Röntgenstrukturbestimmung von AlCl₃-Pyridin-Addukten: Der strukturelle Aufbau im *trans*-Dichlorotetrakis(pyridin)aluminium(III)-Tetrachloroaluminat(III) und im Trichlorotris(pyridin)aluminium(III)

X-ray Diffraction Study of AlCl₃-Pyridine Adducts:

The Crystal Structure of *trans*-Dichlorotetrakis(pyridine)aluminium(III)tetrachloroaluminat(III) and of Trichlorotris(pyridine)aluminium(III)

Peter Pullmann und Karl Hensen*

Institut für physikalische und theoretische Chemie, Universität Frankfurt/Main, Abt. Niederursel, Niederurseler Hang, D-6000 Frankfurt/Main- Niederursel

Jan W. Bats

Institut für Kristallographie, Universität Frankfurt/Main, Senckenberganlage 30, D-6000 Frankfurt/Main

Z. Naturforsch. 37b, 1312-1315 (1982); eingegangen am 5. Mai 1982

Aluminium Chloride, Pyridine, Crystal Structure

Crystals of $[Al(C_5H_5N)_4Cl_2][AlCl_4]$ are orthorhombic, Pna 2₁, Z = 4, a = 18.522(7), b = 15.141(5), c = 9.593(3) Å, V = 2690(2) Å³, D_c = 1.440 g/cm³. The structure has been solved from 5968 diffractometer measured intensities and refined by full-matrix least squares to R_w(F) = 0.032. The crystal structure shows the complex to be *trans*-dichlorotetrakis(pyridine)aluminium(III) tetrachloroaluminat(III). The mean *trans* Al–Cl- and *trans* Al–N-distances in the octahedron are 2.279(3) and 2.070(4) Å, respectively. Crystals of Al(C₅H₅N)₃Cl₃ are monoclinic, P₂₁/c, Z = 4, a = 7.261(2), b = 29.961(4), c = 8.624(1) Å, $\beta = 98.12(2)^{\circ}$, V = 1857(1) Å³, D_c = 1.326 g/cm³. The structure has been solved from 4707 diffractometer measured intensities and refined to R_w(F) = 0.028. The crystal structure shows octahedral complexes AlCl₃ · 3 (C₅H₅N) with *trans* geometry. The Al–N-distances *trans* to chlorine (2.096(2) Å) is significantly longer than the two other Al–N-distances (mean 2.072(2) Å).

Einleitung

Röntgenstrukturanalysen kristalliner Addukte von AlCl₃ mit Donormolekülen, wie z.B. tertiären Stickstoffbasen, zeigen für Aluminium die Koordinationszahlen 4, 5 und 6. So ist die Ligandenanordnung um das Al-Atom im AlCl₃NH₃ [1] und im AlCl₃NMe₃ [2] tetraedrisch, während in den trigonalbipyramidal aufgebauten 1:2-Addukten von AlCl₃ mit NMe₃ [3] und mit NHMe₂ [4] die Stickstoffatome bi-axial angeordnet sind. Für 4- und 5-fach koordiniertes Aluminium sind in dieser Verbindungsklasse bisher nur Beispiele nichtionischer Komplexe gefunden worden. Aluminium mit der Koordinationszahl 6 kann neben molekularen (AlCl₃(2,2',2"-Terpyridin), [5]) auch ionische Strukturen ausbilden, die das Zentralatom im cis-[AlCl₂(2,2'-Dipvridin)₂]Cl [6] in einem oktaedrischen Kation und im [AlCl(MeCN)₅][AlCl₄]₂ [7] neben der oktaedrischen zusätzlich in tetraedrischer Umgebung im AlCl₄-Anion zeigen. Die unterschiedliche Koordination in der zuletzt genannten Verbindung konnte auch in solvatisiertem Zustand mittels ²⁷Al–NMR Untersuchungen nachgewiesen werden [8].

Im System AlCl₃-Pyridin sind Addukte gefunden worden, die sich durch die stöchiometrischen Verhältnisse 1:1, 1:2 und 1:3 beschreiben lassen [9, 10]. Die Komplexe mit den Molverhältnissen 1:2 und 1:3 wurden von uns röntgenstrukturanalytisch untersucht. Die entsprechenden Kristall- und Molekülstrukturen sollen hier vorgestellt werden. Im gleichen System konnten wir die Kristallstrukturen der Hydrolyseprodukte Pyridiniumchlorid in der Raumgruppe $P2_1/c$ (von Rérat [11] gefunden: $P2_1/m$), sowie einer Mischverbindung aus Pyridiniumchlorid und Pyridiniumtetrachloroaluminat(III) im Verhältnis 1:2 lösen [12].

Experimentelles

Die Züchtung von Einkristallen des in benzolischer Lösung hergestellten 1:2-Adduktes erfolgte

^{*} Sonderdruckanforderungen an Prof. K. Hensen. 0340–5087/82/1000–1312/8 01.00/0

durch Sublimation. Von der 1:3-Verbindung konnten nach Auflösen von AlCl₃ in Pyridin Kristalle durch langsames Verdampfen des überschüssigen Pyridins gewonnen werden. Bedingt durch die große Hydrolyseempfindlichkeit beider Verbindungen mußten alle Arbeiten in einer Argonatmosphäre durchgeführt werden. Die Kristalle wurden in Mark-Röhrchen eingeschmolzen (kristallographische Daten siehe Tab. I).

Tab. I. Kristallographische Daten (Standardabweichungen in Klammern).

	$[AlCl_2Py_4][AlCl_4]$	AlCl ₃ Py ₃
a (Å)	18,522(7)	7,261(2)
b (Å)	15,141(5)	29,961(4)
c (Å)	9,593(3)	8,624(1)
β (°)	90,0	98,12 (2)
V (Å ³)	2690 (2)	1857 (1)
RĠ	$\operatorname{Pna} 2_1$	$P 2_1/c$
Z	4	4
Diffraktometer	Syntex P 2 ₁	Nonius CAD 4
Wellenlänge (Å)	0,7107	0,7107
Reflexe gemessen	5968	4707
Reflexe verfeinert	1724	2347
$R_{\mathbf{w}}(\mathbf{F})$	0,032	0,028

Die Lösung beider Strukturen erfolgte mittels direkter Methoden (MULTAN 80, [13]). Die ersten E-Werte zeigten für beide Strukturen die Atompositionen des Oktaedergerüsts und für die ionische Struktur zusätzlich das Tetraeder. Differenz-Fourier-Synthesen vervollständigten die Molekülgeometrien, ausgenommen die H-Atome, deren Atompositionen berechnet wurden. Die Temperaturfaktoren wurden, mit Ausnahme der Wasserstoffe, anisotrop verfeinert.

Ergebnisse und Diskussion

Aluminium liegt im trans-[AlCl₂Py₄][AlCl₄] (Py = Pyridin) in einer Vierfach- und einer Sechsfachkoordination vor. Im oktaedrischen Kation umgeben das Zentralatom vier Pyridinmoleküle in äquatorialer Position mit axial angeordneten Chloratomen. Die Ebenen dieser trans-ständigen Pyridinringe sind, vermutlich aus sterischen Gründen, zueinander um Winkel zwischen 57,7° und 86,4° propellerartig verdreht. Das Anion wird durch ein AlCl₄-Tetraeder gebildet (siehe Abb. 1). Die Winkel im Oktaeder (88,2(1)°-91,6(1)°) und im Tetraeder (107,41(9)°-111,2(1)°) zeigen geringe Abweichungen von der Idealgeometrie. Während die Al-Cl-Abstände (siehe Tab. 2) im Tetraeder die in der Literatur für diese Koordination bekannten Daten bestätigen [7], ergeben sich im Oktaeder für die trans-Chloratome größere Abstände zum Aluminium als im cis-[AlCl₂(2.2'-Dipyridin)₂]Cl (gemittelt: 2,255(2) Å, [6]). Die jeweils einem N-Atom gegenüberliegende Al–N-Bindung ist im Pyridinaddukt (gemittelt: 2,070(4) Å) ebenfalls länger als in der Dipyridinverbindung (gemittelt: 2,025(3) Å). Die trans-Geometrie in diesem Pyridinaddukt ist ein überraschendes Ergebnis im Vergleich zur cis-Anordnung in der Dipyridinverbindung [6]. Während sich eine trans-Geometrie für die Dipyridinmoleküle wahrscheinlich auf Grund der sich sterisch behindernden α -Wasserstoffatome ausschließt, wird sie für

Abb. 1. Struktur des *trans*-[AlCl₂Py₄][AlCl₄]; die Temperaturellipsoide umfassen 50% der Aufenthaltswahrscheinlichkeit.

Tab. II. Abstände (Å) mit Standardabweichungen (in Klammern) im *trans*-[AlCl₂Py₄][AlCl₄].

Al(1)-N(1)	2,064(4)	Al(1)-N(2)	2,079(4)
Al(1)-N(3)	2,061(4)	Al(1)-N(4)	2,075(4)
Al(1)-Cl(11)	2,278(3)	Al(1)-Cl(12)	2,280(3)
Al(2)-Cl(21)	2,134(2)	Al(2)-Cl(22)	2,127(2)
Al(2)-Cl(23)	2,121(2)	Al(2)-Cl(24)	2,125(2)

Tab. III. Abstände (Å) mit Standardabweichungen (in Klammern) im AlCl₃Py₃.

Al-Cl(1)	2,299(1)	Al-Cl(2)	2,275(1)
Al-Cl(3)	2,285(1)	Al-N(1)	2,096(2)
Al-N(2)	2,075(2)	Al-N(3)	2,067(2)

Abb. 2. Struktur des $AlCl_3Py_3$; die Temperaturellipsoide umfassen 50% der Aufenthaltswahrscheinlichkeit.

Tab. IV. Atomkoordinaten von [AlCl₂Py₄][AlCl₄] (Standardabweichungen in Klammern).

Atom	x/a	y/b	z/c
Al(2)	0,52235(9)	0,1930 (1)	0,37176(0)
Cl(21)	0,59302(8)	0,26641(9)	0,5038 (2)
Cl(22)	0,4816 (1)	0,2744 (1)	0,2090 (2)
Cl(23)	0,5834 (8)	0,08886(9)	0,2827 (2)
Cl(24)	0,43505(8)	0,1434 (1)	0,4923 (2)
Al(1)	0,70109(8)	0,56883(9)	0,3175 (2)
Cl(11)	0,68916(7)	0,58873(8)	0,0832 (2)
Cl(12)	0.70844(7)	0,54902(7)	0,5527 (2)
N(1)	0,5903 (2)	0,5608 (2)	0,3357 (4)
N(2)	0,8129 (2)	0,5763 (2)	0,3039 (4)
N(3)	0.7092 (2)	0,4344 (2)	0,2876 (4)
N(4)	0,6991 (2)	0,7049 (2)	0,3432 (4)
C(11)	0.5581(3)	0,4964 (3)	0,4059 (6)
C(12)	0.4869(3)	0.4855(4)	0,4217 (6)
C(13)	0.4426(3)	0.5462 (5)	0.3601 (7)
C(14)	0.4723 (3)	0.6134(4)	0,2905 (7)
C(15)	0.5449(3)	0.6195(3)	0,2761 (6)
C(21)	0.8491 (3)	0.5424 (3)	0.1957 (6)
C(22)	0.9221 (3)	0.5461 (3)	0.1865 (6)
C(23)	0.9596(3)	0.5885(4)	0.2840 (8)
C(24)	0.9246 (3)	0.6245 (4)	0.3963 (7)
C(25)	0.8526 (3)	0.6150(3)	0.4036 (6)
C(31)	0.6689(3)	0.3908(3)	0.1947 (6)
C(32)	0.6759(3)	0.3033 (4)	0.1664 (6
C(33)	0.7262 (3)	0.2573 (3)	0.2353 (6)
C(34)	0.7692 (3)	0.2971(4)	0.3303 (7
C(35)	0.7587(3)	0.3857 (4)	0.3537 (6
C(41)	0.7361 (3)	0.7582(4)	0.2580 (6
C(42)	0.7339(4)	0.8476(4)	0.2686 (8
C(43)	0.6932 (4)	0.8870(4)	0.3682 (9
C(44)	0.6549 (3)	0.8342 (4)	0.4561 (7
C(45)	0,6599 (3)	0,7437 (4)	0,4404 (6

Tab. V. Atomkoordinaten von AlCl₃Py₃ (Standardabweichungen in Klammern).

Atom	x/a	y/b	z/c
Al	0,0271 (1)	0,62275(3)	0,26247(9)
Cl(1)	-0,20627(9)	0,66134(2)	0,35827(7)
C1(2) C1(3)	0,20140(9) 0.2489(0)	0,62306(2) 0.58354(3)	0,50341(8) 0 15662(9)
N(1)	-0,1346 (3)	0,62501(8)	0,0412 (2)
N(2)	0,1420 (3)	0,68298(7)	0,2059 (2)
N(3)	-0,1031 (3)	0,56322(7)	0,3017 (3)
C(11)	-0,0564 (4) 0.1572 (4)	0,6345(1) 0.6386(1)	-0,0875 (3) 0.2326 (2)
C(12) C(13)	-0.3457 (4) -0.3457 (5)	0.6323(1)	-0.2533 (3)
C(14)	-0,4285 (4)	0,6220 (1)	-0,1240 (3)
C(15)	-0,3195 (4)	0,6192 (1)	0,0204 (3)
C(21)	0,0390 (4)	0,7173 (1) 0.7570 (1)	0,1418 (3)
C(22) C(23)	0,1130(5) 0.3018(5)	0,7570(1) 0.7625(1)	0,1028 (4) 0.1327 (4)
C(24)	0,4094 (4)	0,7282 (1)	0,1983 (4)
C(25)	0,3264 (4)	0,6894 (0)	0,2324 (3)
C(31)	-0,1627 (4)	0,5550 (0)	0,4387 (3)
C(32)	-0.2521 (5) -0.2839 (5)	0,5164 (1) 0.4850 (1)	0,4080 (5)
C(33)	-0.2229 (6)	0.4922 (1)	0.2157 (5)
C(35)	-0,1329 (5)	0,5311 (1)	0,1932 (4)

die Pyridinliganden durch die Drehung ihrer Molekülebenen ermöglicht. Das *trans*-[AlCl₂Py₄][AlCl₄] erweist sich als isostrukturell zur entsprechenden Galliumverbindung [14].

Im Trichlorotris(pyridin)aluminium(III) (AlCl₃Py₃) sind die Liganden ähnlich dem AlCl₃(2.2'.2"-Terpyridin) [5] oktaedrisch um das Zentralatom angeordnet. Die Ebenen der Pyridinringe aber sind, vergleichbar mit [AlCl₂Py₄][AlCl₄], im AlCl₃Py₃ zueinander um Winkel von 58,8° bis 89,4° verdreht (siehe Abb. 2). Das Oktaeder zeigt sich mit Winkeln zwischen $87,12(9)^{\circ}$ und $93,57(7)^{\circ}$ leicht verzerrt. Während sich im AlCl₃Py₃ und im [AlCl₂Py₄][AlCl₄] vergleichbare Al-N- und Al-Cl-Abstände nahezu entsprechen (siehe Tab. III), ergibt sich für die Al-N-Bindung in trans-Stellung zu einem Chloratom im AlCl₃Py₃ ein um ca. 0,046 Å längerer Abstand als im Dipyridinaddukt [6]. Eine ähnliche Anordnung der Atome im Oktaeder von AlCl₃Py₃ konnte auch im InBr₃Py₃ [15] beobachtet werden.*

^{*} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen unter Angabe der Hinterlegungsnummer CSD 50197, des Autors und des Zeitschriftenzitats angefordert werden.

- K. N. Semenenko, E. B. Lobkovskii, V. B. Polyakova, I. I. Korobov und O. V. Kravchenko, Koord. Khim. 4, 1649 (1978).
- [2] D. F. Grant, R. C. Killean und J. L. Lawrence, Acta Cryst. B 25, 377 (1969).
- [3] I. R. Beattie, G. A. Ozin und H. E. Blayden, J. Chem. Soc. A 1969, 2535.
 [4] A. Ahmed, W. Schwarz und J. Weidlein, Z. Anorg.
- Allg. Chem. **434**, 207 (1977). [5] G. Beran, K. Dymok, H. A. Patel, A. J. Carty und
- P. M. Boorman, Inorg. Chem. 11, 896 (1972).
- [6] P. L. Bellavance, E. R. Corey und G. W. Hey, Inorg. Chem. 16, 462 (1977).
- [7] J. A. K. Howard, L. E. Smart und C. J. Gilmore, J. Chem. Soc. Chem. Commun. 1976, 477.
- [8] F. W. Wehrli und R. Hoerdt, J. Magn. Reson 42, 334 (1981).

- [9] D. D. Eley und H. Watts, J. Chem. Soc. 1952, 1914.
- [10] J. W. Wilson und I. J. Worrall, Inorg. Nucl. Chem. Lett. 3, 57 (1967).
- [11] B. Rérat, C. R. Acad. Sci. 249, 555 (1959).
- [12] P. Pullmann, Dissertation Universität Frankfurt/M. 1982.
- [13] P. Main, L. Lessinger, M. M. Woolfson, G. Germain und J.-P. Declerq, MULTAN 80, a system of computer programmes for the automatic solution of crystal structures from X-ray diffraction data (1980).
- [14] I. Sinclair, R. W. H. Small und I. J. Worrall, Acta Crystallogr. B 37, 1290 (1981).
- [15] R. W. H. Small und I. J. Worrall, Acta Crystallogr. B 38, 932 (1982).