Einfluß von Sauerstoff auf die photosynthetische CO₂-Fixierung von *Synechococcus*

Effect of Oxygen on Photosynthetic CO₂ Fixation of Synechococcus

Günter Döhler

Botanisches Institut der Johann-Wolfgang-Goethe-Universität, Siesmayerstr. 70, D-6000 Frankfurt a. M.

Z. Naturforsch. 36 c, 93-97 (1981); eingegangen am 9. Oktober 1980

¹⁴CO₂ Fixation, Effect of Oxygen and CO₂ Concentrations, Synechococcus

The cyanobacterium Synechococcus (Anacystis nidulans strain L 1402-1) was grown at +35 °C in air and in air enriched with 2.2 vol.% CO_2 . The effect of different oxygen concentrations (0, 2, 20, 50, 75 and 99.97 or 97.8 vol.%) was studied in low (0.03 vol.%) and high (2.2 vol.%) CO_2 concentrations at +35 °C. After exposure to a nitrogen atmosphere and low CO_2 content ¹⁴C-bicarbonate was mainly incorporated into aspartate and glycine/serine. During oxygenic photosynthetic CO_2 fixation label in aspartate decreased and a high degree of radioactivity could be found in 3-phosphoglyceric acid and sugar monophosphates. The Calvin cycle was the main fixing pathway in 2.2 vol.% CO_2 during anoxygenic and oxygenic conditions independent on the O_2 concentrations during the experiments. No oxygen enhancement of photosynthetic CO_2 fixation could be found. Possible mechanism involved in CO_2 fixation pathways and glycolate metabolism underlying the effect of oxygen was discussed.

Die bisher vorliegenden Ergebnisse über die photosynthetische CO₂-Fixierung bei Cyanobakterien (= Blaualgen) zeigten, daß offensichtlich der Calvin-Cyclus als Weg der CO₂-Assimilation vorherrscht [1-3]. Jedoch wurde Bei Synechococcus auch eine hohe Aspartatmarkierung vor allem am Anfang der Belichtung gefunden [4-6], was für das Ablaufen einer Carboxylierung von Phosphoenolpyruvat spricht. Zur Unterscheidung zwischen C3und C₄-Pflanzen wurde die Wirkung von Sauerstoff auf die Photosyntheserate herangezogen [7]. Untersuchungen über die Wirkung aerober und anaerober Bedingungen auf die Kinetik des 14C-Einbaues in die Produkte der photosynthetischen CO₂-Fixierung führten zu unterschiedlichen Ergebnissen. So wurden einerseits nur Produkte des Calvin-Cyclus [8, 9] und andererseits bei der anoxygenen CO₂-Fixierung in niedrigem CO₂-Gehalt (0,03 vol.%) eine hohe Aspartat- und Glycin/Serin-Markierung [6,10] gefunden. Zur weiteren Charakterisierung der CO₂-Assimilation von Cyanobakterien wurde der O2-Einfluß bei in niedrigem und hohem CO2-Gehalt kultivierten Synechococcus-Zellen eingehend untersucht.

Sonderdruckanforderungen an Prof. Dr. G. Döhler. 0341-0382/81/0100-0093 \$ 01.00/0

Experimentelles

Synechococcus (= Anacystis nidulans Stamm L 1402-1) der Algenreinkulturensammlung, Göttingen wurde bei + 35 °C und einem Licht/Dunkel-Wechsel von 18:6 Std. in niedrigem (0,03 vol.%) und hohem (2,2 vol.%) CO₂-Gehalt kultiviert. Die Beleuchtungsstärke in den Kulturröhren betrug 5000 lx und die Durchflußmenge 60 l/h. Vor Versuchsbeginn sind die Synechococcus-Zellen 1 Stunde mit der während der Anzucht verwendeten CO₂-Konzentration in einer speziellen Assimilationskammer aus Plexiglas begast worden. Verwendung fanden folgende Sauerstoffkonzentrationen: 0, 2, 20, 50, 75 und 99, 97 bzw. 97,8 vol.%. Die elektronisch gesteuerte Küvette gestattete Fixierungszeiten im 2 bzw. 5sec-Rhythmus. Die ¹⁴CO₂-Fixierungsexperimente, Extraktion, dünnchichtchromatographische Auftrennung der 14C-markierten Substanzen und die Messung der Radioaktivität wurden nach der bei Döhler [11] beschriebenen Prozedur durchgeführt. Die spezifische Aktivität der verwendeten Bicarbonatlösung war 56,9 bzw. 59,1 µCi/µmol. 10 µCi/ml Synechococcus-Suspensionen wurden eingesetzt. Mit Lichtbeginn erfolgte die [14C]-Bicarbonatzugabe. Als Bezugsgrößen wurden der Chlorophyll a-Gehalt nach Kratz und Myers [12] und die Trockensubstanz bestimmt. Die Synechococcus-Zellen wurden stets zur gleichen Zeit geerntet und auf die gleiche optische Dichte konzentriert, damit für die Versuche ein möglichst vergleichbares Ausgangsmaterial zur Verfügung stand. Diese Standardisierung war erforderlich, da Miyachi und Okabe [8] ein vom Entwicklungszustand der Zellen abhängiges Verhalten gegenüber Sauerstoff fanden.

Ergebnisse und Diskussion

In einer N₂-Atmosphäre wird bei *Synechococcus* [¹⁴C]-Bicarbonat vornehmlich in Aspartat und Glycin/Serin eingebaut, wenn die Anzucht mit Preßluft (0,03 vol.% CO₂ und 21 vol.% O₂) oder in 3,0 vol.% CO₂ und Preßluft erfolgte. Wurde 3,0 vol.% CO₂ zugegeben, so betrug die Markierung dieser Substanzen weniger als 5% der Gesamtradioaktivität der Photosyntheseprodukte [6, 10]. Diese Befunde waren der Anlaß einer eingehenden Untersuchung der Wirkung verschiedener Sauerstoffkonzentrationen auf die Photosyntheserate und die Verteilung der ¹⁴C-markierten Verbindungen von in niedrigem (0,03 vol.%) und in hohem CO₂-Gehalt (2,2 vol.%) kultivierten *Synechococcus*-Zellen. Die Kinetikexperimente in 0,03 vol.% CO₂ und N₂ zeigten am Anfang der Belichtung (bis zu 30 sec) einen ¹⁴C-Einbau nur in Aspartat und Glycin/Serin (Abb. 1). Nach längerer Fixierungsdauer wurde eine Abnahme in der prozentualen Verteilung dieser Substanzen und eine Zunahme der Radioaktivität in 3-Phosphoglycerat und den Zuckermonophosphaten gefunden. Dieses Ergebnis stimmt weitgehend mit den von Döhler früher publizierten Daten überein. Wird dem Gasgemisch Sauerstoff - hier 50 vol.% - zugesetzt, dann nimmt der prozentuale Anteil von 3-Phosphoglycerat und den Zuckermonophosphaten stark zu und der von Aspartat und Glycin/Serin deutlich ab (vgl. Abb. 1). Den Einfluß der verschiedenen Sauerstoffkonzentrationen (2, 20, 50, 75 oder 99,97 vol.%) auf den prozentualen Anteil der 14C-markierten Photosyntheseprodukte nach einer Fixierungdauer von 1 min veranschaulicht Tab. I. Besonders auffällig ist die starke Abnahme der ¹⁴C-Markierung von Aspartat in Gegenwart von Sauerstoff, obwohl sich der prozentuale' Anteil von Phosphoenolpyruvat praktisch nicht ändert. Przybylla [13] beobachtete am gleichen Objekt in 100% Sauerstoff ebenfalls eine drastische Verringerung des Anteils von Aspartat. Bemerkenswert ist, daß bei einer Begasung der Synechococcus-Suspension mit 2% O2 ein Vertei-

Abb. 1. Kinetik des ¹⁴C-Einbaus in verschiedene Substanzen (prozentuale Verteilung) während der Photosynthese-Induktion von *Synechococcus (Anacystis nidulans L 1402-1)* bei + 35 °C in 0,03 vol.% CO₂ und N₂ bzw. 50 vol.% O₂. Anzucht unter Preßluftbegasung bei + 35 °C und 5000 lx. Beleuchtungsstärke während des Experiments 10000 lx. *Asp* Aspartat, *Gly/Ser* Glycin/Serin, *PGS* 3-Phosphoglycerinsäure und *ZmP* Zuckermonophosphate.

Tabelle I. Einfluß verschiedener Sauerstoffkonzentrationen auf das Verteilungsmuster der ¹⁴ C-markierten Photosynthese-
produkte von Synechococcus (Anacystis nidulans L 1402-1) nach einer Fixierungsdauer von 1 min bei + 30 °C. Vor Ver-
suchsbeginn wurde die Suspension 1 Std. mit dem angegebenen Gasgemisch und 0.03 vol.% CO ₂ durchströmt (40 l/h). Die
Anzucht erfolgte bei + 35 °C, 5000 lx und Preßluft (0.03 vol.% CO ₂ und 21% O ₂). Die Radioaktivität ist in dpm
angegeben.

Substanz	N ₂		2% O ₂		21% O ₂		50% O ₂		75% O ₂		99,97% O ₂	
	[dpm]	[%]	[dpm]	[%]	[dpm]	[%]	[dpm]	[%]	[dpm]	[%]	[dpm]	[%]
Aspartat	3067	49,2	1164	10,9	496	9,2	5143	17,9	4410	17,5	1211	8,5
Asparagin			446	4,2	500	9,3			355	1,4		
Glycin/Serin	911	14,6	644	6,0	257	4,7	1098	3,8	1224	4,8	459	3,2
3-Phosphoglycerinsäure	466	7.4	2248	21.2	1132	21.1	5758	20.0	5507	20.0	4326	30.7
Zuckermonophosphate	1169	18,7	4939	46.7	2573	47.9	13755	47.9	10891	43,2	6459	45,8
Phosphoenolpyruvat	158	2.4	277	2.6	108	2.0	150	0.5	447	1.7	336	2.3
Alanin		-,.	371	3.5	161	3.0	993	3.4	726	2.8	310	2.2
Glutamat	100	1.6	96	0.9	93	1.7		-) -	283	1.1	232	1.6
Threonin		-) -		-)-		- , .	252	0.8	118	0.4		
Citrat/Glycerat	362	5.8	235	2.2			372	1.3	346	1.3	280	2.0
Phosphoglykolsäure		-)-		_,_	42	0.7	513	1.7		-,-	264	1.8
Glykolsäure			61	0.5		-,.	640	2.2	501	1.9	198	1.4
Dihydroxyacetonphosphat			01	.,.			0.10	_,_	225	0,8	170	

Tabelle II. Einfluß verschiedener Sauerstoffkonzentrationen auf das Verteilungsmuster der ¹⁴C-markierten Photosyntheseprodukte von Synechococcus (Anacystis nidulans L 1402-1) nach einer Fixierungsdauer von 1 min bei + 30 °C. Vor Versuchsbeginn wurde die Suspension 1 Stunde mit dem entsprechenden Gasgemisch (O₂-Gehalt und 2,2 vol.% CO₂) durchstömt (40 l/h). Die Anzucht erfolgte bei + 35 °C, 5000 lx und 2,2 vol.% CO₂ mit Preßluft. Die Radioaktivität ist in dpm angegeben.

Substanz	N_2		2% O ₂		21% C)2	50% O) ₂	75% C) ₂	98% C	2
	[dpm]	[%]	[dpm]	[%]	[dpm]	[%]	[dpm]	[%]	[dpm]	[%]	[dpm]	[%]
Aspartat	422	9,7	415	5,9	515	6,8	452	6,8	477	6,6	635	6,9
Asparagin	134	3,0						,		,		,
Glycin/Serin	231	5.3	166	2.3	142	1.9	163	2.4	127	1.7	192	2.0
3-Phosphoglycerinsäure	837	19.2	998	14.4	1170	15.7	720	10.8	1480	20.5	1676	18.3
Zuckermonophosphate	2318	53.4	4695	67.8	4861	65.3	3893	58.8	4601	63.7	5790	63.3
Phosphoenolpyruvat	177	4.0	87	1.2	98	1.3	167	2.5	128	1.7	102	1.1
Alanin	150	3.4	182	2.6	170	2.2	157	2.3	110	1.5	155	1.6
Glutamat		- , .		_,_	47	0.6		_,_		-,-	44	0.4
Citrat/Glycerat			135	1.9	88	1.1	101	1.5			84	0.9
Phosphoglykolsäure	70	1.6	144	2.0	178	2.3	768	11.6	197	2.7	194	2.1
Glykolsäure		-)-			108	1.4	101	1.5	94	1.3	201	2.1
Malat			102	1,5	62	0,9	92	1,4		-,0	70	0,8

lungsmuster gefunden wird, das sich in höheren O_2 -Konzentrationen nur unwesentlich verändert. Unterschiede wurden allerdings in der Radioaktivität der Phosphoglykolsäure und Glykolsäure gemessen, die mit steigendem O_2 -Gehalt etwas zunimmt (Tab. I und II). Da die Markierungsrate von Glycerat praktisch gleichbleibt, spricht dies für das Ablaufen des Glykolatweges, was mit früheren Befunden übereinstimmt [3, 8]. Die O_2 -Konzentration kontrolliert demnach die Glykolatsynthese in *Synechococcus*.

Im Muster der prozentualen Verteilung der ¹⁴Cmarkierten Photosyntheseprodukte wurde bei Durchführung der Experimente in hohen CO_2 -Konzentrationen (2,2 vol.%) mit *Synechococcus*-Zellen, die ebenfalls in 2,2 vol.% CO_2 kultiviert worden sind, keine so drastischen Unterschiede gefunden. Da das Muster der ¹⁴C-markierten Photosyntheseprodukte bei dieser hohen CO_2 -Konzentration (2,2 vol.%) in N_2 und 2,0 vol.% O_2 praktisch identisch war, werden hier die Daten von 2% O_2 denen von 50% O_2 gegenübergestellt (Abb. 2). In jedem Fall dominieren hier die Produkte des Calvin-Cyclus. In einer N_2 -Atmosphäre und bei niedrigem O_2 -Gehalt (2%) während des Versuchs ist der prozentuale Anteil von Aspartat

Abb. 2. Kinetik des ¹⁴C-Einbaues in verschiedene Substanzen (prozentuale Verteilung) während der Photosynthese-Induktion von *Synechococcus (Anacystis nidulans L 1402-1)* bei + 35 °C in 2,2 vol.% CO_2 + 2 bzw. 50 vol.% O_2 . Anzucht bei Begasung mit 2,2 vol.% CO_2 und Preßluft. Weitere Angabe siehe Abb. 1.

am Anfang der Belichtung höher als bei Begasung mit 50% O₂. Die Markierungsrate von Glycin/Serin wird durch verschiedene O2-Konzentrationen nur wenig beeinflußt; einen etwas höheren prozentualen Anteil findet man allerdings in einer N2-Atmosphäre (vgl. Tab. II). Ähnliche Beobachtungen liegen von Miyachi und Okabe [8] vor, die bei in 1,5-2,0 vol.% CO2 und Preßluft kultivierten Anacystis-Zellen keinen Unterschied im Muster der ¹⁴Cmarkierten Photosyntheseprodukte feststellen konnten. Wenn die Anzucht in N2 oder H2 erfolgte, wurden bei der oxygenen und anoxygenen CO2-Fixierung ebenfalls nur Produkte des Calvin-Cyclus gefunden [9]. Offensichtlich übt der CO₂-Gehalt während der Anzucht von Synechococcus einen entscheidenden Einfluß auf den Weg der CO₂-Assimilation aus [6].

Die geringe Wirkung, die der Sauerstoffgehalt auf den prozentualen Anteil des größten Teils der ¹⁴Cmarkierten Photosyntheseprodukte hat, demonstriert Tab. II. Die Markierung der Produkte des Calvin-Cyclus (z.B. 3-Phosphoglycerinsäure, Zuckermonophosphate) wird praktisch nicht beeinflußt. Der prozentuale Anteil der Aminosäuren (Aspartat, Glycin/Serin und Alanin) und von Phosphoenolpyruvat liegt in einer N₂-Atmosphäre mit 2,2% CO₂ deutlich über den in Gegenwart von Sauerstoff gemessenen Werten. Das Fehlen von Sauerstoff während des Versuchs begünstigt eine Carboxylierung von Phosphoenolpyruvat und der hohe CO₂-Gehalt bewirkt ein schnelles Anlaufen des Calvin-Cyclus. Eine CO₂-Anreicherung in der Zelle über das PEP-carboxylase-System entfällt, somit ist die hohe Aminosäure-Markierung verständlich. Auch nach längeren Fixierungszeiten (z. B. 10 min) wurde keine wesentliche Änderung im Muster der CO₂-Fixierung unter dem Einfluß verschiedener O₂-Konzentrationen festgestellt.

Unter unseren experimentellen Bedingungen wurde die Rate der CO_2 -Fixierung (ab 4 min Photosynthese) durch Sauerstoff gehemmt, was mit den Untersuchungen von Przybylla [13] übereinstimmt. Bei Fixierungszeiten unter 4 min (in 0,03% CO_2) bzw. unter 1 min (2,2% CO_2) wurde in einer N₂ Atmosphäre die niedrigste Gesamtfixierungsrate gemessen. Dies geht auf die unter diesen Bedingungen langandauernde Induktionsphase der Photosynthese zurück [14], d. h. der stationäre Photosynthesewert wird erst relativ spät erreicht. Die Verringerung der Rate der ¹⁴CO₂-Fixierung bezogen auf den ChloroG. Döhler · Einfluß von Sauerstoff auf die photosynthetische CO₂-Fixierung

phyll a-Gehalt betrug etwa 20% in 99,97 bzw. 97,8% O₂. Demgegenüber fanden Miyachi und Okabe [8] eine Steigerung der Gesamtfixierungsrate in Gegenwart von Sauerstoff, die bei 10% O2 einen maximalen Wert erreichte (Photosynthesezeit: 40 min). Die von uns bei Synechococcus beobachtete Hemmung der photosynthetischen CO₂-Fixierung hat seine Ursache offensichtlich in einer Beeinträchtigung der Aktivität der Ribulose-1.5-bisphosphatcarboxylase. Nach Befunden von Miyachi und Okabe [8] hemmt Sauerstoff die Aktivität dieses Enzyms. Außerdem kann eine Beeinflussung des CO₂-Transportes bzw. CO₂/Bikarbonatverhältnisses in der Zelle über die Carboanhydrase durch Sauerstoff eine Rolle spielen.

- [1] R. A. Pelroy u. J. A. Bassham, Arch. Mikrobiol. 86, 25 - 38 (1972).
- [2] M. J. A. Ihlenfeldt u. J. Gibson, Arch. Mikrobiol 102, 13-21 (1975). [3] G. Döhler u. K.-R. Przybylla, Planta (Berl.) 110,
- 153-158 (1973).
- [4] G. Richter, Planta (Berl.) 57, 202-214 (1961).
 [5] E. R. Jansz u. F. J. Maclean, Can. J. Mikrobiol. 19, 497-504 (1973).
- G. Döhler, Ber. dtsch. bot. Ges. 87, 229-238 (1974).
- ľ71 C. B. Osmond, Photosynthesis and Photorespiration, (M. D. Hatch ed.), 472-482 (1971).

Danksagung

Für die großzügige Unterstützung zur Durchführung der Versuche im Botanischen Institut der Universität Bern danke ich Herrn Prof. Dr. K. Erismann, Bern und Herrn Dipl.-Biol. Mati für seine Mitarbeit. Mein besonderer Dank gilt der European Molecular Biology Organisation (EMBO) für die Finanzierung des Forschungsaufenthaltes in der Schweiz und der Deutschen Forschungsgemeinschaft für die Gewährung einer Sachbeihilfe. Fräulein Isolde Burkhardt danke ich für die ausgezeichnete technische Mitarbeit.

- [8] S. Miyachi u. K. Okabe, Plant & Cell Physiol. 17, 973-986 (1976).
- [9] G. Peschek, FEBS Letters 106, 34-38 (1979).
- [10] G. Döhler, Z. Pflanzenphysiol. 78, 416-420 (1976).
- [11] G. Döhler, Planta (Berl.) 107, 33-42 (1972).
 [12] W. A. Kratz u. J. Myers, J. Gen. Physiol. 39, 11-22 (1955).
- 13] K.-R. Przybylla, Diss. Frankfurt/M. (1974).
- [14] K. Egle u. G. Döhler, Z. Naturforsch. 19 b, 773-777 (1964).