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Study of 𝐼 = 0 bottomonium bound states and resonances Lasse Mueller

1. Introduction

We discuss a comprehensive study of bottomonium bound states and resonances based on static-
static-light-light potentials. We use the Born-Oppenheimer diabatic approximation [1], which is
a two-step approach. First, static quark-antiquark potentials in presence of a light quark-antiquark
pair are computed with lattice QCD (here we use existing results from Ref. [2]). Then, in a second
step, these potentials are used in a coupled channel Schrödinger equation. This approach was
successfully applied to �̄��̄�𝑢𝑑 systems (see e.g. Refs. [3, 4]) and to 𝐼 = 0 bottomonium in an 𝑆 wave
[5, 6]. There are also ongoing efforts to study 𝐼 = 1 bottomonium in a similar way [7].

In this contribution we extend our work [5, 6] from 𝑆 wave to 𝑃, 𝐷 and 𝐹 wave states. More
details can be found in Ref. [8]. See also Refs. [9–11] for similar works by other independent
groups.

2. Coupled channel Schrödinger equation

In the following we briefly discuss the coupled channel Schrödinger equation for 𝐼 = 0
bottomonium bound states and resonances. We consider a quarkonium channel �̄�𝑄, a heavy-light
meson pair �̄�𝑀 with 𝑢/𝑑 light quarks, isospin 𝐼 = 0 (i.e. �̄�𝑄(�̄�𝑢 + 𝑑𝑑)) and a heavy-light meson
pair �̄�𝑠𝑀𝑠 with 𝑠 light quarks (i.e. �̄�𝑄𝑠𝑠).

Throughout this work we use the following quantum numbers:

• 𝐽𝑃𝐶 : total angular momentum, parity and charge conjugation.

• 𝑆𝑃𝐶
𝑄

: spin of �̄�𝑄 and corresponding parity and charge conjugation.

• 𝐽𝑃𝐶 : total angular momentum excluding the heavy �̄�𝑄 spins and corresponding parity and
charge conjugation (for quarkonium 𝐽𝑃𝐶 coincides with the orbital angular momentum 𝐿𝑃𝐶

of the two heavy quarks).

Since we treat the heavy quark spins as conserved quantities, energy levels and other observables
do not depend on 𝑆𝑃𝐶

𝑄
. Thus, the relevant quantum numbers in our work to label bottomonium are

𝐽𝑃𝐶 , not 𝐽𝑃𝐶 as usual.
The Schrödinger equation has a 7-component wave function

𝜓(r) = (𝜓�̄�𝑄 (r), ®𝜓�̄�𝑀 (r), ®𝜓�̄�𝑠𝑀𝑠
(r)). The first component represents the �̄�𝑄-channel, while

the six components below represent the respective �̄�𝑀 and �̄�𝑠𝑀𝑠 triplets with light spin 1. The
Schrödinger equation reads

©«−
1
2
`−1

(
𝜕2
𝑟 + 2

𝑟
𝜕𝑟 −

L2

𝑟2

)
+𝑉 (r) +

©«
𝐸threshold 0 0

0 2𝑚𝑀 0
0 0 2𝑚𝑀𝑠

ª®®¬ − 𝐸
ª®®¬𝜓(r) = 0, (1)

where `−1 = diag(1/`𝑄, 1/`𝑀 , 1/`𝑀 , 1/`𝑀 , 1/`𝑀𝑠
, 1/`𝑀𝑠

, 1/`𝑀𝑠
) is a 7 × 7 diagonal matrix

with the reduced masses, corresponding to a heavy quark-antiquark pair and to meson-meson pairs,
i.e. `𝑄 = 𝑚𝑄/2, `𝑀 = 𝑚𝑀/2 and `𝑀𝑠

= 𝑚𝑀𝑠
/2 (we use spin averaged masses for 𝑚𝑀 and 𝑚𝑀𝑠

).
L = r × p denotes the orbital angular momentum operator and 𝐸threshold is the threshold energy
corresponding to two negative parity static-light mesons in the same lattice setup, where also the
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static potentials were computed (for details see Ref. [6]). The 7 × 7 potential matrix 𝑉 (r) is given
by

𝑉 (r) =
©«

𝑉�̄�𝑄 (𝑟) 𝑉mix(𝑟) (1 ⊗ e𝑟 ) (1/
√

2)𝑉mix(𝑟) (1 ⊗ e𝑟 )
𝑉mix(𝑟) (e𝑟 ⊗ 1) 𝑉�̄�𝑀 (𝑟) 0

(1/
√

2)𝑉mix(𝑟) (e𝑟 ⊗ 1) 0 𝑉�̄�𝑀 (𝑟)

ª®®¬ (2)

with

𝑉�̄�𝑀 (𝑟) = 𝑉�̄�𝑀, ‖ (𝑟) (e𝑟 ⊗ e𝑟 ) +𝑉�̄�𝑀,⊥(𝑟) (1 − e𝑟 ⊗ e𝑟 ). (3)

𝑉�̄�𝑄, 𝑉mix, 𝑉�̄�𝑀, ‖ and 𝑉�̄�𝑀,⊥ can be computed with lattice QCD (see section 3).

3. Static potentials from lattice QCD

As input for our work we use static potentials computed with lattice QCD in the context of
string breaking in Ref. [2]. The basic principle to compute such potentials is to define suitable
creation operators for a quark-antiquark pair and a meson-meson pair, e.g.

O𝑄�̄� = (Γ𝑄)𝐴𝐵
(
�̄�𝐴(0) 𝑈 (0; r) 𝑄𝐵 (r)

)
(4)

O𝑀�̄� = (Γ𝑄)𝐴𝐵 (Γ𝑞)𝐶𝐷

(
�̄�𝐴(0) 𝑢𝐷 (0) �̄�𝐶 (r) 𝑄𝐵 (r)

)
+ (𝑢 → 𝑑), (5)

and to compute the corresponding correlation matrix

𝐶 (𝑡) =
(

〈O𝑄�̄� |O𝑄�̄�〉𝑈 〈O𝑄�̄� |O𝑀�̄� 〉
𝑈

〈O𝑀�̄� |O𝑄�̄�〉𝑈 〈O𝑀�̄� |O𝑀�̄� 〉𝑈

)
=

©«
√

2
√

2 -2

ª®®¬ . (6)

Solid lines after the last equality sign in Eq. (6) indicate gluonic parallel transporters, while wiggly
lines correspond to light quark propagators. Thus, the upper left matrix element is a Wilson loop,
the off-diagonal matrix elements are similar to Wilson loops with one gluonic parallel transporter
replaced by a light quark propagator and the lower right matrix element is a sum of two fermionic
diagrams, one connected and the other disconnected. From 𝐶 (𝑡) the ground state potential 𝑉0(𝑟)
and the first excitation 𝑉1(𝑟) can be extracted in the limit of large temporal separations using the
spectral decomposition

𝐶 𝑗𝑘 (𝑡) =
∑︁
𝑛

𝑎𝑛𝑗𝑘 (𝑟)e
−𝑉𝑛 (𝑟 )𝑡 . (7)

The relation between 𝑉0(𝑟) and 𝑉1(𝑟) and the potentials appearing in Eqs. (2) and (3) was
derived in Ref. [5] and is given by

𝑉�̄�𝑄 (𝑟) = cos2(\ (𝑟))𝑉0(𝑟) + sin2(\ (𝑟))𝑉1(𝑟) (8)
𝑉�̄�𝑀, ‖ (𝑟) = sin2(\ (𝑟))𝑉0(𝑟) + cos2(\ (𝑟))𝑉1(𝑟) (9)

𝑉mix(𝑟) = cos(\ (𝑟)) sin(\ (𝑟))
(
𝑉0(𝑟) +𝑉1(𝑟)

)
(10)

𝑉�̄�𝑀,⊥(𝑟) = 0. (11)

3
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Figure 1: Potentials 𝑉�̄�𝑄, 𝑉�̄�𝑀, ‖ and 𝑉mix as functions of the �̄�𝑄 separation 𝑟. The curves represent the
parameterizations (12) to (14) with parameters listed in Table 1.

In Fig. 1 we show the lattice data points for 𝑉�̄�𝑄 (𝑟), 𝑉mix(𝑟) and 𝑉�̄�𝑀 (𝑟) and parameterizations

𝑉�̄�𝑄 (𝑟) = 𝐸0 −
𝛼

𝑟
+ 𝜎𝑟 +

2∑︁
𝑗=1

𝑐�̄�𝑄, 𝑗 𝑟 exp
(
− 𝑟2

2_2
�̄�𝑄, 𝑗

)
(12)

𝑉�̄�𝑀, ‖ (𝑟) = 0 (13)

𝑉mix(𝑟) =
2∑︁
𝑗=1

𝑐mix, 𝑗 𝑟 exp
(
− 𝑟2

2_2
mix, 𝑗

)
(14)

with parameters listed in Table 1.

potential parameter value
𝑉�̄�𝑄 (𝑟) 𝐸0 −1.599(269) GeV

𝛼 +0.320(94)
𝜎 +0.253(035) GeV2

𝑐�̄�𝑄,1 +0.826(882) GeV2

_�̄�𝑄,1 +0.964(47) GeV−1

𝑐�̄�𝑄,2 +0.174(1.004) GeV2

_�̄�𝑄,2 +2.663(425) GeV−1

𝑉�̄�𝑀, ‖ (𝑟) – –
𝑉mix(𝑟) 𝑐mix,1 −0.988(32) GeV2

_mix,1 +0.982(18) GeV−1

𝑐mix,2 −0.142(7) GeV2

_mix,2 +2.666(46) GeV−1

Table 1: Parameters of the potential parametrizations (12) to (14).
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4. Schrödinger equation and T matrix for definite 𝐽

By expanding 𝜓(r) in terms of eigenfunctions of the operator corresponding to 𝐽 one can
project the Schrödinger equation (1) to definite 𝐽 (for details see Refs. [5, 8]). This leads to a set of
five coupled ordinary differential equations in the radial coordinate 𝑟 ,(

1
2
`−1 𝜕2

𝑟 + 1
2𝑟2 𝐿

2
𝐽
+𝑉𝐽 (𝑟) +

+

©«

𝐸threshold 0 0 0 0
0 2𝑚𝑀 0 0 0
0 0 2𝑚𝑀 0 0
0 0 0 2𝑚𝑀𝑠

0
0 0 0 0 2𝑚𝑀𝑠

ª®®®®®®¬
− 𝐸 15×5

ª®®®®®®¬
©«

𝑢𝐽 (𝑟)
𝜒�̄�𝑀,𝐽−1→𝐽 (𝑟)
𝜒�̄�𝑀,𝐽+1→𝐽 (𝑟)
𝜒�̄�𝑠𝑀𝑠 ,𝐽−1→𝐽 (𝑟)
𝜒�̄�𝑠𝑀𝑠 ,𝐽+1→𝐽 (𝑟)

ª®®®®®®¬
=

=

©«

𝑉mix(𝑟)
0
0
0
0

ª®®®®®®¬
(
𝛼�̄�𝑀,1

𝐽

2𝐽 + 1
𝑟 𝑗𝐽−1(𝑘𝑟) + 𝛼�̄�𝑀,2

𝐽 + 1
2𝐽 + 1

𝑟 𝑗𝐽+1(𝑘𝑟) +

+𝛼�̄�𝑠𝑀𝑠 ,1
𝐽

2𝐽 + 1
𝑟 𝑗𝐽−1(𝑘𝑠𝑟)√

2
+ 𝛼�̄�𝑠𝑀𝑠 ,2

𝐽 + 1
2𝐽 + 1

𝑟 𝑗𝐽+1(𝑘𝑠𝑟)√
2

)
, (15)

where

`−1 = diag(1/`𝑄, 1/`𝑀 , 1/`𝑀 , 1/`𝑀𝑠
, 1/`𝑀𝑠

) (16)
𝐿2
𝐽
= diag(𝐽 (𝐽 + 1), (𝐽 − 1)𝐽, (𝐽 + 1) (𝐽 + 2), (𝐽 − 1)𝐽, (𝐽 + 1) (𝐽 + 2)) (17)

and

𝑉𝐽 (𝑟) =

=

©«

𝑉�̄�𝑄 (𝑟)
√︃

𝐽

2𝐽+1𝑉mix (𝑟)
√︃

𝐽+1
2𝐽+1𝑉mix (𝑟) 1√

2

√︃
𝐽

2𝐽+1𝑉mix (𝑟) 1√
2

√︃
𝐽+1

2𝐽+1𝑉mix (𝑟)√︃
𝐽

2𝐽+1𝑉mix (𝑟) 0 0 0 0√︃
𝐽+1

2𝐽+1𝑉mix (𝑟) 0 0 0 0
1√
2

√︃
𝐽

2𝐽+1𝑉mix (𝑟) 0 0 0 0
1√
2

√︃
𝐽+1

2𝐽+1𝑉mix (𝑟) 0 0 0 0

ª®®®®®®®®®¬
.

(18)

The confining quarkonium channel is described by 𝑢𝐽 (𝑟) with boundary conditions

𝑢𝐽 (𝑟) ∝ 𝑟 𝐽+1 for 𝑟 → 0 (19)
𝑢𝐽 (𝑟) ∝ 0 for 𝑟 → ∞, (20)

while the incoming wave is a superposition of spherical Bessel functions 𝑗𝐿in . Incoming meson
pairs �̄�𝑀 or �̄�𝑠𝑀𝑠 can have either angular momentum 𝐽 −1 or 𝐽 +1 (incoming waves with 𝐿in = 𝐽

5
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are excluded by parity). Thus, we need to consider four linearly independent superpositions of
these incoming waves, defined by ®𝛼 = (𝛼�̄�𝑀,𝐽−1, 𝛼�̄�𝑀,𝐽+1, 𝛼�̄�𝑠𝑀𝑠 ,𝐽−1, 𝛼�̄�𝑠𝑀𝑠 ,𝐽+1). A simple
choice are pure waves, i.e. unit vectors for ®𝛼. For example ®𝛼 = (1, 0, 0, 0) corresponds to a �̄�𝑀

wave with 𝐿in = 𝐽 − 1. The boundary conditions of the emergent waves 𝜒�̄�(𝑠)𝑀(𝑠) ,𝐿out→𝐽 with
𝐿out ∈ 𝐽 − 1, 𝐽 + 1 define the elements of the T matrix and are given by

𝜒�̄�(𝑠)𝑀(𝑠) ,𝐿out→𝐽 ∝ 𝑟𝐿out+1 for 𝑟 → 0 (21)

𝜒�̄�𝑀,𝐿out→𝐽 = 𝑖𝑡�̄�(𝑠)𝑀(𝑠) ,𝐿in;�̄�𝑀,𝐿out𝑟ℎ
(1)
𝐿out

(𝑘𝑟),

𝜒�̄�𝑠𝑀𝑠 ,𝐿out→𝐽 = 𝑖𝑡�̄�(𝑠)𝑀(𝑠) ,𝐿in;�̄�𝑠𝑀𝑠 ,𝐿out𝑟ℎ
(1)
𝐿out

(𝑘𝑠𝑟) for 𝑟 → ∞, (22)

where �̄�𝑀, 𝐿in = 𝐽 − 1 (𝐽 + 1) corresponds to ®𝛼 = (1, 0, 0, 0) ((0, 1, 0, 0)) and
�̄�𝑠𝑀𝑠, 𝐿in = 𝐽 − 1 (𝐽 + 1) to ®𝛼 = (0, 0, 1, 0) ((0, 0, 0, 1)). The T matrix is

T𝐽 =

©«
𝑡�̄�𝑀,𝐽−1;�̄�𝑀,𝐽−1 𝑡�̄�𝑀,𝐽+1;�̄�𝑀,𝐽−1 𝑡�̄�𝑠𝑀𝑠 ,𝐽−1;�̄�𝑀,𝐽−1 𝑡�̄�𝑠𝑀𝑠 ,𝐽+1;�̄�𝑀,𝐽−1
𝑡�̄�𝑀,𝐽−1;�̄�𝑀,𝐽+1 𝑡�̄�𝑀,𝐽+1;�̄�𝑀,𝐽+1 𝑡�̄�𝑠𝑀𝑠 ,𝐽−1;�̄�𝑀,𝐽+1 𝑡�̄�𝑠𝑀𝑠 ,𝐽+1;�̄�𝑀,𝐽+1
𝑡�̄�𝑀,𝐽−1;�̄�𝑠𝑀𝑠 ,𝐽−1 𝑡�̄�𝑀,𝐽+1;�̄�𝑠𝑀𝑠 ,𝐽−1 𝑡�̄�𝑠𝑀𝑠 ,𝐽−1;�̄�𝑠𝑀𝑠 ,𝐽−1 𝑡�̄�𝑠𝑀𝑠 ,𝐽+1;�̄�𝑠𝑀𝑠 ,𝐽−1
𝑡�̄�𝑀,𝐽−1;�̄�𝑠𝑀𝑠 ,𝐽+1 𝑡�̄�𝑀,𝐽+1;�̄�𝑠𝑀𝑠 ,𝐽+1 𝑡�̄�𝑠𝑀𝑠 ,𝐽−1;�̄�𝑠𝑀𝑠 ,𝐽+1 𝑡�̄�𝑠𝑀𝑠 ,𝐽+1;�̄�𝑠𝑀𝑠 ,𝐽+1

ª®®®®¬
.

(23)

Possibly complex values of the energy 𝐸 , where components of T𝐽 diverge, are related to masses
and widths of both bound states and resonances (see section 5).

5. Results

To compute the elements of the T matrix (23), we use two independent methods. The first
method reduces the Schrödinger equation (15) by a uniform discretization of the radial coordinate
to an ordinary system of linear equations. The second method employs a standard 4th-order
Runge Kutta algorithm. The pole positions in the complex energy plane are then determined by a
Newton-Raphson algorithm applied to 1/det(T𝐽 ).

We use the bottom quark mass 𝑚𝑄 = 4.977 GeV from quark models and the spin-averaged
masses 𝑚𝐵 = 5.313 GeV and 𝑚𝐵𝑠

= 5.403 GeV from experiments. 𝐸threshold = 10.790 GeV in the
Schrödinger equation (15) is closer to 2𝑚𝐵𝑠

than to 2𝑚𝐵 and reflects that the lattice QCD results
from Ref. [2] were obtained with a light 𝑢/𝑑 quark mass rather close to the physical mass of the 𝑠

quark. We propagate the uncertainties of the lattice potentials by resampling, i.e. we generate 1000
statistically independent samples and repeat all computations on each the 1000 samples. Statistical
errors are defined via the 16th and 84th percentile.

In Fig. 2 we show all poles of T𝐽 with corresponding energies below 11.2 GeV. For each bound
state and each resonance there is a differently colored point cloud representing the 1000 samples.
Bound states are located on the real axis below the �̄� (∗)𝐵 (∗) threshold at 10.627 GeV (indicated by a
vertical dashed line), while resonances are above this threshold and have a non-vanishing imaginary
part. The complex pole positions 𝐸 are related to masses and decay widths via 𝑚 = Re(𝐸) and
Γ = −2 Im(𝐸).
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Figure 2: Positions of the poles of 𝑇𝐽 in the complex energy plane for all bound states and resonances
below 11.2 GeV for 𝐽 = 0, 1, 2, 3. Colored point clouds represent results for the 1000 independent samples
and black points and bars the corresponding mean values and errors. The vertical dashed lines indicate the
spin-averaged �̄� (∗)𝐵 (∗) and �̄�

(∗)
𝑠 𝐵

(∗)
𝑠 thresholds at 10.627 GeV and 10.807 GeV, respectively. The light blue

shaded region above 11.025 GeV marks the opening of the threshold of one heavy-light meson with negative
parity and another one with positive parity. Since this channel is not included in our Schrödinger equation,
results in this region should not be trusted.

We also determine the quarkonium and meson-meson contributions to the wave function of
each state. To this end, we define

�̄�𝑄 =
𝑄

𝑄 + 𝑀 + 𝑀𝑠

, �̄�(𝑠)𝑀(𝑠) =
𝑀(𝑠)

𝑄 + 𝑀 + 𝑀𝑠

, (24)

where

𝑄 =

∫ 𝑅max

0
d𝑟

���𝑢𝐽 (𝑟)���2 (25)

𝑀 =

∫ 𝑅max

0
d𝑟

(���𝜒�̄�𝑀,𝐽−1→𝐽 (𝑟)
���2 + ���𝜒�̄�𝑀,𝐽+1→𝐽 (𝑟)

���2) (26)

𝑀𝑠 =

∫ 𝑅max

0
d𝑟

(���𝜒�̄�𝑠𝑀𝑠 ,𝐽−1→𝐽 (𝑟)
���2 + ���𝜒�̄�𝑠𝑀𝑠 ,𝐽+1→𝐽 (𝑟)

���2) (27)

with 𝑅max = 2.4 fm. Results are shown in Fig. 3. A more detailed discussion and plots of the
quarkonium and meson-meson percentages as functions of 𝑅max can be found in Ref. [8].

In Fig. 3 we compare our results with experimentally found bound states and resonances. The
pattern of states below or close to the �̄� (∗)𝐵 (∗) threshold is similar to the experimentally observed
spectrum:
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Figure 3: Theoretical predictions and experimental results for masses of 𝐼 = 0 bottomonium with
𝐽𝑃𝐶 = 0++, 1−−, 2++, 3−−. We also show the quarkonium and meson-meson composition defined in Eq. (24):
%�̄�𝑄 in light orange, %�̄�𝑀 in medium orange and %�̄�𝑠𝑀𝑠 in dark orange.

• 𝐽 = 0, 𝑛 = 1, 2, 3, 4 states correspond to Υ(1𝑆) ≡ [𝑠 (1𝑆), Υ(2𝑆), Υ(3𝑆) and Υ(4𝑆).

• 𝐽 = 1, 𝑛 = 1, 2, 3 states correspond to ℎ𝑏 (1𝑃) ≡ 𝜒𝑏0(1𝑃) ≡ 𝜒𝑏1(1𝑃) ≡ 𝜒𝑏2(1𝑃),
ℎ𝑏 (2𝑃) ≡ 𝜒𝑏0(2𝑃) ≡ 𝜒𝑏1(2𝑃) ≡ 𝜒𝑏2(2𝑃) and 𝜒𝑏1(3𝑃).

• The 𝐽 = 2, 𝑛 = 1 state corresponds to Υ(1𝐷).

The best candidate for the recently found resonance Υ(10753) has 𝐽 = 0, 𝑛 = 5, is meson
dominated and can be classified as a Υ type crypto-exotic state. There is, however, another state
very close, which has 𝐽 = 2, 𝑛 = 3. Moreover, our results support that Υ(10860) corresponds to
Υ(5𝑆). For Υ(11020) we again find two candidates, one in an 𝑆 wave (𝐽 = 0, 𝑛 = 7), the other
in a 𝐷 wave (𝐽 = 2, 𝑛 = 4). We also find a state close to the �̄�

(∗)
𝑠 𝐵

(∗)
𝑠 threshold with a sizable

meson-meson component (≈ 79%), which could have similarities to 𝑋 (3872) in the charmonium
sector. Finally, we predict several states in 𝑃, 𝐷 and 𝐹 waves that have not yet been observed in
experiments.
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