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Pions, which are copiously produced in high energy interactions, play a key role in
the collision dynamics. However, in spite of hard efforts, the pion production in nucleus–
nucleus interactions is far from being completely understood (see, e.g., [1]). Thus, it is
of particular interest to compare the properly normalized data on pion multiplicity from
nucleus–nucleus and nucleon–nucleon collisions.

One would expect that inelastic secondary interactions produce additional pions and
therefore their number per participating nucleon should be larger in nucleus–nucleus than
in nucleon–nucleon collisions at the same initial energy per nucleon. The experimental
data on pion multiplicities amazingly contradicts this intuitive expectation. Indeed, it has
been recently found [2, 3] for BNL AGS energies and below that the number of produced
pions per participating nucleon, 〈π〉/〈NP 〉, in central collisions of identical nuclei (A+A)
is lower (pion suppression) than in inelastic nucleon–nucleon (N + N) interactions.

In Fig. 1 we show the ratio 〈π〉/〈NP 〉 as a function of 〈NP 〉 at three initial momenta
2.1, 4.5, and 15 A·GeV/c. The data is taken from the compilation [2], where the pion
multiplicities from various experiments are recalculated to obtain the total multiplicities
independent of the rapidity and/or transverse momentum cuts. In all three cases the
relative pion production decreases when going from N + N interactions (〈NP 〉 = 2) to
central A+A collisions. At 2.1 A·GeV/c the pion yield per nucleon is smaller by a factor
of about 3. At all energies the pion suppression is approximately independent of the size
of (sufficiently large) colliding nuclei (see Fig. 1 and the review [2]). Further, the pion
suppression factor defined as

∆
〈π〉
〈NP 〉

=
〈π〉AA

〈NP 〉AA

− 〈π〉NN

〈NP 〉NN

, (1)

appears to be approximately independent of the collision energy (up to BNL AGS energies)
[2, 3]. As seen in Fig. 2, it equals about −0.35.

The aim of this paper is to discuss the mechanism leading to pion suppression. We
try to connect the scaling properties of the suppression factor (1) – its approximate
independence of the size of colliding nuclei and the initial energy – with the hypothesis
supported by the existing experimental data that the system created in nucleus–nucleus
collisions approaches the local thermodynamical equilibrium [4, 5, 6, 7].

We assume that the system produced at the early stage of A + A collision is formed
due to the superposition of N + N interactions. At this stage the chemical composition
of hadronic matter is expected to be the same as in the nucleon–nucleon collisions. The
system however evolves towards thermodynamic equilibrium and we assume that local
equilibrium is reached before the system disintegrates into the final state free hadrons.
Then, the difference between the properly normalized pion multiplicities in A + A and
N + N collisions appears as a result of

• the chemical equilibration of the initially nonequilibrium hadronic matter,

• the hydrodynamic expansion preceding the system freeze–out.

We analyse the two mechanisms of pion suppression separately. Let us start with the
equilibration one.
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A large fraction (50–100 %) of baryons emitted in inelastic N + N interactions is
known to be in the state of nucleon isobars (deltas and heavier baryonic resonances),
which successively decay into pions and nucleons [8, 9, 10, 11, 12, 13]. On the other hand,
it is also known, see e.g. [14], that in the equilibrated system at temperatures smaller
than 150 MeV, which are characteristic for the energy domain of interest, the fraction
of baryon number carried by deltas does not exceed 50 %. Therefore, when the system
created in A + A collisions evolves towards equilibrium, the initial surplus of deltas has
to be reduced causing the suppression of the final state pions. The microscopic process
responsible for the ∆ absorption is ∆ + N → N + N [15]. Multi–nucleon reactions are
also discussed in this context, see e.g. [16]. So far the qualitative argument and now we
move to a model formulation.

An equilibrium state of the system of nucleons, deltas and pions (heavier mesons and
baryons are neglected in our considerations) is controlled by two parameters: baryon
density (ρB) or baryon chemical potential (µB) and temperature (T ). The system, which
is formed at the early stage of central A + A collision, is assumed to be close to thermal
equilibrium. This assumption can be justified by short (relatively to the evolution time)
thermal equilibration time [17, 18]. The fraction of baryon charge carried by deltas,
however, exceeds its chemical equilibrium value. Thus, we describe such a system in
terms of thermodynamics but an additional parameter, which measures the delta surplus
(DS), is introduced. Specifically, we define

λ∆ ≡ ρ̃∆ − ρ∆
ρB

,

where ρ̃∆ and ρ∆ are the initial and equilibrium (corresponding to the initial temperature)
densites of deltas.

Keeping in mind that in the final state there are direct pions and those originating
from the delta decays, the pion multiplicity per participating nucleon is

〈π〉
〈NP 〉

=
ρ∆ + ρπ

ρB
, (2)

with ρπ being the pion density. The suppression factor (1) due to the chemical equili-
bration of initial DS matter produced in A + A collisions by a superposition of N + N
interactions then reads

(
∆

〈π〉
〈NP 〉

)

DS
=

ρ∆(µB, T ) + ρπ(T )

ρB
− ρ∆(µi

∆, T
i) + ρπ(T i)

ρiB
, (3)

where µB and T describe the equilibrium state while µi
∆, T i and ρiB the initial nonequi-

librium one formed in the early stage of heavy–ion collision. The particle and energy
densities used later are given by the well known formulas:

ρj(µj , T ) =
∫

d3p

(2π)3
gj

eβ(
√

p2+m2

j
−µj) ± 1

, εj(µj, T ) =
∫

d3p

(2π)3

gj
√
p2 + m2

j

eβ(
√

p2+m2

j
−µj) ± 1

,

where mj and µj are particle masses and chemical potentials with j = π, N, ∆; β ≡ 1/T .
The numbers of internal degrees of freedom are: gπ = 3, gN = 4, and g∆ = 16. The
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chemical potential of pions µπ is zero. Due to the strong interaction the above ideal
gas formulae are probably not very realistic at T larger than, say, 100 MeV and ρB
significantly exceeding normal nuclear density. The most important effect i.e. the short
range repulsion in the hadron system can be taken into account via the van der Waals
correction. Then, the particle number ratios, which are of our particular interest, could
be not far away from their ideal gas values (see e.g. Ref. [7]).

The pion density depends solely on the temperature while the delta density is a func-
tion of the temperature and delta chemical potential. The values of chemical potentials
in Eq. (3) are chosen in such a way that

ρB = ρ∆(µB, T ) + ρN(µB, T ) ,

ρiB = ρ∆(µi
∆, T

i) + ρN (µi
N , T

i) ,

where ρN is the nucleon density. Since we use the parameter λ∆ to control the delta
surplus, we require that

ρ∆(µi
∆, T

i) − ρ∆(µi
B, T

i)

ρiB
= λ∆ , (4)

where ρ∆(µi
B, T

i) is the equilibrium value of the delta density at the temperature T i and
baryon density ρiB. This equilibrium density is found from the equation

ρiB = ρ∆(µi
B, T

i) + ρN (µi
B, T

i) . (5)

A complete treatment of the pion suppression requires a simultaneous study of col-
lective expansion and chemical equilibration processes. To estimate the role of the two
phenomena we however discuss them separately. Therefore, we assume that the hydro-
dynamic expansion does not develop essentially at the time of chemical equilibration and
the latter process is studied at the constant volume. Therefore, the baryon and energy
densities are the same for initial and equilibrium phases:

ρiB = ρB ,

ε∆(µi
∆, T

i) + εN(µi
N , T

i) + επ(T i) = ε∆(µB, T ) + εN(µB, T ) + επ(T ) .

After these two equations are solved simultaneously with the additional conditions (4)
and (5), the suppression factor (3) is a function of three free parameters choosen to be
ρB, T and λ∆. We have calculated numerically the pion suppression for the temperatures
and baryon densities which cover the values characteristic for the hadronic matter formed
in A+A collisions. The temperature T then varies from 50 to 150 MeV while the baryon
density ρB from 2ρ0 to 5ρ0 with ρ0 = 0.16 fm−3 being the normal nuclear density.

The pion suppression (3) disappears when the parameter λ∆ goes to zero. To esti-
mate the maximal value of λ∆ we note that at high energies of colliding nuclei, where the
temperature approaches 150 MeV, the equilibrium value of ρ∆/ρB is about 0.5, and conse-
quently one has λ∆ < 0.5. At the lowest energies of interest, where 〈π〉NN/〈NP 〉NN

∼= 0.5,
the majority of pions in N + N collisions comes from the delta decays while the equi-
librium delta density in A + A is close to zero. Therefore, we again have λ∆ < 0.5 and
consider λ∆ = 0.5 as the largest value.
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In Fig. 3 we show the pion suppression as a function of the equilibrium temperature
T at ρB = 2ρ0 and 5ρ0 for the extreme λ∆ value. We also present the results for λ∆ =
0.3. Fig. 3 covers the whole physically reasonable domain of T , ρB as well as λ∆. The
suppression factor is seen to range from −0.2 to −0.4. Keeping in mind how strongly
the pion multiplicity varies with T , ρB and λ∆, one finds very striking a very weak
dependence of the pion suppression on the mentioned parameters. This in turn agrees
with an approximate independence of the suppression factor of the participant number
and collision energy (cf. Figs. 1, 2). More than that, the numerical values of the pion
suppression due to the equilibration process are close to the experimentally measured
mean suppression equal of −0.35.

The chemical equilibration leads to an increase of the system temperature (T > T i),
and therefore the number of direct pions increases as well. The initial nonequilibrium
number of deltas however strongly decreases. In Fig. 4 we show ρπ/ρB and ρ∆/ρB ratios
before (dotted lines) and after (solid lines) the chemical equilibration. The sum of these
ratios defines the total pion multiplicity per participating nucleon (2).

The suppression remains almost unchanged when direct pions are removed from our
calculations by setting gπ = 0. Therefore, the pion suppression occurs in our model due to
the equilibration of the baryon subsystem. Consequently, the assumption that the direct
pions are in equilibrium is not very important and can be relaxed. We return to this point
at the end of our paper.

Note also that the entropy per baryon, 〈S〉/〈NP 〉 ≡ s/ρB, increases due to the chemical
equlibration. This is shown in Fig. 5. The entropy density s is calculated from ideal gas
formulae for chemical nonequilibrium initial state with parameters T i, µi

N , µ
i
∆ (dotted line)

and for chemical equilibrium with parameters T, µB (solid line).

Let us now estimate the effect of the second mechanism of the pion suppression i.e.
the absorption of pions due to the system hydrodynamic expansion. We call it a delayed
freeze–out (DF) effect in A+A collisions: the hadronic system produced in these collisions
is larger than that from N+N interactions and therefore the freeze–out density is expected
to be smaller. We consider an isentropic evolution of the locally equilibrated hadron
matter. It was observed a long time ago [19, 20] that number of pions indeed decreases
in the course of such an expansion of the pion–baryon gas.

The locally equilibrium system starts with ρB, T and then expands until the freeze–out
values ρfB, T f are reached. The pion suppression then reads

(
∆

〈π〉
〈NP 〉

)

DF
=

ρ∆(µf
B, T

f) + ρπ(T f)

ρfB
− ρ∆(µB, T ) + ρπ(T )

ρB
. (6)

Since the entropy is assumed to be conserved during the expansion, the ratio of the
entropy density to the baryon density is constant. The freeze–out temperature T f can be
thus expressed as a function of ρB, T and ρfB. Consequently, the pion suppression (6) is
controlled by the same three parameters.

We have found a remarkable ‘scaling’ property of the pion suppression due to the
isentropic expansion which, as far as we know, has not been noticed before. At fixed
T the suppression (6) becomes a function of the ratio ρfB/ρB only. If the thermal pion
contribution to the system entropy is neglected, the temperature T f , which is a solution of
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an equation of the isentropic expansion, depends at fixed initial temperature T on the ratio
ρfB/ρB only. The delta part of the pion suppression (6), ρ∆(µf

B, T
f)/ρfB − ρ∆(µB, T )/ρB,

manifests then the same scaling property as T f . The thermal pion break the exact scaling,
but still the scaling for T f holds with a high accuracy. The thermal pion part of the
suppression (6) (ρπ(T f)/ρfB − ρπ(T )/ρB) does not scale, but the effect is numerically
small. Therefore, the corrections to the ‘scaling law’ for the total pion suppression factor
(6) are very minor (less than a few percent) as long as the initial baryon density is
sufficiently large, say ρB > 0.5ρ0, and the initial temperature is not too big, T < 150
MeV. In Fig. 6 we show ρπ/ρ

f
B and ρ∆/ρ

f
B ratios for T = 150 MeV and ρB = 2ρ0.

In physical terms, the scaling tells us that the pion suppression due to the isentropic
expansion mainly results from the delta absorption.

Our numerical calculations of the DF pion suppression (6) are shown as a function of
ρfB/ρB in Fig. 7. One sees that the pion suppression due to the expansion is very small for
the initial temperature T = 50 MeV and reaches a value of about −0.4 at T = 150 MeV
and ρfB/ρB = 0.1. Thus, it is expected to increase with growing collision energy (large T )
and the size of the colliding nuclei (small ρfB/ρB due to the delayed freeze–out).

The final pion suppression in A + A collisions combines the effects caused by the
equilibration and expansion and can be calculated as a simple sum of the factors (3) and
(6). As follows from the results presented in Figs. 3 and 7, the sum varies between −0.2
and −0.7 in the whole physically acceptable domain of the hadronic matter parameters.
As mentioned above, we expect the pion absorption to increase with growing size of the
colliding nuclei and collision energy. This is indeed consistent with data: the independence
of the pion suppression of the size of colliding nuclei breaks down for nuclei as heavy as
gold. Then, the pion suppression (1) equals about −0.6 at 11.6 A·GeV/c [2, 3]. The same
trend is found in the recent GSI SIS results at lower energies [21].

The suppression caused by DS and DF mechanisms was calculated under assumption
that direct pion component is in equilibrium i.e. its chemical equilibration time is much
smaller than the system evolution time. However, as pointed above, the suppression
remains unaffected when direct pion component is removed from the calculations. This
implies that our results are valid also for the case when chemical equilibration time of
direct pions is much larger than the evolution time i.e. the number of direct pions is
effectively frozeen.

We summarize our considerations as follows. The suppression of the pion production
per participating nucleon, which is observed in central A + A collisions at the energies
of BNL AGS and below, has been discussed within a thermodynamical approach. An
approximate independence of the suppression factor (1) on the collision energy and the
participant number (see Figs. 1 and 2) as well as its numerical value agree with a scenario
of the heavy–ion collision which distinguishes the following three stages:

1. The initial preequilibrium stage when the nonequilibrium hadronic system is formed
by a superposition of N + N interactions.

2. The equilibration stage when the number of deltas decreases to the equilibrium value
leading to the reduction of the total number of pions (see Fig. 3).
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3. The expansion stage of locally equilibrated hot hadronic matter which causes an
additional pion suppression (see Fig. 7).

For the initial energies of BNL AGS and below this scenario is checked to be qualita-
tively correct after adding more mesonic and baryonic resonances and going beyond the
ideal gas approximation applied here. It would be also interesting to check our picture of
the pion suppression against microscopic transport calculations.

As a final remark we should stress that at the CERN SPS energies (160–200 A·GeV)
one observes a pion enhancement instead of the suppression when going from N + N
to A + A collisions [2]. This qualitatively different behaviour can not be understood
within the model presented here. A novel feature of A+A collisions at SPS energy is a
role of meson resonances which becomes much more important than that at AGS energy
and below: a number of mesons at the freeze–out in A+A collisions at SPS is several
times larger than number of baryons. The chemical equilibration and hydrodynamical
expansion in such a system may lead to a change of the suppression pattern observed
at low energies and deserve a special study. It is also possible that the explanation of
the pion enhancement effect requires the introduction of new mechanisms. A formation
of the Quark–Gluon Plasma at CERN SPS energies has been considered as an obvious
candiatate [3], however other mechanisms are also discussed [22].
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comments on the manuscript. One of us (M.I.G.) expresses his gratitude for the warm
hospitality at the Institute for Theoretical Physics of Frankfurt University when this work
was completed. The support by BMFT, DFG and GSI is also thankfully acknowledged.

References

[1] R. Stock, Phys. Rep. 135 (1986) 259;
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Figure 1: The pion multiplicity per participant nucleon 〈π〉/〈NP 〉 as a function of the
participant number for nucleon–nucleon interactions (square) and central collisions of
identical nuclei (circles) at 2.1, 4.5, and 15 A·GeV/c. The lines are shown to guide the
eye.
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Figure 2: The experimentally measured suppression factor ∆(〈π〉/〈NP 〉) as function
of the collision energy which is expressed through the Fermi variable defined as F ≡
(
√
sNN − 2mN)3/4/s

1/8
NN . The dashed line shows the mean value equal −0.35.
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Figure 3: The suppression factor (3) as a function of the temperature T . The extreme
cases of ρB = 5ρ0 and ρB = 2ρ0 are shown by, respectively, the dotted and solid lines.
The upper pair of the dotted and solid lines corresponds to λ∆ = 0.3 while the lower one
to λ∆ = 0.5.
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Figure 4: ρπ/ρB and ρ∆/ρB ratios in the initial state (dashed lines) and in in the
chemical equilibrium state (solid lines). The equilibrium baryonic density is chosen as 2ρ0
and λ∆ = 0.5.
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Figure 5: The entropy per participating nucleon in the initial state (dotted lines) and in
in the chemical equilibrium state (solid lines). The equilibrium baryonic density is chosen
as 2ρ0 and λ∆ = 0.5.
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Figure 6: ρπ/ρ
f
B (solid line) and ρ∆/ρ

f
B (dashed line) ratios in an isentropic expansion

as a function of ρfB/ρB. The parameters are T = 150 MeV and ρB = 2ρ0.
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Figure 7: The suppression factor (6) as a function of ρfB/ρB. The dotted, dotted–dashed
and solid line corresponds to T equal 50, 100 and 150 MeV, respectively.
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