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Abstract. We present a novel equation of state which is based on the virial expansion for
the multicomponent mixtures with hard core repulsion. The suggested equation of state
explicitly contains the surface tension which is induced by particle interaction. At high
densities such a surface tension vanishes and in this way it switches the excluded volume
treatment of hard core repulsion to its eigen volume treatment. The great advantage of the
developed model is that the number of equations to be solved is two and it does not depend
on the number of independent hard-core radii. Using the suggested equation of state we
obtained a high quality fit of the hadron multiplicities measured at AGS, SPS, RHIC and
ALICE energies and studied the properties of the nuclear matter phase diagram. It is
shown the developed equation of state is softer than the gas of hard spheres and remains
causal up to the several normal nuclear densities. Therefore, it could be applied to the
neutron star interior modeling.

1 Introduction

Investigation of the strongly interacting matter equation of state (EoS) is in focus of several physical
communities. It is necessary to reliably model the process of nucleus-nucleus (A+A) collisions at
intermediate and high energies, and to study the properties of neutron star interiors. The hard-core
repulsion is an important component of the hadronic and nuclear matter EoS because without it one
cannot describe their properties at moderate and high baryonic densities. However, in the vast majority
of models such a repulsion is treated using the Van der Waals approach which is inapplicable at the
particle densities that are close to the transition region to quark gluon plasma (QGP). The problem is
rooted in the wrong values of the third, the fourth and higher virial coefficients generated by the Van
der Waals EoS. As it was shown in [1] a possible solution of this problem requires to account for the
fact that at low densities an interparticle hard-core repulsion is well described by the excluded volume
approximation, whereas the high density regime is controlled by the eigen volume of particles. The
Van der Waals prescription is unable to switch between these two regimes and, therefore, it requires
for an improvement. Another problem which is typical for all EoS with the hard-core repulsion is
their non-causal behavior at high particle densities.
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These facts motivated us to work out a novel EoS based on the analysis of the virial expansion
for the multicomponent mixtures, i.e. for any number of hard-core radii of particle species. The main
requirement for such an EoS was that it should be able to reproduce at least third and fourth virial
coefficients of the gas of hard spheres in order to go beyond the Van der Waals approximation. Below
we show that the latter requirement allows us to formulate a thermodynamically consistent EoS which
obeys the causality condition up to seven or eight normal nuclear densities. It is necessary to mention
that the developed EoS has a remarkable advantage which is important for practical applications:
compared to other EoS with multicomponent hard-core repulsion the new one has a form of two
coupled nonlinear equations for any, even infinite, number of particle species. The contribution of
surface tension induced by the particle interaction is a principally new element of suggested approach.

In addition, using the novel EoS we would like to reinvestigate the question raised in [2] whether
or not the deeper minimum of χ2/do f exist at very high temperature. Since, this question is very
important for the whole heavy ion phenomenology, here we reanalyze the ALICE data on hadron
multiplicities [3–9] with the novel model, which is able to go beyond the usual Van der Waals approx-
imation.

The work is organized as follows. In the next section the theoretical basis of the present model is
briefly outlined. In Sections 3 and 4 we present the application of the proposed model to the hadron
and nuclear matter EoS, respectively. Section 5 is devoted to the conclusions.

2 Model formulation

The present model is formulated using a consistent treatment of the second virial coefficients for
an ensemble of any, even infinite, number N of hard-core radii either nuclear or hadron fragments
of all sizes. Such an approach allows one to explicitly account for the many-body effects and to
deduce that the hard-core interaction between the constituents generate an additional contribution into
the (induced) surface tension free energy. Thermodynamically consistent EoS developed in [1] is a
system of coupled equations between the pressure p of considered system and the induced surface
tension coefficient Σ which has the form

p = T
N∑

k=1

φk exp
[
µk

T
− Vk

p
T
− S k

Σ

T

]
, (1)

Σ = T
N∑

k=1

Rkφk exp
[
µk

T
− Vk

p
T
− S kα

Σ

T

]
. (2)

Here µk, mk and Rk are, respectively, the chemical potential, the mass and the hard-core radius of the
k-sort of particles. Evidently, Vk =

4
3πR

3
k and S k = 4πR2

k denote, respectively, the hard-core eigen vol-
ume and hard-core eigen surface of particle of sort k. The actual parameterization of the one-particle
thermal density φk(T,m, g) corresponding to the particle of the mass mk and the degeneration factor
gk depends on the nature of constituents and, hence, it is discussed below in details. The summa-
tions in Eqs. (1) and (2) are made over all sorts of particles and antiparticles which are considered as
independent species.

The dimensionless parameter α is introduced in (2) due to the non-uniquness of the Van der Waals
extrapolation to high densities [1]. This parameter accounts for the high density terms which modify
the Van der Waals EoS to a more realistic one. As it was shown in [1] to reproduce the physically
correct phase diagram properties of nuclear matter such a parameter should obey the inequality α > 1.
The physical meaning of α is a switcher between the excluded volume and the eigen volume regimes.
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Indeed, using the following relation

Σ = p R exp
[
−4πR2 · (α − 1)

Σ

T

]
, (3)

between the total pressure p and the induced surface tension coefficient Σ for the one component
mixture, i.e. in case when all particles have the same hard-core radius R, one obtains Eq. (3) from the
system (1-2). With the help of (3) one can rewrite the system pressure for the one component case as

p = T
N∑

k=1

φk exp
[
µk

T
− ve f f p

T

]
, ve f f = v

[
1 + 3 · exp

(
−3v · (α − 1)

Σ

T R

)]
, (4)

where we introduced an effective excluded volume of hadrons ve f f which is defined by their eigen
volume v = 4

3πR
3. It is easy to see that in the low density limit µk → −∞ and, hence, one finds

Σv
TR → 0 and ve f f � 4v, i.e. Eq. (4) for ve f f correctly reproduces the excluded volume of the one
component case. On the other hand, in the high density limit µk/T � 1 and, hence, ΣvTR � 1, i.e. for
α > 1 the exponential function on the right hand side of Eq. (4) vanishes and the effective excluded
volume becomes equal to the eigen volume, i.e. ve f f � v.

The value of α was determined by comparing the system (1-2) with the induced surface tension
(IST EoS hereafter) for the point-like pions and for baryons having the same hard-core radius 0.4 fm
with the famous Carnahan-Starling (CS) EoS [10]. As one can see from left panel on Fig. 1 up to the
baryonic density ρ ∼ 0.65 fm−3 the IST EoS with α =1.25 reproduces the speed of sound cS of the
CS EoS. From the right panel of Fig. 1 one can see that for temperature 150 MeV the proposed EoS
obeys causality up to baryonic density ρ ∼ 1.2 fm−3, i.e up to seven and a half values of the normal
nuclear density ρ0 � 0.16 fm−3.

Figure 1. The speed of sound as a function of baryonic density for T = 150 MeV is shown for a mixture of
point-like pions and baryons having the hard-core radius of 0.4 fm for several EoS (left panel) and different radii
of baryons (right panel) for IST EoS. In the left panel the ideal gas EoS (dash dotted curve), the Van der Waals
EoS (dotted curve), the CS EoS (long dashed curve) and the IST EoS (solid curve) curves are shown.

After fixing the parameter α one can apply the IST EoS to study the properties of the hadron
resonance gas and the ones of nuclear matter. The new EoS is essentially more effective compared
to the traditional multicomponent Hadron Resonance Gas Model (MHRGM) [11–14] and traditional
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Statistical Multifragmentation Model (SMM) [15–18], since it can be easily used for any number of
independent hard-core radii.

3 HRGM with the induced surface tension

Now we apply the IST EoS to the description of the hadron multiplicities measured in the central
collisions of heavy ions. The total chemical potential of hadron sort k is

µk = µBBk + µI3I3k + µS S k , (5)

where Bk, µB, S k, µS , I3k, µI3 are, respectively, the baryonic, the strange and the isospin third projection
charges and chemical potentials. All these parameters describe the chemical freeze-out (CFO) curve
on which all multiplicities form. The one-particle thermal density φk in Eqs. (1) and (2) accounts for
the Breit-Wigner mass distribution and is written in the Boltzmann approximation

φk = gkγ
|sk |
S

∞∫

MTh
k

dm
Nk(MTh

k )
1

(m − mk)2 + Γ2
k/4

∫
d3 p

(2π)3 exp

−
√

p2 + m2

T

 . (6)

Here gk and mk are, respectively, the degeneracy factor and the mass of the k-sort of hadrons, γS is
the strangeness suppression factor [19], |sk | is the number of valence strange quarks and antiquarks in

this kind of hadrons, Nk(MTh
k ) ≡

∞∫
MTh

k

dm
(m−mk)2+Γ2

k/4
denotes a corresponding normalization, while MTh

k

the decay threshold mass of the hadrons of k-sort.
Experimentally detected hadron multiplicity of each hadron is the sum of a thermal and the decay

contributions, i.e. ntot
X = nth

X + ndecay = nth
X +
∑

Y nth
Y Br(Y → X), where Br(Y → X) is the decay

branching ratio of the Y-th hadron into the hadron X (for more details see [14]). In addition, it is
supposed for convenience that BR(X → X) = 1. All the parameters used in the fitting of data (the
masses mi, the widths Γi, the degeneration factors gi and the probabilities of decays for all strong
decay channels) were taken from the particle tables of the thermodynamic code THERMUS [20].

The best fit criterion is a minimum of χ2 =
∑

k
(rtheor

k −rexp
k )2

σ2
k

, where rexp
k is an experimental value of

k-th particle ratio, rtheor
k is our prediction and σk is a total error of experimental value. Using the value

α =1.25 we employed the IST EoS to fit the 111 independent hadronic multiplicity ratios measured in
the central nuclear collisions for the center of mass collision energies

√
sNN = 2.7, 3.3, 3.8, 4.3, 4.9,

6.3, 7.6, 8.8, 9.2, 12, 17, 62.4, 130 and 200 GeV were taken from Ref. [14]. For the AGS, SPS, RHIC
data the γS parameter was included in the fit.

The lowest χ2/do f value corresponds to following hard core radii of baryons Rb=0.365 fm,
mesons Rm=0.42 fm, pions Rπ=0.15 fm, kaons RK=0.395 fm and Λ-hyperons RΛ=0.085 fm within
χ2/do f = 57.099/55 � 1.038 which is about 9% larger than the χ2/do f found earlier in [14] for the
MHRGM. Compared to the values found by the MHRGM, one sees that only pionic hard-core radius
increased by 50 %, while the hard-core radius ofΛ hyperons diminished by 20 %. The most important
thing is that these radii remain essentially smaller compared to Rb, Rm and RK . The latter hard-core
radii are practically unchanged.

Exactly the same set of hard-core radii was used to the description of ALICE data. The IST
EoS was applied to the description of the hadron multiplicities at midrapidity dN

dy ||y|<0.5 measured by
the ALICE detector at

√
sNN = 2.76 TeV in Pb + Pb collisions. The experimental data were taken

from Refs. [3–9, 21]. All hadron multiplicities were pT -integrated and those ones at low pT were
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Figure 2. ALICE data fit by the IST EOS with the new set of hard-core radii. The found CFO temperature is
TCFO � 154± 7 MeV. The (anti)nuclei rations are not included in the fit and its quality is χ2/do f � 7.7/5 � 1.54.
The upper panel shows the fit of the ratios, while the lower panel shows the deviation between data and theory in
the units of estimated error.

extrapolated by the blast wave fit in each centrality bin while extrapolation error was included in the
systematic errors.

The ratios of hadron multiplicities r = A
B were constructed from species A + ∆A and B + ∆B,

while the estimation for a relative error εr ≡ ∆r
r as

√
ε2A + ε

2
B [22], where εA = ∆A

A and εB = ∆B
B . It is,

certainly, a slight overestimation, because a part of systematic errors, such as errors related to detector
acceptance, usually is cancelled in the experimentally measured ratios. If the statistical and systematic

errors ∆Astat and ∆Asys are given, we add them as ∆A =
√
∆A2

stat + ∆A2
sys [22].

For the ALICE data we fixed γS = 1, while all chemical potentials are set to zero. The best global
fit of all hadronic multiplicity ratios is found for the CFO temperature TCFO � 154 ± 7 MeV with
χ2/do f � 7.7/5 � 1.54 (see Fig. 2).

Using the IST EOS we found no traces of the high temperature minimum in comparison to
Vovchenko-Stoecker results [2]. Our analysis shows that the high temperature minimum of χ2/do f
found in [2] is a consequence of extrapolating the Van der Waals EOS far beyond the bounds of its
applicability.
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4 SMM with the induced surface tension

Originally, the IST EoS was first applied to the description of the nuclear matter properties on the
basis of an exactly solvable version of the SMM [17, 18]. Such a model is dealing with the nucleons
with the mass m � 940 MeV and the eigen volume V1 = ρ

−1
0 (where ρ0 denotes the normal nuclear

density at T = 0 and zero pressure) and the composite nuclear fragments of any number of nucleons
k ≥ 2. Their eigen volume is Vk = kV1 and the corresponding surface area is S k ∼ k

2
3 .

To connect the above system of equations (1-2) for pressure and induced surface tension coefficient
with the gaseous phase pressure of the SMM, we used the parameterization of the one-particle thermal
densities of all k-nucleon fragments defined as

φ1 = z1

[mT
2π

] 3
2

exp
[
−σ(T )

T

]
, (7)

φk≥2 = g
[mT

2π

] 3
2 1

kτ
exp
[
(k pLV1 − µk)

T
− σ(T )

T
k

2
3

]
. (8)

Here z1 = 4 is the degeneracy factor of nucleons, while the degeneracy factor for other fragments g is,
for simplicity, chosen to be 1 (see a discussion in [16]). In (8) µk = k µ is the baryonic chemical po-
tential of k-nucleon fragment, τ � 1.9 is the Fisher topological exponent and σ(T ) is the T -dependent
eigen surface tension coefficient with the following parameterization

σ(T ) = σ0

[
Tcep − T

Tcep

]
sign(Tcep − T ) , (9)

with critical temperature Tcep = 18 MeV and eigen surface tension at zero temperature σ0 = 18 MeV.
In contrast to the Fisher droplet model [23] and the usual SMM [15], in the IST SMM the value of the
eigen surface tension (9) is negative above the critical temperature Tcep. An extended discussion on
the validity of such a parameterization can be found in [24]. In order to consider compressible nuclear
liquid the following parameterization of its pressure

pL =
W(T ) + µ + a2(µ − µ0)2 + a4(µ − µ0)4

V1
, (10)

was suggested in [24]. Here W(T ) = W0 +
T 2

W0
denotes the usual temperature dependent binding

energy per nucleon with W0 = 16 MeV [17] and the constants µ0 = −W0, a2 � 1.233 · 10−2 MeV−1

and a4 � 4.099 ·10−7 MeV−3. These constants are fixed in order to reproduce the properties of normal
nuclear matter, i.e. at vanishing temperature T = 0 and normal nuclear density ρ = ρ0 the liquid
pressure must be zero. It is worth to note that such a parametrization of the nuclear liquid pressure
describes a compressible nuclear liquid and, in contrast to the original SMM formulation [15], it leads
to a nonzero isothermal compressibility KT ≡ 1

ρ
dρ
dp |T .

The IST SMM was solved analytically and the first order phase transition of the liquid-gas type
was found in [24]. It was proven that such a model has a tricritical endpoint with the temperature
T = 18 MeV and the baryonic density ρcep = ρ0/3. The resulting phase diagram of the IST SMM for
two sets of variables is shown in Fig. 3. As one can see from this figure the developed model with the
surface tension induced by the repulsive interaction between the nuclear fragments in combination
with a finite incompressibility of liquid phase has rather rich phase structure of the nuclear matter
phase diagram.
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eigen surface tension (9) is negative above the critical temperature Tcep. An extended discussion on
the validity of such a parameterization can be found in [24]. In order to consider compressible nuclear
liquid the following parameterization of its pressure

pL =
W(T ) + µ + a2(µ − µ0)2 + a4(µ − µ0)4

V1
, (10)

was suggested in [24]. Here W(T ) = W0 +
T 2

W0
denotes the usual temperature dependent binding

energy per nucleon with W0 = 16 MeV [17] and the constants µ0 = −W0, a2 � 1.233 · 10−2 MeV−1

and a4 � 4.099 ·10−7 MeV−3. These constants are fixed in order to reproduce the properties of normal
nuclear matter, i.e. at vanishing temperature T = 0 and normal nuclear density ρ = ρ0 the liquid
pressure must be zero. It is worth to note that such a parametrization of the nuclear liquid pressure
describes a compressible nuclear liquid and, in contrast to the original SMM formulation [15], it leads
to a nonzero isothermal compressibility KT ≡ 1

ρ
dρ
dp |T .

The IST SMM was solved analytically and the first order phase transition of the liquid-gas type
was found in [24]. It was proven that such a model has a tricritical endpoint with the temperature
T = 18 MeV and the baryonic density ρcep = ρ0/3. The resulting phase diagram of the IST SMM for
two sets of variables is shown in Fig. 3. As one can see from this figure the developed model with the
surface tension induced by the repulsive interaction between the nuclear fragments in combination
with a finite incompressibility of liquid phase has rather rich phase structure of the nuclear matter
phase diagram.

ICNFP 2016

Figure 3. Phase diagram in T − µ plane (left panel) and ρ − p plane (right panel) for ν = 2 and τ = 1.9. The
1-st order PT corresponds to a solid curve (left panel) and grey area of a mixed phase (right panel). The long
dashed line on the left panel shows a 2-nd order PT, while the short dashed curve indicates the nil line of the
surface tension coefficient. The isotherms on the right panel are shown for T=11,16,17,18 MeV from bottom to
top. While at the critical temperature Tcep=18 MeV and density ρ/ρ0 = 1/3 there is a triCEP.

5 Conclusions

In this work we present a thermodynamically consistent approach which is able to account for the ef-
fects of hard-core repulsion in the ensemble of constituents (clusters) of different sizes. It is necessary
to stress that the developed EoS allows one to go far beyond the usual Van der Waals approxima-
tion. We showed that the hard-core repulsion between the clusters unavoidably leads to an additional
equation for the induced surface tension coefficient. Due to the non-uniqueness of the Van der Waals
extrapolation to high particle densities a novel parameter α was introduced. We found that this param-
eter is the “switcher" between the excluded and eigen volume regimes. A detailed comparison with
the famous CS EoS clearly demonstrates the validity of the IST EoS for the baryonic densities up to
0.65 fm−3 and, while at higher densities it is softer than the CS EoS. In contrast to the conventional
MHRGM the present one is mathematically much simpler because it consists only of two coupled
equations independently of the number of different hard-core radii.

In order to demonstrate these advantages in practical applications, the IST EoS was used to study
the properties of hadronic and nuclear matter. Using the developed approach we performed fit of the
ALICE data measured at the center of mass collision energy

√
sNN= 2.76 TeV with overall fit quality

χ2/do f � 1.54. The found value of the CFO temperature is TCFO � 154 ± 6 MeV. In comparison to
the [2] we found no traces of the high temperature minimum for the ALICE data. The quality of the
AGS, SPS and RHIC data description achieved in the present work is χ2/do f � 64.8/60 � 1.038.

The IST EoS allowed us to formulate a more realistic version of the SMM in which for the first
time the nuclear liquid is compressible. This property enabled us to generates the tricritical endpoint
at the one third of the normal nuclear density which is in line with the liquid-gas phase transition in
the ordinary liquids. It is necessary to stress that in such SMM the non-monotonic isotherms in the
mixed phase region which are typical for the mean-field models are simply absent. Due to these new
features the present model is more realistic than the standard SMM.

The discussed features of the proposed EoS make it applicable to the description of properties of
hadronic, nuclear and neutron matter.
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