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1 INTRODUCTION

The overwhelming majority of banks currently use the so called  „percentage of notional“

and „Current Exposure + Add On’’ formulas for the measurement of credit risk in their

derivatives portfolios. However, these approaches do not deliver exposure figures that

adequately describe the counterparty risk of a specific counterparty, because they rely on

a variety of simplifying assumptions that may lead to gross over- or underestimations of

the true counterparty risk. In particular, it is unable to take account for portfolio effects

since it is based on single transaction analysis.

Many German banks currently are still struggling to comply with the „Current Exposure

+ Add On’’ approach required by the regulators.1 At the same time, regulatory

authorities increasingly require banks to apply sophisticated exposure measurement

systems. The „Risk Management Guidelines on Derivatives“ by the Bank for

International Settlements (BIS) explicitly state that the „Current Exposure + Add On’’ is

only acceptable for small end users of derivatives while Dealers and large derivatives

participants should assess potential exposure through simulation analysis.2 Also the

Group of Thirty recommends the use of simulation analysis in order to derive meaningful

exposure figures on portfolios of derivative transactions.3 According to the US

Comptroller of the Currency, the development of a methodology for calculating a

reasonable proxy for potential credit exposure is a key element for effective credit risk

management. This proxy should be statistically derived from relevant market factors.4

The German  „Mindestanforderungen für den Eigenhandel“ define the „Current Exposure

+ Add On’’ approach as a minimum standard for all banks. However, they also state that

the risk controlling systems used by banks must be appropriate given the complexity and

                                               

1 Bundesaufsichtsamt für das Kreditwesen (1996), S. 6.

2 Basle Committee on Banking Supervision, July 1994, p. 13.

3 Derivatives Practices and Principles, Section 2 (Credit Risk), July 1993, p. 22ff.

4 Comptroller’s Handbook (1994), p. 20, 25.
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volume of a banks trading business. It is therefore expected that future interpretations of

this guideline will be such that a bank with large swap trading volume will be required to

replace its old system by new methods consistent with the BIS or the Group of 30

recommendations.

In the past, credit risks of derivatives transactions in the over the counter (OTC) market

have received little importance because of the generally good credit quality of market

participants. However, a study of the Federal Reserve Bank revealed, that the credit

quality of OTC market participants has declined dramatically over the last years. Besides

this, some large losses due to counterparty defaults suffered by banks have made it clear

that  credit risks of derivatives transactions are significant and must be managed.

2 THE NATURE OF CREDIT EXPOSURE FROM DERIVATIVES

The exposure from derivatives transactions is very different and much more complicated

as compared to the exposure from the credit business. When a bank counterparty

defaults only minutes after the confirmation of a OTC derivative transaction, losses are

minimal because the bank can replace the transaction with another transaction at

approximately the same market rates. When default occurs at a later point of time

however, the bank may loose a lot of money in the event of counterparty default if

market rates in the meanwhile have changed such that the replacement cost of the

transaction has become positive. Suppose the transaction is a simple fx-forward where

the bank is buying 100 million $ at 1.50. At maturity, this contract is worth 100 million

times the difference of the then prevailing dollar rate and the contract price of 1.50.

When the spot market exchange rate at maturity is below 1.50, there is no exposure at

all. With a dollar exchange rate of 1.80, a default of the counterparty costs the bank 30

million USD. If the dollar should jump to 3 DM, the loss to the bank could however be

as high as 100 million $. Credit exposure is therefore similar to an option on the contract

value as shown in the following chart:
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Contract Value

Exposure

0

Obviously, the nature of exposure in the derivatives area is very different from exposure

in the credit area. While a credit manager can safely state: „when the counterparty goes

bust, we loose (at most) X DM“, the derivatives manager can only make probabilistic

statements of the sort: „If the counterparty defaults in December 1999, the probability

that we loose more than X DM is approximately y%“. The size of exposure is not even

limited: since there is no bound to possible rises of the dollar, the exposure may also

grow without bounds. Additionally, the credit exposure of derivatives is a function of

time: as more time passes, the possible exchange rate changes increase and thus the

exposure increases. This phenomenon can be reflected by exposure profiles, which

measure the exposure for a given probability y as a function of time. The following chart

shows a possible exposure profile for the above Fx-forward.
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Exposure

TimeT

In the example of an fx-forward, the exposure is an increasing function of time until

contract maturity (T), since the volatility of the dollar increases when the time horizon is

lengthened. For other derivatives such as interest rate swaps, the profile is generally first

increases and later decreases. The reason is that there are two offsetting effects at work:

On the one hand, interest rate volatility increases over time as in the case for the fx-

forward. On the other hand, the passage of time leads to fewer payments outstanding

which has an exposure reducing effect.

Exposure profiles contain a lot of information which is hard to compare and appreciate.

Banks and regulators therefore condense this information in two numbers: the expected

exposure and the worst case exposure. Expected exposure is defined as the maximum of

the exposure profile when the probability y=0,5 is chosen. The worst exposure

equivalently defines the maximum exposure over time for a confidence level of 95%.

3 THE IMPACT OF PORTFOLIO EFFECTS ON DERIVATIVES

EXPOSURE

Traditional exposure measurement techniques neglect portfolio aspects by measuring

exposure on a single transaction basis. A large body of literature investigates the
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derivation of  worst case exposures for isolated transactions.5 When exposure of a

portfolio of transactions is to be evaluated, the risk controller has to evaluate the

probability that the exposure from a portfolio of transactions exceeds some level. In this

case, both diversification and offsetting effects have an impact on portfolio exposure.

When the above USD-Forward example is changed by adding another long USD-

Forward, the worst movement of the USD is still an increase of the Dollar. If however a

short Forward is added to the portfolio, the worst case exposure may be defined either

by an increase or decrease of the Dollar, depending on notional value and maturity of

both transactions. Even worse, we generally cannot specify in advance, at which point of

time the portfolio reaches its peak exposure. While a single Fx-Forward transaction

always reaches its maximum potential exposure at maturity, the worst potential exposure

on portfolios may happen at any point of time. This is because the exposure reducing

effect of the roll-off of maturing transactions may at some point of time offset the effect

of increasing volatility of the underlying market rates. This implies that a search for the

worst case exposure must include all points of time between now and the maturity of the

last transaction.

Regulators are concerned with portfolio exposure mainly in respect to the impact of

netting agreements. Under a close out netting agreement, the bank may net transactions

with positive and negative present value in the case of counterparty default and thus

incurs a reduced loss potential. Because regulators want to promote the use of netting

agreements by reducing the required equity cushion, the Bank for International

Settlements 1994 proposed to use the netted current replacement value instead of the

gross replacement value, when a qualifying netting agreement is in place.6

However, it is important to recognize that portfolio effects have an impact on exposure

figures irrespective of the fact whether a netting agreement is in place or not. As an

illustration, consider the following example of a portfolio that consists of a long term

receiving swap with high notional value and a smaller sized short term paying swap. The

exposure profile of Swap 1 is thus based on maximum possible interest rate decrease

                                               

5 See for example Cooper (1991), Duffee (1994), Hull (1989), Hull and White (1991), Wall and Fung (1987).

6 Siehe Heldring (1995).
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because this will result in a positive replacement cost. The reverse is true for Swap 2. A

typical exposure profile for both transactions and the portfolio is depicted in the

following chart:

Potential exposure Swap 1 Potential exposure swap 2

t t

t
t

+

=
Portfolio exposure
without netting

Portfolio exposure with netting

Total exposure identical to swap 1 exposure Total exposure = Swap 1 exposure - spap 2 expsoure

Offsettings affect portfolio exposure with and without netting

t

Simple sum of exposures

When aggregating the exposures without a netting agreement, the short term swap

effectively has a zero exposure contribution because its exposure is always more than

offset by Swap 1. (The „worst case“ exposure of the portfolio happens when interest

rates move down. In that case, Swap 2 has zero exposure.) When a netting agreement is

in place, the offsetting nature of both swaps reduces credit exposure as long as both

swaps are not matured. Comparing the portfolio exposures to the simple sum of

exposures, is obvious that portfolio effects are important both with and without netting.

It is clear that traditional Add On measures based on isolated transaction characteristics

can by no means incorporate the portfolio effects that determine aggregate portfolio

exposure. When Add On’s correctly measure the worst potential exposure of a single

transaction and portfolio exposure is simply calculated as the sum of individual



First Draft

8

exposures (as depicted in the „simple sum of exposures“ chart above), the resulting

portfolio exposure will in general be grossly overstated. This is because the method in

our example implicitly assumes that interest rates can move up and down simultaneously.

In order to prevent this exaggeration, it is a common procedure to implicitly assume

some „normal“ degree of diversification within the counterparty portfolio in determining

Add On’s. This approach bases exposure calculations on smaller Add On’s than those

that would be required for single transactions. While this approach on average produces

exposure figures that are closer to „true“ exposure figures, it obviously does not make

exposure numbers any more accurate. Since there is no guarantee that offsetting

portfolio effects are indeed working within a specific counterparty portfolio, the

exaggeration is simply replaced by a potential (and severe) underestimation of exposure.

4 THE EVOLUTION OF EXPOSURE MEASUREMENT TECHNIQUES

In order to investigate the advantages and shortcomings of different exposure

measurement techniques, we give an overview of the historical evolution of the different

approaches developed by the banking industry. The following chart visualizes the early

stages of this evolution:
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Evolution of exposure measurement

Percentage of notional based on original
maturity

Current replacement cost + add on based on
remaining maturity

Current exposure + volatility based add on

Portfolio exposure profile from Monte Carlo
simulation

4.1 PERCENTAGE OF NOTIONAL

Lacking adequate concepts and systems, most banks began to measure exposure as a

simple percentage of notional contract value. The percentage factors usually depend on

product type and original maturity class. This method implies that the fx-forward from

the introducing example would have the same exposure irrespective of  the current

exchange rate, i.e. its current replacement cost - an unacceptable simplification. Consider

for example that the Forward of the example matures next month. If the current

exchange rate is still 1.50, the probability of reaching a 100 million $  exposure

(equivalent to an exchange rate of 3.00) is close to zero. Now suppose that the current

exchange rate is 2.90. An exchange rate of 3.00 now becomes a realistic scenario for the

next month.

4.2 CURRENT REPLACEMENT COST PLUS ADD ON

The next step in exposure measurement was the break down of exposure into current

replacement cost and future potential exposure. The logic of this break down is a simple
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principle from statistics: the largest value that a random number (the exposure) can take

can always be expressed as its mean value plus some multiple of its volatility. One sees

that the „current replacement cost + Add On“ formula replicates this logic if two

assumptions are met:

ÿ  The current exposure is the „best guess“ for the future exposure, i.e. its

expected value.

ÿ  The Add On reflects the volatility of possible exposure changes in a

meaningful way.

Assumption one seems innocent but is a critical assumption with questionable empirical

validity. Consider for example a swaption position. If all underlying risk factors follow a

random walk7, then the expected future rates are today’s rates. The expected future

replacement cost however is not today’s replacement cost because the passage of time

(Theta) additionally affects the value of the swaption.

Assumption 2 implies also a very strong simplification. An Add On which depends on

remaining maturity and product type obviously neglects important other drivers of the

volatility of exposure increases. On the one hand, it neglects the obvious fact that

different currencies etc. have different volatilities. On the other hand, the volatility of

future exposure does not depend on single transaction data besides maturity. For

example, the true interest rate sensitivity of a swap depends on the value of the fixed

coupon rate. Two otherwise equal swaps with different fixed rates will therefore have

different frequency distributions of future exposure but both receive the same Add On.

4.3 CURRENT REPLACEMENT COST PLUS VOLATILITY BASED ADD ON

A large body of research has tried to improve the Add On calculation by deriving

formulas that make Add On’s in a more or less complicated way dependent on the

specific product’s exposure volatility. While these approaches more or less achieved an

accurate derivation of the single transaction future potential exposure, they all

completely failed to take into account portfolio effects:

                                               

7 See section 5 for a formal definition of a random walk process.
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ÿ  Offsettings: When there are two exactly offsetting transactions, the worst case

exposure assumed in single transaction based Add On’s cannot happen at the

same time for both transactions.

ÿ  Diversification: The future exposure depends on the comovement of the

exposures of all transactions with one counterparty. Due to correlation effects,

the probability that all single transaction exposures simultaneously reach their

individual 95% confidence level is much smaller than the 5% probability which

is valid for every single transaction.

ÿ  The effects of netting arrangements: When close out netting of exposure is

allowed in the case of a counterparty default, the future potential exposure is

reduced by the fact that in the case of default there is a high probability that

negative present value transactions will help to reduce the exposure.

4.4 EXPOSURE PROFILES FROM MONTE CARLO SIMULATION

Since there is no generally applicable analytic way to handle portfolio effects,

simulation techniques are usually employed to analyse potential exposure for portfolios.

In a simulation, exposure is derived by generating very many possible future scenarios of

market rates for different time horizons and by calculating the exposure for every single

scenario. The exposure profile can then be derived by determining the i’th largest

exposure observation for every time horizon, where i is chosen such that 5% (or 50%) of

simulated exposure observations exceed the i’th exposure. Obviously, the quality of a

simulation depends to a large extent on the stochastic model used to generate future

market rate scenarios. A good simulation generates market rate scenarios that closely

match the (unknown) true distribution of market rates.
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In order to prevent arbitrariness in the selection of scenarios, Monte Carlo techniques are

usually used to generate future market rate scenarios based on random numbers. The

Monte Carlo approach opens a large variety of alternative measures how to derive future

market rate scenarios. The major modelling alternatives are outlined in the next chart:

4.5 RANDOM WALK MODEL

The simple random walk model states that the value of  a market rate one time step

ahead is just its current value plus an additional noise term with expected value of zero

and standard deviation σ
ε
. Noise terms of different periods are i.i.d., i.e. identically and

independently distributed.

S St t t+ = +1 ε ε t~ N ( , )0 σε

Evolution of Monte Carlo Simulation Approaches

Random Walk model without correlation effects

Mutivariate Brownian motion

Recognition of Time dependent volatility  (mean reversion) using
ARMA models

Recognition of time dependent correlation using
vector autogregressive models

Combination of VAR processes and Regression analytics
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Due to the i.i.d. assumption, the variance of St+n is n*σε
2 and its standard deviation is

n *σε , which is the so called „square root of time formula“. Future market rate

scenarios for different time horizons can thus be derived from random numbers from a

standard normal distribution. While the random walk model is capable of acknowledging

varying volatilities of different markets, its major shortcoming is the implicit

independence assumption between market rate changes. The correlation between all

market rates is thus exogenously set to zero.

4.6 MULTIVARIATE BROWNIAN MOTION

The simple random walk model can easily be extended to a multivariate setting which

includes correlation effects, if  it is assumed that market rates follow a multivariate

brownian motion process. In a discrete time setting, the vector of market rates S is

governed by the process:

S St t t+ = +1 ε ε t~ N( , )0 Σε

where the vector of disturbance terms εt  is again assumed to be i.i.d. This model is used

by many banks and software providers for the estimation of derivatives exposure.8

Different volatilities and correlations among the different market rates are represented in

the covariance matrix Σ. Due to the i.i.d. assumption, market rate scenarios for any

desired time horizon can again be easily derived from the formula

S St n t tn+ = + ε

where n tε  is distributed with mean zero and covariance matrix nΣε. The Cholesky

decomposition technique can now be applied in order to generate random market rate

scenarios for this model. The Cholesky decomposition technique determines a triangular

matrix ∆ with the following property:

Σ ∆ ∆ε ε ε= ′T

When a vector of independent standard normal variates x is multiplied with ∆ε , the

resulting vector y is distributed with mean zero and covariance matrix Σε.9

                                               

8 See for example Iben and Brotherton-Ratcliffe (1992) and Brock (1995).
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y xT= ∆

The Cholesky decomposition technique thus allows to generate random samples from a

multivariate normal distribution from random numbers of standard normal distribution.

The brownian motion assumption allows to generate market rate scenarios which fit both

the empirically estimated volatlities and correlations of the market rates. However, the

brownian motion model is not a completely satisfactory model of real world market rate

dynamics. One major shortcoming of the brownian motion model is its inability to

recognize mean reversion. Mean reversion describes the tendency of many market rates

(for example interest rates and implied volatilities) to revert to some long run equilibrium

value. According to the brownian motion assumption, the probability of an increase or

decrease of an interest rate does not depend of whether the rate is currently low or at an

all-time high. This implies that the variance of a market rate is still a linear function of

time. However, the mean reverting nature of interest rates make long term volatility

generally lower than the volatility predicted by the brownian motion model. As an

example suppose an interest rate is currently at 10% and has an annual standard

deviation of 20%. According to the brownian motion model, there is a 5% chance that

the interest rate in one year will exceed 10%*(1+1.65*0.2) = 13.3%. Over a 10 year

horizon however, there is a 5% chance for the rate to increase above

10%*(1+1.65*0.2* 10 )= 20,5%. This rate is empirically implausible because of the

mean reverting nature of interest rates.

4.7 INCLUDING MEAN REVERSION

One way to model mean reversion is the inclusion of autoregressive terms in the

underlying stochastic process. Because an unusual large jump in interest rates is unlikely

to be followed by another large jump in the same direction, the innovations produced by

the model must be „history dependent“. A natural way to incorporate this phenomenon

into a Monte Carlo simulation is to use a stochastic processes which is capable of

representing mean reversion such as the Ornstein-Uhlenbeck Process (which is the

continuous time equivalent of an autoregressive process of order 1, an  AR(1) process).

                                                                                                                                         

9 For a proof, see for example Hamilton (1994), p. 92.
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In a discrete time setting, the Ornstein Uhlenbeck process supposes the following

process for S:

S S a b St t t t t+ = + − +1 *( ) ε ε ~ N ( , )0 σε

where b is the long run level to which the process reverts and a is a rate of strength with

which this reversion operates. Note that this process can be rewritten in the form of an

ordinary AR(1) process:

S St t t t+ = + +1 α β ε ε* ~ N ( , )0 σε

which can easily be estimated using OLS regression techniques. The one step ahead

volatility of the process is obviously σε. In order to derive the volatility of an n step

ahead forecast, we first derive (as an example) an analytical expression for St+3:

[ ]
S S S

S S

S

t t t t t t

t t t t t

t t t t

+ + + +

+ + +

+ +

= + + = + + + +
= + + + + + +
= + + + + + + +

2 1 1 1

3 1 2

2 2 2
1 21

α β ε α β α β ε ε
α βα β α β ε ε ε
α β α β α β β ε β ε ε

* *( * )

*( * )

* * * * )

Assuming i.i.d. of the innovations, it can easily been shown that the variance of St+3 is

( ) *1 2+ +β β σ ε . In general, the variance of the n step ahead forecast results to be

σ β β β σ εS
n

t n+
= + + + +2 21( ... ) * .

As one can see, the long term volatility equals the random walk process volatility for the

limiting case of β=1. For a smaller Beta, the long term volatility becomes smaller than

the volatility generated by the random walk model. The implementation of a Monte Carlo

simulation with long horizon risk factor scenarios using an AR(1) process is

straightforward from the above formula: Once the process parameters (α,β)  have been

estimated, the variance of a risk factor for any desired time horizon can be derived and

thus the Monte Carlo simulation just has to generate normally distributed random

numbers with this desired variance.10

                                               

10 Alternatively, the simulation could generate future paths of risk factors using the regression formula and a series

of i.i.d. innovations.
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Although the Ornstein-Uhlenbeck process is used in many interest rate option pricing

models11, a higher order process (AR(n) process) fits the empirical data generally better.

Thus one should use higher order AR processes as long as they can easily be handled.

This is (fortunately) the case for Monte Carlo simulations but is not the case in the area

of option pricing theory.

When additional lags are used in the AR process, resulting in a higher order process.

Consider for example the AR(4) process:

S S S S St t t t t t= + + + + +− − − −α β β β β ε1 1 2 2 3 3 4 4

Using the Lag operator (defined as L S Sk
t t k= − ), this equation can be expressed as:

ε βt t i
i

i

S L= −



=

∑1
1

4

In order to derive the n step ahead variance of the process, we have to invoke the Wold

decomposition theorem, according to which the process can be expressed as an infinite

moving average process of white noise innovation ε, such that12

St t t t= + + +− −ε ψ ε ψ ε1 1 2 3 ....

Again using the Lag operator, this equation becomes

S Lt j
j

t
j

= +
=

∞

∑( )1
1

ψ ε

Inserting the above expression for εt into this equation and multiplying out, we receive:

1 1 1
1

4

1

= + −



==

∞

∑∑( )ψ βj
j

i
i

ij

L L

From this formula, we can see that the ψ - weights can be analytically derived from the

recursion

ψ βψj k j k
k

j

= −
=
∑

1

4min( , )

 and ψ 0 0=

                                               

11 For overviews over the vast literature, see Hull (1993) and Jarrow (1996).

12 See Hamilton (1994), p. 108-109.
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Given the values for the ψ - weights, we can express en, the error of a forecast n steps

ahead, and its variance (assuming i.i.d.) as

( )
en t n t n n

e n

= + + +
= + + +

+ + − −

−

ε ψ ε ψ ε
σ σ ψ ψε

1 1 1

2 2
1
2

1
21

...

...

Thus we have a closed form solution for the variance and can simulate future scenarios

with the same approach as for the AR(1) process.

4.8 VECTOR AUTOREGRESSIVE PROCESSES

A clear remaining weakness of autoregressive processes is that they model only the time

dependent nature of volatility but not of correlations. However, there are no reasons to

believe that only volatility and not correlation may depend on the time horizon. For

example consider the of the DEM/USD and the FRF/USD exchange rate. Over the short

run, the European Monetary System (EMS) has only a minor effect on returns and the

correlation between DM and FRF rate may be relatively low. Over time horizons of

many years however, the correlation must be close to one (as long as the EMS does not

crash) because the EMS ties both rates tightly together.

An extension to autoregressive processes that is capable of modelling the time dependent

nature of both volatility and correlation are Vector Autoregressive Processes (VAR’s).

Without going into technical details here, a VAR can be viewed as the multivariate

extension of autoregressive processes. These processes allow not only the derivation of

time dependent volatilities but instead deliver a complete covariance matrix for different

time horizons.

In order to model the covariance structure of a multivariate process explicitly, the AR

process can be extended in a straightforward way to a multivariate setting. If St denotes

the vector of risk factor values at time t we can define a VAR process equivalent to an

AR process as:

S S S ut t t t= + + + +− −A B B1 1 2 2 ...

If there are n factors, then A is (1×n) vector of intercept terms, Bi are (n×n) matrices of

regression parameters and ut is a (1×n) vector of random disturbances. The coefficients
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in A,Bi can be estimated by multivariate least squares, which can equivalently be

performed through equation by equation ordinary least squares regressions.13

The derivation of the forecast error variance vector is analogous to the univariate case,

except that the weights of the infinite moving average representation, ψ i is now an (n×n)

matrix as well. Denoting the covariance matrix of the error terms by Σu, we arrive at an

expression for the covariance matrix of the n step ahead forecast error as

σ ψ ψe i u i
i

n
2

0

1

= ′
=

−

∑ Σ

4.9 COMBINATION OF VAR PROCESSES WITH REGRESSION ANALYTICS

A last possible extension of VAR processes is their combination with regression analytics.

In many cases, the use of regression analytics is simply dictated by the unavailability of

historical time series necessary to estimate the parameters of the stochastic process.

Consider for example a portfolio of OTC derivatives on single stocks. A simulation of

future price paths requires historical data on every single stock that serves as an

underlying for a derivative transaction. In the case of a newly issued stock, one has to

revert to the market model in order to derive stock price scenarios. The market model

assumes a linear regression dependency between the return of the stock in question and

some market index. Price paths for the stock can then be derived from simulated price

paths of the market index.

In the case of interest rates, an inclusion of many different points from the yield curve as

opens the possibility of generating „unreasonable“ scenarios. In principle one could

include an arbitrary number of points from a yield curve to generate scenarios with the

VAR process. Every future scenario will be distributed according to a multivariate normal

distribution as specified by the covariance matrix implied by the VAR. However, when

one uses a lot of factors some of the generated scenarios will not be consistent with the

most basic no arbitrage condition of the yield curve: all implied forward rates must be

non negative. (Negative implied forward rates imply an arbitrage opportunity by selling

and buying zero bonds with different maturities). The reason for this nasty result is the

                                               

13 See Lütkepohl (1991).
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fact that interest rates in reality cannot be multivariate normally distributed: for example,

a multivariate normal distribution assigns some positive probability to every possible

future combination of the 1 year and the 2 year zero rate. However, some of these

combinations violate the no arbitrage condition and therefore cannot occur in practice.

The possibility generating unrealistic interest rate scenarios poses a dilemma: On the one

hand, multivariate normal distributions are the only feasible alternative to generate

scenarios with a large number of correlated risk factors; on the other hand, if many

points of a yield curve are simulated using a multivariate normal distribution, scenarios

violating the no arbitrage condition are likely to occur.

A pragmatic way out of this dilemma is the combination of VAR processes with

regression analysis.14 In this approach, only a small number of yield curve points are

simulated with the VAR process while the likely values of the remaining points are

derived from a regression of the remaining rates on the simulated rates. The regression

thus gives the most likely value of the remaining points given the value of the rates

simulated using the  VAR process. (Note, that this shortcoming is by no means special to

VARs, the same problem arises for every time series model which is based on multivariate

normality.)

Of course, even the use of regression analysis does not guarantee that inconsistent yield

curves do not occur. For example, an extremely high simulated short rate in combination

with an extremely low long rage still could violate the no arbitrage condition. However,

this event is unlikely to happen in reality.

4.10 ARBITRAGE FREE TERM STRUCTURE MODELS

All stochastic processes described so far  are rooted in the time series analysis tradition

founded by Granger and Newbold.15 Another family of stochastic time series models are

the no arbitrage models of the term structure used in interest rate option pricing.16 These

                                               

14 Another alternative is the use of multi-factor arbitrage free yield curve models which however have other

shortcomings and are not further discussed here.

15 Granger and Newbold (1977).

16 See Jarrow (1996).
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models have the feature that dynamic trading strategies cannot generate an arbitrage

profit, given that the model is correct. This restriction is not used in the time series

models discussed so far and thus represent an argument in favour of no arbitrage models.

However, no arbitrage models of the term structure are notoriously hard to calibrate, if

they include many risk factors. If one restricts the number of risk factors, then the model

can only produce a rather limited amount of futures yield curve shapes which seems

inconsistent with the empirical observations.

In respect to measuring counterparty exposure, there exists one other limitation which

effectively prevent their use for this task: no arbitrage term structure models are partial

models of one single yield curve. In order to measure the future potential exposure, a

bank has to estimate possible paths for a large variety of different market rates, such as

different yield curves, exchange rates, equity prices and implied volatility. The restriction

of no arbitrage models to one yield curve thus make it impossible to use them as a

general modelling tool for large derivatives portfolios.

5 CHOICE OF RISK FACTORS AND VALUATION TECHNIQUES

5.1 RISK FACTOR CHOICE

In order to estimate counterparty exposure, the value of the counterparty portfolio must

be derived for every simulated market rate scenario. Since every simulation must

necessarily be restricted to a set of market rates for which historical time series are

available, the simulation will never include all market rates which define exposure. For

example, it is generally not possible to estimate the stochastic process of all existing

exchange rates, equity prices, interest rates etc. The level of accuracy then depends on

the ability of the system to include all important drivers of exposure. For example, if only

one interest rate factor is used for a yield curve, the system can only simulate parallel

shifts of the yield curve. Portfolios, whose value depend mainly on the steepness or

curvature of the yield curve, will then falsely show little exposure.

In a similar way, the implied volatility risk of options can only be modelled accurately, if

enough implied volatilities are used as independent risk factors. If the model assumes a
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parallel shift of all implied volatilities, a portfolio which consist of short and long options

may not show any implied volatility risk although the implied volatilities are not perfectly

correlated.

However, it is also possible to include too many risk factors in the simulation. Consider

as an easy example a portfolio of options with some options on the DEM/$ exchange

rate and others on the $/DEM exchange rate. If both rates are modelled as independent

risk factors, the simulation will generate incompatible scenarios, because both factors are

functionally dependant. Analogously, cross rates must be handled with care: if the

DEM/$ rate and the DEM/FRF rate serve as risk factors, the $/FRF rate must not be

included as another risk factor.

5.2 VALUATION OF TRANSACTIONS

Exposure simulations are very computation time intensive because they generally require

a full repricing of every transaction for every simulated market scenario. The use of

Taylor Series approximations is often not appropriate, because the simulated market rate

changes over long time horizons are often large and introduce a significant error term.

Thus, it may not even be appropriate to calculate the value of „linear“ instruments such

as swaps by using a duration based pricing approximation or the so called Delta-Gamma-

approach (a second order Taylor Series approximation).

For some transactions, special problems arise. For example, the futures value of an

interest rate swap depends on the futures fixing rates.  Because of computation time

constraints, the simulation is usually conducted only for discrete points of time. When the

fixing date falls in between to simulation time points, the fixing rate must be „guessed“.

A natural guess would be to use the rate generated by the simulation. However, this

approach effectively sets the exposure of the floating leg for plain vanilla swaps to zero,

because the value of the floating leg will by definition always be the notional value.

Another difficult area is the calculation of counterparty exposure for swaptions after their

maturity. If the swaption holder exercises his swaption in the future, the swaption will be

converted into a swap and generate additional exposure. However, most swaptions are

cash settled such that  exposure vanishes after swaption maturity. Every simulation of
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counterparty exposure including swaptions must therefore make an assumption whether

to assume future exercises or not.

6 CONCLUSION

The analysis of the exposure measurement problem has shown that the proper

measurement of counterparty exposure for portfolios of derivatives transactions is a

complex task that cannot be performed without making a lot of simplifying assumptions.

Because of  the complicated interaction of correlation effects and offsettings from

different transactions, the single transaction framework which is currently used by most

banks is definitely not capable of accurately determining the portfolio credit risk.

When simulation techniques are applied to estimate exposure, the accuracy of exposure

estimations can be increased significantly. However, a lot of modelling choices has to be

made concerning the valuation of transactions and the stochastic model of underlying

market rates. Because the system has to make projections of market rates into the far

future, the choice of an appropriate stochastic model for market rate dynamics is crucial

in order to prevent unreasonable scenarios. The predominant application of models based

on Brownian Motion in today’s bank risk management therefore leads to questionable

results in respect to derivatives exposure evaluation.
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