±	0.04	(C6)	

0.44	(C4)	
0.52	(C5)	
0.28	(C6)	

-0.0065(C4)		
-0.0056	(C5)		
-0.010	(C6)	

-0.005	(C4)	
-0.004	(C5)	
-0.006	(C6)	

5.4	±	0.2	

C7	 14.42	±	0.09	 85	 1.37	±	0.04	 0.48	 -0.027	 -0.020	 20.7	±	2.5	
C7a	 10.19	±	0.07	 12	 1.07	±	0.02	 0.93	 0.0022	 0.002	 -2.1	±	0.5	
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Supplementary	Figure	1.	ODNP	NMR	spectra	of	various	compounds	in	organic	solvent	or	water	

acquired	on	a	9.4	T	spectrometer.	(a-b)	The	initial	search	for	the	proper	DNP	working	condition	

was	performed	by	scanning	the	gyrotron	cavity	temperature	and	monitoring	the	signal	intensity	

of	 the	DNP	enhanced	 signals	of	particular	 standard	 samples.	 (c)	The	ODNP	enhanced	 13C	NMR	

spectrum	of	13CCl4.	The	microwave	(mw)	off	spectrum	was	accumulated	with	512	scans	and	the	

mw	on	spectrum	was	acquired	with	1	scan.	(d)	A	comparison	of	the	ODNP-enhanced	R.T.	liquid-

state	 13C	 NMR	 spectrum,	 DNP-enhanced	MAS	 ssNMR	 13C	 spectrum	 (CP-based,	 110	 K)	 and	 the	

conventional	1H-decoupled	liquid-state	13C	NMR	spectra	of	proline	acquired	at	9.4	T.	(e-f)	ODNP-

enhanced	1H	NMR	spectra	of	indole	and	imidazole.	For	the	spectra	shown	in	(j),	128	and	8k	scans	

were	accumulated	for	the	mw-on	and	mw-off	conditions.	For	the	spectra	shown	in	(k),	64	and	2k	

scans	were	accumulated	for	the	mw-on	and	mw-off	conditions.	The	phase	of	the	DNP-enhanced	
1H	spectra	are	inverted	here.	Here,	all	the	paired	mw-on	and	mw-off	spectra	were	scaled	by	the	

number	of	scans	so	that	the	enhancement-factors	can	be	visualized	directly	despite	the	distinct	

noise	level	due	to	the	very	different	numbers	of	scans	used	for	mw-on	and	mw-off	spectra.	
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Supplementary	 Figure	 2.	 Fitting	 of	 13C	 chemical	 shifts	 in	 the	 presence	 of	 radical	 at	 various	

concentrations.	 The	molar	 free	 paramagnetic	 chemical	 shift	!!"#"	was	 obtained	 as	 the	 slope	 of	
the	 linear	 fitting	 of	 observed	 13C	 chemical	 shift	 versus	 the	 concentration	 of	 radical.	 The	 data	

shown	in	a-c	were	collected	in	organic	solvents	and	the	data	in	d-f	were	obtained	in	water.	
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Supplementary	 Figure	 3.	 ODNP	 13C	 NMR	 enhancement	 and	 the	molar	 free	 13C	 paramagnetic	

NMR	 shift	 of	 various	 organic	 compounds	 in	 organic	 solvents.	 (a)	 The	 structures	 of	 the	

compounds.	(b)	A	trend	is	visible	though	more	deviated	than	that	shown	in	Fig.	2f.	(c)	Data	points	

of	different	13C	sites	in	indole.	Data	obtained	on	different	molecules	are	shown	in	various	colors.	

The	 error	 of	!!"#"	is	 defined	 as	 fitting	 error	 or	 standard	 deviation	 of	!!"#"	values	 on	 carbons	

showing	overlapping	 signals	on	ODNP	spectra.	The	error	of	ODNP	enhancement	 is	determined	

from	signal-to-noise	ratio.	More	details	about	the	error	calculations	can	be	found	in	‘Methods’.	 	
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Supplementary	Figure	4.	Flow	chart	of	the	data	analysis	procedure	of	QM/MM	MD	trajectory.	

The	 detailed	 theoretical	 and	 mathematical	 grounds	 can	 be	 found	 in	 S9.	 The	 autocorrelation	

function	g(t)	was	computed	from	the	trajectory	data	ρ(t).	The	Fourier	 transform	of	normalized	

g(t)	gives	rise	 to	 the	spectral	density	 function	 j(ω).	The	spectral	density	 function	also	presents	

the	profile	of	the	frequency	spectrum	obtained	by	the	direct	Fourier	transform	of	the	trajectory	

time-series	ρ(t).	 The	 time	 constant	 of	 initial	 decay	 of	g(t)	 can	 be	 estimated	 by	 performing	 the	

inverse	 Laplace	 transform	 of	 g(t).	 This	 fits	 the	 decay	 to	 a	 distribution	 of	 rates	 of	 the	 highly	

simplified	 exponential	 decay,	 therefore	 can	 only	 be	 taken	 as	 an	 estimation	 of	 the	 true	 decay	

kinetics	 of	 g(t).	 The	 memory	 function	 K(t)	 was	 further	 computed	 from	 g(t)	 and	 the	 Fourier	

transform	 of	 K(t)	 yields	 an	 amplitude	 spectrum	 of	 K(t).	 The	 fast	 oscillations	 in	 ρ(t)	 can	 be	

visualized	in	g(t)	and	be	better	detected	in	j(ω),	K(t)	and	the	Fourier	transformed	K(t).	
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Supplementary	Figure	5.	Spin	density	(a-l)	and	geometry	trajectories	(m-s)	extracted	from	the	

QM/MM	MD	simulation	of	 indole-TEMPO	complex	 in	explicit	CCl4	solvent.	The	time	duration	of	

all	trajectories	is	10	ps.	The	spin	density	fluctuations	at	various	atoms	on	indole	and	TEMPO	are	

shown	in	(a-l).	The	rotation	of	TEMPO	methyl	groups	are	presented	by	the	H(methyl)-C(methyl)-

C(TEMPO	 ring)-N(TEMPO)	 torsion	 angle	 in	 (m-p).	 The	 fluctuations	 of	 indole-TEMPO	 H-bond	

length	 and	 the	 TEMPO(oxygen)-Cl(chlorine)	 distance	 are	 shown	 in	 (q)	 and	 (s),	 while	 the	

dynamics	 of	 the	 intermolecular	 H-bond	 angle	 in	 indole-TEMPO	 complex	 is	 shown	 in	 (r).	 For	

indole	C2,	a	longer	20	ps	spin	density	trajectory	is	presented	in	(t).	
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Supplementary	Figure	6.	Spin	density	(a-l)	and	geometry	(m-s)	autocorrelation	functions	G(t)	

derived	from	the	QM/MM	MD	simulation	of	indole-TEMPO	complex	in	explicit	CCl4	solvent.	The	

time	duration	is	5	ps.	The	spin	density	autocorrelation	functions	at	various	atoms	on	indole	and	

TEMPO	are	shown	in	(a-l).	The	autocorrelation	functions	of	the	TEMPO	methyl	rotation	process	

are	 presented	 in	 (m-p).	 The	 autocorrelation	 function	 shown	 in	 (o)	 is	 truncated	 due	 to	 the	

“intermittent”	 jumping	 in	 the	 corresponding	 trajectory.	 (Supplementary	 Figure	 3o)	 The	

autocorrelation	 functions	 of	 indole-TEMPO	 H-bond	 length,	 indole-TEMPO	 H-bond	 angle	 and	

TEMPO(oxygen)-Cl(chlorine)	 distance	 are	 shown	 in	 (q-s).	 All	 autocorrelation	 functions	 feature	
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an	initial	decay	compounded	with	oscillations	components.	The	spin	autocorrelation	functions	of	

indole	 atoms	 (a-j)	 and	 the	 autocorrelation	 functions	 of	 intermolecular	 geometry	 (q-s)	 show	

clearly	the	sub-ps	oscillations.	The	spin	density	autocorrelation	functions	of	TEMPO	NO	moiety	

(k-l)	 show	more	 significant	 fs	 oscillations.	 The	 methyl	 rotation	 autocorrelation	 functions	 also	

show	some	 fs	oscillations.	The	 spin	density	ACF	of	 indole	C2	derived	 from	 the	extended	20	ps	

trajectory	(Supplementary	Figure	4t)	is	presented	in	(t).	The	major	features	of	the	ACF	pattern,	

namely	the	initial	decay	and	the	oscillations,	remains	on	this	longer	ACF.	
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Supplementary	Figure	7.	Spectral	density	function	j(ω)	of	spin	density	fluctuation	(a-l)	and	the	

intermolecular	 dynamics	 (m-o)	 in	 indole-TEMPO	 complex.	 All	 these	 spectral	 density	 functions	

are	 obtained	 by	 the	 Fourier	 transform	 of	 the	 corresponding	 normalized	 autocorrelation	

functions.	The	spectral	density	functions	of	TEMPO	NO	moiety	show	coherent	process(es)	in	the	

IR	 frequency	 range.	 All	 the	 spectral	 density	 functions	 feature	 the	 initial	 decay	 together	 with	

oscillations	in	the	low	THz	regime.	The	low	THz	region	of	the	spectral	density	functions	is	shown	

in	the	next	session	of	Supplementary	Figure	5	on	the	following	page.		
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Supplementary	 Figure	 7.	 (continue)	 Low	 THz	 region	 (p-dd)	 of	 the	 spectral	 density	 function	

shown	in	(a-o).	The	dashed	line	shows	the	position	of	e-13C	ZQ	transition	frequency	at	9.4	T.	
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Supplementary	 Figure	 8.	 Decay	 time	 constant	 of	 autocorrelation	 functions	 calculated	 by	 the	

inverse	 Laplace	 transform	 using	 CORTIN17.	 This	 protocol	 fits	 the	 decay	 of	 autocorrelation	

function	 as	 a	 distribution	 of	 decay	 time	 constants	 following	 the	 highly	 simplified	 exponential	

decay	model.	 Therefore	 the	 results	 here	 only	 present	 the	 semi-quantitative	 description	 of	 the	

decay	 of	 autocorrelation	 function	 due	 to	 the	 random	 process.	 All	 results	 are	 normalized	 for	

clarity.	
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Supplementary	 Figure	 9.	 Memory	 functions	 K(t)	 of	 spin	 density	 fluctuations	 (a-k)	 and	

intermolecular	dynamics	 (m-o)	 in	 indole-TEMPO	complex.	All	memory	 functions	are	calculated	

using	a	numerical	approach	described	by	Berne	et	al.18.	More	details	about	 the	computation	of	

memory	function	can	be	found	in	S5.	The	decay	of	K(t)	presents	the	length	of	the	memory	effect.	

The	 oscillation	 components	 are	 originated	 from	 the	 oscillations	 of	 corresponding	 G(t)	 or	 ρ(t),	

which	are	better	visualized	in	K(t).	The	truncated	Z-transform	was	also	use	for	calculating	K(t).	

However,	 as	 shown	 in	 (p),	 all	 levels	 of	 truncation	 (colored	 curves)	 lead	 to	 the	 significant	

deviation	 from	 the	 proper	 numerical	 solution	 (dashed	 black	 curve)	 and	 even	 to	 the	 rapid	

divergence	 in	 a	 few	 fs.	 Memory	 functions	 K(t)	 can	 also	 be	 computed	 using	 an	 alternative	

numerical	 approach	 as	 described	 in	 S5.	 The	 deviation	 between	 two	 numerical	 approaches	 is	

shown	in	(q).	The	differences	between	these	two	numerical	solutions	escalate	slowly	and	remain	

at	 a	 small	 scale.	 For	 some	 specific	 autocorrelation	 function	 G(t),	 the	 numerical	 approach	 still	

leads	to	the	observable	divergence	after	more	than	1000	steps	(b,k,l,n.o,	gray	part).	Nevertheless	

such	divergence	does	not	mask	the	fundamental	features	of	those	memory	functions.	
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Supplementary	Figure	10.	Fourier	transformed	amplitude	spectrum	of	memory	functions	K(t)	

of	the	spin	density	fluctuation	(a-l)	or	intermolecular	dynamics	(m-o)	in	indole-TEMPO	complex.	

The	 presence	 of	memory	 effect	 is	 indicated	 by	 the	 non-zero	 values	 at	 the	 zero	 frequency.	 The	

peaks	 in	 these	spectra	shows	the	presence	of	coherent	dynamics	 in	 the	original	 trajectory	ρ(t).	

The	*	symbol	in	(a-l)	suggest	a	shared	coherent	component	in	the	IR	frequency	range	within	the	

fluctuations	 of	 spin	 density	within	 the	whole	 complex,	which	 suggests	 certain	 IR	modes	 could	

modulate	the	electronic	structure	of	the	whole	complex.	
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Supplementary	 Figure	 11.	 Mechanistic	 complexity	 of	 ODNP	 in	 TEMPO-indole	 complex.	 (a-h)	

Most	carbon	spin	density	distribution	in	indole	shows	asymmetric	distribution	with	significantly	

crossing	 of	 zero-spin	 density	 condition.	 (i-p)	 Beside	 the	 intermolecular	 dipolar	 coupling,	 the	

intramolecular	 dipolar	 coupling	 originated	 from	 the	 spin	 density	 on	 other	 indole	 carbons	 also	

could	 contribute	 to	 the	dipolar	ODNP.	 (q-s)	The	 spin-density	 trajectory	of	 indole	C2	was	 fitted	

using	AR(p)	models	of	different	order	p.	The	 fitted	parameters,	namely	AIC	(indicator	of	 fitting	

quality),	the	noise	level	in	the	model	and	the	scale	of	the	first	(main)	component,	show	that	the	

fitting	 quality	 does	 not	 improve	 beyond	 the	 p	 order	 6.	 Therefore,	 the	 trajectory	 shows	 the	

“memory”	of	at	 least	6	steps	(6	fs).	(t)	The	trajectory	was	also	fitting	using	a	more	complicated	

ARMA	 model,	 which	 shows	 that	 two	 models	 converge	 at	 higher	 orders	 (p	 ≥	 6).	 The	 errors	

presented	in	panel	(t)	are	from	the	model	fitting	directly.	(u-v).	1H-13C	hNOE	build-up	kinetics	of	

indole	(2	M)	in	the	absence	(u)	and	presence	(v)	of	TEMPO	(100	mM)	in	CCl4	solvent.	All	these	

kinetics	 were	 extracted	 from	 on	 a	 series	 of	 2D	 1H-13C	 HOESY	 spectra.	 The	 maximum	 signal	

intensity	 of	 each	 indole	 carbon	 in	 the	 absence	 of	 TEMPO	 (u)	 was	 normalized.	 The	 signal	

intensities	 in	 the	presence	of	TEMPO	(v)	were	scaled	according	 to	 the	normalized	diamagnetic	

signal	intensity.		
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