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Abstract.We analysed our experimental recent findings of the dipole response of the odd-mass stable nucleus
205Tl within the quasi-particle phonon model. Using the phonon basis constructed for the neighbouring 204Hg
and wave function configurations for 205Tl consisting of a mixture of quasiparticle ⊗ N-phonon configurations
(N=0,1,2), only one group of fragmented dipole excited states has been reproduced at 5.5 MeV in comparison
to the experimental distribution which shows a second group at about 5 MeV. The computed dipole transition
strengths are mainly of E1 character which could be associated to the pygmy dipole resonance.

1 Introduction
The nuclear structure of low-lying states consists of pure
single quasiparticle states in odd-mass nuclei and one-
phonon or two-quasiparticle configurations in even-mass
nuclei. At higher excitation energy due to the high level
density and to the quasiparticle-phonon interaction, the
wave function is more complex [1]. Different coupling
of quasi-particle and phonon states may result to different
configurations with the same spin and parity. This is the
case of the Pygmy states distribution which appears on the
low-energy tail of the Giant dipole resonance [2]. The cor-
responding dipole transition strengths may increase con-
siderably the reaction rates of elements nucleosynthesis
[3]. Although the nature of the Pygmy is still under de-
bate, the Quasiparticle-PhononModel (QPM) [1] has suc-
cessfully reproduced the general features as for instance
in the lead isotopes [4],[5]. This has been complemented
by the recent nuclear resonance fluorescence (NRF) mea-
surements on the neighboring Z=81 205Tl nucleus. In this
work, we report on the analysis of the results within the
QPM model.

2 (γ, γ′) measurements
The dipole response of 205Tl has been investigated in
Nuclear Resonance Fluorescence experiments (NRF) us-
ing a bremsstrahlung photon beam with an end-point en-
ergy of 7.5 MeV at the Darmstadt High Intensity Pho-
ton Setup (DHIPS). The NRF technique [6] is very selec-
tive to dipole transitions. Two NRF measurements have

Figure 1. Photon scattering spectrum of 205Tl.

been conducted for about 80 hours with a natural Tl tar-
get (2060.0 mg) and a target enriched to 99.9% in 205Tl
(1938.4 mg), respectively. For the photon flux calibration
both targets were sandwiched between two boron disks
with a total mass of 240.8 mg (natural) and 394.3 mg (en-
riched to 99.5% in 11B), respectively. The scattered photon
intensities were measured by high-resolution HPGe γ-ray
detectors positioned around the target at 90◦, 95◦ and 130◦
with respect to the incident beam.
From the transition intensities observed in the spec-

trum (Fig. 1), elastic scattering cross sections are ex-
tracted. These are proportional to the g · Γ
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Γ
quantity where

Γ0 is the partial decay width to the ground state, Γ is the
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Figure 2. Extracted experimental (a) and QPM calculated elec-
tric (b) and magnetic (c) dipole strengths distributions.

total decay width and g is a spin factor. Knowing the
branching transitions, the reduced transition probabilities
are directly deduced. However, due to the detection limit
most of the weak branching transitions are undetectable
and only a lower limit of the dipole strengths can be ob-
tained. In our case of odd- nucleus, the angular distribu-
tions of the ground-state transitions are nearly isotropic.
As a consequence, it was not possible to deduce the mul-
tipolarity and therefore we assume an electric dipole char-
acter for the corresponding transitions (Fig. 2a).

3 Quasiparticle-phonon model
calculations

The ground and excited states of 205Tl have been described
by the wave function

Ψν( jm) = Cνj

⎧⎪⎪⎪⎨⎪⎪⎪⎩α
†

jm +

∑

λi j′
Dλij′ ( jν)[α

†

j′Q
†

λi] jm+

∑

λ1 i1
λ2 i2
λ j′

Fλ1i1λ2i2j′λ (Jν)[α†j′[Q
†

λ1i1
Q†

λ2i2
]λ] jm

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Ψ

204Hg
g.s. (1)

where α†j is an operator which creates quasi-particle (qp)
on a mean field level j = |nl j〉 and Q†

λi describes phonon
(ph) excitation of the core nucleus 204Hg with multipo-
larity λ and QRPA root number i. Diagonalization of the
QPM Hamiltonian on the set of wave functions (1) yields
the spectrum of states for each particular jπ and coeffi-
cients C, D, and F for all of these states. We refer for
details to review article [7].
In the present calculations, we have used natural parity

phonons with multipolarity λπ from 1− to 7− and unnatural
parity 1+ phonons. The density of configurations in 205Tl
is very high and to make calculations possible we have had
to truncate complex qp ⊗ ph, qp ⊗ 2ph configurations at
6.5 and 7.5 MeV, respectively.

4 Comparison to (γ, γ′) measurements

The ground state of 205Tl is 1/2+. In the calculations, this
state is an almost pure (97%) quasiparticle state 3s1/2. We
have calculated E1 transitions to the states with jπ = 1/2−
and 3/2− and M1 transitions to the states with jπ = 1/2+
and 3/2+. The results are presented in Fig. 2b and c, re-
spectively.
Although the number of components of the wave func-

tion (1) is of the order of a few thousand for each jπ, only
a few of them carry noticeable dipole excitation strength.
They are qp components corresponding to the valence
transition α†3s1/2

→ α
†

jπ and qp ⊗ 1ph components of the
type [α†3s1/2

⊗ Q†

1−(+)i] jπ which correspond to the dipole ex-
citation of the core when the unpaired quasiparticle plays
the role of a spectator. The other components of (1) pro-
vide fragmentation of the strength carried by the above-
mentioned components, via interaction with them.
Themain part of the E1 strength in Fig. 2b is due to the

fragmentation of the strength of the [α†3s1/2
⊗Q†

1−1]1/2−(3/2−)
configurations. The lowest 1−1 phonon in

204Hg has excita-
tion energy 5.5 MeV and B(E1) = 0.46 e2fm2. This state
corresponds to the very strong 1− ground state transition in
208Pb at the same energy. Other 1− phonons in 204Hg have
either very small B(E1) values or are located above 7 MeV
without noticeable contribution for 205Tl below 6.5 MeV.
The role of the valence E1-transitions are also of marginal
importance because of high energies of the 3p3/2 and 3p1/2
qp-levels.
The M1 strength in Fig. 2c is caused by almost non-

fragmented [α†3s1/2
⊗ Q†

1+4]1/2+(3/2+) configurations. The
fourth 1+ phonon in 204Hg at 5.82 MeV corresponds to the
well-known isoscalar 1+ state in 208Pb at 5.85 MeV. The
other 1+ phonons in 204Hg at lower energies have much
smaller B(M1) values.
We conclude from our analysis that the dipole transi-

tions observed experimentally are mainly of E1 character.
The main transitions are of 3s1/2 → 3s1/2 ⊗ 1−i nature.
The fragmentation of the strength distribution is underes-
timated in calculation as compared to data. This is not sur-
prising because qp⊗ 3ph configurations are omitted in the
wave function (1) due to a very high density of them. But
in general, we may speak about a good qualitative agree-
ment between the results of calculations and data.
*This work has been supported by the Deutsche
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