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1. Introduction

The QCD phase structure in the (𝑇, 𝜇𝐵) plane is important to understand many physical
phenomena for various disciplines in modern physics. The interest in neutron stars and their
mergers moreover motivates studies of non-vanishing isospin chemical potential 𝜇𝐼 ≠ 0, and in
particular the mixed situation with both 𝜇𝐵, 𝜇𝐼 ≠ 0. While ordinary Monte Carlo simulations are
possible for (𝜇𝐵 = 0, 𝜇𝐼 ≠ 0), cf. [1] and references therein, a strong sign problem causes their
breakdown whenever the baryon chemical potential 𝜇𝐵 ≠ 0. Most methods to circumvent the
obstacle introduce further approximations, and are therefore restricted to the region with 𝜇𝐵/𝑇 ≤ 3
(see for example Refs. [2–4]).

Our approach is to study 3𝐷 effective Polyakov loop lattice theories, which are obtained from
Wilson’s lattice QCD when integrating over all spatial links after a truncated strong coupling and
hopping parameter expansion, and describe QCD with very heavy quarks [5]. Here we investigate
the phase diagram of the simplest of these effective theories with a mean field approach, and
compare with previous solutions obtained by series expansions or Monte Carlo simulations. After
successful tests with the finite temperature deconfinement transition we consider 𝑇 → 0, where we
identify both the onset transition to cold baryon matter at 𝜇𝐵 ≈ 𝑚𝐵, 𝜇𝐼 = 0, as well as the transition
to a pion condensate at 𝜇𝐵 = 0, 𝜇𝐼 = 𝑚𝜋/2. Finally, we switch on both chemical potentials and
follow the critical lines into the (𝜇𝐵, 𝜇𝐼 )-plane. We find them to connect in a branching point,
where the vacuum, baryon and pion phases meet.

2. The effective theory

In this section we summarise the main features of the effective theory to be analysed below, for
details see [5, 6]. Starting point is the path integral

𝑍 =

∫ [
d𝑈𝜇

] ( 𝑁 𝑓∏
𝑓 =1

det𝑄 𝑓

[
𝑈𝜇

] )
𝑒−𝑆𝑔 [𝑈𝜇] =

∫
[d𝑈0]𝑒−𝑆eff [𝑈0 ] , (1)

with

−𝑆eff [𝑈0] ≡ ln
∫

[d𝑈𝑖]

( 𝑁 𝑓∏
𝑓 =1

det𝑄 𝑓

[
𝑈𝜇

] )
𝑒−𝑆𝑔 [𝑈𝜇 ]

 . (2)

An approximation of the effective action Eq. (2) can be obtained after a truncated expansion of the
gauge action in terms of the fundamental character coefficients 𝑢(𝛽) and a hopping expansion of
the fermion determinants in terms of the hopping parameters 𝜅 𝑓 [7],

𝑢(𝛽) = 𝛽/18 + 𝛽2/216 + . . . , 𝜅 𝑓 = (2𝑎𝑚 𝑓 + 8)−1, (3)

followed by analytic integrating over the spatial gauge links. Because of the hopping expansion,
the resulting effective theory is only valid for large bare quark masses 𝑚 𝑓 . Here we specialise to
mass-degenerate quarks, for which 𝑚 𝑓 = 𝑚, 𝜅 𝑓 = 𝜅 for all flavours 𝑓 . The remaining dependence
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on the temporal gauge links is in terms of untraced Wilson lines, 𝑊 (x) =
∏𝑁𝜏

𝜏=1 𝑈0(x, 𝜏), and
Polyakov loops, 𝐿 (x) = Tr𝑊 (x). The result after these steps can be written as,

𝑍 ≈
∫

𝐷𝑊
∏
〈x,y〉

[
1 + 𝜆1

(
𝐿
†
x𝐿y + 𝐿x𝐿

†
y

)]
︸                               ︷︷                               ︸

pure gauge

(4)

×
∏

x

𝑁 𝑓∏
𝑓 =1

(
1 + ℎ1 𝑓 𝐿x + ℎ2

1 𝑓 𝐿
†
x + ℎ3

1 𝑓

)2 (
1 + ℎ1 𝑓 𝐿

†
x + ℎ

2
1 𝑓 𝐿x + ℎ

3
1 𝑓

)2

︸                                                                                    ︷︷                                                                                    ︸
static

×
∏
〈x,y〉

©­«1 − 2ℎ2

𝑁 𝑓∑︁
𝑓 =1

[
𝑊

𝑓

11(x) −𝑊
𝑓

11(x)
] [
𝑊

𝑓

11(y) −𝑊
𝑓

11(y)
]ª®¬︸                                                                  ︷︷                                                                  ︸

kinetic

with the effective couplings [6]

𝜆1 = 𝑢𝑁𝜏 exp
[
𝑁𝜏

(
4𝑢4 + 12𝑢5 − 14𝑢6 − 16𝑢7 + 295

2
𝑢8 + 1851

10
𝑢9 + 1055797

5120
𝑢10

)]
ℎ1 𝑓 = 2𝜅 exp

[
𝑁𝜏𝑎𝜇 𝑓

]
exp

[
6𝑁𝜏𝜅

2𝑢

(
1 − 𝑢𝑁𝜏−1

1 − 𝑢
+ 4𝑢4 − 12𝜅2 + 9𝜅2𝑢 + 4𝜅2𝑢2 − 4𝜅4

)]
ℎ1 𝑓 = 2𝜅 exp

[
−𝑁𝜏𝑎𝜇 𝑓

]
exp

[
6𝑁𝜏𝜅

2𝑢

(
1 − 𝑢𝑁𝜏−1

1 − 𝑢
+ 4𝑢4 − 12𝜅2 + 9𝜅2𝑢 + 4𝜅2𝑢2 − 4𝜅4

)]
ℎ2 =

𝑁𝜏𝜅
2

𝑁𝑐

(
1 + 2

𝑢 − 𝑢𝑁𝜏

1 − 𝑢
+ 8𝑢5 + 16𝜅3𝑢4

)
.

The expressions appearing in the third line in Eq. (4) are defined as

𝑊
𝑓
𝑛𝑚(x) = Tr

(
ℎ1 𝑓 𝑊x

)𝑚(
I + ℎ1 𝑓 𝑊x

)𝑛 , 𝑊
𝑓

𝑛𝑚(x) = Tr

(
ℎ1 𝑓 𝑊

†
x

)𝑚(
I + ℎ1 𝑓 𝑊

†
x

)𝑛 . (5)

The effective theory in Eq. (4) is structured as follows: the first line represents the pure gauge
contribution, the second line contains the static determinant, and the last line is the leading order of
the kinetic quark determinant. All contributions can be expressed fully in terms of Polyakov loops,
if desired. An important feature of this effective theory is that it has a much weaker sign problem
than full QCD and can therefore be simulated using reweighting techniques or complex Langevin
methods [5, 8]. Moreover, it can also be treated by analytic linked-cluster expansion methods in the
effective couplings [9–11].

3. Mean field analysis of the effective theory

Since the effective theory resembles a spin model, it is natural to also consider mean field
methods as a short cut to a first evaluation and to get an impression of the overall phase structure.
We proceed in analogy to early investigations of similar models [12, 13]. The basic idea is to consider
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fluctuations of the Polyakov loop around its mean field value, 𝐿x = 𝐿 + 𝛿𝐿x and 𝐿∗
x = 𝐿 + 𝛿𝐿∗

x, and
to expand the effective action up to linear order in the fluctuations,

𝑆eff [𝐿] ≈ 𝑆eff

[
𝐿

]
+
∑︁

x

(
𝜕𝑆eff
𝜕𝐿

����
𝐿

𝛿𝐿x +
𝜕𝑆eff
𝜕𝐿∗

����
𝐿
∗
𝛿𝐿∗

x

)
+ . . . .

Inserting this mean field approximation, the path integral for the effective theory simplifies to

𝑍mf = 𝑓

(
𝐿

) [∫
d𝑊 exp

{
−𝜕𝑆eff

𝜕𝐿
𝐿 − 𝜕𝑆eff

𝜕𝐿
∗ 𝐿

∗
}]𝑉

. (6)

The expression 𝑓

(
𝐿

)
represents the saddle point contribution to the path integral and reads

𝑓

(
𝐿

)
= exp

[
−𝑆eff [𝐿] +

𝜕𝑆eff

𝜕𝐿
𝐿 + 𝜕𝑆eff

𝜕𝐿
∗ 𝐿

∗
]
. (7)

The remaining integration in Eq. (6) is reduced to one-site integrals, which can be done after
expanding down the exponential, as shown in the example below. After that we have an explicit
formula to calculate the free energy in the mean field approximation,

𝐹mf = − ln 𝑍mf . (8)

4. A test case: deconfinement transition in pure gauge theory

To illustrate our concrete calculations, we list the resulting expressions for the effective theory
representing finite temperature Yang-Mills theory, i.e., the partition function Eq. (4) reduced to its
first line with one effective coupling only. This will also provide a test of our mean field procedure.
For the linearised corresponding effective action we have

−𝑆eff [𝐿] ≈ 𝑑
∑︁

x

ln
(
1 + 2𝜆1

���𝐿���2) + 2𝑑𝜆1(
1 + 2𝜆1

���𝐿���2)
(
�̄�∗𝛿𝐿x + �̄�𝛿𝐿∗

x
) , (9)

where 𝑑 = 3 denotes the number of space dimensions. The saddle point contribution then is

𝑓 (𝐿) = exp

𝑉𝑑 ln
(
1 + 2𝜆1

���𝐿���2) + 2𝑉𝑑(
1 + 2𝜆1

���𝐿���2)
 (10)

and the partition function in the mean field approximation

𝑍mf = 𝑓 (𝐿)

∫

d𝑊 exp


2𝑑𝜆1𝐿

∗

1 + 2𝜆1

���𝐿���2 𝐿 + 2𝑑𝜆1𝐿

1 + 2𝜆1

���𝐿���2 𝐿∗



𝑉

= 𝑓 (𝐿)
[∑︁
𝑛,𝑚

(𝑧1)𝑛 (𝑧2)𝑚

𝑛!𝑚!

∫
d𝑊 𝐿𝑛 (𝐿∗)𝑚

]𝑉
(11)
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Figure 1: Pure Gauge Case: Mean-Field free energy Fmf as a function of the expectation value of the
Polyalov-Loop 〈𝐿〉, with different values around the critical values of 𝜆1.

with

𝑧1 ≡ 2𝑑𝜆1𝐿
∗

1 + 2𝜆1

���𝐿���2 , 𝑧2 ≡ 2𝑑𝜆1𝐿

1 + 2𝜆1

���𝐿���2 . (12)

To proceed we need to evaluate the Polyakov loop integrals, for which we we use the formula [14]∫
d𝑊 𝐿𝑛 (𝐿∗)𝑚 =

b 𝑛3 c∑︁
𝑗=max (0, 𝑛−𝑚3 )

𝑇 (𝑛 − 𝑚) 2𝑛! 𝑚!
(3(𝑛− 𝑗− 𝑛−𝑚

3 +1)
𝑛−3 𝑗

) (2 𝑗− 𝑛−𝑚
3

𝑗

)(
𝑛 − 𝑗 − 𝑛−𝑚

3 + 1
)
!
(
𝑛 − 𝑗 − 𝑛−𝑚

3 + 2
)
!
(
2 𝑗 − 𝑛−𝑚

3
)
!
, (13)

with binomial coefficients and the triality function𝑇 (𝑛) = 1 if 𝑛 mod 3 = 0, and𝑇 (𝑛) = 0 otherwise.
It is well known from lattice simulations that 4d 𝑆𝑈 (3) pure gauge theory at finite temperature

features a first-order deconfinement transition due to spontaneous center symmetry breaking, which
is faithfully reproduced by the 3d effective theory [6]. In Fig. 1 we display the mean field free energy
density as a function of the real part of the Polyakov loop. For decreasing effective coupling we
indeed observe a non-trivial second minimum to form at non-vanishing expectation values, which
triggers the center symmetry breaking transition in the effective theory. Since there is a hill between
the minima, this is a first-order transition. The critical coupling for the transition is the value where
the two minima are degenerate, which happens at 𝜆1𝑐 = 0.152. This is to be compared with a
Monte Carlo simulation of the 3d effective theory, which gives 𝜆1𝑐 = 0.188 [6]. We conclude that
the mean field treatment reproduces the correct order of the deconfinement phase transition, and
the predicted critical coupling is within a reasonable 20% of the true answer. For an extension of
the deconfinement transition to the situation with dynamical quarks, which is also reproduced, as
well as further refinements of the mean field approach, see [15].

5. Phase structure for zero temperature and finite chemical potentials

After this successful test, we proceed to our case of interest, namely QCD with dynamical
quarks at low temperatures with non-vanishing chemical potentials. Now Eq. (4) will be considered

5
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Figure 2: Variation of the mean field free energy density with the isospin chemical potential, lattice
parameters: 𝛽 = 5.7 and 𝑁𝜏 = 10000

with all contribution up to 𝜅2 and 𝑁 𝑓 = 2. For finite baryon chemical potential, 𝜇𝑢 = 𝜇𝑑 = 𝜇𝐵/3,
the effective theory has a sign problem, which however is much milder than the original one. It has
been demonstrated that the effective theory can be simulated with a choice of different algorithms.
As expected, the theory displays an onset transition to a medium with net baryon density at 𝜇𝐵 ≈ 𝑚𝐵

[8, 16]. Like the deconfinement transition, our mean field treatment reproduces this baryon onset
to be first-order for sufficiently large 𝑁𝜏 , i.e. low temperatures, by our mean field treatment.

Here, we investigate for the first time how the effective theory behaves when isospin chemical
potenital is introduced, 𝜇𝐼 = (𝜇𝑢 − 𝜇𝑑)/2. In Fig. 2 we display the mean field free energy density
for the QCD lattice parameters 𝛽 = 5.7, 𝜅 = 0.0004 and 𝑁𝜏 = 10000. Upon increasing isospin
chemical potential, we observe a flattening of the potential well and the formation of a minimum
for a non-vanishing value of the Polyakov loop expectation value. In contrast to the previous
transitions, there is no hill in the free energy density separating minima, but instead a critical value
of the chemical potential where the curvature vanishes. This feature predicts the phase transition
to be second order. Once again, this result is fully compatible with what is found in simulations of
full QCD at the physical point with an isospin chemical potential [1].

In contrast to any other method, our effective theory now permits us to consider non-vanishing
baryon and isospin chemical potential at the same time, and to follow what happens to the observed
first-order baryon onset and second-order isospin condensation transitions, respectively. That is,
we keep 𝑁𝜏 = 10000 fixed and identify the critical combinations (𝜇𝑐

𝐵
, 𝜇𝑐

𝐼
) by either coexistence of

two degenerate minima (first order) or a vanishing curvature (second order) in the mean field free
energy density. The result is shown in Fig. 3, where the chemical potentials are given in terms of
the baryon and pion masses, which are here crudely approximated by their leading order values in
the hopping expansion, 𝑎𝑚𝐵 = −3 ln(2𝜅), 𝑎𝑚𝜋 = −2 ln(2𝜅).

In Fig. 3 we observe both transitions to curve towards each other, and to join in a special point,
where the order of the transition changes. That the baryon and pion onset transitions must connect
somewhere is also to be expected before an explicit calculation. The region below the transition
line represents vacuum, whereas above it the ground state of the system is either baryon matter or a
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Figure 3: (𝜇𝐼 , 𝜇𝐵)-Phase diagram for 𝑇 → 0.

Bose-Einstein condensate of pions. In both of the latter cases there is a medium whose rest frame
breaks Lorentz symmetry. Thus a true phase transition must exist, independent of the direction
in the plane of chemical potentials. Similarly, a Bose-Einstein condensate 〈𝑚±

𝜋〉 ≠ 0 and a non-
vanishing baryon expectation value 〈𝑛𝐵〉 ≠ 0 are distinguished by quantum numbers pertaining
to different symmetries. Consequently, baryon matter must be separated from pion matter by a
true phase transition. Indeed, we observe a second-order transition line separating those phases to
emanate from the meeting point of the two transition lines from vacuum to matter. Unfortunately,
we cannot yet follow this line to larger chemical potentials, which is precluded by lattice saturation.

6. Conclusions

In this work, we have studied three-dimensional effective lattice theories for heavy quark QCD
via a mean field approximation. This approach is promising because the effective theories represent
𝑆𝑈 (3) spin models, and one expects at least qualitatively correct results for the phase structure
of the effective theories. Indeed, for the simplest case representing the finite temperature pure
gauge theory, a first-order deconfinement transition is observed, and the critical effective coupling
is reproduced within ∼20% of the true answer.

We have then studied the situation close to the zero temperature limit, when both a baryon
chemical potential and an isospin chemical potential are switched on. We obtain a clear picture
with a first-order baryon onset transition for 𝜇𝐵 ≈ 𝑚𝐵, 𝜇𝐼 = 0 and a second-order transition to
a phase with isospin or Bose-Einstein condensate at 𝜇𝐼 ≈ 𝑚𝜋/2, 𝜇𝐵 = 0. These transitions are
continuously connected and separate vacuum from matter. They meet in a branch point, where
an additional second-order line emerges to separate the baryon region from the pion condensate
region.
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