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Gutachter (Supervisor):

Prof. Dr. Gemma Roig

Prof. Dr. Jochen Triesch

Datum der Disputation: 2022.09.27

II



Publications: This cumulative dissertation is based on the following manuscripts:

• Dwivedi, K., Roig, G. (2019). Representation similarity analysis for efficient

task taxonomy and transfer learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (pp. 12387-12396).

• Dwivedi, K., Huang, J., Cichy, R. M., Roig, G. (2020, August). Duality dia-

gram similarity: a generic framework for initialization selection in task trans-

fer learning. In European Conference on Computer Vision (pp. 497-513).

Springer, Cham.

• Dwivedi, K., Bonner, M. F., Cichy, R. M., Roig, G. (2021). Unveiling functions

of the visual cortex using task-specific deep neural networks. PLoS computa-

tional biology, 17(8), e1009267.

• Dwivedi, K., Cichy, R. M., Roig, G. (2021). Unraveling representations in

scene-selective brain regions using scene-parsing deep neural networks. Journal

of cognitive neuroscience, 33(10), 2032-2043.

• Dwivedi, K., Roig, G., Kembhavi, A., Mottaghi R. What do navigation agents

learn about their environment? In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (pp. 10276-10285).

A description of how these works are related and corresponding scientific contri-

butions are provided in the Introduction section.

In addition, I was also a co-author in the following publications while I was pur-

suing my doctorate. These publications are not incorporated in the thesis.

• Huang, J., Dwivedi, K., Roig, G. (2019). Deep anchored convolutional neural

networks. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition Workshops.

• Cichy, R. M., Roig, G., Andonian, A., Dwivedi, K., Lahner, B., Lascelles, A.,

... Oliva, A. (2019). The algonauts project: A platform for communication

between the sciences of biological and artificial intelligence. arXiv preprint

arXiv:1905.05675.

III



• Cichy, R. M., Dwivedi, K., Lahner, B., Lascelles, A., Iamshchinina, P., Grau-

mann, M., ... Oliva, A. (2021). The Algonauts Project 2021 Challenge:

How the Human Brain Makes Sense of a World in Motion. arXiv preprint

arXiv:2104.13714.

• Graumann, M., Ciuffi, C., Dwivedi, K., Roig, G., Cichy, R. M. (2022). The

spatiotemporal neural dynamics of object location representations in the human

brain. Nature Human Behaviour, 1-16.

• Gifford A. T., Dwivedi, K., Roig, G., Cichy, R. M. (2022). A large and rich

EEG dataset for modeling human visual object recognition . bioRxiv.

Co-advised Thesis: I also had the privilege of co-advising the following theses

while pursuing my doctorate degree:

• Bersch, Domenic. Towards a general library for deep learning models to un-

derstand the architecture of the visual cortex

• Le Hong, Quang Anh. Influence of Training Dataset Resemblance to Stimulus

Set on Prediction Accuracy of Brain Activity

• Pietschmann, Daniel and Vorpahl, Yannic. Many-to-One Task similarity and

its relationship with task transferability

IV



Contents

Deutsche zusammenfassung - German Summary 1

Introduction 7

1 Understanding representations in the human visual cortex 25

1.1 Unraveling representations in scene-selective brain regions using scene-

parsing deep neural networks . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Unveiling functions of the visual cortex using task-specific deep neural

networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 Understanding representations in the deep neural networks 73

2.1 Representation Similarity Analysis for Efficient Task taxonomy and

Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2 Duality diagram similarity: a generic framework for initialization se-

lection in task transfer learning . . . . . . . . . . . . . . . . . . . . . 88

3 Associating artificial neurons to concepts 119

4 Discussion and Outlook 131

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.1.1 Insights into human visual cortex representations . . . . . . . 131

4.1.2 Insights into DNN representations . . . . . . . . . . . . . . . . 132

4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.1 New brain datasets . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.2 New DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.3 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.4 Tapping the full potential of simulation engines . . . . . . . . 136

V



A List of Figures 137

B Bibliography 139

VI



Deutsche zusammenfassung -

German Summary

Im menschlichen Gehirn wird das auf der Netzhaut eintreffende Licht in sinnvolle

Darstellungen umgewandelt, die es uns ermöglichen, mit der Welt zu interagieren.

In ähnlicher Weise werden die RGB-Pixelwerte von einem tiefen neuronalen Netz

(DNN) in sinnvolle Darstellungen umgewandelt, die für die Lösung einer Computer-

Vision-Aufgabe relevant sind, für die es trainiert wurde. In meiner Forschung

möchte ich daher Erkenntnisse darüber gewinnen, wie visuelle Informationen im

menschlichen visuellen Kortex und in DNNs, die trainiert wurden visuelle Aufgaben

zu lösen, dargestellt werden.

Die Hauptidee im ersten Teil der Arbeit besteht darin, die Repräsentationen

sowohl des menschlichen visuellen Kortex als auch der DNNs zu untersuchen, in-

dem DNNs verglichen werden, die für verschiedene Aufgaben trainiert wurden. Um

dies zu erreichen vergleichen wir eine Hirnregion oder eine Schicht eines DNNs mit

den aufgabenspezifischen Repräsentationen mehrerer DNNs, die für unterschiedliche

Aufgaben trainiert wurden. Der Vergleich informiert uns über die Repräsentation,

die für die Lösung der Computer-Vision-Aufgabe relevant ist und die der Repräsen-

tation der Gehirnregion/des Ziel-DNNs am nächsten kommt.

Kapitel 1: Verständnis der Repräsentationen im

menschlichen visuellen Kortex

Im ersten Kapitel konzentriere ich mich auf das Verständnis der Repräsentation

verschiedener Regionen im visuellen Kortex. Wir untersuchen zunächst, ob unser

vorgeschlagener Ansatz Einblicke in die Repräsentation einer Hirnregion liefert, die

mit früheren Untersuchungen dieser Hirnregion übereinstimmen. Nachdem wir den
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Ansatz validiert haben, können wir ihn anwenden, um die Repräsentationen von

weniger untersuchten Hirnregionen zu verstehen und einige Einblicke in die funk-

tionellen Aufgaben dieser Hirnregionen zu gewinnen. Daher validieren wir im ersten

Teil von Kapitel 1 unseren Ansatz in den gut untersuchten szenenselektiven Re-

gionen Occipital Place Area (OPA) und Parahippocampal Place Area (PPA). Im

zweiten Teil des Kapitels wenden wir unseren Ansatz auf mehrere Regionen des

visuellen Kortex an und geben somit Einblicke in deren Repräsentationen.

Sondierung Selektive Regionen der Szene

Szenenselektive Regionen sind Regionen im Gehirn, die im Vergleich zu Bildern aus

anderen Kategorien und verschlüsselten Bildern eine hohe Reaktion auf Szenenbilder

zeigen. In einer Neuroimaging-Studie wurde gezeigt, dass OPA, eine der szenenselek-

tiven Regionen, an der Vorhersage von den Regionen in einem Innenraum beteiligt

ist, die für die Navigation relevant sind (Navigational affordance). Um diese ”nagi-

vational affordances’ ausfinding zu machen, sind räumliche Informationen darüber,

wo sich die Hindernisse befinden und wo der Ausgang in der Szene liegt, entschei-

dend. Daher war unsere Hypothese, dass die Repräsentation in OPA näher an einem

Computermodell liegen sollte, das darauf trainiert ist, Szenen in verschiedene Kom-

ponenten (Hindernisse, Boden, Wand usw.) zu zerlegen, als an einem Modell, das

darauf trainiert ist, die Kategorie der Szene zu identifizieren. Um unsere Hypothese

zu evaluieren, haben wir Modelle für das Parsing und die Klassifizierung von Szenen

ausgewählt und ihre Darstellung mit der Darstellung von OPA verglichen. Um

die Verallgemeinerbarkeit unserer Ergebnisse zu gewährleisten, verwenden wir drei

Architekturen sowohl für die Szenenanalyse als auch für die Szenenklassifikation.

Wir fanden heraus, dass die Modelle zur Szenenanalyse bei allen drei Architek-

turen die Reaktionen der szenenselektiven Region OPA besser vorhersagten. Die

Ergebnisse der Studie bestätigen unsere Hypothese und damit die Umsetzbarkeit

des vorgeschlagenen Ansatzes zum Verständnis der Repräsentationen der Gehirnre-

gionen im visuellen Kortex.
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Untersuchung des gesamten visuellen Kortex

Nachdem wir den vorgeschlagenen Ansatz im vorangegangenen Teil validiert haben,

erweitern wir in diesem Teil die Menge der betrachteten Modelle und Gehirnregio-

nen. Um sicherzustellen, dass der Unterschied in der Repräsentationsähnlichkeit

zwischen einer bestimmten Hirnregion und einem DNN nur auf die Aufgabe zurück-

zuführen ist, war unser Kriterium für die Modellauswahl, dass alle Modelle auf

demselben Datensatz trainiert werden (kein Einfluss der Trainingsdaten) und eine

identische Architektur haben sollten (kein Einfluss der Architektur). Daher wählten

wir einen großen Satz von Modellen aus, die auf dem Taskonomy-Datensatz trainiert

wurden und die für eine Vielzahl von Aufgaben trainiert wurden, von einfachen 2D-

Aufgaben bis hin zu Aufgaben, die ein dreidimensionales Verständnis der Szene und

semantisches Wissen über die Szene erfordern. Für die Hirnregionen wählen wir

den gesamten visuellen Kortex aus und unterteilen ihn mithilfe eines probabilistis-

chen anatomischen Atlasses in Regionen. Die Untersuchung in diesem Abschnitt

ermöglichte es uns, die Repräsentationen aller Regionen im visuellen Kortex im

Hinblick auf Computer-Vision-Aufgaben zu verstehen.

Kapitel 2: Verständnis von Repräsentationen in tiefen

neuronalen Netzen

Im zweiten Kapitel wenden wir den vorgeschlagenen Ansatz an, um die von einem

DNN gelernten Darstellungen zu verstehen, die genutzt werden um eine bestimmte

Computer-Vision-Aufgaben zu erfüllen. Ein DNN besteht in der Regel aus mehreren

Schichten, wobei jede Schicht eine Berechnung durchführt, bis die letzte Schicht eine

Vorhersage für eine bestimmte Aufgabe durchführt. Das Training für verschiedene

Aufgaben kann zu sehr unterschiedlichen Repräsentationen führen. Daher unter-

suchen wir im ersten Teil dieses Kapitels, in welchem Stadium sich die Repräsen-

tation in DNNs, die für verschiedene Aufgaben trainiert wurden, zu unterscheiden

beginnt. Wir untersuchen weiter, ob die DNNs, die auf ähnliche Aufgaben trainiert

wurden, zu ähnlichen Repräsentationen führen und ob sie auf unterschiedliche Auf-

gaben trainiert wurden, zu noch unterschiedlicheren Repräsentationen führen. Im

zweiten Kapitel untersuchen wir die Auswirkungen verschiedener Merkmalsnormal-
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isierungen auf die Repräsentationsähnlichkeit und führen ein neues Maß ein, das

verschiedene vorgeschlagene Ähnlichkeitsmaße vereinheitlicht. Des Weiteren unter-

suchen wir DNNs, die auf hochrangige semantische Aufgaben trainiert wurden, um

zu verstehen, wie sich die Repräsentationen unterscheiden, wenn wir von frühen

Schichten zu tieferen Schichten übergehen.

Repräsentative Ähnlichkeit zur Bewertung der Ähnlichkeit von

Aufgaben

Wir wählten dieselbe Gruppe von DNNs aus, die im vorherigen Kapitel verwendet

wurde und die auf dem Taskonomy-Datensatz für eine Reihe von 2D-, 3D- und se-

mantischen Aufgaben trainiert wurden. Anschließend verglichen wir bei einem DNN,

das für eine bestimmte Aufgabe trainiert wurde, die Darstellung mehrerer Schichten

mit den entsprechenden Schichten in anderen DNNs. Anhand dieser Analyse wollten

wir herausfinden, wo in der Netzwerkarchitektur aufgabenspezifische Repräsentatio-

nen auftauchen. Wir fanden heraus, dass die Aufgabenspezifität zunimmt, wenn

wir tiefer in die DNN-Architektur eindringen und sich ähnliche Aufgaben in Grup-

pen zusammenschließen. Wir fanden heraus, dass die Gruppierung, die wir an-

hand der Ähnlichkeit der Repräsentation gefunden haben, in hohem Maße mit der

Gruppierung auf der Grundlage des Transferlernens korreliert, was eine interessante

Anwendung des Ansatzes zur Modellauswahl beim Transferlernen darstellt. Wir

evaluieren die Beziehung zwischen Transferlernen und repräsentativer Ähnlichkeit

anhand von 20 Aufgaben aus dem Taskonomy-Datensatz und semantischen Seg-

mentierungsaufgaben aus dem Pascal VOC-Datensatz. Wir bewerten auch den Ein-

fluss der Modellarchitektur und der Anzahl der Bilder auf die Beziehung zwischen

repräsentativer Ähnlichkeit und Transferlernen.

Dualitätsdiagramm Ähnlichkeit

Während meiner Arbeit an den vorangegangenen Projekten wurden neue Maße

zum Vergleich von DNN-Darstellungen eingeführt. In dieser Arbeit haben wir die

Gemeinsamkeiten der verschiedenen Maße identifiziert und die verschiedenen Maße

in einem einzigen Rahmen vereint, der als Dualitätsdiagrammähnlichkeit bezeichnet

wird. Diese Arbeit eröffnet neue Möglichkeiten für die Entwicklung besserer Ähn-
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lichkeitsmaße zum Verständnis von DNN-Repräsentationen. Wir zeigen eine viel

höhere Korrelation mit Transfer-Lernen als bisherige State-of-the-Art-Maße und er-

weitern sie auf das Verständnis schichtweiser Repräsentationen von Modellen, die

auf dem Imagenet- und Places-Datensatz unter Verwendung verschiedener Aufgaben

trainiert wurden, und demonstrieren ihre Anwendbarkeit auf Transfer-Lernen.

In den beiden vorangegangenen Kapiteln haben wir die aufgabenspezifischen DNN-

Repräsentationen verwendet, um die Repräsentationen im menschlichen visuellen

Kortex und anderen DNNs zu verstehen. Wir waren in der Lage, unsere Ergebnisse

in Bezug auf passive Computer-Vision-Aufgaben wie Kantenerkennung, semantische

Segmentierung, Tiefenabschätzung usw. zu interpretieren. Dieser Ansatz hat zwei

Einschränkungen:

• Die DNNs/Menschen setzen sich nicht aktiv mit der Umgebung auseinander,

was dazu führt, dass nur einige wenige Regionen im Gehirn aktiv sind und

nur einige einfache Aufgaben, die für einen Vergleich mit dem menschlichen

Gehirn relevant sein könnten.

• Wir waren nicht in der Lage, die Repräsentationen auf menschlich interpretier-

bare Konzepte abzubilden.

Um der ersten Einschränkung zu begegnen, betrachten wir DNNs, die in der virtuellen

Umgebung AI2Thor trainiert wurden und sich aktiv mit der Umgebung auseinan-

dersetzen, um eine komplexe Aufgabe zu erfüllen. Um die zweite Einschränkung

zu beheben, entwickeln wir einen neuen Ansatz, der frei verfügbare Annotationen

in AI2Thor ausnutzt, um Neuronen auf menschlich interpretierbare Konzepte abzu-

bilden.

Kapitel 3: Assoziierung künstlicher Neuronen mit

Konzepten

Im letzten Kapitel stellen wir eine neue Methode Interpretability System for Em-

bodied agEnts (iSEE) vor, die einzelne Neuronen von künstlichen Navigationsagen-

ten, die in einer simulierten virtuellen Umgebung AI2Thor[1] trainiert wurden, auf

menschlich interpretierbare Konzepte abbildet. Wir konzentrieren uns auf einfache
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Basis-DNNs, die für die Ausführung von Objektziel und Punktziel Navigation-

saufgaben trainiert wurden. Wir trainieren ein interpretierbares Modell (Gradient

Boosted Tree), um Konzepte wie Hindernisse und die Entfernung zum Ziel aus den

versteckten Einheiten des DNNs vorherzusagen. Anschließend wenden wir eine glob-

ale Erklärungsmethode namens SHAP[2] an, um herauszufinden, welche Einheiten

für die Vorhersage des jeweiligen Konzepts relevant waren. Um die Kausalität un-

serer Ergebnisse zu bewerten, haben wir die Einheiten aus dem DNN entfernt und

dann die Leistung bei der ursprünglichen Aufgabe bewertet.

In dieser Arbeit stellen wir die Fortschritte beim Verständnis von Repräsentatio-

nen im menschlichen visuellen Kortex (Kapitel 1) und in tiefen neuronalen Netzen

(Kapitel 2 und 3) vor. In Kapitel 1 und 2 haben wir eine gut etablierte Methode na-

mens Repräsentationsähnlichkeitsanalyse (RSA) angewandt, um neue Erkenntnisse

über die Repräsentationen des Gehirns und der Ziel-DNNs zu gewinnen, indem wir

ihre Repräsentationen mit DNNs verglichen haben, die für eine breite Palette von

Computer-Vision-Aufgaben trainiert wurden. Die Ergebnisse in Kapitel 1 und 2

zeigen Einsichten in Bezug auf Computer-Vision-Aufgaben. In Kapitel 3 haben

wir eine neue Methode entwickelt, um die Repräsentationen in den DNNs in Form

von menschlich interpretierbaren Konzepten zu interpretieren, indem wir die frei

verfügbare Grundwahrheit in Simulationsmaschinen nutzen
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Introduction

The human brain transforms the incoming signals from different sensory organs

into representations relevant for interacting with the environment. Thus, a crucial

question for neuroscientists is to understand how sensory information is represented

in the human brain, enabling intelligent behavior. Seeking the answer to the above

question can benefit medical applications (e.g., neural prosthesis) and help gain

better insights into designing artificial agents with human-like capabilities.

Similarly, artificial neural networks solving challenging problems transform the in-

put signals into representations relevant to solving that particular task. Deep neural

networks (DNNs) have made tremendous progress in almost every field of science

including vision [3], speech [4], natural language processing [5], medicine [6], biology

[7], nuclear fusion [8] and many others. To make DNNs more fair, transparent, in-

terpretable, and acceptable to a wider community, it is crucial to understand what

changes during the training to make a DNN’s representation relevant for solving a

task. We investigate the representations in DNNs because of two reasons: first, they

are currently the best predicting models of human brain activity [9] and secondly,

DNNs allow fast and extensive testing of methods developed to interpret the brain’s

representation thus encouraging the development of better interpretability methods

[10, 11, 12, 13]. Therefore, in this work, our goal is to understand how sensory

information is represented in the human brain and artificial neural networks.

Understanding representations related to all sensory signals in the human brain

and wide ranges of inputs in the artificial neural networks is an overwhelming goal

that requires developing concrete methodology in one specific modality and then

expanding the framework to other modalities. Therefore in this work, we restrict

our research to the visual part of the human brain, referred to as the human visual

cortex, and artificial neural networks designed to solve challenging visual tasks.

The following section briefly reviews previous works investigating how visual in-

formation is represented in the human visual cortex and puts it in context with our
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proposed approach.

Human visual cortex

The use of non-invasive functional imaging of the human brain, especially functional

magnetic resonance imaging (fMRI), has led to a detailed understanding of how vi-

sual information is represented in different regions of the brain. To account for how

different brain regions together transform the incoming light into meaningful rep-

resentations for humans, functional specialization theory was proposed. Functional

specialization suggests that different specialized neural pathways exist to represent

different visual scene aspects. Different functional specialization leads to different

representations of the visual scene. Therefore, we focus on understanding represen-

tations in different brain regions in this work.

Functional specialization in human visual cortex

In humans, there are two commonly used methods to reveal visual cortical regions

using fMRI: retinotopy and functional specialization [14]. Retinotopy [15, 16] ex-

ploits the topographic mapping of the visual input from the retina to neurons in

the visual cortex. To reveal the topographic mapping in the visual cortex, subjects

are asked to fixate at a point, and visual stimuli are presented at selected loca-

tions. In a traveling wave, subjects view a high contrast flickering stimulus that

rotates around the center (to find the angular selectivity of the cortical region) or

expands through the visual field (to find the preferred eccentricity). In population

receptive field (pRF) modeling, subjects view a traversing bar. Then a parametric

model with parameters corresponding to a hypothetical receptive field and stimulus

information is fitted to predict neural responses. Using these methods, researchers

have identified several regions (V1, V2, V3, V4/V8, and V3a) that are arranged

as parallel, mirror-symmetric bands on the unfolded cortex. Retinotopic methods

however are not suitable for investigating where in the brain abstract concepts like

object identity, actions, and 3D scene structure are represented.

Functionally specialized regions are identified by designing experiments focusing

on different aspects of visual information such as motion, depth, color, shape, nav-

igational affordances, and category selectivity. For example, there is evidence for
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different regions showing selective responses to objects [17], faces [18], places [19],

body parts [20], and reachable spaces [21]. Demonstrating the response selectivity

to a specific category in a region does not necessarily mean that it is due to seman-

tically meaningful features related to that category. The response selectivity could

also be due to the presence of visual features that are present more often in one

type of category than others. For example, recently, Vinken et al. [22] showed that

face selectivity in macaque IT does not reflect a semantic code but a preference for

visual features that are present more in faces than in non-faces. Also, several regions

have not shown such functional selectivity, and there are debates over the functional

definition of several regions which show such functional selectivity. Therefore, here

we propose a new approach to finding representations of different brain regions using

deep neural networks.

Deep neural networks for predicting visual cortex responses

In the past decade, deep neural networks have been the state-of-the-art approach to

computational modeling of the brain. In the seminal work by Yamins and Dicarlo

[23], they showed that deep neural networks predict macaque neural responses sig-

nificantly better than other computational models. In a concurrent work by Razavi

and Kriegeskorte [24], they showed similar results with both human and macaque

responses in the inferior temporal (IT) cortex. These works led to a series of sub-

sequent works [25, 26, 27, 28] demonstrating similar hierarchies in the DNNs and

ventral visual pathway using human fMRI data. Guclu et al. [29] showed that

an action recognition model can be used to model the dorsal pathway of the vi-

sual cortex. Action recognition DNN was used to predict dorsal stream responses

to natural movies and revealed a correspondence between representations of DNN

layers and regions in the dorsal stream. Inspired by Guclu et al. [29], Richard et

al. [30] also used a DNN trained on action recognition to model the visual cortex.

More recently, Mineault et al. [31] used a DNN trained in a self-supervised manner

to predict self-motion parameters to model dorsal stream. They also showed that

prediction of self-motion parameters leads to better accountability of dorsal stream

responses than an action recognition DNN. In Bakhtiari et al. [32] they used a single

DNN with two pathways trained using self-supervision to model both ventral and

dorsal streams. The progress in using deep neural networks has been more focused
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on finding the models that best predict neural responses in a given region. Several

challenges have also been organized to bring researchers from the deep learning com-

munity to apply their expertise in predicting neural activity. Algonauts challenge

2019 [33] was organized to encourage researchers to develop models that predicted

human fMRI and MEG responses to still images. Algonauts challenge 2021 [34]

was organized to find the best models that predict human fMRI responses to short

video clips. Brain-score 2022 [9] was organized to find the best models that predict

macaque neurons’ responses in different brain regions. A common theme of all the

above works was finding the computational model that best predicts brain activity.

In this work, we identify a different potential of DNNs in neuroscience. We ob-

served in earlier works comparing DNNs with neural responses that DNNs trained

in object recognition predict neural responses in the inferior temporal cortex (IT),

an area that is related to object categorization [35], better than randomly initialized

DNNs. Similarly, DNNs related to functions of the dorsal stream (action recognition,

self-motion estimation, dual-stream models) showed better predictivity of responses

in the dorsal regions. Based on the above findings, we argue that DNNs trained on

a particular task predict responses of a given brain region better than other DNNs

since the task of the selected DNN and brain region are related and therefore have

similar representations. Based on this argument, we hypothesize that if we compare

DNNs trained on different computer vision tasks, we can use it to find how visual

information is represented in a given brain region.

We are not the first ones to use DNNs to gain insight into visual cortex representa-

tions. The access to weights and gradients of deep neural networks allow interesting

applications such as finding preferred stimulus for individual neurons. Bashivan et

al. [11] first trained a linear model to predict macaque neuron responses in V4 from

a DNN. Then, they optimized the input image to DNN to maximize the neuron’s

predicted activity resulting in preferred images for that neuron. A similar algorithm

was also used to suppress a neuron’s activity. Ponce et al. [12] used a genetic al-

gorithm to generate an image that maximized macaque neuron responses in the IT

region. Similar works in fMRI (Murty et al. [36], and Gu et al. [37]) found the

optimal stimuli for category-selective brain regions. Seeliger et al. [10] proposed

Neural Information Flow (NIF) that maps individual layers of a DNN to individual

brain regions by training the DNN to predict neural responses in different regions.

Then by interpreting what each layer has learned, we can gain insights into repre-
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sentations of corresponding brain regions. More recently, Khosla et al. [13] trained

DNNs to predict fMRI responses from scratch and by generating preferred images

showed that category-selective regions are highly sensitive to visual patterns specific

to their respective categories. Although finding preferred stimuli provides interest-

ing insights into visual cortex representations, it is not always trivial to associate the

features in the preferred stimulus with a human interpretable concept or a functional

property. Therefore, in the first part of the thesis (Chapter 1 for visual cortex and

Chapter 2 for DNNs), we find functions of the brain regions and DNNs in terms of

computer vision tasks (or functions) and in the later part, develop a new method to

associate artificial neurons with human interpretable concepts (Chapter 3).

In the previous section, we reviewed classical techniques to find how visual infor-

mation is represented in different brain regions and discussed how DNNs can be a

new promising tool to achieve what is not possible with classical methods. In the

following section, we briefly review the use of DNNs in computer vision.

Deep neural networks for computer vision

In computer vision, DNNs have made significant improvements in several tasks such

as image recognition [38], object detection [39, 40], semantic segmentation [39, 41],

depth estimation [42], edge detection [43] among many others. In the following

paragraphs we briefly review some of these tasks that are relevant to the present

thesis.

Image recognition

In an image recognition task, we are provided an RGB image as the input, and the

model is expected to identify which objects are present in the image. For instance,

given an image of a dog and a cat sitting on a couch, the model should output high

probabilities for the dog, cat, and couch categories and low probabilities for other

categories, e.g., a table or a bed. To benchmark the image recognition performance,

the Imagenet [38] dataset was introduced in 2010, which contains 1.4 million images

from 1,000 object classes. The large scale of the dataset allowed for unprecedented

opportunities to develop new models of object recognition. From the first computer

vision DNN trained using data of this scale (Alexnet [3]), the performance on the
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image recognition task (top1-accuracy) has improved from 63.3% to 90.94% [44]

thus leading to great progress in the computer vision field. The DNNs trained on

Imagenet are not only useful for image recognition but the representations learned on

Imagenet have also shown to be relevant to many downstream tasks such as object

detection [40], semantic segmentation [39], depth estimation [45], action recognition

[46] and even explaining the neural responses in humans [33] and monkeys [47].

Semantic Segmentation

In the semantic segmentation task, we are provided an RGB image, and the model

is expected to predict the category label of each pixel in the image. Here, the task

requires both classification and localization, i.e., what categories are present and

where in the scene are they present. There are multiple datasets such as MS-COCO

[39], Pascal VOC [41], and ADE20k [48] to benchmark the progress of semantic

segmentation. Standard models used in the semantic segmentation task have an

encoder-decoder type of architecture. The encoder architecture usually is derived

from DNNs trained on object recognition on the Imagenet dataset. The encoder

transforms the pixel-level information of the image into semantic information. The

encoder output is generally low resolution, and therefore decoders are designed to

map semantic information back to pixel locations.

Depth estimation

In the depth estimation task, we are provided an RGB image, and the model is

expected to predict the depth value of each pixel, i.e., how far a given pixel is from

the camera. The depth estimation task requires a 3-Dimensional understanding

of the scene. A standard dataset to benchmark the progress for depth estimation

is NYUv2 [42]. The DNN architectures for depth estimation, similar to semantic

segmentation, have an encoder-decoder architecture.

Edge Detection

In the edge detection task, we are provided an RGB image, and the model is expected

to predict the magnitude and direction of edges in an image. Edge detection requires
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a low-level understanding of the scene and has gained less attention from the deep

learning community than other semantically relevant tasks.

Object/Point Goal Navigation

In the later part of the thesis (Chapter 3), we focus on tasks that involve embodied

learning where the model is required to interact with the environment to perform

the task successfully. We consider two navigation tasks where the model (artificial

agent) is placed in a random location in a room in the virtual environment called

AI2Thor [1]. In the object goal navigation (Objectnav) task, the agent is given a goal

object, and the task is to navigate in the room to reach closer to the target object.

In the point goal navigation (Pointnav) task, the agent is given a target coordinate

in the room, and the task is to navigate in the room to reach closer to the target

coordinate. Objectnav task requires both semantic and 3D scene understanding,

while to perform Pointnav task, semantic information is not that relevant. The

DNNs used in the navigation task usually have a visual encoder that is derived from

DNNs trained on Imagenet, and then visual information and goal information is

combined and fed into recurrent layers to take into account the agent’s previous

actions. The agents are trained using reinforcement learning, where the agent is

rewarded if the agent reaches a goal.

All of the above tasks require different aspects of visual scene understanding, and

therefore the DNNs solving these tasks must be learning different representations.

In this work, we are interested in discovering how training on different tasks leads

to different representations in DNNs with similar architecture (Chapters 2 and 3).

There have been several approaches to understanding the representations in DNNs:

representational similarity analysis [49], feature interpretation [50], and explaining

the model’s decisions on individual examples [51, 52]. In this work, we mainly fo-

cus on representational similarity analysis, which is a widely accepted method to

interpret representations in both neuroscience and the deep learning community. In

the later part, we take inspiration from feature interpretation methods and explain-

ability approaches to develop a new method that can associate artificial neurons to

human interpretable concepts.

13



Representational similarity analysis

Representational similarity analysis generally involves the comparison of two feature

spaces. These feature spaces could be fMRI-DNN, fMRI-magnetoencephalography

(MEG), DNN-DNN, fMRI-Electroencephalography (EEG), and many other possible

combinations depending on the questions a researcher is interested in answering. In

this work, we primarily focus on the fMRI-DNN and DNN-DNN combination. DNN-

DNN comparison using representational similarity analysis can reveal interesting

insights about DNN architecture, learning, etc. DNN-fMRI combination can reveal

which DNN best predicts fMRI responses in a given brain region.

In representational similarity analysis, we first extract features of a selected set of

data points for both the feature spaces. Then, we map the selected data points in

both the feature spaces. This mapping creates two graphs representing relationships

between individual data points in the feature spaces we are interested in compar-

ing. The main idea is that if two feature spaces are similar, their corresponding

relationship graphs should also be similar. To compare two graphs, we calculate the

pairwise distances between individual data points in each feature space resulting in

two pairwise dissimilarity matrices for each feature space. Then, by comparing the

pairwise dissimilarity matrices, we evaluate how similar are the two feature spaces

of interest.

The idea behind representational similarity analysis dates back to the 1970s when

Escoufier et al. [53] proposed the RV coefficient to quantify similarities between

two feature spaces. In neuroscience, Kriegeskorte et al. [54] introduced Represen-

tational Similarity Analysis (RSA) to connect different branches of neuroscience

(computational modeling, human fMRI, EEG, MEG, monkey cell recordings, and

monkey fMRI) together. In deep learning, Kornblith et al. [55] introduced Centered

Kernel Alignment (CKA), a measure inspired by RV coefficient that is capable of

determining correspondences between layers of DNNs trained from different random

initializations.

Representational similarity analysis in Neuroscience

In neuroscience, representational similarity analysis has been applied to reveal sev-

eral interesting insights about the human brain. Before the introduction of large-
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scale datasets in neuroimaging, researchers used carefully selected images (in orders

of 100) to distinguish key properties in the visual scene. Taking samples of im-

ages from different categories (faces, places, objects, body parts) or supercategories

(animate, inanimate) can help identify regions in the brain where the visual rep-

resentation can distinguish between categories. Similarly, one can use a sample of

images and collect human behavioral data and use it to identify where in the brain

the visual representation is closer to human behavioral responses. In Groen et al.

[56], they collected behavioral similarity judgments and compared them with human

fMRI responses in the visual cortex to show that there is limited correspondence

between localized fMRI responses and behavioral similarity judgments. In Bonner

and Epstein [57], they collected human behavioral responses related to navigational

affordances and compared them to fMRI responses in scene-selective regions showing

that occipital place area (OPA) encodes navigational affordances. One can also com-

pare features from a computational model to find whether a computational model

has a representation similar to a given brain region. Tsantani et al. [58] created dif-

ferent image computable and perceived property models to show that face-selective

regions occipital face area (OFA) and fusiform face area (FFA) encode distinct face

identity information.

Representational similarity analysis in Deep Learning

In deep learning, representational similarity analysis based methods have been used

in the literature to find out how representation changes in the DNN across different

layers during training [59]. Another research direction is to use representational

similarity analysis to investigate what impact different initialization seeds have on

the final representation of DNNs trained on object classification task on Imagenet

[55, 60]. Similarly, these analyses have also been used to find differences in different

DNN architectures. In Nguyen et al. [61], they applied representational similarity

analysis to compare the representations of wide and deep DNNs. Recently Raghu et

al. [62] compared the representations learned by recently introduced vision trans-

formers [63] with the standard convolutional architectures. In multimodal learning,

CLIP [64] model uses representational similarity analysis to train a model using text

and image pairs by maximizing similarities between relationship graphs of text and

image embeddings.
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In the first part of the thesis, our main idea is to probe the representations of

both the human visual cortex and DNNs by comparing DNNs trained on different

tasks. Given a brain region or a layer of a DNN, we compare it to task-specific

layers’ representation of multiple DNNs trained to perform different tasks. The

comparison informs us of representations relevant to solving the question of which

computer vision task is closest to the brain region’s/target DNNs representation.

Chapter 1: Understanding representations in the

human visual cortex

In the first chapter, I focus on understanding the representation of different regions in

the visual cortex. We first investigate if our proposed approach provides insights into

a brain region’s representation that converges with previous investigations of that

brain region. Having validated the approach, we can then apply it to understanding

representations of under-investigated brain regions and provide some insights into

the functional roles of those brain regions. Therefore in the first part of chapter 1,

we validate our approach in well-investigated scene-selective regions Occipital Place

Area (OPA) and Parahippocampal Place Area (PPA). In the second part of the

chapter, we apply our approach to multiple regions of the visual cortex, providing

insights into their representations.

Probing Scene selective regions

Scene selective regions are regions in the brain that show a high response to scene

images as compared to images from other categories and scrambled images. In

a neuroimaging study [57], it was shown that OPA, one of the scene-selective re-

gions, is involved in the prediction of regions in an indoor space that are relevant to

navigation (navigational affordance). To find the navigational affordance, spatial in-

formation about where the obstacles are and where the exit is located in the scene is

crucial. Therefore, our hypothesis was that representation in OPA should be closer

to a computational model that is trained to parse a scene into different components

(obstacles, floor, wall, etc.) compared to a model that is trained to identify the cat-

egory of the scene. To evaluate our hypothesis, we selected scene parsing and scene
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classification models and compared their representation with OPA’s representation.

To ensure the generalizability of our findings, we used three architectures for both

scene parsing and scene classification tasks. Our findings confirmed our hypothesis,

therefore validating the feasibility of the proposed approach in understanding the

representations of the brain regions in the visual cortex.

Probing the entire visual cortex

Having validated the proposed approach in the previous section, in this section, we

increase the number of models and brain regions considered. To ensure that the

difference in representational similarity between a given brain region and a DNN is

only due to the task, our criteria for model selection was that all the models should

be trained on the same dataset (no influence of training data) and have identical

architecture (no influence of architecture). Therefore, we selected a large set of

models trained on the Taskonomy dataset that were trained to perform a diversity

of tasks ranging from low-level 2D tasks to tasks that required 3-dimensional scene

understanding and semantic knowledge about the scene. For the brain regions, we

selected the entire visual cortex and subdivided it into regions using a probabilistic

anatomical atlas [65]. The investigation in this section allowed us to understand

representations of all regions in the visual cortex in terms of computer vision tasks.

Chapter 2: Understanding representations in a deep

neural network.

In the second chapter, we apply the proposed approach to understand the represen-

tations learned by a DNN to perform a given computer vision task. A DNN usually

consists of multiple layers, each layer performing a computation leading to the final

layer that performs prediction for a given task. Training on different tasks could lead

to very different representations. Therefore in the first part of this chapter, we in-

vestigate at which stage the representation in DNNs trained on different tasks starts

to differ. We further investigate if the DNNs trained on similar tasks lead to similar

representations and on dissimilar tasks lead to more dissimilar representations. In

the second chapter, we investigate the impact of different feature normalizations on
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representational similarity and introduce a new measure that unifies different pro-

posed similarity measures. We further probe DNNs trained on high-level semantic

tasks to understand how representations differ as we go from early layers to deeper

layers.

Representational similarity for assessing task similarity

We selected the same set of DNNs used in the previous chapter that were trained

on the Taskonomy dataset on a diverse range of 2D, 3D and semantic tasks. Then,

given a DNN trained on a particular task, we compared the representation of mul-

tiple layers to corresponding layers in other DNNs. From this analysis, we aimed

to reveal where in the network architecture task-specific representation start ap-

pearing. We found that task specificity increases as we go deeper into the DNN

architecture, and similar tasks start to cluster in groups. We found that the group-

ing using representational similarity was highly correlated with grouping based on

transfer learning, thus creating an exciting application of the approach to model

selection in transfer learning. We evaluate the relationship between transfer learn-

ing and representational similarity on 20 tasks from the Taskonomy dataset and

the semantic segmentation task from the Pascal VOC dataset. We also evaluate

the influence of model architecture and the number of images on the relationship

between representational similarity and transfer learning.

Duality Diagram Similarity

While I was working on the previous projects, new measures [55] were introduced

to compare DNN representations. In this work, we identified the commonalities in

different measures and unified different measures into a single framework referred to

as duality diagram similarity. This work opens up new possibilities for creating bet-

ter similarity measures to understand DNN representations. After demonstrating a

much higher correlation with transfer learning than previous state-of-the-art mea-

sures, we extended it to understanding layer-wise representations of models trained

on the Imagenet and Places dataset using different tasks and demonstrated its ap-

plicability to transfer learning.

In the previous two chapters, we used the task-specific DNN representations to
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understand the representations in the human visual cortex and other DNNs. We

were able to interpret our findings in terms of passive computer vision tasks such

as edge detection, semantic segmentation, depth estimation, etc. This approach has

two limitations: 1. The DNNs/humans do not actively engage with the environment

leading to only a few active regions in the brain and only a few simple tasks that

could be relevant for comparison with the human brain. 2. We could not map the

representations to human interpretable concepts. To address the first limitation,

we consider DNNs trained in virtual environment AI2Thor that actively engage

with the environment to perform a complex task. To address the second limitation,

we develop a new approach that exploits freely available annotations in AI2Thor to

map artificial neurons to human interpretable concepts. Several works in the feature

interpretability field have attempted to map individual neurons or groups of neurons

to interpretable concepts. In another line of research, people have attempted to

explain model decisions in terms of human interpretable concepts. We briefly review

these two research directions here that motivated us to develop a new method to

associate artificial neurons to concepts.

Feature interpretability

The idea to map neurons to a concept goes back to seminal work from Hubel and

Wiesel [66] in the 1950s where they measured the activity of a cat’s neuron with

respect to different orientations and found that it was selective to certain orienta-

tions. The image that maximizes a neuron or group of neurons’ activity is known as

the preferred image. Similar techniques in neuroscience have led to findings such as

grandmother neuron [67], neurons selective to celebrities like Halle Berry [68], and

category-selective regions [18, 19, 21, 17]. Inspired by these works in neuroscience,

deep learning researchers started using similar techniques to find what an artificial

neuron encodes.

A straightforward approach to finding preferred images for artificial neurons is

to feed a large number of images through the network and identify which images

lead to maximal activation of a given neuron [69, 70]. A computational challenge

in this approach is that for probing a single neuron, one might need to feed a large

number of images. Another challenge is that it is quite possible that maximally
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activating images for this neuron might not be in the probe dataset. Finally, the

preferred images may not be explicitly informative about what common features of

the preferred images are causing the neuron to activate. To address this, Nguyen et

al. [71] proposed synthesizing the image using gradients of the DNN that maximizes

a given neuron’s activity. The synthesized images, however, are not interpretable for

all the neurons. Therefore, in subsequent work, Nguyen et al. [72] added a natural

image prior using a generative model that ensured the synthesized images looked

like natural images. While the method of preferred images provides some qualitative

information about what a neuron encodes, it is not trivial how to quantify that

association.

To quantify the association of a neuron with concepts, Zhou et al. [73] used

the receptive field of the neurons to segment the most activating images and then

asked humans to annotate the concept using the segmented images. Bau et al. [74]

quantified the concept-to-neuron association by comparing the segmentation maps

generated by neurons’ spatial activation with ground truth segmentation annotations

from the semantic segmentation dataset. More recently, Hernandez et al. [75]

used natural language descriptions to label the neurons. Net2Vec [76] extended the

approach of [74] to find out whether a single neuron or a group of neurons together

encode a given concept. They trained a linear model to predict the presence of a

concept from a group of neurons and then used the weights of the linear model to

identify which neurons were relevant for predicting the concept’s presence. However,

interpretability using weights of a linear model can assign weights to noisy inputs

when the mapping is non-linear, as shown in Lundberg et al. [2].

All of the above methods require human annotations to quantify the association

of a concept with a neuron. In Chapter 3, we note the potential of virtual simulators

such as AI2Thor [1], Habitat [77] that have extensive annotations available for free

and hence are suitable for the development of the new generation of interpretability

frameworks. Further, we do not assume linearity in mapping between neurons and

concepts, thus making our proposed approach generic.

20



Explainability

Explainability research aims to explain why a model is making particular decisions.

Initial research in explainability of computer vision models focused on finding which

pixels were relevant for making a class prediction [78, 79, 80, 81, 82] using DNN

gradients. A common idea behind these methods is to propagate the gradient from

the output back to the input to produce a heatmap that indicates which pixels

were relevant for the model’s output. Another popular approach is additive feature

attribution [83, 84, 85] where the impact of adding an input feature in the model’s

prediction is used to quantify its relevance. A limitation of these methods is that the

explainability is on pixel level and not on human interpretable features. To address

this limitation, Kim et al. [86] introduced concept vectors instead of raw pixels to

explain model predictions. However, this method required additional annotations

for concepts, and therefore Ghorbani et al. [87] proposed a method to automatically

extract visual concepts and then use those to explain model predictions.

In this work, we notice the potential of explainability methods in interpreting

representations learned by the model’s hidden units (neurons). The above methods

are generally used to explain which input features were most relevant for a model’s

prediction. What if the input to the model is hidden units and the output is a

human interpretable concept? Then using explainability methods, we can find out

which hidden units were relevant in the prediction of that concept and hence are

encoding that concept.

However, most of the works we discussed above provide local explanations, i.e.,

given an input image and model predictions, it identifies which features of the in-

put image were relevant for this particular prediction. To identify which hidden

units encode a concept, the explainability should be global, i.e., over multiple sam-

ples. Therefore, we use a global explainability SHAP [2] method in this work for

the following reasons: (a) it provides a unique solution with three desirable proper-

ties: local accuracy, missingness and consistency [84], (b) it unifies several model

agnostic [83, 85] and tree-based explanation methods [88], and (c) it provides

explanations on both local (single example) and global (dataset) levels.
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Chapter 3: Associating artificial neurons to concepts

In the last chapter, we present a new method Interpretability System for Embodied

agEnts (iSEE) that maps individual neurons of artificial navigation agents trained

in simulated virtual environment AI2Thor [1] to human interpretable concepts. We

focus on simple baseline DNNs trained to perform Objectnav and Pointnav tasks.

We train an interpretable model (Gradient Boosted Tree) to predict concepts like

obstacles and target visibility from the hidden units of the DNN. Then, we apply a

global explainability method called SHAP [2] to find out which units were relevant

for predicting the given concept. To evaluate the causality in our findings, we

removed the units from the DNN and then evaluated the performance of the ablated

models on the original task.

Summary

In this thesis, we present the progress towards understanding how visual informa-

tion is represented in the human visual cortex (Chapter 1) and deep neural networks

(Chapters 2 and 3). In Chapters 1 and 2, we applied a well-established method called

representational similarity analysis (RSA) to reveal new insights into the brain (Fig-

ure0.1b) and target DNN (Figure0.1c) representations by comparing their represen-

tations with DNNs trained on a wide range of computer vision tasks (Figure0.1a).

The findings in Chapters 1 and 2 reveal insights in terms of computer vision tasks.

In Chapter 3, we developed a new method to interpret the representations in the

DNNs in terms of human interpretable concepts (Figure0.1d) by exploiting the freely

available groundtruth in simulation engines.
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DNN1 DNN2 DNNn

DNNT

a)

b) c)

d)

Is there an  
obstacle 
 in front?

Is Apple(target)  
visible?

DNNT

Figure 0.1: Overview: a) Given a set of DNNs trained on n tasks, b) In Chapter 1,
we compare representations of n DNNs to a brain region’s representations
to reveal insights about brain representation in terms of n tasks. c) In
Chapter 2, we compare representations of n DNNs to a target DNN’s
representation to reveal insights about this DNN’s representations in
terms of n tasks. d) In Chapter 3, we develop a new method to find out
where in the hidden layers of a target DNN are the concepts (like target
visibility, obstacle detection) encoded.
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1 Understanding representations in

the human visual cortex

1.1 Unraveling representations in scene-selective

brain regions using scene-parsing deep neural

networks
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Abstract

Visual scene perception is mediated by a set of cortical regions that respond preferentially to 

images of scenes, including the occipital place area (OPA) and parahippocampal place area (PPA). 

However, the differential contribution of OPA and PPA to scene perception remains an open 

research question. In this study, we take a deep neural network (DNN)-based computational 

approach to investigate the differences in OPA and PPA function. In a first step we search 

for a computational model that predicts fMRI responses to scenes in OPA and PPA well. We 

find that DNNs trained to predict scene components (e.g., wall, ceiling, floor) explain higher 

variance uniquely in OPA and PPA than a DNN trained to predict scene category (e.g., bathroom, 

kitchen, office). This result is robust across several DNN architectures. On this basis, we then 

determine whether particular scene components predicted by DNNs differentially account for 

unique variance in OPA and PPA. We find that variance in OPA responses uniquely explained 

by the navigation-related floor component is higher compared to the variance explained by the 

wall and ceiling components. In contrast, PPA responses are better explained by the combination 

of wall and floor, that is scene components that together contain the structure and texture of the 

scene. This differential sensitivity to scene components suggests differential functions of OPA and 

PPA in scene processing. Moreover, our results further highlight the potential of the proposed 

computational approach as a general tool in the investigation of the neural basis of human scene 

perception.
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1 Introduction

Visual scene understanding is a fundamental cognitive ability that enables humans to interact 

with the components and objects present within the scene. Within the blink of an eye [Potter 

1975, Thorpe et al. 1996, Li et al. 2007, Greene and Oliva, 2009] we know what type of 

scene we are in (e.g. kitchen, or outdoors), as well as its spatial layout and the objects 

contained in it.

Research on the neural basis of scene understanding has revealed a set of cortical regions 

with a preferential response to images of scenes over images of objects. These regions are 

the parahippocampal place area (PPA) [Epstein and Kanwisher, 1998], occipital place area 

(OPA) [Dilks et al., 2013, Hasson et al., 2003], and retrosplenial cortex (RSC) [O’Craven 

and Kanwisher, 2000]. To investigate the distinct function each of these place regions 

has, subsequent research has begun to tease apart their commonalities and differences in 

activation profile and representational content [Epstein and Kanwisher, 1998, Hasson et 

al., 2003, Dilks et al., 2013, Bonner and Epstein, 2017, Silson et al., 2015, O’Craven and 

Kanwisher, 2000]. However, a complete picture of how scene-selective regions together 

orchestrate visual scene understanding is still missing.

To gain further insights, a promising, but relatively less explored approach is computational 

modelling of brain activity. Recently, large advances have been made in modeling activity 

in visual cortex using deep neural networks (DNNs) trained on object categorization tasks 

[Krizhevsky et al., 2012] in both human and non-human primates [Yamins et al., 2014, 

Khaligh-Razavi and Kriegeskorte, 2014, Cichy et al., 2016]. Inspired by this success, 

researchers have also begun to use DNNs trained on scene categorization to investigate 

scene-selective cortex [Cichy et al., 2017, Bonner and Epstein, 2018, Groen et al., 2018].

In this process two issues have emerged that need to be addressed. First, while DNN 

trained on categorization tasks currently do best in predicting activity in scene-selective 

cortical regions, they do not account for all explainable variance. One particularly promising 

direction is the exploration of models trained on tasks different from categorization that 

might more closely resemble the brain region’s functionality, and thus predict brain activity 

better [Yamins et al., 2014, Cichy and Kaiser, 2019]. Second, it remains unclear what is 

the nature of the representations in the DNNs that gives them their predictive power. Thus, 

additional effort is needed to clarify what these representations are.

To address the above issues, we investigated neural activity in the scene-selective cortex 

using DNNs trained on scene parsing instead of categorization. A scene parsing task requires 

the DNN to predict the location and category of each scene component in the image. 

While the scene-categorization task requires only recognizing the scene category, the scene 

parsing task requires deeper scene understanding involving categorization as well as a grasp 

of the spatial organization of components and objects within the scene. In order to help 

interact with different objects and navigate within the scene, scene-selective brain regions 

should also encode the spatial organization of components within the scene. Therefore, we 

hypothesize that the scene parsing task is closer to the task the brain has to solve, and a 
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DNN trained on scene parsing will predict brain activity better than a DNN trained on scene 

categorization.

To evaluate our hypothesis, we compared the power of DNNs trained on scene parsing 

versus categorization to predict activity in scene-selective cortical regions. For this we used 

an existing fMRI set of brain responses elicited by viewing scene images [Bonner and 

Epstein, 2017] and applied representational similarity analysis (RSA) to compare brain 

responses with DNNs. We found that scene parsing DNNs explain significantly more 

variance in brain responses uniquely in scene-selective regions than scene-classification 

DNNs.

We next investigated what representations in the DNNs trained on scene parsing gave the 

model its predictive power. For this we queried the DNN’s representations of different scene 

components, considering components that were present in all stimulus images: wall, floor, 

and ceiling. We showed that different scene components predict responses in OPA and 

PPA differently: floor explained more variance in OPA than wall and ceiling, while wall 

explained more variance in PPA than floor and ceiling. Importantly, results were consistent 

across three different DNN architectures, showing the generalizability of our claims across 

architectures.

In sum, our results reveal differential representational content in scene-selective regions 

OPA and PPA, and highlight DNNs trained on scene parsing as a promising model class for 

modelling human visual cortex with well interpretable output.

2 Materials and Methods

2.1 fMRI data

We used fMRI data from a previously published study by Bonner and Epstein [2017] where 

all experimental details can be found, as well as instructions on how to download the data. 

The fMRI data were collected from 16 participants on a Siemens 3.0T Prisma scanner with a 

64-channel head coil. The participants were presented with images of indoor environments. 

The images were presented for 1.5s on the screen followed by a 2.5s interstimulus interval. 

The images presented in the experiment were from a stimulus set of 50 color images 

depicting indoor environments. During the fMRI scan, participants were asked to fixate on 

a cross all the time and press a button if the image presented to them was a bathroom. The 

task required participants to attend to each image and categorize it. Voxel-wise (voxel size = 

2 × 2 × 2 mm) responses to each image during each scan run were extracted using a standard 

linear model.

We here focus on two scene-selective regions of interest (ROIs): PPA and OPA. PPA and 

OPA were identified from separate functional localizer scans using a contrast of brain 

responses to scenes larger than to objects and additional anatomical constraints. For both 

ROIs and all the subjects, each voxel’s responses in a given ROI were z-scored across 

images in a given run and then averaged across runs. The responses to a particular image 

were further z-scored across voxels.
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2.2 Behavioral data

We used scene-related behavioral data representing navigational affordances assessed on the 

same stimulus set as used for recording the fMRI data described above [Bonner and Epstein, 

2017]. To represent navigational affordances, a behavioral experiment was conducted in 

which 11 participants (different from the participants in the fMRI experiment) indicated the 

path to walk through each image of the indoor environment used in the fMRI study using 

a computer mouse. The probabilistic maps of paths for each image were created, followed 

by a histogram construction of navigational probability in one-degree angular bins radiating 

from the bottom center of the image. These histograms represent a probabilistic map of 

potential navigation routes from the viewer’s perspective. The resultant histogram is referred 

to as the Navigational Affordance Model (NAM).

2.3 DNN Models

We selected DNNs optimized on two different scene-related tasks: scene classification and 

scene parsing. We describe both types of models in detail below.

Scene-classification models—For solving a scene-classification task, a DNN model 

is optimized to predict the probabilities of the input image belonging to a particular scene

category. For comparison with neural and behavioral data, we considered DNNs pre-trained 

on the scene-classification task on the Places-365 dataset [Zhou et al., 2017]. Places-365 is 

a large scale scene-classification dataset consisting of 1.8 million training images from 365 

scene categories. We selected multiple scene-classification DNN architectures to investigate 

if our results generalize across different architectures. For this purpose, we considered 3 

standard architectures: Alexnet [Krizhevsky et al., 2012], Resnet-18 [He et al., 2016], and 

Resnet-50 [He et al., 2016] and downloaded pre-trained models from: https://github.com/

CSAILVision/places365.

Alexnet consists of 5 convolutional layers (conv1-conv5) followed by 3 fully connected 

layers (fc6, fc7, and fc8). Both Resnet-18 and Resnet-50 consist of a convolutional layer 

followed by four residual blocks (block1 - block4) each consisting of several convolutional 

layers with skip connections leading to a final classification layer (fc). Resnet-18 consists of 

18 layers and Resnet-50 consists of 50 layers in total and they differ in the number of layers 

within each block.

Scene parsing models—We used scene parsing models trained on ADE20k scene 

parsing dataset [Zhou et al., 2016]. The ADE20k dataset (publicly available at http://

groups.csail.mit.edu/vision/datasets/ADE20K/) is a densely annotated dataset consisting of 

25k images of complex everyday scenes with pixel-level annotations of objects (chair, 

bed, bag, lamp, etc.) and components (wall, floor, sky, ceiling, water, etc.). The images 

were annotated using the LabelMe interface [Russel et. al 2008] by a single expert human 

annotator.

For the first set of experiments, where we compare the predictive power of scene parsing 

models to scene-classification models for explaining the neuronal responses, we design 

scene parsing models such that their encoder architecture is taken from scene-classification 
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models while their decoder architecture is task-specific. The encoder of the scene parsing 

models consists of the convolutional part (conv1-conv5 of Alexnet, and block1-block4 

of Resnet18 and Resnet50) of scene classification models. The decoder of scene parsing 

models is adapted to the scene parsing task following the architecture proposed by Zhao 

et al. [2017]. It consists of a Pyramid Pooling module with deep supervision [Zhao et 

al., 2017] (d1), followed by a layer (d2) that predicts several spatial maps, one spatial 

map per scene component predicted, that represent the probability of the presence of that 

component at a given spatial location. The encoder weights of scene parsing models are 

initialized with the weights learned on the scene-classification task and decoder weights are 

initialized randomly. The scene parsing DNNs are then trained on ADE20k training data 

using a per-pixel cross-entropy loss which measures the performance of the classifier at each 

pixel whether the correct component is assigned the highest probability or not. The above 

procedure ensures that gain/drop in explaining neural/behavioral responses could only be 

due to additional supervision on the scene parsing task.

The aforementioned scene parsing DNNs are well suited for a direct comparison with the 

scene categorization DNNs as they have the same encoder architecture and were initialized 

with weights learned on the scene-categorization task. However, they are not comparable 

to state-of-the-art models in terms of accuracy on the scene parsing task. Since our aim 

is to reveal differences in representations of the scene areas in the brain by comparing 

scene components, for the second set of experiments, it is crucial to select components 

detected with DNNs from the literature that achieve the highest accuracy in scene parsing. 

For this reason, we selected 3 state-of-the-art models on the scene parsing task namely 

Resnet101-PPM [Zhou et al., 2016], UperNet101 [Xiao et al., 2018], and HR-Netv2 [Sun 

et al., 2019]. All the 3 state-of-the-art models were trained on the ADE20k dataset. We 

selected multiple models to investigate if the results we obtain are consistent across different 

models. Resnet101-PPM consists of a dilated version of the Resnet101 model (a deeper 

version of Resnet50 that consists of a total of 101 layers) trained on Imagenet as the 

encoder and a Pyramid Pooling module with deep supervision [Zhao et al., 2017] as the 

decoder. Due to the small receptive field in the feature maps, scene-parsing DNNs fail 

to correctly segment larger objects/components. The Pyramid Pooling module [Zhao et 

al., 2017] tackles this issue by fusing the feature maps that have different receptive field 

sizes to merge high spatial resolution information with low spatial resolution information 

for a better local and global level scene understanding. Upernet101 [Xiao et al., 2018] is 

based on the Feature Pyramid Network by Lin et al. [2017] that uses multi-level feature 

representations via a top-down architecture to fuse high-level semantic features with mid 

and low-level using lateral connections. Upernet101 also has a Pyramid Pooling Module 

before the top-down architecture to overcome the small receptive-field issue. HRNetv2 [Sun 

et al., 2019] relies on the importance of high-resolution feature maps for pixel labeling maps 

by maintaining high-resolution feature representations throughout the architecture and by 

merging information from both high and low resolution convolutions in parallel overcomes 

the small receptive field issue mentioned above. We downloaded all above mentioned 

models from https://github.com/CSAILVision/semantic-segmentation-pytorch.

To reveal performance differences between different models on the scene parsing task, we 

compared the performance of state-of-the-art models with the scene parsing models used for 
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comparison with scene-classification DNNs (see above, Alexnet, Resnet-18, Resnet-50). For 

the comparison, we calculated the mean intersection over union (mIoU) score of detecting 

all components for all the images from the ADE20k validation dataset. The IoU score 

is calculated by dividing the intersection between a predicted and corresponding ground 

truth pixel-level segmentation mask by their union. IoU is a standard metric to evaluate the 

overlap of a predicted and corresponding pixel-level mask of a particular component. Mean 

IoU is calculated by taking the mean of IoU scores across all images in the validation dataset 

for all components.

As illustrated in Figure 1a, a scene parsing model decomposes an image into its constituent 

components. This decomposition allows investigating which scene components are more 

relevant to explaining the representations in scene-selective brain regions. We first identified 

which scene components are present in all the images from the stimulus set used for 

obtaining fMRI responses. To achieve this, we feedforwarded all the 50 images in the 

stimulus set of the fMRI dataset through the models and checked the presence of all the 

components in the image. Since the DNN has been trained on an image dataset that is 

different from the set of stimuli used for the fMRI data, not all scene components predicted 

by the DNN appear in the stimulus set. In this particular set, we found that wall, floor, and 

ceiling were core scene components present in all images.

A scene parsing model outputs a spatial probability map for each component. To scale 

the spatial probability maps corresponding to different components in the same range, we 

normalized the spatial probability map for each component independently such that each 

pixel value lies in the range [0, 255]. We show the extracted normalized scene components 

corresponding to the wall, floor, and ceiling components for an example stimulus in Figure 

1b.

2.4 Representational Similarity Analysis (RSA)

We applied representational similarity analysis (RSA; [Kriegeskorte et al., 2008] to compare 

DNN activations and scene components with neural and behavioral responses. RSA enables 

relating signals from different source spaces (such as here behavior, neural responses, DNN 

activation) by abstracting signals from separate source spaces into a common similarity 

space. For this, in each source space condition-specific responses are compared to each other 

for dissimilarity (e.g., by calculating Euclidean distances between signals) and the values are 

aggregated in so-called representational dissimilarity matrices (RDMs) indexed in rows and 

columns by the conditions compared. RDMs thus summarize the representational geometry 

of the source space signals. Different from source space signals themselves RDMs from 

different sources spaces are directly comparable to each other for similarity and thus can 

relate signals from different spaces. We describe the construction of RDMs for different 

modalities and the procedure by which they were compared in detail below.

fMRI ROI RDMs—First, for each ROI (OPA, and PPA), individual subject RDMs were 

constructed using Euclidean distances between the voxel response patterns for all pairwise 

comparisons of images. Then, subject-averaged RDMs were constructed by calculating the 

mean across all individual subject RDMs. We downloaded the subject averaged RDMs 
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of OPA and PPA from the link (https://figshare.com/s/5ff0a04c2872e1e1f416) provided in 

Bonner and Epstein [2018].

Navigational affordance model (NAM) RDMs—NAM RDMs were constructed using 

Euclidean distances between the navigational affordance histograms for all pairwise 

comparisons of images. We downloaded the NAM RDM from (https://figshare.com/s/

5ff0a04c2872e1e1f416).

DNN RDMs—For all the DNNs we investigated in this work, we constructed the RDM for 

a particular layer using 1-ρ, where ρ is the Pearson’s correlation coefficient, as the distance 

between layer activations for all pairwise comparisons of images. For scene classification 

DNN RDMs, we created one RDM for each of the 5 convolutional layers (conv1-conv5) 

and for the 3 fully connected layers (fc6,fc7, and fc8) for Alexnet, and the last layer of 

each block (block1 - block4) and the final classification layer (fc) of Resnet-18/Resnet-50 

to compare with neural/behavioral RDMs. For scene parsing DNN RDMs, we created one 

RDM for each of the 5 convolutional layers (conv1-conv5) and for the 2 decoder layers (d1 

and d2) for Alexnet, and the last layer of each block (block1 - block4) and 2 decoder layers 

(d1 and d2) of Resnet-18/Resnet-50 to compare with neural/behavioral RDMs.

Scene component RDMs—For each of the scene components investigated we 

constructed RDM for it using 1-ρ as the distance between normalized spatial probability 

maps of that scene component, based on all pairwise comparisons of images.

Comparing DNN and scene component RDMs with behavioral and neural 
RDMs—In this work, we pose two questions: first, whether scene parsing models can better 

explain scene-selective neural responses and navigational affordance behavioral responses 

better than scene-classification models, and second, whether the scene-components detected 

by scene parsing models reveal differences in representations of scene-selective ROIs.

To investigate the first question, we calculated the Spearman’s correlation between the 

RDMs of different layers of a scene-classification DNN with a particular behavioral/neural 

RDM and selected the layer RDM that showed the highest correlation with the behavioral/

neural RDM. We used the selected layer RDM as the representative RDM for that 

architecture. We repeated the same procedure to select the representative RDM from a scene 

parsing model. As a baseline for comparison, we also considered a randomly initialized 

model and selected the representative RDM from it.

We first found that deeper layers of both scene-classification and scene-parsing models 

showed a higher correlation with neural responses than earlier layers. A possible explanation 

behind the observed trend could be that deeper layers are more task-specific while early 

layers learn low-level visual features irrespective of tasks and therefore do not represent 

task-specific information in the model. Moreover, the highest correlation with PPA and 

OPA was found in deeper layers of the network further supporting this idea. We report the 

layer used to select the representative RDMs for each model in Table 1. To compare which 

model RDM (scene parsing/scene-classification/random) explains behavioral/neural RDM 
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better, we compared the correlation values of all three RDMs with behavioral/neural RDM 

(illustrated in Figure 1c for scene classification vs scene parsing).

To investigate whether the scene-components detected by scene parsing models reveal 

differences in representations of scene-selective ROIs, we computed the correlation between 

a scene component RDM and a neural RDM and compared which scene component explains 

better a particular ROI.

2.5 Variance Partitioning

While in its basic formulation RSA provides insights about the degree of association 

between a DNN RDM and a behavioral/neural RDM, it does not provide a full picture 

of how multiple DNN RDMs together explain the behavioral/neural RDM. Therefore, we 

applied a variance partitioning analysis that determines the unique and shared contribution 

of individual DNN RDMs in explaining the behavioral/neural RDM when considered in 

conjunction with the other DNN RDMs. Further, variance partitioning allows selection of 

multiple layers from a single model to explain the variance in neural and behavioral RDM.

We illustrate the variance partitioning analysis in Figure 1d. We assigned a behavioral/neural 

RDM as the dependent variable (referred to as predictand). We then assigned two model 

(DNN/scene component) RDMs as the independent variables (referred to as predictors). 

Then, we performed three multiple regression analyses: one with both independent variables 

as predictors, and two with individual independent variables as the predictors. Then, by 

comparing the explained variance (r2) of a model used alone with the explained variance 

when it was used with other models, the amount of unique and shared variance between 

different predictors can be inferred (Figure 1d). In the case of three independent variables, 

we performed seven multiple regression analyses: one with all 3 independent variables as 

predictors, three with different combinations of 2 independent variables as predictors, and 

three with individual independent variables as the predictors.

To compare scene parsing and scene-classification models with a randomly initialized model 

as the baseline, the predictors were the respective DNN RDMs and predictands were the 

behavioral and neural RDMs. We performed variance partitioning analysis first using the 

selected representative RDMs (Table 1) for each model using RSA. In a second analysis, 

we relax the criteria of representing a model by single layer RDM and use multiple layer 

RDMs together to represent the model. We selected all the layer RDMs (Table 1) from each 

model (scene-classification/scene-parsing/random) and used them as predictors for variance 

partitioning.

To compare different scene components, the predictors were the respective scene component 

RDMs and predictands were the neural RDMs of scene-selective ROIs and behavioral RDM.

2.6 Statistical Testing

We applied nonparametric statistical tests to assess the statistical significance in a similar 

manner to a previous related study [Bonner and Epstein, 2018]. We assessed the significance 

of the correlation between neural/behavioral responses with a DNN through a permutation 
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test by permuting the conditions randomly 5000 times in either the neural ROI RDM or the 

DNN RDM.

From the distribution obtained using these permutations, we calculated p-values as one-sided 

percentiles. We calculated the standard errors of these correlations by randomly resampling 

the conditions in the RDMs for 5000 iterations. We used re-sampling without replacement 

by subsampling 90% (45 out of 50 conditions) of the conditions in the RDMs. We used an 

equivalent procedure for testing the statistical significance of the correlation difference and 

unique variance difference between the two models. The statistical outcomes were corrected 

for multiple comparisons using false detection rate (FDR) correction with a threshold equal 

to 0.05.

3 Results

3.1 Are scene parsing models suitable to account for scene-selective brain responses 
and scene-related behavior?

We investigated the potential of DNNs trained on scene parsing to predict scene-related 

human brain activity focusing the analysis on scene-selective regions OPA and PPA. To 

put the result into context we compared the predictive power of DNNs trained on scene 

parsing to DNNs trained on scene classification, which are currently the default choice in 

investigating scene-related brain responses and behavior [Bonner and Epstein, 2018, Groen 

et al., 2018, Cichy et al., 2017] and against a randomly initialized DNN as baseline. To 

ensure that the results can be attributed to differences in the task rather than being specific 

to particular network architecture, we investigated three different network architectures: 

Alexnet, Resnet18, and Resnet50.

We applied representational similarity analysis (RSA) to relate DNN models (scene 

classification,scene parsing, and random) with the brain responses in OPA and PPA (Figure 

2a). We found that DNNs trained on scene parsing significantly predicted brain activity in 

all investigated regions (p = 0.0001 for Alexnet, p = 0.0001 for Resnet18, and p = 0.0001 

for Resnet50). This shows that they are suitable candidate models for the investigation of 

brain function. We further found that DNNs trained on scene parsing explain as much or 

more variance in scene-selective regions than DNNs trained on scene-categorization. We 

note both scene parsing and scene classification DNNs explain significantly higher variance 

in scene-selective regions than a randomly initialized DNN across different architectures 

(p<0.001 for all the comparisons).

If scene parsing models are suitable models for predicting responses in scene-selective brain 

regions, and these regions underlie scene understanding, the models should predict scene

related behavior, too. We considered navigational affordance behavior operationalized as the 

angular histogram of navigational trajectories that participants indicated for the stimulus set. 

Paralleling the results on brain function, the investigation of behavior showed that DNNs 

trained on scene parsing predicted behavior significantly (p = 0.0005 for Alexnet, p = 

0.0005 for Resnet18, and p = 0.0005 for Resnet50), and also significantly better than DNNs 

trained on scene-classification (p = 0.01 for Alexnet, p = 0.0005 for Resnet18, and p = 0.03 

for Resnet50). Similar to results on brain function, we note that both scene parsing and 
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scene classification DNNs explain significantly higher variance in behavior than a randomly 

initialized DNN across different architectures.

While the RSA results above provided insights about the degree of association between a 

DNN RDM and behavioral/neural RDM, it cannot tell how multiple DNN RDMs together 

predict the behavioral/neural RDM. For this more complete picture, we conducted variance 

partitioning to reveal the unique variance of neural/behavioral RDMs explained by scene

classification and scene parsing DNN RDMs (Figure 2b). We observe from Figure 2b that 

scene parsing DNNs explain more variance uniquely (OPA: p = 0.0003 for Alexnet, p = 

0.0002 for Resnet18, and p = 0.0002 for Resnet50 ; PPA: p = 0.0002 for Alexnet, p = 0.0003 

for Resnet18, and p = 0.0002 for Resnet50) than scene-classification DNNs for both scene

selective ROIs. We further observe from Venn diagrams in Figure 2b that for scene-selective 

neural RDMs most of the variance explained is shared between scene-classification and 

scene parsing DNNs across all three architectures. The results suggest that scene parsing 

DNNs might be a better choice for investigating scene-selective neural responses than 

scene-classification DNNs.

We observe for behavior that the scene-classification DNNs explain nearly no unique 

variance, while on the other hand scene parsing DNNs explain significantly higher unique 

variance (p = 0.001 for Alexnet, p = 0.0002 for Resnet18, and p = 0.0005 for Resnet50) 

across all three architectures (see Figure 2b for unique variance and Venn Diagrams 

illustrating both unique and shared variances). The results suggest that since the scene 

parsing task takes into account the spatial arrangement of constituent components in the 

scene, a scene parsing DNN explains behavioral affordance assessments better than a scene 

classification DNN.

In both the above analysis, we selected the RDM of the layer of a model that showed highest 

RSA correlation with a neural/behavioral RDM as the representative RDM for the model but 

this brings the question how well a particular layer represents a model as a whole. To answer 

this question, we selected multiple layer RDMs from each model (scene-classification/ scene 

parsing/ random) and applied variance partitioning to find out how much of the variance 

in neural/behavior RDM is explained uniquely by a given model represented by multiple 

layer RDMs. We report the results in Figure 2c and observe a similar trend as observed in 

Figure 2b using layer RDMs that showed maximum correlation. The results suggest that 

layers that showed maximum correlation with a neural/behavior RDM were deeper in the 

network and therefore have more task-specific representation as opposed to earlier layers 

of the network. The variance explained by earlier layers contributes mostly to the shared 

variance of neural/behavioral RDMs explained by all models together.

Together, these results establish DNNs trained on scene parsing tasks as a promising 

model class for investigating scene-selective cortical regions in the human brain and for 

navigational behavior related to the spatial organization of scene components.
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3.2 State-of-the-art scene parsing models for investigating scene components 
represented in the human brain

Models trained on the scene parsing task offer the possibility to selectively investigate which 

of the scene components (such as wall, ceiling or floor) they encode. But, what is the most 

suitable scene parsing model to compare to the brain? In the model comparison above our 

choice was guided by making models as similar to each other as possible in complexity 

to rule out that observed differences in accounting for brain activity are simply due to 

differences in model complexity. However, for in-depth investigation of scene-selective areas 

using scene-components it is crucial to choose models that detect the scene-components 

with as high accuracy as possible. Therefore, we compared the performance of different 

scene parsing models qualitatively and quantitatively to select the most accurate ones to 

compare with the responses of scene-selective brain areas.

For performance comparison on the scene parsing task, we chose the three models used 

above (Alexnet, Resnet18, and Resnet50), plus three state-of-the-art models of scene 

parsing: HRNetv2, Upernet101, and Resnet101-PPM. The state-of-the-art models achieve 

high performance by merging low-resolution feature maps with high-resolution feature 

maps to generate results in high spatial resolution. We illustrate their parsing performance 

qualitatively by examining their output on an example image (Figure 3). We observe that 

the scene parsing output generated by Resnet50 had smooth and less precise boundaries 

of components while Resnet101-PPM, Upernet101, and HRNetv2 detected components 

accurately with precise boundaries in their outputs.

To quantitatively compare model performance, we evaluated the performance of all models 

on the ADE20k validation dataset. For (mIoU) score of detecting all components for all 

the images from the ADE20k validation dataset. We report mIoU scores of individual 

components that were present in all images in the stimulus set: wall, ceiling, and floor. 

The results are reported in Table 2. They indicate that state-of-the-art models beat 

the complexity-matched models by a margin of 12% accuracy. Therefore, for in-depth 

investigation of representations in scene-selective brain areas we used the top 3 models, i.e., 

HRNetv2, Upernet101, and Resnet101-PPM.

3.3 Scene parsing networks reveal a differential contribution of wall, floor and ceiling 
components to representations in scene-selective regions

We investigated whether the scene components detected by a scene parsing DNN reveal a 

difference in the representational content of scene-selective ROIs. We focused on the three 

scene components - wall, floor, and ceiling - that were present in all the images of the 

stimulus set and compared them with scene-selective ROIs OPA and PPA and behavioral 

model NAM.

We first report the RSA results (Figure 4a) of comparing a scene component RDM with 

OPA, PPA and NAM for three state-of-the-art architectures HRNetv2, Upernet101, and 

Resnet101- PPM. We found that the correlation of the OPA RDM with the floor RDM was 

significantly higher than of the wall (p = 0.02 for HRNetv2, p = 0.05 for Upernet101, p = 

0.0002 for Resnet101- PPM) and ceiling (p = 0.01 for HRNetv2, p = 0.01 for Upernet101, 
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p = 0.0002 for Resnet101- PPM) RDMs, and the correlation of the PPA RDM with the 

wall (p = 0.006 for HRNetv2, p = 0.001 for Upernet101, p = 0.01 for Resnet101- PPM) 

and floor (p = 0.006 for HRNetv2, p = 0.003 for Upernet101, p = 0.001 for Resnet101- 

PPM) RDMs was significantly higher than with the ceiling RDM. NAM which represents 

the navigational paths in the scenes showed the highest correlation with floor RDM which 

was significantly higher than the correlation with wall (p = 0.0002 for HRNetv2, p = 0.0002 

for Upernet101, p = 0.0002 for Resnet101- PPM) and ceiling (p = 0.0002 for HRNetv2, 

p = 0.0002 for Upernet101, 0.0002 for Resnet101- PPM) RDM. The above results held 

consistently across all investigated models. Together, this suggests that OPA and PPA have 

differential representational content with respect to scene components.

To tease out how much variance in OPA and PPA is explained by individual scene 

components, we apply variance partitioning to find the unique and shared variance of OPA 

and PPA RDMs explained by different scene component RDMs. We report the variance 

partitioning results showing unique variance explained by each component along with Venn 

diagram illustrating both unique and shared variances in Figure 4b. We observed that in the 

case of OPA, the floor RDM explains significantly higher variance of OPA RDM uniquely 

compared to wall (p = 0.0002 for HRNetv2, p = 0.002 for Upernet101, p = 0.0008 for 

Resnet101- PPM) and ceiling (p = 0.0002 for HRNetv2, p = 0.002 for Upernet101, p = 

0.0008 for Resnet101- PPM) RDMs. For PPA, the wall RDM explains significantly higher 

variance of PPA RDM uniquely compared to the floor (p = 0.001 for HRNetv2, p = 0.006 

for Upernet101, p = 0.015 for Resnet101- PPM) and ceiling (p = 0.0005 for HRNetv2, 

p = 0.002 for Upernet101, p = 0.007 for Resnet101- PPM) RDMs. And for NAM, the 

floor RDM explains significantly higher variance as compared to the wall (p = 0.0002 for 

HRNetv2, p = 0.0002 for Upernet101, p = 0.0002 for Resnet101- PPM) and ceiling (p = 

0.0002 for HRNetv2, p = 0.05 for Upernet101, p = 0.0002 for Resnet101- PPM) RDMs. 

Consistent with the RSA results above, this result reinforces the differences between OPA 

and PPA in the representation of scene components.

4 Discussion

In this study, we investigated the potential of scene parsing DNNs in predicting neural 

responses in scene-selective brain regions. We found that scene parsing DNNs predicted 

responses in scene-selective ROIs OPA and PPA better than scene-classification DNNs. We 

further showed that scene components detected by scene parsing DNNs revealed differences 

in representational content of OPA and PPA.

Previous work using DNNs to predict neural responses has emphasized the importance 

of the task for which the DNNs were optimized for [Yamins and DiCarlo, 2016, Khaligh

Razavi and Kriegeskorte, 2014, Richards et al., 2019]. We argue that the higher unique 

variance of scene-selective neural responses explained by scene parsing DNNs over scene

classification DNNs is due to such a difference in tasks. The scene classification task 

aims at identifying the category of the scene irrespective of the spatial organization of 

different components and objects in the scene. In contrast, the scene parsing task requires 

pixelwise labeling of the whole image and thus a more comprehensive understanding 

of the scene in terms of how different objects and components are spatially organized 
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within a given scene. Higher variance of the scene selective neural responses explained by 

the scene-parsing DNNs that encode spatial structure suggests that scene-selective neural 

responses also encode spatial structure of the scene entailing the position of different objects 

and components.This view is supported further by evidence from neuroimaging literature 

[Kravitz et al., 2011, Park et al., 2011] showing that scene-selective regions represent the 

spatial layout of scenes. The information about the spatial structure of the scene might be 

required by the brain to plan interaction within the scene, such as navigating to a target, 

reaching objects or performing visual search.

Our in-depth analysis using scene components revealed differential representations in OPA 

and PPA. We observed that OPA had a significantly higher correlation with floor than 

ceiling and wall. A possible explanation for the observed difference could be due to OPA’s 

involvement in detecting navigational affordances [Bonner and Epstein, 2017], for which the 

floor plays a major role, and could explain the high sensitivity of OPA to stimulation in the 

lower visual field [Silson et al., 2015]. In contrast, we found that PPA shows a significantly 

higher correlation with wall as well as floor compared to ceiling. This could explain why 

PPA has sensitivity to the upper visual field [Silson et al., 2015]. A plausible explanation 

could be that detecting the wall is relevant to identifying the type of room, its texture 

[Henriksson et al., 2019, Park and Park, 2017] and landmarks [Troiani et al., 2012].

Previous work has already aimed at determining the nature of OPA representations by 

computational modelling [Bonner and Epstein, 2018] on the same fMRI dataset that was 

used in our study. For this, the authors determined for a DNN trained on scene categorization 

which individual DNN units most correlated with NAM and OPA and visualized those units 

using receptive field mapping and segmentation from Zhou et al. [2014]. The units extracted 

corresponded mostly to uninterrupted portions of floor and wall or the junctions between 

floor and wall. The results align with our findings that floor components explain OPA 

responses uniquely while the wall units could be attributed to shared variance explained by 

floor and wall components in our study. However, arguably segmentation maps extracted 

using the receptive field mapping method are less interpretable as they cannot be directly 

assigned to meaningful entities without additional human annotations [Zhou et al. 2014] or 

by comparing with ground-truth segmentation maps of meaningful entities [Bau et al. 2017]. 

Further, assigning a segmentation map of a unit obtained using receptive field mapping to a 

meaningful entity using ground-truth segmentation maps leads to less accurate segmentation 

maps [Bau et al. 2017] compared to the segmentation from a scene parsing DNN [Xiao 

et al. 2018] trained to segment components using ground truth segmentation maps. Thus, 

we believe our approach using scene-components generated by a scene parsing DNN to 

be particularly well suited to reveal the representational content of scene-selective brain 

regions.

In our analysis investigating navigational affordance behavioral responses, we found that 

scene-parsing DNNs explained significantly higher variance of behavioral RDM than the 

scene classification DNN. A plausible explanation for this finding is that determining 

navigational affordances requires spatial understanding of the scene, including floor and 

obstacle detection. Scene parsing tasks explicitly require such spatial understanding, 

whereas scene classification tasks can be performed without explicitly detecting the spatial 
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organization of objects and components in the scene. Further, the layers that show highest 

correlation with NAM in scene classification models are later convolutional layers which 

preserve spatial information of the image suggesting that spatial information is required to 

explain NAM. In the comparison of NAM with scene components we found that NAM is 

best explained by the floor component, while other components (wall, ceiling) explained 

insignificant unique variance. The above finding further reinforces our argument that scene

parsing DNNs explain NAM responses better due to the task requirement of finding spatial 

layout of objects and components. While in this study, we focused on showing the advantage 

of scene-parsing DNNs over scene-classification DNNs in explaining scene-selective neural 

and navigational affordance-related behavioral responses, our results do not rule out scene

classification DNNs as useful models to explain semantic behavioral responses related to 

scene category or semantic similarity.

A limitation of our study is that the differences revealed between OPA and PPA is based on 

the analysis of only 3 scene components. This is due to the limitations of the stimulus set, 

which consistently had only 3 components that were present in all 50 images. Future work 

should exploit the full richness of scene components provided by DNNs trained on scene 

parsing. For this a stimulus set would have to be designed that contains many components 

in all images of the stimulus set. Another possible direction would be to use stimuli with 

annotations and use these annotations directly to compare with the fMRI responses. The 

advantage of using a scene-parsing DNN over human annotations is that once the DNN is 

trained on scene-parsing, the components can be extracted for a new set of stimuli with 

zero cost as opposed to annotations, where human effort is required to annotate every new 

stimulus set.

It is crucial to point out that our findings could be influenced by the task participants 

performed while inside the scanner. The participants were required to identify whether the 

presented image was a bathroom or not. Most of the studies do not look into the influence 

of tasks in the fMRI studies and the opinion on whether the difference in tasks results in 

different representations is divided. For instance, some studies [Duncan, 2010; Woolgar et 

al., 2011] suggest that the parietal and prefrontal cortex are involved in representing task 

context while the scene processing is attributed to the occipitotemporal cortex. Recently, 

some studies [Harel et al., 2014; Erez and Duncan, 2015; Lowe et al., 2016; Bracci et al., 

2017; Bugatus et al., 2017; Vaziri-Pashkam and Xu, 2017; Hebart et al. 2018] have shown 

evidence of task influence in the occipitotemporal cortex. Therefore, a promising future 

direction of research might be to find out whether our findings are replicated or not on 

another fMRI study where participants performed a different task.

To summarize, our findings provided evidence supporting the use of DNNs trained on the 

scene parsing task as a promising tool to predict and understand activity in the visual brain. 

We believe that this approach has the potential to be applied widely, providing interpretable 

results that give insights into how the human visual cortex represents the visual world.
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Figure 1. Outline of our approach.
a) In the scene classification task, the model outputs the probability of an image belonging 

to a particular class. In the scene parsing task, the model outputs a spatial map for each 

component. The pixel value of the spatial map corresponding to a component represents the 

probability of that pixel belonging to that component. b) We use DNNs trained on scene 

parsing to extract responses corresponding to individual scene components. c) RSA: We 

first compute RDMs for a DNN model and a brain ROI by computing pairwise distance 

(D) between DNN (di,dj)/fMRI(fi,fj) responses corresponding to each pair (i,j) of images 

in the stimulus set. We next compute the correlation of a DNN RDM with fMRI RDM 

to determine the similarity between the brain and the DNN. d) Variance Partitioning: We 

conduct three multiple linear regressions with DNN RDMs as the independent variables and 

fMRI RDM as the dependent variable to estimate unique and shared variance of fMRI RDM 

explained by DNN RDMs.
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Figure 2. Model comparison in accounting for OPA and PPA as well as behavior.
a) RSA of scene-selective areas PPA, OPA, and behavioral model NAM with scene parsing, 

and scene-classification, and random models (best-explaining layer), and b) variance of 

scene-selective areas PPA, OPA, and behavioral model NAM explained uniquely by 

scene parsing, and scene-classification, and random models (best-explaining layer) for the 

architecture Alexnet (left), Resnet18 (middle), Resnet50 (right). Venn diagram on top of 

each bar plot illustrates the unique and shared variance of ROIs and behavior explained by 

multiple models together. c) Variance of scene-selective areas PPA, OPA, and behavioral 

model NAM explained uniquely by scene parsing, scene-classification and random models 

(multiple layers) for the architecture Alexnet (left), Resnet18 (middle), Resnet50 (right). 
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Venn diagram on top of each bar plot illustrates the unique and shared variance of ROIs 

and behavior explained by multiple models together. The asterisk at the top indicates the 

significance (p<0.05) calculated by permuting the conditions 5000 times.
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Figure 3. Qualitative comparison of scene parsing output for different models.
Input image (top left) and corresponding scene parsing output of the different models 

investigated in this work.
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Figure 4. Scene components reveal the differences in representational content of OPA, PPA and 
behavioral model NAM.
a) Results of RSA for OPA, PPA and NAM with scene components of wall floor and ceiling 

for 3 state of the art models on scene parsing task HRnetv2 (left), Upernet101 (middle), 

Resnet101 (right); b) Unique variance accounted for in OPA, PPA and NAM by using 

components from HRnetv2 (left), Upernet101 (middle), Resnet101 (right) models. Venn 

diagram on top of each bar plot illustrates the unique and shared variance of ROIs and 

behavior explained by multiple components together. The asterisk at the top indicates the 

significance (p<0.05) calculated by permuting the conditions 5000 times, FDR corrected 

with a threshold equal to 0.05.
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Table 1
Correlation value and layer information of the layer that showed the highest correlation 
with a particular brain area or behavior for all the models considered (AlexNet, ResNet18 
and ResNet50).

Task Models OPA PPA NAM

Scene class. Alexnet 0.395(fc7) 0.369(fc7) 0.122(conv5)

Resnet18 0.391(fc) 0.397(fc) 0.114(block4)

Resnet50 0.364(fc) 0.365(fc) 0.111(block4)

Scene parsing Alexnet 0.393(d2) 0.393(d1) 0.162(conv5)

Resnet18 0.426(d1) 0.415(d1) 0.198(block4)

Resnet50 0.415(d1) 0.418(d1) 0.165(d2)

Random Alexnet 0.169 (fc7) 0.167(fc6) 0.015(fc7)

Resnet18 0.194(fc) 0.176(fc) 0.041(block4)

Resnet50 0.152(fc) 0.142(fc) 0.042(block4)

J Cogn Neurosci. Author manuscript; available in PMC 2021 November 23.

48



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Dwivedi et al. Page 24

Table 2
Scene parsing performance on ADE20k validation set. The table shows the accuracy of 
detecting selected components along with overall accuracy for different scene parsing 
models in decreasing order.

Model Wall Ceiling Floor Overall accuracy

HRNetv2 0.7538 0.8278 0.7811 0.4320

Upernet101 0.7503 0.8265 0.7772 0.4276

Resnet101-PPM 0.7453 0.8195 0.7659 0.4257

Resnet50 0.6422 0.7356 0.6642 0.3020

Resnet18 0.6223 0.6997 0.6627 0.2741

AlexNet 0.5857 0.6810 0.6105 0.2306

J Cogn Neurosci. Author manuscript; available in PMC 2021 November 23.

49



1.2 Unveiling functions of the visual cortex using

task-specific deep neural networks

50



RESEARCH ARTICLE

Unveiling functions of the visual cortex using

task-specific deep neural networks

Kshitij DwivediID
1,2*, Michael F. BonnerID

3, Radoslaw Martin CichyID
1‡, Gemma Roig2‡*

1 Department of Education and Psychology, Freie Universität Berlin, Germany, 2 Department of Computer

Science, Goethe University, Frankfurt am Main, Germany, 3 Department of Cognitive Science, Johns

Hopkins University, Baltimore, Maryland, United States of America

‡ jointly directed work.

* dwivedi@em.uni-frankfurt.de (KD); roig@cs.uni-frankfurt.de (GR)

Abstract

The human visual cortex enables visual perception through a cascade of hierarchical com-

putations in cortical regions with distinct functionalities. Here, we introduce an AI-driven

approach to discover the functional mapping of the visual cortex. We related human brain

responses to scene images measured with functional MRI (fMRI) systematically to a diverse

set of deep neural networks (DNNs) optimized to perform different scene perception tasks.

We found a structured mapping between DNN tasks and brain regions along the ventral and

dorsal visual streams. Low-level visual tasks mapped onto early brain regions, 3-dimen-

sional scene perception tasks mapped onto the dorsal stream, and semantic tasks mapped

onto the ventral stream. This mapping was of high fidelity, with more than 60% of the

explainable variance in nine key regions being explained. Together, our results provide a

novel functional mapping of the human visual cortex and demonstrate the power of the

computational approach.

Author summary

Human visual perception is a complex cognitive feat known to be mediated by distinct

cortical regions of the brain. However, the exact function of these regions remains

unknown, and thus it remains unclear how those regions together orchestrate visual per-

ception. Here, we apply an AI-driven brain mapping approach to reveal visual brain func-

tion. This approach integrates multiple artificial deep neural networks trained on a

diverse set of functions with functional recordings of the whole human brain. Our results

reveal a systematic tiling of visual cortex by mapping regions to particular functions of the

deep networks. Together this constitutes a comprehensive account of the functions of the

distinct cortical regions of the brain that mediate human visual perception.

1. Introduction

The human visual system transforms incoming light into meaningful representations that

underlie perception and guide behavior. This transformation is believed to take place through
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a cascade of hierarchical processes implemented in a set of brain regions along the so-called

ventral and dorsal visual streams [1]. Each of these regions has been stipulated to fulfill a dis-

tinct sub-function in enabling perception [2]. However, discovering the exact nature of these

functions and providing computational models that implement them has proven challenging.

Recently, computational modeling using deep neural networks (DNNs) has emerged as a

promising approach to model, and predict neural responses in visual regions [3–7]. These

studies have provided a first functional mapping of the visual brain. However, the resulting

account of visual cortex functions has remained incomplete. This is so because previous stud-

ies either explain the function of a single or few candidate regions by investigating many

DNNs or explain many brain regions comparing it to a single DNN trained on one task only

(usually object categorization). In contrast, for a systematic and comprehensive picture of

human brain function that does justice to the richness of the functions that each of its subcom-

ponents implements, DNNs trained on multiple tasks, i.e., functions, must be related and com-

pared in their predictive power across the whole cortex.

Aiming for this systematic and comprehensive picture for the visual cortex we here relate

brain responses across the whole visual brain to a wide set of DNNs, in which each DNN is

optimized for a different visual task, and hence, performs a different function.

To reliably reveal the functions of brain regions using DNNs performing different func-

tions, we need to ensure that only function and no other crucial factor differs between the

DNNs. The parameters learned by a DNN depend on a few fundamental factors, namely, its

architecture, training dataset, learning mechanism, and the function the DNN was optimized

for. Therefore, in this study, we select a set of DNNs [8] that have an identical encoder archi-

tecture and are trained using the same learning mechanism and the same set of training

images. Thus, the parameters learned by the encoder of the selected DNNs differ only due to

their different functions.

We generate a functional map of the visual cortex by comparing the fMRI responses to

scene images [9] with the activations of multiple DNNs optimized on different tasks [8] related

to scene perception, e.g., scene classification, depth estimation, and edge detection. Our key

result is that different regions in the brain are better explained by DNNs performing different

tasks, suggesting different computational roles in these regions. In particular, we find that

early regions of the visual cortex are better explained by DNNs performing low-level vision

tasks, such as edge detection. Regions in the dorsal stream are better explained by DNNs per-

forming tasks related to 3-dimensional (3D) scene perception, such as occlusion detection and

surface normal prediction. Regions in the ventral stream are best explained by DNNs perform-

ing tasks related to semantics, such as scene classification. Importantly, the top-3 best predict-

ing DNNs explain more than 60% of the explainable variance in nine ventral-temporal and

dorsal-lateral visual regions, demonstrating the quantitative power and potential of our AI-

driven approach for discovering fine-grained functional maps of the human brain.

2. Results

2.1 Functional map of visual cortex using multiple DNNs

Our primary goal is to generate a functional map of the visual brain in terms of the functions

each of the regions implements. Our approach is to relate brain responses to activations of

DNNs performing different functions. For this, we used an fMRI dataset recorded while

human subjects (N = 16) viewed indoor scenes [9] and performed a categorization task; and a

set of 18 DNNs [8] optimized to perform 18 different functions related to visual perception

(some of the tasks can be visualized here: https://sites.google.com/view/dnn2brainfunction/

home#h.u0nqne179ys2) plus an additional DNN with random weights as a baseline. The
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different DNNs’ functions were associated with indoor scene perception, covering a broad

range of tasks from low-level visual tasks, (e.g., edge detection) to 3-dimensional visual percep-

tion tasks (e.g., surface normals prediction) to categorical tasks (e.g., scene classification). Each

DNN consisted of an encoder-decoder architecture, where the encoder had an identical archi-

tecture across tasks, and the decoder varied depending on the task. To ensure that the differ-

ences in variance of fMRI responses explained by different DNNs from our set were not due to

differences in architecture, we selected the activations from the last two layers of the identical

encoder architecture for all DNNs.

The layer selection was based on an analysis finding the most task-specific layers of the

encoder (see S1 Text and S2 Fig). Furthermore, all DNNs were optimized using the same set of

training images, and the same backpropagation algorithm for learning. Hence, any differences

in our findings across DNNs cannot be attributed to the training data statistics, architecture,

or learning algorithm, but to the task for which each DNN was optimized.

To compare fMRI responses with DNNs, we first extracted fMRI responses in a spatially

delimited portion of the brain for all images in the stimulus set (Fig 1A). This could be either a

group of spatially contiguous voxels for searchlight analysis [10–12] or voxels confined to a

particular brain region as defined by a brain atlas for a region-of-interest (ROI) analysis. Equiv-

alently, we extracted activations from the encoders of each DNN for the same stimulus set.

We then used Representational Similarity Analysis (RSA) [13] to compare brain activations

with DNN activations. RSA defines a similarity space as an abstraction of the incommensura-

ble multivariate spaces of the brain and DNN activation patterns. This similarity space is

defined by pairwise distances between the activation patterns of the same source space, either

fMRI responses from a brain region or DNN activations, where responses can be directly

related. For this, we compared all combinations of stimulus-specific activation patterns in each

source space (i.e., DNN activations, fMRI activations). Then, the results for each source space

were noted in a two-dimensional matrix, called representational dissimilarity matrices

(RDMs). The rows and columns of RDMs represent the conditions compared. To relate fMRI

and DNNs in this RDM-based similarity space we performed multiple linear regression pre-

dicting fMRI RDM from DNN RDMs of the last two encoder layers. We obtained the adjusted

coefficient of determination R2 (referred to as R2 in the subsequent text) from the regression

to quantify the similarity between the fMRI responses and the DNN (Fig 1B). We performed

this analysis for each of the 18 DNNs investigated, which we group into 2D, 3D, or semantic

DNNs when those are optimized for 2D, 3D, or semantic tasks, respectively, and an additional

DNN with random weights as a baseline. The tasks were categorized into three groups (2D,

3D, and semantic) based on different levels of indoor scene perception and were verified in

previous works using transfer performance using one DNN as the initialization to other target

tasks [8] and representational similarity between DNNs [14]. We finally used the obtained

DNN rankings based on R2 to identify the DNNs with the highest R2 for fMRI responses in

that brain region (Fig 1C top). To visualize the results, we color-coded the brain region by

color indexing the DNN showing the highest R2 in that brain region (Fig 1C bottom).

To generate a functional map across the whole visual cortex we performed a searchlight

analysis [11,12]. In detail, we obtain the R2-based DNN rankings on the local activation pat-

terns around a given voxel, as described above. We conducted the above analysis for each

voxel, resulting in a spatially unbiased functional map.

We observed that different regions of the visual cortex showed the highest similarity with

different DNNs. Importantly, the pattern with which different DNNs predicted brain activity

best was not random but spatially organized: 2D DNNs (in shades of blue in Fig 1D; interactive

map visualization available here: https://sites.google.com/view/dnn2brainfunction/home#h.

ub1chq1k42n6) show a higher similarity with early visual regions, 3D DNNs (in shades of
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green) show a higher similarity with dorsal regions, while semantic DNNs (in shades of

magenta) show a higher similarity with ventral regions and some dorsal regions.

Together, the results of our AI-driven mapping procedure suggest that early visual regions

perform functions related to low-level vision, dorsal regions perform functions related to both

3D and semantic perception, and ventral regions perform functions related to semantic

perception.

Fig 1. Methods and results of functional mapping of the visual cortex by task-specific DNNs. A) Schema of DNN-fMRI

comparison. As a first step, we extracted DNN activations from the last two layers (block 4 and output) of the encoders, denoted as

b41(xi), o1(xi) for DNN1 and b4n(xi), on(xi) for DNNn in the figure, from n DNNs and the fMRI response of a region f(xi) for the ith

image xi in the stimulus set. We repeated the above procedure for all the images in the stimulus set. B) We used the extracted

activations to compute the RDMs, two for the two DNN layers and one for the brain region. Each RDM contains the pairwise

dissimilarities of the DNN activations or brain region activations, respectively. We then used multiple linear regression to obtain an

R1
2 score to quantify the similarity between DNN1 and the brain region. We repeated the same procedure using other DNNs to

obtain corresponding R2 C) We obtained a ranking based on R2 to identify the DNNs with the highest R2 for fMRI responses in that

brain region. To visualize the results, we color-coded the brain region by the color indexing the DNN showing the highest R2 in that

brain region. D) Functional map of the visual brain generated through a spatially unbiased searchlight procedure, comparing 18

DNNs optimized for different tasks and a randomly initialized DNN as a baseline. We show the results for the voxels with significant

noise ceiling and R2 with DNN (p<0.05, permutation test with 10,000 iterations, FDR-corrected). An interactive visualization of the

functional brain map is available in this weblink (https://sites.google.com/view/dnn2brainfunction/home#h.ub1chq1k42n6).

https://doi.org/10.1371/journal.pcbi.1009267.g001
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2.2 Nature and predictive power of the functional map

Using the searchlight results from Fig 1D, we identified the DNN that showed the highest R2

for each searchlight. This poses two crucial questions that require further investigation for an

in-depth understanding of the functions of brain regions. Firstly, does a single DNN promi-

nently predict a region’s response (one DNN-to-one region) or a group of DNNs together pre-

dict its response (many DNNs-to-one region)? A one-to-one mapping between DNN and a

region would suggest a single functional role while a many-to-one mapping would suggest

multiple functional roles of the brain region under investigation. Secondly, given that the

DNNs considered in this study predict fMRI responses, how well do they predict on a quanti-

tative scale? A high prediction accuracy would suggest that the functional mapping obtained

using our analysis is accurate, while a low prediction accuracy would suggest that DNNs con-

sidered in this study are not suitable to find the function of that brain region. Although it is

possible to answer the above questions for each voxel, for conciseness we consider 25 regions

of interest (ROIs) tiling the visual cortex from a brain atlas [15].

To determine how accurately DNNs predict fMRI responses, we calculated the lower and

upper bound of the noise ceiling for each ROI. We included ROIs (15 out of 25) with a lower

noise ceiling above 0.1 and discarded other ROIs due to low signal-to-noise ratio. We show

the locations of the investigated ROIs in the visual cortex in Fig 2A.

For each ROI we used RSA to compare fMRI responses (transformed into fMRI RDMs)

with activations of all 18 DNNs plus a randomly initialized DNN as a baseline (transformed

into DNN RDMs). This yielded one R2 value for each DNN per region (see S3 Fig). We then

selected the top-3 DNNs showing the highest R2 and performed a variance partitioning analy-

sis [16]. We used the top-3 DNN RDMs as the independent variable and the ROI RDM as the

dependent variable to find out how much variance of ROI responses is explained uniquely by

each of these DNNs while considered together with the other two DNNs. Using the variance

partitioning analysis (method illustrated in S1 Fig) we were able to infer the amount of unique

and shared variance between different predictors (DNN RDMs) by comparing the explained

variance (R2) of a DNN used alone with the explained variance when it was used with other

DNNs. Variance partitioning analysis (Fig 2B) using the top-3 DNNs revealed the individual

DNNs that explained the most variance uniquely for a given ROI along with the unique and

shared variance explained by other DNNs. The DNN that detects edges explained significantly

higher variance (p<0.05, permutation test, FDR corrected across DNNs) in ROIs in early and

mid-level visual regions (V1v, V1d, V2v, V2d, V3v, and hV4) uniquely than the other two

DNNs, suggesting a function related to edge detection. Semantic segmentation DNN explained

significantly higher unique variance in ventral ROIs VO1 and VO2, suggesting a function

related to the perceptual grouping of objects. 3D DNNs (3D Keypoints, 2.5D Segmentation,

3D edges, curvature) were best predicting DNNs for dorsal ROIs V3d and V3b suggesting

their role in 3D scene understanding. A combination of 3D and semantic DNNs were best pre-

dicting DNNs for other ROIs (PHC1, PHC2, LO1, LO2, and V3a). It is crucial to note that if

two DNNs from the same task group are in the top-3 best predicting DNNs for an ROI, the

unique variance of ROI RDM explained by DNNs in the same group will generally be lower

than by DNN not in the group. We have observed that DNNs in the same task group show a

higher correlation with each other as compared to DNNs in other task groups [14]. A higher

correlation between the DNNs of the same task group leads to an increase in shared variance

and reduces the unique variance of the ROI RDM explained by within task group DNNs. For

instance, we can observe this in PHC2 (also in PHC1, V3a), where two semantic DNNs explain

less unique variance than a 3D DNN. Therefore, in such cases, we restrain from interpreting

that one type of DNN is significantly better than others.

PLOS COMPUTATIONAL BIOLOGY Unveiling functions of the visual cortex using task-specific deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009267 August 13, 2021 5 / 22
55



Fig 2. Nature and predictive power of the functional map. A) Cortical overlay showing locations of selected cortical regions from the

probabilistic atlas used. B) Absolute total variance (R2) explained in 15 ROIs by using the top-3 DNNs together. The Venn diagram for

each ROI illustrates the unique and shared variance of the ROI responses explained by the combination of the top-3 DNNs. The bar plot

shows the unique variance of each ROI explained by each of the top-3 DNNs individually. The asterisk denotes the significance of unique

variance and the difference in unique variance (p<0.05, permutation test with 10,000 iterations, FDR-corrected across DNNs). The error

bars show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 iterations). C) Variance of each ROI

explained by top-3 best predicting DNNs (cross validated across subjects and conditions) indicated in blue bars compared with lower

and upper bound of noise ceiling indicated by shaded gray region. The error bars show the 95% confidence interval calculated across

N = 16 subjects. All the R2 values are statistically significant (p<0.05, two-sided t-test, FDR-corrected across ROIs).

https://doi.org/10.1371/journal.pcbi.1009267.g002
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Overall, we observed a many-to-one relationship between function and region for multiple

regions, i.e., multiple DNNs explained jointly a particular brain region. In early and mid-level

regions (V1v, V1d, V2v, V3v) the most predictive functions were related to low-level vision

(2D edges, denoising, and 2D segmentation). In dorsal regions V3d and V3b, the most predic-

tive functions were related to 3D scene understanding. In later ventral and dorsal regions

(V2d, hV4, VO1, VO2, PHC1, PHC2, LO1, LO2, and V3a) we observed a mixed mapping of

2D, 3D, and semantic functions suggesting multiple functional roles of these ROIs. The

predictability of a region’s responses by multiple DNNs demonstrates that a visual region in

the brain has representations well suited for distinct functions. A plausible conjecture of the

above findings is that these regions might be performing a function related to the best predict-

ing DNNs but is not present in the set of DNNs investigated in this study.

To determine the accuracy of the functional mapping of the above ROIs, we calculated the

percentage of the explainable variance explained by the top-3 best predicting DNNs. We calcu-

lated the explained variance by best predicting DNNs using cross-validation across subjects

(N-fold) and conditions (two-fold). As we use multiple models together for multiple linear

regression, we need to cross-validate using different sets of RDMs for fitting and evaluating

the fit of the regression. Here, we perform cross-validation across subjects by fitting the regres-

sion on one-subject-left-out subject-averaged RDMs on half of the images in the stimulus set

and evaluating on the left-out single subject RDM on the other half of the images. The above

method is a stricter evaluation criterion as compared to the commonly used one without

cross-validation (See S5 Fig). We compared the variance explained by the top-3 DNNs with

the lower estimate of the noise ceiling which is an estimate of the explainable variance. We

found that variance explained in nine ROIs (V1v, V1d, V2v, V3v, VO1, PHC1, LO2, LO1,

V3a) is higher than 60% of the lower bound of noise ceiling (Fig 2C, absolute R2 =

0.085 ± 0.046). In absolute terms, the minimum, median, and maximum cross-validated R2

values across the 15 ROIs were 0.014 (PHC2), 0.044 (VO1), and 0.27 (V1v) which are compa-

rable to related studies [17] performing evaluation in a similar manner. This shows that the

DNNs selected in this study predict fMRI responses well and therefore are suitable for map-

ping the functions of the investigated ROIs.

In sum, we demonstrated that in many regions of the visual cortex, DNNs trained on differ-

ent functions predicted activity. This suggests that these ROIs have multiple functional roles.

We further showed quantitatively that more than 60% of the explainable variance in nine

visual ROIs is explained by the set of DNNs we used, demonstrating that the selected DNNs

are well suited to investigate the functional roles of these ROIs.

2.3 Functional map of visual cortex through 2D, 3D, and semantic tasks

In the previous section, we observed a pattern qualitatively suggesting different functional

roles of early (2D), dorsal (3D and semantic), and ventral (semantic) regions in the visual cor-

tex. To quantitatively assess this, we investigated the relation of brain responses and DNNs not

at the level of single tasks, but task groups (2D, 3D, and semantic), where DNNs belonging to a

task group showed a higher correlation with other DNNs in the group than with DNNs in

other task groups (see S1 Text).

We averaged the RDMs of DNNs in each task group to obtain aggregate 2D, 3D, and

semantic RDMs. Averaging the RDMs based on task groups reduced the number of DNN

comparisons from 18 to 3. This allowed us to perform variance partitioning analysis to com-

pare fMRI and DNN RDMs, which would be impractical with 18 single DNNs due to a large

number of comparisons and computational complexity. When used in this way, variance
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partitioning analysis reveals whether and where in the brain one task group explained brain

responses significantly better than other task groups.

We first performed a searchlight analysis to identify where in the cortex one task group

explains significantly higher variance uniquely than the other task groups. We selected the

grouped DNN RDM that explains the highest variance in a given region uniquely to create a

functional map of the task groups in the visual cortex (Fig 3A). Here, due to the reduced num-

ber of comparisons, we can clearly observe distinctions where one grouped DNN explains

fMRI responses better than the other grouped DNNs (p<0.05, permutation test with 10,000

Fig 3. Functional mapping of the visual cortex with respect to 2D, 3D, and semantic tasks. A) Functional map of the

visual cortex showing the regions where unique variance explained by one DNN group (2D, 3D, or semantic) is significantly

higher than the variance explained by the other two DNN groups (p<0.05, permutation test with 10,000 iterations, FDR-

corrected). We show the results for the voxels with a significant noise ceiling that show significantly higher unique variance

for one DNN group than other two DNN groups (p<0.05, permutation test with 10,000 iterations, FDR-corrected across

DNNs and searchlights). The functional brain map can be visualized in this weblink (https://sites.google.com/view/

dnn2brainfunction/home#h.xi402x2hr0p3). B) Absolute variance (R2) explained in 15 ROIs by using 3 DNN RDMs

averaged across task groups (2D, 3D, or semantic). The Venn diagram for each ROI illustrates the unique and shared

variance of the ROI responses explained by the combination of 3 task groups. The bar plot shows the unique variance of

each ROI explained by each task group individually. The asterisk denotes whether the unique variance or the difference in

unique variance was significant (p<0.05, permutation test with 10,000 iterations, FDR-corrected across DNNs). The error

bars show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 iterations).

https://doi.org/10.1371/journal.pcbi.1009267.g003

PLOS COMPUTATIONAL BIOLOGY Unveiling functions of the visual cortex using task-specific deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009267 August 13, 2021 8 / 22
58



iterations, FDR corrected across DNNs and searchlights). The resulting functional map

(Fig 3A; interactive visualization available in this link: https://sites.google.com/view/

dnn2brainfunction/home#h.xi402x2hr0p3) is different from the functional map in Fig 1D in

two ways. First, in the functional map here we highlight the searchlight where one DNN group

explained significantly higher variance uniquely than the other 2 DNN groups. In the func-

tional map of Fig 1D, we highlighted the DNN that explained the highest variance of a search-

light without performing any statistical analysis whether the selected DNN was significantly

better than the second best DNN or not due to the higher number of comparisons. Second,

here we compared functions using groups of DNNs (3 functions: 2D, 3D and semantic),

whereas in the previous analysis we compared functions using single DNNs (18 functions).

The comparison using groups of DNNs allows us to put our findings in context with previous

neuroimaging findings that are typically reported at this level.

We observed that the 2D DNN RDM explained responses in the early visual cortex, seman-

tic DNN RDM explained responses in the ventral visual stream, and some parts in the right

hemisphere of the dorsal visual stream, and 3D DNN RDM explained responses in the left

hemisphere of the dorsal visual stream. The above findings quantitatively reinforce our quali-

tative findings from the previous section that early visual regions perform functions related to

low-level vision, dorsal regions perform functions related to both 3D and semantic perception,

and ventral regions perform functions related to semantic perception.

While the map of the brain reveals the most likely function of a given region, to find out

whether a region can have multiple functional roles we need to visualize the variance explained

by other grouped DNN RDMs along with the best predicting DNN RDM. To achieve that, we

performed a variance partitioning analysis using 3 grouped DNN RDMs as the independent

variable and 15 ROIs in the ventral-temporal and the dorsal-ventral stream as the dependent

variable. The results in Fig 3B show the unique and shared variance explained by group-level

DNN RDMs (2D, 3D, and semantic) for all the 15 ROIs.

From Fig 3B we observed that the responses in early ROIs (V1v, V1d, V2v, V3v, hV4) are

explained significantly higher (p<0.05, permutation test with 10,000 iterations, FDR corrected

across DNNs) by 2D DNN RDM uniquely, while responses in later ventral-temporal ROIs

(VO1, VO2, PHC1, and PHC2) are explained by semantic DNN RDM uniquely. In dorsal-lat-

eral ROIs (V3a, V3d) responses are explained by 3D RDM uniquely. In LO1, LO2, and V3b

3D and semantic DNN RDMs explained significant variance uniquely while in V2d all 2D, 3D,

and semantic DNN RDMs explained significant unique variance. It is crucial to note that for

the ROI analysis here we use grouped DNN RDMs as compared to Fig 2B where we selected

top-3 single DNNs that showed the highest R2 with a given ROI. The comparison with

grouped DNN RDMs provides a holistic view of the functional role of ROIs which might be

missed if one of the DNNs that is related to the functional role of a ROI is not in the top-3

DNNs (as analyzed in Fig 2B). For instance, in Fig 3B the results suggest both 3D and semantic

functional roles of V3b which is not evident from Fig 2B where the top 3-DNNs were all opti-

mized on 3D tasks.

Together, we found that the functional role of the early visual cortex is related to low-level

visual tasks (2D), the dorsal stream is related to tasks involved in 3-dimensional perception

and categorical understanding of the scene (3D and semantic), and in the ventral stream is

related to the categorical understanding of the scene (semantic).

2.4 Functional roles of scene-selective regions

In the previous sections, we focused on discovering functions of regions anatomically defined

by an atlas. Since the stimulus set used to record fMRI responses consisted of indoor scenes, in
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this section we investigate functional differences in functionally localized scene-selective

regions. We here focus on two major scene-selective ROIs: occipital place area (OPA) and

parahippocampal place area (PPA), putting results into context with the early visual cortex

(EVC) as an informative contrast region involved in basic visual processing. The analysis fol-

lowed the general rationale as used before.

We first investigated the functional differences in these regions by performing variance par-

titioning analysis using top-3 DNNs (see R2 based ranking of all DNNs in S4 Fig) that best

explained a given ROIs’ responses (Fig 4A). We found that the DNN that detects edges

explained significantly higher variance (p<0.05, permutation test, FDR-corrected) in EVC

uniquely than the other two DNNs, suggesting a function related to edge detection. 3D DNNs

(3D Keypoints, 2.5D Segmentation, 3D edges) were best predicting DNNs for OPA suggesting

its role in 3D scene understanding. A combination of semantic (semantic segmentation, scene

classification) and 3D (3D keypoints) DNNs were best predicting DNNs for PPA suggesting

its role in both semantic and 3D scene understanding.

We then investigated the functional differences by performing variance partitioning analy-

sis using aggregated 2D, 3D, and semantic DNN RDMs obtained by averaging the individual

DNN RDMs in each task group (Fig 4B). We found that for EVC and OPA results are highly

consistent with top-3 DNN analysis showing a prominent unique variance explained by the

Fig 4. Functional roles of localized ROIs. A) Absolute total variance (R2) explained in functionally localized ROIs by using the top-3 DNNs

together. The Venn diagram for each ROI illustrates the unique and shared variance of the ROI responses explained by the combination of the

top-3 DNNs. The bar plot shows the unique variance of each ROI explained by each of the top-3 DNNs individually. The asterisk denotes the

significance of unique variance and the difference in unique variance (p<0.05, permutation test with 10,000 iterations, FDR-corrected across

DNNs). The error bars show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 iterations). B) Absolute total

variance (R2) explained in functionally localized ROIs by using 3 DNN RDMs averaged across task groups (2D, 3D, or semantic). The Venn

diagram for each ROI illustrates the unique and shared variance of the ROI responses explained by the combination of 3 DNN task groups.

The bar plot shows the unique variance of each ROI explained by each task group individually. The asterisk denotes whether the unique

variance or the difference in unique variance was significant (p<0.05, permutation test with 10,000 iterations, FDR-corrected across DNNs).

The error bars show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 iterations).

https://doi.org/10.1371/journal.pcbi.1009267.g004
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2D DNN RDM in EVC and the 3D DNN RDM in OPA. Interestingly, in PPA we find that the

semantic DNN RDM shows the highest unique variance with no significant unique variance

explained by the 3D DNN RDM. The insignificant unique variance explained by the 3D DNN

RDM is potentially due to averaging the DNN RDMs of all 3D DNNs (high ranked as well as

low ranked) which may lead to diminishing the contribution of an individual high ranked 3D

DNN RDM (e.g. 3D keypoints that was in top-3 DNNs for PPA). Overall, we find converging

evidence that OPA is mainly related to tasks involved in 3-dimensional perception (3D), and

PPA is mainly related to semantic (categorical) understanding of the scene.

3. Discussion

In this study, we harvested the potential of discovering functions of the brain from comparison

to DNNs by investigating a large set of DNNs optimized to perform a set of diverse visual

tasks. We found a systematic mapping between cortical regions and function: different cortical

regions were explained by DNNs performing different functions. Importantly, the selected

DNNs explained 60% of the explainable variance in nine out of 15 visual ROIs investigated,

demonstrating the accuracy of the AI-driven functional mapping obtained using our analysis.

Our study provides a systematic and comprehensive picture of human brain functions

using DNNs trained on different tasks. Previous studies [3–7,17–24] have compared model

performance in explaining brain activity, but were limited to a few preselected regions and

models, or had a different goal (comparing task structure) [25]. Using the same fMRI dataset

as used in this study, a previous study [18] showed that representation in scene-selective ROIs

consists of both location and category information using scene-parsing DNNs. We go beyond

these efforts by comparing fMRI responses across the whole visual brain using a larger set of

DNNs, providing a comprehensive account of the function of human visual brain regions.

We obtained the functional mapping of different regions in the visual cortex on both indi-

vidual (e.g., 2D edges, scene classification, surface normals, etc.) and group (2D, 3D, semantic)

levels of visual functions. We discuss the novel insights gained at the level of individual func-

tions that inform about the fine-grained functional role of cortical regions.

First, we consider 2D DNNs, where the denoising DNN explained significant unique vari-

ance in V1v, V1d, V2v, V2d, V3v, and hV4. The denoising task requires the DNN to recon-

struct an unperturbed input image from slightly perturbed (e.g., adding Gaussian noise in the

current case) input image that encourages learning representations robust to slight perturba-

tions and limited invariance. This suggests that these ROIs might be generating a scene repre-

sentation robust to high frequency noise.

When considering 3D DNNs, the 3D Keypoint and the 2.5d segment were among the top-3

best predicting DNNs in multiple ROIs. The 3D Keypoints DNN explained significant unique

variance in V3d, PHC1, PHC2, LO2, LO1, V3a, V3b, OPA, and PPA. The 3D Keypoints task

requires the DNN to identify locally important regions of the input image based on object

boundary information and surface stability. This suggests that the ROIs in which 3D Keypoints

DNN explained significant variance may be identifying locally important regions in a scene.

The identification of locally important regions might be relevant to selectively attend to these

key regions to achieve a behavioral goal e.g., searching for an object. The 2.5d segment DNN

explained significant unique variance in V3d, LO2, LO1, V3b, V3a, and OPA. The 2.5d seg-

ment task requires the DNN to segment images into perceptually similar groups based on

color and scene geometry (depth and surface normals). This suggests that the ROIs in which

2.5d segment DNN explained significant variance may be grouping regions in the images

based on color and geometry cues even without any knowledge of the categorical information.
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Grouping regions based on geometry could be relevant to behavioral goals such as reaching

for objects or identifying obstacles.

Among semantic DNNs, the semantic segmentation DNN explained significant unique var-

iance in VO1, VO2, PHC1, PHC2, V3a, and PPA. The semantic segmentation task requires

the DNN to segment objects present in the image based on categories. This suggests that the

ROIs in which semantic segmentation DNN explained significant variance may be grouping

regions in the image based on categorical information.

Other DNNs (2D edges, scene classification, and object classification) that showed signifi-

cant unique variance in ROIs provided functional insights mostly consistent with the previous

studies [26–30]. Overall, the key DNNs (denoising, 3D keypoints, 2.5D segment, and semantic

segmentation) that explained significant variance in multiple ROI responses uniquely promote

further investigation by generating novel hypotheses about the functions of these ROIs. Future

experiments can test these hypotheses in detail in dedicated experiments.

The functional mapping obtained using grouped DNNs is complementary to that at the

individual level and helps us put functional mapping obtained here in context with previous

literature. We found that early visual regions (V1v, V1d, V2v) have a functional role related to

low-level 2D visual tasks which is consistent with previous literature investigating these regions

[26–28]. In dorsal-ventral ROIs (V3a, V3d, LO1, and LO2) we found functional roles related

to 3D and semantic tasks converging with evidence from previous studies [31–35]. Similarly,

the prominent semantic functional role of later ventral-temporal ROIs (VO1, VO2, PHC1,

and PHC2) found in this study converges with findings in previous literature [29–30]. In

scene-selective ROIs, we found a semantic functional role for PPA and 3D functional role for

OPA respectively. Our study extends the findings of a previous study [23] relating OPA and

PPA to 3D models by differentiating between OPA and PPA functions through a much

broader set of models. To summarize, the functional mapping using individual DNNs opti-

mized to perform different functions revealed new functional insights for higher ROIs in the

visual cortex while at the same time functional mapping using grouped DNNs showed highly

converging evidence with previous independent studies investigating these ROIs.

Beyond clarifying the functional roles of multiple ROIs, our approach also identifies quanti-

tatively highly accurate prediction models of these ROIs. We found that the DNNs explained

60% of the explainable variance in nine out of 15 ROIs. Our findings, thus, make advances

towards finding models that generate new hypotheses about potential functions of brain

regions as well as predicting brain responses well [21,36–38].

A major challenge in meaningfully comparing two or more DNNs is to vary only a single

factor of interest while controlling the factors that may lead to updates of DNN parameters. In

this study, we address this challenge by selecting a set of DNNs trained on the same set of train-

ing images using the same learning algorithm, with the same encoder architecture, while being

optimized for different tasks. Our results, thus, complement previous studies that focused on

other factors influencing the learning of DNN parameters such as architecture [20,39,40], and

the learning mechanism [41–43]. Our approach accelerates the divide-and-conquer strategy of

investigating human brain function by systematically and carefully manipulating the DNNs

used to map the brain in their fundamental parameters one by one [21,44–46]. Our high-

throughput exploration of potential computational functions was initially inspired by Marr’s

computational level of analysis [47] which aims at finding out what the goal of the computa-

tion carried out by a brain region is. While Marr’s approach invites the expectation of a one-

to-one mapping between regions and goals, we found evidence for multiple functional roles

(3D + semantic) using DNNs in some ROIs (e.g. LO1, LO2, PHC1, PHC2). This indicates a

many-to-one mapping [48] between functions and brain regions. We believe such a systematic
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approach that finds the functional roles of multiple brain regions provides a starting point for

a further in-depth empirical inquiry into functions of the investigated brain regions.

Our study is related to a group of studies [49–52] applying DNNs in different ways to

achieve a similar goal of mapping functions of brain regions using DNNs. Some studies [49–

51] applied optimization algorithms (genetic algorithm or activation maximization) to find

images that maximally activate a given neuron’s or group of neurons’ response. Another

related study [52] proposes Neural Information Flow (NIF) to investigate functions of brain

regions where they train a DNN with the objective function to predict brain activity while pre-

serving a one-to-one correspondence between DNN layers and biological neural populations.

While sharing the overall goal to discover functions of brain regions, investigating DNN func-

tions allows investigation in terms of which computational goal a given brain region is best

aligned with. With new computer vision datasets [53] investigating a diverse set of tasks rele-

vant to human behavioral goals [54,55] our approach opens new avenues to investigate brain

functions.

A limitation of our study is that our findings are restricted to functions related to scene per-

ception. Thus, the functions we discovered for non-scene regions correspond to their func-

tions when humans are perceiving scenes. In contrast, our study does not characterize the

functions of these regions when humans perceive non-scene categories such as objects, faces,

or bodies. We limited our study to scene perception because there are only a few image data-

sets [8,56] that have annotations corresponding to a diverse set of tasks, thus, allowing DNNs

to be optimized independently on these tasks. The Taskonomy dataset [8] with annotations of

over 20 diverse scene perception tasks and pretrained DNNs available on these tasks along

with the availability of an fMRI dataset related to scene perception [9], therefore, provided a

unique opportunity. However, the approach we presented in this study is not limited to scene

perception. It can in principle be extended to more complex settings such as video understand-

ing, active visual perception, and even outside the vision modality, given an adequate set of

DNNs and brain data. While in this study we considered DNNs that were trained indepen-

dently, future studies might consider investigating multitask models [57,58] which are trained

to perform a wide range of functions using a single DNN. Multitask modeling has the potential

to model the entire visual cortex using a single model as compared to several independent

models used in this study. Another potential limitation is that our findings are based on a sin-

gle fMRI and image dataset, so it is not clear how well they would generalize to a broader sam-

ple of images. Given the explosive growth of the deep learning field [59] and the ever

increasing availability of open brain imaging data sets [60,61] we see a furtive ground for the

application of our approach in the future.

Beyond providing theoretical insight with high predictive power, our approach can also

guide future research. In particular, the observed mapping between cortical region and func-

tion can serve as a quantitative baseline and starting point for an in-depth investigation

focused on single cortical regions. Finally, the functional hierarchy of the visual cortex from

our results can inspire the design of efficient multi-task artificial visual systems that perform

multiple functions similar to the human visual cortex.

4. Materials and methods

4.1 fMRI data

We used fMRI data from a previously published study [9]. The fMRI data were collected from

16 healthy subjects (8 females, mean age 29.4 years, SD = 4.8). The subjects were scanned on a

Siemens 3.0T Prisma scanner using a 64-channel head coil. Structural T1-weighted images

were acquired using an MPRAGE protocol (TR = 2,200 ms, TE = 4.67 ms, flip angle = 8˚,
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matrix size = 192 × 256 × 160, voxel size = 0.9 × 0.9 × 1 mm). Functional T2�-weighted images

were acquired using a multi-band acquisition sequence (TR = 2,000 ms for main experimental

scans and 3,000 ms for localizer scans, TE = 25 ms, flip angle = 70˚, multiband factor = 3,

matrix size = 96 × 96 × 81, voxel size = 2 × 2 × 2 mm).

During the fMRI scan, subjects performed a category detection task while viewing images

of indoor scenes. On each trial, an image was presented on the screen at a visual angle of

~17.1˚ x 12.9˚ for 1.5 s followed by a 2.5s interstimulus interval. Subjects had to respond by

pressing a button indicating whether the presented image was a bathroom or not while main-

taining fixation on a cross. The stimulus set consisted of 50 images of indoor scenes (no bath-

rooms), and 12 control images (five bathroom images, and seven non-bathroom images).

fMRI data were preprocessed using SPM12. For each participant, the functional images were

realigned to the first image followed by co-registration to the structural image. Voxelwise

responses to 50 experimental conditions (50 indoor images excluding control images) were

estimated using a general linear model.

4.2 Deep neural networks

For this study, we selected 18 DNNs trained on the Taskonomy [8] dataset optimized on 18

different tasks covering different aspects of indoor scene understanding. The Taskonomy data-

set is a large-scale indoor image dataset consisting of annotations for 18 single image tasks,

thus, allowing optimization of DNNs on 18 different tasks using the same set of training

images. We briefly describe the objective functions and DNN architectures below. For a

detailed description, we refer the reader to Zamir et al. [8].

4.2.1 Tasks and objective functions of the DNNs. The Taskonomy dataset consists of

annotations for tasks that require pixel-level information such as edge detection, surface nor-

mal estimation, semantic segmentation, etc. as well as high-level semantic information such as

object/scene classification probabilities. The tasks can be broadly categorized into 4 groups:

relating to low-level visual information (2D), the three-dimensional layout of the scene (3D),

high-level object and scene categorical information (semantic), and low-dimensional geometry

information(geometrical). The above task categorization was obtained by analyzing the rela-

tionship between the transfer learning performance on a given task using the models pre-

trained on other tasks as the source tasks. The 2D tasks were edge detection, keypoint

detection, 2D segmentation, inpainting, denoising, and colorization; 3D tasks were surface

normals, 2.5D segmentation, occlusion edges, depth estimation, curvature estimation, and

reshading; semantic tasks were object/scene classification and semantic segmentation, and

low-dimensional geometric tasks were room layout estimation and vanishing point. A detailed

description of all the tasks and annotations is provided in http://taskonomy.stanford.edu/

taskonomy_supp_CVPR2018.pdf. In this study, we did not consider low dimensional geomet-

ric tasks as they did not fall into converging clusters according to RSA and transfer learning as

in the case of 2D, 3D, and semantics tasks. To perform a given task, DNN’s parameters were

optimized using an objective function that minimizes the loss between the DNN prediction

and corresponding ground truth annotations for that task. All the DNNs’ parameters were

optimized using the corresponding objective function, on the same set of training images. Due

to the use of the same set of training images the learned DNN parameters vary only due to the

objective function and not the difference in training dataset statistics. A complete list of objec-

tive functions used to optimize for each task is provided in this link (https://github.com/

StanfordVL/taskonomy/tree/master/taskbank). We downloaded the pretrained models using

this link (https://github.com/StanfordVL/taskonomy/tree/master/taskbank), where further

details can be found.
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4.2.2 Network architectures. The DNN architecture for each task consists of an encoder

and a decoder. The encoder architecture is consistent across all the tasks. The encoder archi-

tecture is a modified ResNet-50 [62] without average pooling and convolutions with stride 2

replaced by convolutions with stride 1. ResNet-50 is a 50-layer DNN with shortcut connections

between layers at different depths. Consistency of encoder architecture allows us to use the

outputs of the ResNet-50 encoder as the task-specific representation for a particular objective

function. For all the analysis in this study, we selected the last two layers of the encoder as the

task-specific representation of the DNN. Our selection criteria was based on an analysis (see

S1 Text and S2 Fig) that shows task-specific representation is present in those layers as com-

pared to earlier layers. In this way, we ensure that the difference in representations is due to

the functions these DNNs were optimized for and not due to the difference in architecture or

training dataset. The decoder architecture is task-dependent. For tasks that require pixel-level

prediction, the decoder is a 15-layer fully convolutional model consisting of 5 convolutional

layers followed by alternating convolution and transposed convolutional layers. For tasks,

which require low dimensional output, the decoder consists of 2–3 fully connected layers.

4.3 Representational Similarity Analysis (RSA)

To compare the fMRI responses with DNN activations we first need to map both the modali-

ties in a common representational space and then by comparing the resulting mappings we

can quantify the similarity between fMRI and DNNs. We mapped the fMRI responses and

DNN activations to corresponding representational dissimilarity matrices (RDMs) by comput-

ing pairwise distances between each pair of conditions. We used the variance of upper triangu-

lar fMRI RDM (R2) explained by DNN RDMs as the measure to quantify the similarity

between fMRI responses and DNN activations. To calculate R2, we assigned DNN RDMs

(RDMs of the last two layers of the encoder) as the independent variables and assigned fMRI

RDM as the dependent variable. Then a multiple linear regression was fitted to predict fMRI

RDM from the weighted linear combination of DNN RDMs. We evaluated the fit by estimat-

ing the variance explained (R2). We describe how we mapped from fMRI responses and DNN

activations to corresponding RDMs in detail below.

Taskonomy DNN RDMs. We selected the last two layers of the Resnet-50 encoder as the

task-specific representation of DNNs optimized on each task. For a given DNN layer, we com-

puted the Pearson’s distance between the activations for each pair of conditions resulting in a

condition x condition RDM for each layer. This resulted in a single RDM corresponding to

each DNN layer. We followed the same procedure to create RDMs corresponding to other lay-

ers of the network. We averaged the DNN RDMs across task clusters (2D, 3D, and semantic)

to create 2D, 3D, and semantic RDMs.

Probabilistic ROI RDMs. We downloaded probabilistic ROIs [15] from the link (http://

scholar.princeton.edu/sites/default/files/napl/files/probatlas_v4.zip). We extracted activations

of the probabilistic ROIs by applying the ROI masks on the whole brain response pattern for

each condition, resulting in ROI-specific responses for each condition for each subject. Then

for each ROI, we computed the Pearson’s distance between the voxel response patterns for

each pair of conditions resulting in a RDM (with rows and columns equal to the number of

conditions) independently for each subject. To compare the variance of ROI RDM explained

by DNN RDMs with the explainable variance we used independent subject RDMs. For all the

other analyses, we averaged the RDMs across the subjects resulting in a single RDM for each

ROI due to a higher signal to noise ratio in subject averaged RDMs.

Searchlight RDMs. We used Brainiak toolbox code [63] to extract the searchlight blocks for

each condition in each subject. The searchlight block was a cube with radius = 1 and edge
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size = 2. For each searchlight block, we computed the Pearson’s distance between the voxel

response patterns for each pair of conditions resulting in a RDM of size condition times condi-

tion independently for each subject. We then averaged the RDMs across the subjects resulting

in a single RDM for each searchlight block.

4.4 Variance partitioning

Using RSA to compare multiple DNNs we do not obtain a complete picture of how each

model is contributing to explaining the fMRI responses when considered in conjunction with

other DNNs. Therefore, we determined the unique and shared contribution of individual

DNN RDMs in explaining the fMRI ROI RDMs when considered with the other DNN RDMs

using variance partitioning.

We performed two variance partitioning analyses on probabilistic ROIs: first using the top-

3 DNNs that best explained a given ROI’s responses and second using RDMs averaged accord-

ing to task type (2D, 3D, and semantic). For the first analysis, we assigned a fMRI ROI RDM as

the dependent variable (referred to as predictand) and assigned RDMs corresponding to the

top-3 DNNs as the independent variables (referred to as predictors). For the second analysis,

we assigned an fMRI ROI (searchlight) RDM as the dependent variable (referred to as predic-

tand). We then assigned three DNN RDMs (2D, 3D, and semantic) as the independent vari-

ables (referred to as predictors).

For both variance partitioning analyses, we performed seven multiple regression analyses:

one with all three independent variables as predictors, three with different pairs of two inde-

pendent variables as the predictors, and three with individual independent variables as the pre-

dictors. Then, by comparing the explained variance (R2) of a model used alone with the

explained variance when it was used with other models, we can infer the amount of unique

and shared variance between different predictors (see S1 Fig).

4.5 Searchlight analysis

We perform two different searchlight analyses in this study: first to find out if different regions

in the brain are better explained by DNNs optimized for different tasks and second to find the

pattern by taking the averaged representation DNNs from three task types (2D, 3D, and

semantic). In the first searchlight analysis, we applied RSA to compute the variance of each

searchlight block RDM explained by 19 DNN RDMs (18 Taskonomy DNNs and one randomly

initialized as a baseline) independently. We then selected the DNN that explained the highest

variance as the preference for the given searchlight block. In the second searchlight analysis,

we applied variance partitioning with 2D, 3D, and semantic DNN RDMs as the independent

variables, and each searchlight block RDM as the dependent variable. For each searchlight

block, we selected the task type whose RDMs explained the highest variance uniquely as the

function for that block. We used the nilearn (https://nilearn.github.io/index.html) library to

plot and visualize the searchlight results.

4.6 Comparison of explained with explainable variance

To relate the variance of fMRI responses explained by a DNN to the total variance to be

explained given the noisy nature of the fMRI data, we first calculated the lower and upper

bounds of the noise ceiling as a measure of explainable variance and then compared cross-vali-

dated explained variance of each ROI by top-3 best predicting DNNs. In detail, the lower noise

ceiling was estimated by fitting each individual subject RDMs as predictand with mean subject

RDM of other subjects (N-1) as the predictor and calculating the R2. The resulting subject-spe-

cific R2 values were averaged across the N subjects. The upper noise ceiling was estimated in a
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similar fashion while using mean subject RDMs of all the subjects (N) as the predictor. To cal-

culate variance explained by the best predicting DNNs we fit the regression using cross valida-

tion in 2N folds (2 folds across conditions, N folds across subjects) where the regression was fit

using the subject averaged RDMs of N-1 subjects and the fit was evaluated using R2 on the left

out subject and left out conditions. Finally, we then calculated the mean R2 across 2N folds

and divided it by the lower bound of the noise ceiling to obtain the ratio of the explainable var-

iance explained by the DNNs.

4.7 Statistical testing

We applied nonparametric statistical tests to assess the statistical significance in a similar man-

ner to a previous related study [64]. We assessed the significance of the R2 through a permuta-

tion test by permuting the conditions randomly 10,000 times in either the neural ROI/

searchlight RDM or the DNN RDM. From the distribution obtained using these permutations,

we calculated p-values as one-sided percentiles. We calculated the standard errors of these cor-

relations by randomly resampling the conditions in the RDMs for 10,000 iterations. We used

re-sampling without replacement by subsampling 90% (45 out of 50 conditions) of the condi-

tions in the RDMs. We used an equivalent procedure for testing the statistical significance of

the correlation difference and unique variance difference between different models.

For ROI analysis, we corrected the p-values for multiple comparisons by applying FDR cor-

rection with a threshold equal to 0.05. For searchlight analyses, we applied FDR correction to

correct for the number of DNNs compared as well as to correct for the number of searchlights

that had a significant noise ceiling.

We applied a two-sided t-test to assess the statistical significance of the cross-validated

explained variance across N subjects. We corrected the p-values for multiple comparisons by

applying FDR correction.

Supporting information

S1 Fig. Variance partitioning overview. Given a set of multiple independent variables and

dependent variables, multiple linear regression results in R-squared (R2) that represents the

proportion of the variance for a dependent variable that’s explained by independent variables

in a regression model. To find how 3 DNN RDMs together explain the variance of a given

fMRI RDM we perform 7 multiple regression and illustrate unique and shared variance

explained by models through a Venn diagram.

(TIFF)

S2 Fig. Selecting task-specific DNN representation to compare with fMRI data. A) Spear-

man’s correlation of all DNN RDMs at a given layer of the encoder with other DNN RDMs

computed at the same layer. We report the mean pairwise correlation of all 18 DNNs at differ-

ent layers of the encoder. B) Spearman’s correlation of all DNN RDMs at a given layer of the

encoder with a randomly initialized model with the same architecture computed at the same

layer. We report the mean correlation of all 18 DNNs with the randomly initialized DNN at

different layers of the encoder. C) Spearman’s correlation of all DNN RDMs at a given layer of

the encoder with deeper layers (block4 and encoder output) of 2D DNNs. We report the mean

correlation of the key layers of all 18 DNNs with deeper layers (block4 and encoder output) of

2D DNNs. D) Spearman’s correlation between layers at different depths for DNNs corre-

sponding to different task types. We report the mean correlation between different layers aver-

aged across different DNNs of the same task type. E) Effect of adding all the key layers on

unique and shared variance of fMRI RDMs from different ROIs as compared to selecting only

PLOS COMPUTATIONAL BIOLOGY Unveiling functions of the visual cortex using task-specific deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009267 August 13, 2021 17 / 22
67



task-specific layers for variance partitioning analysis. We report the change in variance

explained (variance change) for 7 variance partitions when all key layers were used for analysis

as compared to selecting task-specific layers.

(TIFF)

S3 Fig. R2 ranking for 18 Taskonomy DNNs and random baseline in anatomical ROIs. The

bar plot shows the absolute total variance of each ROI RDM explained by task-specific layer

RDMs of a given DNN. The asterisk denotes the significance of total variance (p<0.05, permu-

tation test with 10,000 iterations, FDR-corrected across DNNs). The error bars show the stan-

dard deviation calculated by bootstrapping 90% of the conditions (10,000 iterations).

(TIFF)

S4 Fig. R2 ranking for 18 Taskonomy DNNs and random baseline in functionally localized

ROIs. The bar plot shows the absolute total variance of each ROI RDM explained by task-spe-

cific layer RDMs of a given DNN. The asterisk denotes the significance of total variance

(p<0.05, permutation test with 10,000 iterations, FDR-corrected across DNNs). The error bars

show the standard deviation calculated by bootstrapping 90% of the conditions (10,000 itera-

tions).

(TIFF)

S5 Fig. Effect of cross validation on variance explained (R2). A) Variance of each ROI

explained by top-3 best predicting DNNs compared for different cross-validation settings

(blue bars: no cross validation; orange bars: cross validation across subjects; green bars: cross

validation across subjects and stimuli). The error bars show the 95% confidence interval calcu-

lated across N = 16 subjects. All the R2 values are statistically significant (p<0.05, two-sided t-

test, FDR-corrected across ROIs) B) Variance of each ROI explained by 1000 randomly gener-

ated RDMs compared for different cross-validation settings (blue bars: no cross validation;

orange bars: cross validation across subjects; green bars: cross validation across subjects and

stimuli). The error bars show the 95% confidence interval calculated across N = 16 subjects.

(TIFF)

S1 Text. Selecting task-specific DNN representations.
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neural system identification with neural information flow. PLOS Computational Biology. 2021 Feb 4; 17

(2):e1008558. https://doi.org/10.1371/journal.pcbi.1008558 PMID: 33539366

53. Weihs L, Salvador J, Kotar K, Jain U, Zeng KH, Mottaghi R, Kembhavi A. et.al Allenact: A framework for

embodied ai research. arXiv preprint arXiv:2008.12760. 2020 Aug 28.

54. Batra D, Gokaslan A, Kembhavi A, Maksymets O, Mottaghi R, Savva M, Toshev A, Wijmans E. et.al

Objectnav revisited: On evaluation of embodied agents navigating to objects. arXiv preprint

arXiv:2006.13171. 2020 Jun 23.

55. Weihs L, Kembhavi A, Ehsani K, Pratt SM, Han W, Herrasti A, Kolve E, Schwenk D, Mottaghi R, Farhadi

A. et.al Learning generalizable visual representations via interactive gameplay. arXiv preprint

arXiv:1912.08195. 2019 Dec 17.

56. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL. et.al Microsoft coco:

Common objects in context. InEuropean conference on computer vision 2014 Sep 6 (pp. 740–755).

Springer, Cham.

57. Scholte HS, Losch MM, Ramakrishnan K, de Haan EH, Bohte SM. Visual pathways from the perspec-

tive of cost functions and multi-task deep neural networks. cortex. 2018 Jan 1; 98:249–61. https://doi.

org/10.1016/j.cortex.2017.09.019 PMID: 29150140

58. Kokkinos I. Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level

vision using diverse datasets and limited memory. InProceedings of the IEEE conference on computer

vision and pattern recognition 2017 (pp. 6129–6138).

59. LeCun Y, Bengio Y, Hinton G. Deep learning. nature. 2015 May; 521(7553):436–44. https://doi.org/10.

1038/nature14539 PMID: 26017442

60. Poldrack RA, Gorgolewski KJ. Making big data open: data sharing in neuroimaging. Nature neurosci-

ence. 2014 Nov; 17(11):1510–7. https://doi.org/10.1038/nn.3818 PMID: 25349916

61. Allen EJ, St-Yves G, Wu Y, Breedlove JL, Dowdle LT, Caron B, Pestilli F, Charest I, Hutchinson JB,

Naselaris T, Kay K. et.al A massive 7T fMRI dataset to bridge cognitive and computational neurosci-

ence. bioRxiv. 2021 Jan 1.

62. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. InProceedings of the IEEE

conference on computer vision and pattern recognition 2016 (pp. 770–778).

PLOS COMPUTATIONAL BIOLOGY Unveiling functions of the visual cortex using task-specific deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009267 August 13, 2021 21 / 22
71



63. Kumar M, Ellis CT, Lu Q, Zhang H, CapotăM, Willke TL, Ramadge PJ, Turk-Browne NB, Norman KA

et.al. BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. PLoS computa-

tional biology. 2020 Jan 15; 16(1):e1007549. https://doi.org/10.1371/journal.pcbi.1007549 PMID:

31940340

64. Bonner MF, Epstein RA. Computational mechanisms underlying cortical responses to the affordance

properties of visual scenes. PLoS computational biology. 2018 Apr 23; 14(4):e1006111. https://doi.org/

10.1371/journal.pcbi.1006111 PMID: 29684011

PLOS COMPUTATIONAL BIOLOGY Unveiling functions of the visual cortex using task-specific deep neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009267 August 13, 2021 22 / 22
72



2 Understanding representations in

the deep neural networks

2.1 Representation Similarity Analysis for Efficient

Task taxonomy and Transfer Learning

73



Representation Similarity Analysis
for Efficient Task taxonomy & Transfer Learning

Kshitij Dwivedi Gemma Roig
Singapore University of Technology and Design

kshitij dwivedi@mymail.sutd.edu.sg, gemma roig@sutd.edu.sg

Abstract

Transfer learning is widely used in deep neural network
models when there are few labeled examples available. The
common approach is to take a pre-trained network in a sim-
ilar task and finetune the model parameters. This is usu-
ally done blindly without a pre-selection from a set of pre-
trained models, or by finetuning a set of models trained
on different tasks and selecting the best performing one
by cross-validation. We address this problem by propos-
ing an approach to assess the relationship between visual
tasks and their task-specific models. Our method uses Rep-
resentation Similarity Analysis (RSA), which is commonly
used to find a correlation between neuronal responses from
brain data and models. With RSA we obtain a similar-
ity score among tasks by computing correlations between
models trained on different tasks. Our method is efficient
as it requires only pre-trained models, and a few images
with no further training. We demonstrate the effectiveness
and efficiency of our method for generating task taxonomy
on Taskonomy dataset. We next evaluate the relationship
of RSA with the transfer learning performance on Taskon-
omy tasks and a new task: Pascal VOC semantic segmen-
tation. Our results reveal that models trained on tasks with
higher similarity score show higher transfer learning per-
formance. Surprisingly, the best transfer learning result for
Pascal VOC semantic segmentation is not obtained from the
pre-trained model on semantic segmentation, probably due
to the domain differences, and our method successfully se-
lects the high performing models.

1. Introduction

For an artificial agent to perform multiple tasks and learn
in a life-long manner, it should be able to re-utilize infor-
mation acquired in previously learned tasks and transfer it
to learn new tasks from a few examples. A solution to the
aforementioned setting is to use transfer learning. Transfer

a)

b)

Figure 1. Aims of this paper: a) Deploy a strategy for model
selection in transfer learning by b) Finding relationship between
visual tasks.

learning allows to leverage representations learned from one
task to facilitate learning of other tasks, even when labeled
data is expensive or difficult to obtain. [30, 3, 23, 10].

With the recent success of deep neural networks (DNN),
these have become the ipso facto models for almost all vi-
sual tasks [20, 32, 14, 35, 13, 34]. The deployment of
DNN has become possible mostly due to a large amount
of available labeled data, as well as advances in comput-
ing resources [20, 32, 14]. The need for data is a limita-
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tion that researchers have overcome by introducing transfer
learning techniques. Transfer learning in DNN commonly
consists of taking a pre-trained model in a similar task or
domain, and finetune the parameters to the new task. For
instance, [30, 10] used a pre-trained model on ImageNet
and finetuned it for object detection on Pascal VOC.

With a large number of pre-trained models (Figure 1a)
available, trained on a variety of vision tasks, it is not trivial
how to select a pre-trained representation suitable for trans-
fer learning. To devise a model selection strategy, it is cru-
cial to understand the underlying structure and relationship
between tasks (Figure 1b). If the relationship between dif-
ferent tasks is known, the model selection can be performed
by evaluating similarity rankings of different tasks with a
new task, using available pre-trained models.

In a recent work, [34] modeled the relationship between
tasks with a fully computational approach. They also in-
troduce a dataset called Taskonomy, which contains labels
of different visual tasks, ranging from object classification
to edge occlusions detection. In this paper, we use the term
Taskonomy for both the approach and the dataset from [34].

Taskonomy approach successfully computes the rela-
tionship between tasks. Yet, the relationship between a
new task with an existing set of tasks is calculated with the
transfer learning performance, which is tedious and com-
putationally expensive. The performance on the new task
is referred to transfer learning performance. To obtain the
relationship of all previous tasks with the new task, Taskon-
omy approach also needs to compute the transfer learning
performance on all the previous tasks using a model trained
on the new task as a source. This defeats the purpose of not
training a model from scratch for the new task, and all the
procedure is computationally demanding as it is repeated
for all the existing set of specific-task models. In this work,
we address the above limitations by providing an alternative
method to find the relationship between tasks.

We propose a novel approach to obtain task relationships
using representation similarity analysis (RSA). In compu-
tational neuroscience, RSA is widely used as a tool to
compare brain responses with computational and behav-
ioral models. Motivated by the success of RSA in neuro-
science [18, 4, 16, 1, 5, 25, 11], we investigate the applica-
tion of RSA in obtaining task similarities (Figure 1b) and in
transfer learning (Figure 1a). Our approach relies on the as-
sumption that the representations of the models that perform
a related task will be more similar as compared to tasks that
are not related, which we validate in our analysis.

In our approach, we compute the similarity scores us-
ing pre-trained task-specific models and a few examples.
Thus, our RSA method only requires the representations of
a few randomly selected images for all the tasks to compute
the similarity, and we do not need to obtain transfer learn-
ing performance by finetuning on previous tasks’ models.

Further, we show in our results on Taskonomy dataset that
task ranking similarity is independent of model size. Us-
ing small models trained with few samples for the existing
tasks show similar results as the high performing models
trained with all images. This allows to save computational
time and memory, as well as it is more scalable to new tasks
compared to Taskonomy approach.

We first validate the transfer learning applicability of our
method on Taskonomy dataset. We find that for 16 out
17 Taskonomy tasks, the best model selected using RSA
is in top-5 according to transfer learning performance. We
also report results on Pascal VOC semantic segmentation
task by analyzing the relationship of RSA similarity scores
and the transfer learning performance. Our results show a
strong relationship between RSA similarity score and trans-
fer learning performance. We note that semantic segmen-
tation model from Taskonomy dataset showed a lower sim-
ilarity score than most of the 3D and semantic tasks, and
a similar trend was observed in transfer learning perfor-
mance. Our results suggest that in domain-shift, a model
trained on the same task may not be the best option for
transfer learning, and using our similarity score one can find
a better model to achieve better performance. Using our
RSA similarity scores method, we can select models with
better transfer learning performance.

2. Related Works

Here, we discuss the works that are most closely related
to the aim of this paper, namely transfer learning in DNNs
and Taskonomy. Then, we briefly introduce the computa-
tional neuroscience literature that motivated our work.

2.1. Transfer Learning

The usual transfer learning approach in deep neural net-
works (DNNs) is to take a model pre-trained on a large
dataset with annotations as an initialization of a part of
the model. Then, some or all of the parameters are fine-
tuned with backpropagation for a new task. The finetun-
ing is performed because for most of the tasks there are in-
sufficient annotations to train a DNN from scratch, which
would lead to overfitting. Most of the works in the litera-
ture generally initialize the model parameters from a model
pre-trained on Imagenet [6] dataset for image classifica-
tion [20, 32, 14, 31, 22]. For example, [30] use Imagenet
initialized models for object detection on Pascal VOC, [23]
use Imagenet initialized models for semantic segmentation.

It has been noted in multiple works [24, 33, 28], that
the initialization plays a significant role in performance in
transfer learning. Hence, a strategy is required to select
models for initialization. Our proposed similarity-based
ranking approach offers a solution to this problem, and as
we discuss in the rest of the paper, tackles the limitations
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from Taskonomy [34], which is one of the first attempts to
tackle the model selection for transfer learning in DNN.

2.2. Taskonomy

Our work is most closely related to Taskonomy [34],
where the aim is to find the underlying task structure
by computing the transfer performance among tasks. To
achieve this goal, they create a dataset of indoor scene im-
ages with annotations available for 26 vision tasks. The
task set, which they refer as task dictionary, covers com-
mon 2D, 3D, and semantics computer vision tasks. Then,
task-specific independent models are trained in a fully su-
pervised manner for each task in the task dictionary. They
obtain a task similarity score by comparing the transfer
learning performance from each of the task-specific models
and computing an affinity matrix using a function of trans-
fer learning performance. In this paper, instead of trans-
fer learning performance, we rely on the similarity of the
feature maps of the pre-trained models. Thus, we avoid
additional training on pre-trained models to obtain transfer
learning performance, saving computational time and mem-
ory, and still obtaining a meaningful relation with transfer
learning performance as we will see in the results section.

2.3. Similarity of computational models and brain
responses

In computational neuroscience, representation similarity
analysis (RSA) is widely used to compare a computational
or behavioral model with the brain responses. In [18], RSA
is used to compute similarities between brain responses in
different regions of visual cortex with categorical models
and computational vision models. In [16], the authors use
several unsupervised and supervised vision models to show
that supervised models explain IT cortical area better than
unsupervised models, and [25] uses RSA to correlate the
dynamics of the visual system with deep neural networks.
We note that as the approach can be used to assess the sim-
ilarity between a computational model and brain data, the
approach can also be utilized to assess similarities between
two computational models. RSA has been rarely used in the
pure computational domain. Only in [26] the RSA was in-
troduced as a loss function for knowledge distillation [15],
and in [27], the consistency of RSA correlations with dif-
ferent random initialization seeds within the same model
trained on CIFAR-10 [19] dataset is explored. However,
RSA is still unexplored in comparing DNNs for assessing
similarity among them. Our work introduces, for the first
time, the use of RSA as a similarity measure to find the
relationship between tasks, and we believe it opens a new
research line for the deep learning and computer vision.

We use RSA similarity measure for two applications
namely task taxonomy and transfer learning. Our approach
is not limited to only these two applications and can be

Figure 2. Representation Similarity Analysis (RSA): a) Repre-
sentation dissimilarity matrices (RDMs) are generated by comput-
ing the pairwise dissimilarity (1 - Pearson’s correlation) of each
image pair in a subset of selected images. b) Similarity score:
Spearman’s correlation (rs) (denoted with •) of the low triangu-
lar RDMs of the two models is used as the similarity score. Here
DNN1 and DNN2 refer to the models trained on task 1 and 2 re-
spectively.

further applied in other computer vision problems. For in-
stance, in multi-task learning [17, 13, 7, 21, 8] RSA could
be used for deciding different branching out locations for
different tasks, depending on their similarity with the repre-
sentations at different depth of the shared root.

3. Representation Similarity Analysis (RSA)
Representation Similarity Analysis (RSA) [18], illus-

trated in Figure 2, is a widely used data-analytical frame-
work in the field of computational neuroscience to quanti-
tatively relate the brain activity measurement with compu-
tational and behavioral models. In RSA, a computational
model and brain activity measurements are related by com-
paring representation-activity dissimilarity matrices. The
dissimilarity matrices are obtained by comparing the pair-
wise dissimilarity of activity/representation associated with
each pair of conditions.

In this work, we introduce RSA as a tool to quantify the
relationship between DNNs and its application in transfer
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learning for model selection. We explain the steps to obtain
the dissimilarity matrix for a computational model such as
DNN in the following paragraph.

Representation Dissimilarity Matrix (RDM) We first
select a subset of images as conditions for dissimilarity
computation. For a given DNN, we then obtain the rep-
resentation of each image by performing a forward pass
through the model. For each pair of conditions (images),
we compute a dissimilarity score 1−ρ, where ρ is the Pear-
son’s correlation coefficient. The RDM for this subset of
conditions is then populated by the dissimilarity scores for
each pair of conditions, see Figure 2a.

In our method, the RDMs computed for DNNs are used
for obtaining the similarity between two computer vision
tasks. Note that by using RDMs, the representation for
different tasks can be of different length. The similarity
is computed with the Spearman’s correlation (rs) between
the upper or lower triangular part of the RDMs of the two
DNNs. This is: rs = 1 − 6

∑
d2
i

n(n2−1) , where di is the differ-
ence between the ranks of ith elements of the lower triangu-
lar part of the two RDMs in Figure 2b, and n are the number
of elements in the lower triangular part of the RDM.

The Spearman’s correlation provides a quantitative mea-
sure of similarity between the task the DNNs were opti-
mized for (Figure 2b). We explore the application of this
similarity score in obtaining the relationship between com-
puter vision tasks [34], and in transfer learning.

4. RSA for Task Taxonomy and
Transfer Learning

In this section, we introduce our RSA approach for get-
ting a task taxonomy of computer vision tasks, as well as
its application in transfer learning. We show the effec-
tiveness of RSA for obtaining task similarity by answering
three questions: 1) we investigate if we can group tasks into
meaningful clusters based on task type using RSA on pre-
trained task-specific models; 2) we analyze if the perfor-
mance is important for computing task similarity or we can
use a smaller subset of data with smaller suboptimal mod-
els; and 3) we investigate if the similarity we obtain using
RSA is related to transfer learning.

4.1. Is task similarity related to task type?

We validate our hypothesis that tasks similar according
to RSA are grouped into clusters according to task type,
for instance, 2D, 3D, semantic. To do so, we randomly se-
lect 500 images from the Taskonomy dataset, and select 201

tasks from the task dictionary. Then, we compute the RDMs
of the pre-trained models for each of the 20 tasks using the

1we exclude Jigsaw task as it is unrelated to all other tasks

task-specific representations of the 500 sampled images, as
described in section 3. The task-specific representations are
obtained by doing a forward pass on the pre-trained task-
specific DNN models. With the resulting RDMs per task,
we compute a pairwise correlation of RDMs of each task
with the 19 other tasks to get a 20 × 20 task similarity ma-
trix (Figure 3a). We perform a hierarchical clustering from
the similarity matrix, to visualize if the clustering groups the
tasks according to the task type or some other criteria. We
report the results in the experiments section and compare it
with the clustering obtained with the Taskonomy approach.

We note that RSA is symmetric, as compared to the
transfer performance based metric in Taskonomy [34]. Yet,
symmetry does not affect task similarity rankings, as the po-
sitions of the tasks in the rankings are computed by relative
comparison, and therefore, independent of symmetry.

4.2. Does ranking using RSA depends on dataset
and model size?

We analyze whether RSA based task similarity depends
on the model size and amount of training data. Intuitively,
it should be independent of model and dataset size, because
our method is based on relative similarities. To investi-
gate this, we select a subset of Taskonomy tasks (details
in supp. material section S1) and trained smaller models,
one per task, with fewer parameters than the models pro-
vided by Taskonomy, and on a small subset of Taskonomy
data. First, we evaluate if we obtain a similar task clus-
tering using the small models on the selected tasks. Then,
for each small model, we compute the similarity score
with the pre-trained Taskonomy models on all 20 tasks.
The same analysis is repeated with pre-trained Taskonomy
model trained on the same task, and we compare the relative
similarity based rankings of the small and Taskonomy high-
performing models. If the relative rankings of both small
and Taskonomy model are similar, then the result suggests
that for a completely new task one can train a small model
and compute similarity scores to rank them.

4.3. Is RSA related to transfer performance?

We investigate if RSA based task similarity can be
applied to transfer learning problem. We first compute
the correlation between each column of Taskonomy affin-
ity matrix with RSA matrix after removing the diagonal.
As the Taskonomy affinity matrix is populated by raw
losses/evaluations, it is indicative of transfer learning per-
formance [34]. We next select a task and dataset differ-
ent from Taskonomy and obtained the similarity scores of a
model trained on the new task with Taskonomy pre-trained
models. The pre-trained models were ranked according to
the similarity score. We then use the pre-trained models for
initializing the model and add the last task dependent layers
on top of the initialized model to train on the new task. The
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Figure 3. Our approach: a) RSA of task-specific pre-trained DNN models (from Taskonomy) to compute a task similarity matrix, b) RSA
of small model (SDNN) trained on small datasets and comparison with Taskonomy pre-trained models. c) RSA of small model (SDNNPV)
trained on new task (Pascal VOC semantic segmentation) with Taskonomy pretrained models.

ranking based on the transfer performance is compared with
the ranking based on RSA to evaluate the relation between
transfer performance and RSA. As we will see in the results,
RSA can be used to select the high performing models for
transfer learning.

5. Experimental set-up

We first provide the details of datasets used for the exper-
iments, followed by the details of the models’ architecture.

5.1. Datasets
Taskonomy dataset It includes over 4 million indoor im-
ages from 500 buildings with annotations available for 26
image tasks. 21 of these tasks are single image tasks, and
5 tasks are multi-image tasks. For this work, we select 20
single image task for obtaining task similarities1.

We randomly selected 500 images from the Taskonomy
training dataset as 500 different conditions to perform RSA.
These images are used as input to generate representations
of different task-specific models to compute the RDMs.

To analyze the dependency of RSA on dataset and model
size used for training, we select one building (Hanson) from
Taskonomy dataset, which contains 12138 images. We di-
vide them into 10048 training and 2090 validation images.

Pascal VOC semantic segmentation To evaluate the ap-
plication of RSA in transfer learning, we select the Pas-
cal VOC [9, 12] dataset for semantic segmentation task. It
has pixelwise annotations for 10, 582 training images,1, 449
validation and 1, 456 test images. We argue that this task is
different from the Taskonomy semantic segmentation as the
images are from a different domain.

5.2. Models

Below, we provide details of the network architectures
of pre-trained Taskonomy models, small models trained for
Taskonomy tasks, and models used for Pascal VOC.

Taskonomy models The Taskonomy models 2 consist of
an encoder and decoder. The encoder for all the tasks is a
Resnet-50 [14] model followed by convolution layer that
compresses the channel dimension of the encoder output
from 2048 to 8. The decoder is task-specific and varies ac-
cording to the task. For classification tasks and tasks where
the output is low dimensional the decoder consists of 2-3
fully connected (FC) layers. For all the other tasks, the
decoder consists of 15 layers (except colorization with 12
layers) consisting of convolution and deconvolution layers.

We select the final compressed output of the encoder as
the representation for RSA as in [34]. In Taskonomy ap-
proach, the compressed output of the encoder was used as
an input to transfer function to evaluate the transfer learn-
ing performance. Selecting the compressed output of the
encoder ensures that the architecture for all the task is the
same, and the differences in representation can only arise
due to the task that the model was optimized for, as images
are also the same for all tasks.

We also explore the representation of earlier layers of the
encoder and the task labels as the representation for comput-
ing RSA based similarity score. We perform this analysis
to investigate how task specificity varies across the depth in
the network and if the task’s labels are enough to understand
the relationship between tasks.

2publicly available at https://github.com/StanfordVL/taskonomy
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a) Task similarity matrix b) Task similarity tree

Figure 4. Task similarity using RSA: a) Similarity matrix of the
20 Taskonomy tasks, b) Agglomerative clustering using RDM.

Small models The smaller version of the models follows
a similar style to Taskonomy and consists of an encoder
and decoder. The encoder consists of 4 convolution layer
each with a stride of 2 to generate a final feature map with
the dimensions same as that of Taskonomy encoder. For
this experiment, we select the tasks which require a fully-
convolution decoder structure and use 4 convolution lay-
ers each followed by an upsampling layer. The models are
trained on Hanson subset of Taskonomy dataset.
Pascal VOC Models We use two types of models for Pas-
cal VOC semantic segmentation task: 1) a small model to
compute similarity score with pre-trained Taskonomy mod-
els; 2) models initialized with pre-trained Taskonomy en-
coders to evaluate transfer learning performance. The small
model consists of an encoder and a decoder. The encoder
consists of 4 convolution layer each with a stride of 2 to gen-
erate a final feature map with the dimensions same as that of
Taskonomy encoder. The decoder is an Atrous Spatial Pyra-
mid Pooling (ASPP) [2], which contains convolution layers
that operate in parallel with different dilations. The model
is trained on Pascal VOC training set with learning rate 10-4

for 200, 000 iterations. The encoder representation of the
small model trained on Pascal VOC is then used to compute
similarity with Taskonomy pre-trained models. The mod-
els for evaluating transfer learning performance consists of
an encoder with similar architecture as Taskonomy models
and an ASPP decoder. The encoder part is initialized by the
pre-trained Taskonomy models of the corresponding task.
Implementation and evaluation details We use the pub-
licly available tensorflow implementation 3 of deeplabv3 [3]
and modify the code for transfer learning experiments. We
use RSA Matlab toolbox [29] for RSA related analysis4. We
refer to the supplementary material for further details.

6. Results
Here, we present the results of RSA for computing task

similarity and its relation to transfer learning performance.

3https://github.com/sthalles/deeplab v3
4Code available at https://github.com/kshitijd20/RSA-CVPR19-release

We follow the same nomenclature of task type as in [34],
and color code 2D, 3D, semantic, and geometric tasks.

6.1. Task similarity using RSA

Figure 4a shows the similarity matrix of the tasks com-
puted using RSA with the compressed encoder output as
the task representation. Recall that we compute the 20× 20
similarity matrix using RSA with given task-specific repre-
sentations for all the randomly selected 500 images. To vi-
sualize the relationship between tasks, we applied agglom-
erative hierarchical clusteringto the similarity matrix. The
resulting dendrogram from this clustering is shown in Fig-
ure 4b. We can see that the tasks are clustered following
visual criteria of 2D, 3D, and semantic tasks.

We further investigate the task similarity using RSA at
different depths in the encoder architecture and task la-
bels. Figure 5 shows the task similarity matrix for different
depths of the Resnet-50 encoder, namely blocks 1, 2, 3 and
4. We also compare the similarity matrix computed using
the tasks’ labels. We observe, in Figure 5, that at block 1
all the similarity values are very high implying that at ini-
tial layers representations of most of the tasks are similar
irrespective of the task type. As we go deeper, the similar-
ity score between tasks starts decreasing, and in compressed
encoder output, we can see three dark blocks corresponding
to 2D, 3D, and semantic tasks. The above results further
validate our choice of using compressed encoder output as
the task-specific representation for assessing the similarity
between tasks. Interestingly, the clustering using task labels
does not group into tasks of the same type, and most of the
similarity scores are low. Instead, the labels clustering fol-
lows the output structure of the labels, independently of the
task type. This is because the labels contain only limited
information about the task, and it depends on the annotator
criteria on how to represent the output.

We next compare our approach with Taskonomy ap-
proach5. We use hierarchical clustering to visually com-
pare the dendrograms obtained using both the methods in
Figure 6. For quantifying the similarity, we compute the
correlation of Taskonomy similarity matrix with RSA sim-
ilarity matrix (ρ = 0.62, rs = 0.65). The results show that
both approaches group the tasks into similar clusters with
few exceptions. Room layout is grouped with the vanish-
ing point in Taskonomy approach and in 3D tasks with our
approach. Denoising is clustered with inpainting and au-
toencoding using our approach, which are related tasks. We
argue that our results are plausible.

5We show 17 tasks as we had access to only affinity values of these
tasks. For comparison with figure 13 in [34], please refer to section S2 of
supplementary material
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block1 block2 block3

block4 compressed encoder output labels

Figure 5. Task taxonomy using RSA: 1 − 5) Similarity matrix of 20 Taskonomy tasks using features at different depth in the model as
task-specific representations 6) Similarity matrix of 20 Taskonomy tasks using labels as task-specific representations.

Ours Taskonomy (Zamir et al. 2018)

Figure 6. RSA vs Taskonomy: Clustering comparison.

6.2. Does model size impact similarity score?

In this experiment, we investigate how the model and
dataset size affect task similarity. We show the results of
similarity rankings for 2 tasks: 2D keypoints and surface
normals (for other tasks, please see section S1 in supple-
mentary material). We compare the similarity rankings ob-
tained using the small model trained on Hanson subset of
Taskonomy data with the Taskonomy model trained on the
same task. As we visually observe from the comparison
(Figure 7) in both the tasks the ranking look similar. For
all the tasks considered in the above comparison the mean
correlation is high (ρ = 0.84, rs = 0.85).

Figure 7. Task taxonomy using small models: Similarity ranking
of (a) keypoint2d Taskonomy model vs small model. (b) surface
normals Taskonomy model vs small model.

Next, we also computed task similarity matrices by com-
paring a small model with small models trained on other
tasks. We find that the correlation (ρ = 0.85, rs = 0.88)
between task similarity matrices (Figure S3) using Taskon-
omy model and small model is comparable to previous cor-
relation results. The above results together provide strong
evidence that the model and dataset size do not have much
effect on the similarity score.

6.3. Model selection for transfer learning

We first report the model selection using RSA for
Taskonomy tasks and then on Pascal VOC semantic seg-
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Top-1 Top-3 Top-5
7/17 14/17 16/17

Table 1. Number of tasks for which best model selected for trans-
fer learning using RSA is in top-n models according to transfer
performance for 17 tasks

mentation task.

Taskonomy We obtain high mean correlation (ρ = 0.70,
rs = 0.76) between RSA and transfer learning for 17 tasks
from the Taskonomy dataset. We also report in Table 1 that
for 16 out of 17 tasks, the best model selected by RSA for
transfer learning is in top-5 models selected using Taskon-
omy approach (transfer learning performance).

Pascal VOC We show the relation of similarity score us-
ing RSA with transfer learning by selecting a new task
(semantic segmentation in Pascal VOC). We compare the
transfer learning performance of models initialized by dif-
ferent task-specific pre-trained models from Taskonomy
dataset. Then we compare the transfer learning perfor-
mance based ranking with similarity score ranking. Here we
select the small Pascal model to compute the similarity with
the Taskonomy models. We report the robustness of simi-
larity ranking using RSA with respect to model size, num-
ber of images used for RSA analysis, and different training
stages in supplementary section S3.

We show the similarity score based ranking in Figure 8.
Surprisingly, semantic segmentation model from Taskon-
omy shows a lower similarity score as compared to other
models trained on semantic (scene class, object class) and
3D tasks (occlusion edges, surface normals). Most of the
2D tasks show low similarity scores.

To investigate if similarity scores are related to trans-
fer learning performance we evaluated the models initial-
ized with task-specific Taskonomy models, finetuned with
Pascal VOC training set, and compared the performance on
Pascal VOC test set. Table 1 shows the comparison of trans-
fer learning performance for models with initialization from
a set of selected tasks (For a complete comparison refer to
section S3 in the supplementary material). The tasks are
listed in the order of their similarity scores. We note from
the table that the tasks on the top (object class, scene class,
occlusion edges, and semantic segmentation ) shows higher
performance while autoencoder and vanishing point perfor-
mance is even less than model trained from scratch (random
in Table 2). We note that our results are comparable to the
results (64.81%) reported in [3], when they use Resnet-50
trained on Imagenet for initialization. The results provide
evidence that the similarity score obtained using RSA pro-
vide an estimate of the expected transfer performance.
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Figure 8. RSA based similarity of scores of pre-trained Taskonomy
models with the small model trained on Pascal VOC.

Initialization(Task) mIoU
Object class 0.6492
Scene class 0.6529
Occlusion edges 0.6496
Semantic segmentation 0.6487
Autoencoder 0.5901
Vanishing point 0.5891
Random(Taskonomy encoder) 0.6083
Random(Small encoder) 0.4072

Table 2. Transfer learning performance on Pascal VOC test set.

7. Conclusion
We presented an efficient alternative approach to obtain

the similarity between computer vision models trained on
different tasks using their learned representations. Our ap-
proach uses RSA, and it is suitable for obtaining task simi-
larity by just using the pre-trained models without any fur-
ther training, as opposed to the earlier state of the art method
Taskonomy for this problem.

We provided strong evidence that for obtaining the sim-
ilarity, the model and training dataset size does not play a
significant role and we can obtain a task similarity relative
ranking using small models as well as state of the art mod-
els with few data samples. This comes with computational
and memory savings.

We also showed the relationship of the task similarity
using RSA with the transfer learning performance and its
applicability. We demonstrated on both, Taskonomy and
Pascal VOC semantic segmentation, that the transfer learn-
ing performance is closely related to the similarity obtained
with RSA. The above results showed that for domain shift
the model trained on the same task might not be the best fit
for transfer learning and our proposed approach can help in
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model selection for transfer learning. Our method is appli-
cable to a wide range of potential problems, such as multi-
task models, architecture selection.
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Here we report the additional details and results which
we left in the main text to the supplementary material. In
the first section, we provide details about the small models
used and report the results and comparison with the Taskon-
omy pretrained models. In the second section, we compare
the task similarity matrix and clustering using our RSA ap-
proach with that of Taskonomy[34] approach. In the third
section, we report the consistency of RSA based similarity
ranking and transfer learning performance for all the tasks.

S1. Small models for task taxonomy

We select the tasks (a total of 14 tasks) which can be op-
timized using only L1/L2/triple-metric loss and the output
of the task is spatial such that all the tasks can have the same
decoder except the final layer. The architecture of the small
model is reported in Table S1.

We show the task similarity comparison results (Fig-
ure S1) of all the selected tasks. We note that for most of the
2D tasks the correlation (Pearson’s ρ) of similarity rankings
between small vs. Taskonomy models is very high (>0.97
except segment2d) and visually look similar. Although the
correlation for all the 3D tasks is still high (>0.77), corre-
lation values are relatively lower than 2D tasks.

We also evaluated the predicted output of 3D tasks and
2D tasks visually. We observed that for the tasks where
the predicted output looks more similar to the target, the
correlation is higher (Figure S2). The difference in corre-
lation could also be attributed to different training setting
of Taskonomy and small models as it was not possible to
exactly replicate the Taskonomy training with small models
because the training code is not publicly available, and the
small models are trained using only a subset of the whole
dataset. We computed the task similarity matrix for the se-
lected tasks using both small models and Taskonomy mod-
els. Although the similarity ranking using small models on
3D task did not show as high correlation with the Taskon-

Layer Kernel size # Channels Stride
Encoder
Conv1 3× 3 16 2
Conv2 3× 3 32 2
Conv3 3× 3 64 2
Conv4 3× 3 64 2
Conv5 3× 3 8 1
Decoder
Conv6 3× 3 32 1
Upscale× 2
Conv7 3× 3 16 1
Upscale× 2
Conv8 3× 3 4 1
Upscale× 2
Conv9 3× 3 4 1
Upscale× 2
Conv10 3× 3 n 1

Table S1. Small model architecture.The number of channel in
Conv10 n was task-specific

omy models, we found that the Pearson’s correlation be-
tween them is high (0.8510). On visual inspection of both
similarity matrices (Figure S3), 2D tasks of small models
show similar scores as with Taskonomy models. The 3D
tasks although show higher similarity with corresponding
3D tasks rather than 2D tasks but similarity scores within
3D tasks are lower and therefore matrix looks lighter as
compared to the similarity matrix with Taskonomy models.

S2. Taskonomy[34] vs RSA(Our approach)
We show the clustering obtained using Taskonomy ap-

proach and compare it our approach in Figure S4. From the
figure, we observe that almost all of the 20 single image task
we select for our paper (except room layout and denoise)
belong in the same cluster as using Taskonomy approach. It
is also possible that the difference in clustering arises due to
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ρ=0.97 ρ=0.98 ρ=0.77 ρ=0.98

ρ=0.97ρ=0.97 ρ=0.99 ρ=0.90 ρ=0.77

ρ=0.79 ρ=0.79 ρ=0.96 ρ=0.85

ρ=0.98 ρ=0.92

Figure S1. Similarity ranking with taskonomy model vs small models for 14 tasks. The ρ value below each plot specifies the Pearson’s
correlation coefficient between the two similarity rankings.

different clustering method, which was not specified, used
in [34].

One other advantage of our approach over Taskonomy is
that our similarity scores lie between -1 and 1 and thus sim-
ilarity matrix is easy to visualize and evaluate. In Taskon-
omy approach, an exponential scaling of the similarity score
has to be performed to bring them in a good range for visu-
alization. Figure S5 shows both the similarity matrix with-
out any scaling.

S3. Transfer learning in Pascal VOC

In the first three subsections below, we show the consis-
tency of RSA with varying number of iterations, the model

size, and the number of images selected for RDM computa-
tion. In the last subsection, we report the transfer learning
performance of all the task DNNs used for initialization.

S3.1. Consistency with training stage

We show in Figure S6 that even at 1/10 of the final train-
ing stage the Pearson’s correlation with the final stage is
0.88 and after 1/2 of the training the correlation with the
final stage stays above 0.99. This shows that one can also
use models from an early stage of training for task similarity
using RSA.
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ρ=0.77ρ=0.79

ρ=0.97 ρ=0.98
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Input

Predicted

Predicted

Predicted

Predicted

Target

TargetTarget

InputInput

Input

Figure S2. Is correlation related to visual similarity of the predicted output with the target?

Taskonomy models Small models

Figure S3. Task similarity matrix using Taskonomy models vs
small models.

S3.2. Consistency with model size

We show in Figure S7 the comparison of task similarity
obtained using a small encoder (thin bars) vs. task similarity
obtained using taskonomy encoder architecture (thick bars).
A high correlation (ρ = 0.95, rs = 0.96) suggests that we
can use small models to train on a new task and use RSA to
select a good model for initialization.

S3.3. Consistency with the number of images

We varied the number of images from 100 to 2000 and
plot the Pearson’s correlation of task similarity ranking ob-
tained using n images with the task similarity ranking ob-
tained using 2000 images (Figure S8). After 400 images
the Pearson’s correlation with the task similarity ranking is
always above 0.99, thus suggesting that around 500 images
are sufficient for RDM computation.

Taskonomy [1] RSA (Ours)

Figure S4. Clustering: Taskonomy vs RSA (Ours) Image
source: Figure 13 from [34]

S3.4. Transfer learning performance for all the
tasks

Figure S9 shows the transfer learning performance
(mIoU) for 17 single image tasks 1 in the descending or-
der of similarity rankings. The curve shows that the perfor-
mance in most of the tasks seems to decrease as the sim-
ilarity score decreases (although it is not a perfect mono-
tonically decreasing curve).Also, generally the tasks with

1 We ignore denoise, autoencoding, and colorization as these tasks re-
quire modified input
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Taskonomy[1] RSA (Ours)

Figure S5. Similarity matrix: Taskonomy vs RSA(Ours)

Figure S6. Consistency with training iterations

ρ=0.94

Figure S7. Consistency with model size

higher similarity ranking (object class, surface normals,
segment25d) showed high transfer learning performance,
and tasks with lower similarity score (autoencoding, van-
ishing point) showed lower performance.

Figure S8. Consistency with number of images

Figure S9. Transfer learning performance in descending order
of similarity scores with task DNNs on the x-axis as initializa-
tion
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Abstract. In this paper, we tackle an open research question in transfer
learning, which is selecting a model initialization to achieve high perfor-
mance on a new task, given several pre-trained models. We propose a
new highly efficient and accurate approach based on duality diagram sim-
ilarity (DDS) between deep neural networks (DNNs). DDS is a generic
framework to represent and compare data of different feature dimensions.
We validate our approach on the Taskonomy dataset by measuring the
correspondence between actual transfer learning performance rankings
on 17 taskonomy tasks and predicted rankings. Computing DDS based
ranking for 17×17 transfers requires less than 2 minutes and shows a high
correlation (0.86) with actual transfer learning rankings, outperforming
state-of-the-art methods by a large margin (10%) on the Taskonomy
benchmark. We also demonstrate the robustness of our model selection
approach to a new task, namely Pascal VOC semantic segmentation.
Additionally, we show that our method can be applied to select the best
layer locations within a DNN for transfer learning on 2D, 3D and seman-
tic tasks on NYUv2 and Pascal VOC datasets.

Keywords: Transfer Learning, Deep Neural Network Similarity, Dual-
ity Diagram Similarity, Representational Similarity Analysis

1 Introduction

Deep Neural Networks (DNNs) are state-of-the-art models to solve different
visual tasks, c.f. [18,42]. Yet, when the number of training examples with labeled
data is small, the models tend to overfit during training. To tackle this issue, a
common approach is to use transfer learning by selecting a pre-trained network
on a large-scale dataset and use it as initialization [28,19]. But how does one
choose the model initialization that yields the highest accuracy performance
when learning a new task?
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Fig. 1. Duality Diagram Similarity (DDS): We apply DDS to compare features of a set
of initialization options (encoders) with features of a new task to get model initialization
rankings to select the encoder initialization for learning a new task. The task feature
for an image is obtained by doing a feedforward pass through a model trained on that
task. D is the matrix that weights the images, X (Y) is the matrix that stores the
features from the encoder for all images, QX (QY) is a matrix that stores relations
between features dimensions, MX (MY) contains the pairwise (dis)similarity distances
between images, and Si is the score for the ranking.

Nowadays, there are a plethora of online available pre-trained models on
different tasks. However, there are only a few methods [8,35] that automatically
assist in selecting an initialization given a large set of options. Due to lack of a
standard benchmark with standard evaluation metrics, comparing and building
upon these methods is not trivial. Recently, Dwivedi and Roig [8] and Song et
al. [35] used the transfer learning performance on the Taskonomy dataset [42]
as groundtruth to develop methods for model selection. Both aforementioned
methods for model selection are efficient compared to the bruteforce approach
of obtaining transfer performance from all the models and selecting the best
one. Yet, they used different metrics to evaluate against the groundtruth, and
hence, they are not comparable in terms of accuracy. Although different, both
of them used metrics that evaluate how many models in top-K ranked model
initializations according to transfer learning performance were present in the
top-K ranked models obtained using their method. We argue that such a metric
doesn’t provide a complete picture as it ignores the ranking within the top-K
models as well as the ranking of models not in the top-K.

In this work, we first introduce a benchmark with a standard evaluation met-
ric using Taskonomy [42] transfer learning dataset to compare different model
initialization selection methods. We use Spearman’s correlation between the
rankings of different initialization options according to transfer learning per-
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Duality Diagram Similarity for Transfer Learning 3

formance and the rankings based on a model initialization selection method as
our metric for comparison. We argue that our proposed benchmark will facili-
tate the comparison of existing and new works on model selection for transfer
learning. We then introduce a duality diagram [9,12,6] based generic framework
to compare DNN features which we refer to as duality diagram similarity (DDS).
Duality diagram expresses the data taking into account the contribution of indi-
vidual observations and individual feature dimensions, and the interdependence
between observations as well as feature dimensions (see Fig. 1). Due to its generic
nature, it can be shown that recently introduced similarity functions [8,17] for
comparing DNN features are special cases of the general DDS framework.

We find that model initialization rankings using DDS show very high correla-
tion (>0.84) with transfer learning rankings on Taskonomy tasks and outperform
state-of-the-art methods [8,35] by a 10% margin. We also demonstrate the re-
liability of our method on a new dataset and task (PASCAL VOC semantic
segmentation) in the experiments section.

Previous works [41,22] have shown the importance of selecting which layer
in the network to transfer from. In this paper, we also explore if the proposed
method could be used to interpret representations at different depths in a pre-
trained model, and hence, it could be used to select from which layer the initial-
ization of the model should be taken to maximize transfer learning performance.
We first show that the representation at different blocks of pre-trained ResNet
[11] model on ImageNet [7] varies from 2D in block1, to 3D in block 3 and se-
mantic in block 4. These observations suggest that representation at different
depths of the network is suitable for transferring to different tasks. Tranfer learn-
ing experiments using different blocks in a ResNet-50 trained on ImageNet as
initialization for 2D, 3D, and semantic tasks on both, NYUv2 [23] and Pascal
VOC [10] datasets, reveal that it is indeed the case.

2 Related Works

Our work relies on comparing DNN features to select pre-trained models as
initialization for transfer learning. Here, we first briefly discuss related literature
in transfer learning, and then, different methods to compare DNN features.

Transfer Learning. In transfer learning [25] the representations from a source
tasks are re-used and adapted to a new target task. While transfer learning in
general may refer to task transfer[28,19,40,42], or domain adaptation[30,37], in
this work we focus specifically on task transfer learning. Razavian et al. [32]
showed that features extracted from Overfeat [31] network trained on Ima-
geNet [7] dataset can serve as a generic image representation to tackle a wide
variety of recognition tasks. ImageNet pre-trained models also have been used
to transfer to a diverse range of other vision related tasks [28,5,19,40]. Other
works [17,14] have investigated why ImageNet trained models are good for trans-
fer learning. In contrast, we are interested in improving the transfer performance
by finding a better initialization that is more related to the target task.
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Azizpour et al. [1] investigated different transferability factors. They em-
pirically verified that the effectiveness of a factor is highly correlated with the
distance between the source and target task distance obtained with a predefined
categorical task grouping. Zamir et al. [42] showed in a fully computational
manner that initialization matters in transfer learning. Based on transfer per-
formance they obtained underlying task structure that showed clusters of 2D,
3D, and semantic tasks. They introduced the Taskonomy dataset [42], which
provides pre-trained models on over 20 single image tasks with transfer learn-
ing performance on each of these tasks with every pre-trained model trained
on other tasks as the initialization, and thus, providing groundtruth for a large
number of transfers. Recent works [8,35] have used the Taskonomy transfer per-
formance as groundtruth to evaluate methods of estimating task transferabilities.
Those works use different evaluation metrics, which makes the comparison be-
tween those methods difficult. Following those works, we use Taskonomy transfer
performance as a benchmark, and propose a unified evaluation framework to fa-
cilitate comparison between existing and future methods.

Yosinski et al. [41] explored transferability at different layers of a pre-trained
network, and Zhuo et al. [44] showed the importance of focusing on convolutional
layers of the model in domain adaptation. We also investigate if the similarity
between DNN representations can be applied to both model and layer selection
for transfer learning, which indeed is the case, as we show in the results section.

Similarity Measures for Transfer Learning Performance. Our approach
is built under the assumption that the higher the similarity between represen-
tations is, the higher will be the transfer learning performance. Some previous
works used similarity measures to understand the properties of DNNs. Raghu
et al. [26] proposed affine transform invariant measure called Singular Vector
Canonical Correlation Analysis (SVCCA) to compare two representations. They
applied SVCCA to probe the learning dynamics of neural networks. Kornblith
et al. [16] introduced centered kernel alignment (CKA) that shows high reliabil-
ity in identifying correspondences between representations in networks trained
using different initializations. However, in the above works, the relation between
similarity measures and transfer learning was not explored.

Dwivedi and Roig [8] showed that Representational Similarity Analysis (RSA)
can be used to compare DNN representations. They argued that using the model
parameters from a model that has a similar representation to the new task’s
representation as initialization, should give higher transfer learning performance
compared to an initialization from a model with a lower similarity score. Re-
cently, Song et al. [35] used attribution maps [34,2,33] to compare two models
and showed that it also reflects transfer learning performance. Our work goes
beyond the aforementioned ones. Besides proposing an evaluation metric to set
up a benchmark for comparison of these methods, we introduce a general frame-
work using duality diagrams for similarity measures. We show that similarity
measures, such as RSA and CKA, can be posed as a particular case in our gen-
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Distances Pearson’s: Euclidean: cosine:

1− (xi−xi)·(xj−xj)

||xi−xi||·||xj−xj ||

√
xT
i .xi + xT

j .xj − 2 ∗ xT
i .xj 1− xi·xj

||xi||·||xj ||
Kernels linear: Laplacian: RBF:

xT
i xj exp(−γ1||xi − xj ||1) exp(−γ2||xi − xj ||2)

Table 1. Distance and Kernel functions used in DDS. Notation: xi ∈ Rd1 and xj ∈ Rd1

refer to the features corresponding to ith and jth image (ith and jth row of feature
matrix X), respectively. Here, γ1 and γ2 refer to the bandwidth of Laplacian and RBF
kernel.

eral formulation. It also allows to use other more powerful similarities that are
more highly correlated to transfer learning performance.

There is evidence in the deep learning literature, that normalization plays
a crucial role. For instance, batch normalization allows training of deeper net-
works [15], efficient domain adaptation [20,3] and parameter sharing across mul-
tiple domains [27]. Instance normalization improves the generated image quality
in fast stylization [38,13], and group normalization stabilizes small batch train-
ing [39]. In our DDS generic framework, it is straightforward to incorporate
feature normalization. Thus, we further take into account the normalization of
features before assessing the similarity between two DNN features and compare
it to transfer learning performance.

3 Duality Diagram Similarity (DDS)

The term duality diagram was introduced by Escoufier [9] to derive a general for-
mula of Principal Component Analysis that takes into account change of scale,
variables, weighing of feature dimensions and elimination of dependence between
samples. With similar motivation, we investigate the application of duality di-
agrams in comparing two DNNs. Let X ∈ Rn×d1 refer to a matrix of features
with dimensionality d1 obtained from feedforwarding n images through a DNN.
The duality diagram of matrix X ∈ Rn×d1 is a triplet (X,Q,D) consisting of a
matrix Q ∈ Rd1×d1 that quantifies dependencies between the individual feature
dimensions, and a matrix D ∈ Rn×n that assigns weights on the observations,
i.e., images in our case. Hence, a DNN representation for a set of n examples
can be expressed by its duality diagram. By comparing duality diagrams of two
DNNs we can obtain a similarity score. We denote the two DNN duality dia-
grams as (X,QX,D) and (Y,QY,D), in which the subindices in the matrix Q
denote that they are computed from the set of features and images in X and Y.

To compare two duality diagrams, Robert and Escoufier [29] introduced the
RV coefficient. The motivation behind RV coefficient was to map n observations
of X in the d1-dimensional space and Y in the d2-dimensional space. Then,
the similarity between X and Y can be assessed by comparing the pattern of
obtained maps or, equivalently, by comparing the set of distances between all
pairwise observations of both maps. To estimate the distances between pair-
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Fig. 2. Transfer learning vs. similarity measures. We consider a) Taskonomy winrate
matrix, b) an affinity matrix obtained by measuring similarity between DNNs trained
on different tasks. c) the Spearman’s correlation (denoted by ρ) between the columns
of two matrices. The resulting vector shows the correlation of the similarity based
rankings with transfer learning performance based rankings for 4 Taskonomy tasks.
Here we illustrate the results using DDS (f = Laplacian), and the procedure remains
the same using any similarity measure.

wise observation, Robert and Escoufier [29] used dot product and compared two
(dis)similarity matrices using the cosine distance.

In a nutshell, to compare two sets of DNN features X and Y, we require
three steps (Fig. 1): first, transforming the data using QX and D to X̂, us-
ing X̂ = DXQX, and Ŷ with Ŷ = DYQY. Second, using a function, which
we denote as f , to measure (dis)similarity between each pair of data points
to generate pairwise distance maps. Let MX be the matrix that stores the
(dis)similarity between pairwise distance maps for X̂, also referred to as represen-
tational (dis)similarity matrices. It is computed as MX(i, j) = f(X̂(i, :), X̂(j, :)),
in which i and j denote the indices of the matrices. Analogously, MY is the ma-
trix that stores the (dis)similarity between pairwise distance maps of Ŷ. Third,
a function g to compare MX and MY to obtain a final similarity score, denoted
as S, and computed as S = g(MX,MY) is applied. The above formulation using
duality diagrams provides a general formulation that allows us to investigate em-
pirically which combination of Q ,D, f and g is suitable for a given application,
which in our case is estimating transferability rankings to select the best model
(or layer in a model) to transfer given a new dataset and/or task.

Interestingly, using the above DDS framework, we can easily show that re-
cently used similarity measures, e.g., CKA and RSA, can be formulated as spe-
cial cases of DDS. For RSA [8], Q is an identity matrix, I ∈ Rd1×d1 , and D is
a centering matrix, i.e., C = In − 1

n1n. f is Pearson’s distance and g is Spear-
man’s correlation between lower/upper triangular part of MX and MY. For
CKA [17], Q and D are identity matrices I ∈ Rd1×d1 and I ∈ Rn×n respectively,
f used is linear or RBF kernel and g is cosine distance between unbiased cen-
tered (dis)similarity matrices. In the supplementary section S1, we derive RSA
and CKA as particular cases of the DDS framework.

In this work, we focus on exploring different instantiations of Q, D, f and g
from our DDS framework that are most suitable for estimating transfer learning
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performance. We consider different formulations of Q and D, resulting in z-
scoring, batch normalization, instance normalization, layer normalization and
group normalization (details in Supplementary S2). For function f we explore
cosine, Euclidean, and Pearson’s distance, as well as kernel based similarities,
namely linear, RBF, and Laplacian. Mathematical equations for all functions
are in Table 1. For function g, we consider Pearson’s correlation to compare
(dis)similarity matrices with and without unbiased centering [36,17].

4 Our Approach

4.1 Which DDS combination (Q, D, f ,g) best predicts
transferability?

After having defined the general formulation for using similarity measures for
transfer learning, we can instantiate each of the parameters (Q, D, f and g) to
obtain different similarity measures. To evaluate which combination of Q, D, f
and g best predicts transferability and compare it to state-of-the-art methods, we
consider transfer learning performance based winrate matrix (Fig. 2a) and affin-
ity matrix proposed in Taskonomy dataset [42], as a transferability benchmark.
The affinity matrix is calculated by using actual transfer learning performance on
the target task given multiple source models pre-trained on different tasks. The
winrate matrix is calculated using a pairwise competition between all feasible
sources for transferring to a target task. Both these matrices represent transfer
learning performance obtained by bruteforce, and hence, can be considered as an
upper bound for benchmarking transferability. We use the Taskonomy dataset
as a benchmark as it consists of pre-trained models on over 20 single image tasks
with transfer learning performance on each of these tasks with every pre-trained
model trained on other tasks as the initialization, thus, providing groundtruth
for a large number of task transfers.

We use DDS to quantify the similarity between two models trained on dif-
ferent Taskonomy tasks and use that value to compute the DDS based affinity
matrix (Fig. 2b). A column vector corresponding to a specific task in the Taskon-
omy affinity matrix shows the transfer learning performance on the target task
when different source tasks were used for initialization. To evaluate how well
a DDS based affinity matrix represents transferability, we calculate the Spear-
man’s correlation between columns of the Taskonomy winrate/affinity matrix
and DDS based affinity matrix. Using the rank-based Spearman’s correlation for
comparison between two rankings allows comparing the source tasks ranking on
the basis of transfer learning performance with DDS based ranking. The resulting
vector (Fig. 2c) represents the per task correlation of DDS with transferability.

We further evaluate if the best combination(s) we obtained from the above
proposed evaluation benchmark using Taskonomy are robust to a new dataset
and task. For this, we consider a new task, Pascal VOC semantic segmentation,
following [8]. For the benchmark, we use the transfer learning performance on
Pascal VOC semantic segmentation task given all Taskonomy models as sources.
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Fig. 3. DNN Layer Selection. Given a pre-trained encoder and a set of pre-trained
models trained on diverse tasks, we can assess the representation type at different
depth of the network by comparing the similarity between features at a given depth
and pre-trained models.

We also investigate if the images selected to compute DDS have any effect
on Spearman’s correlation with transfer learning. For this purpose, we select
images from NYUv2, Taskonomy, and Pascal VOC dataset and evaluate the
proposed methods on both, Taskonomy and Pascal VOC benchmark. We further
compute the variance performing bootstrap by randomly sampling 200 images
from the same dataset 100 times to compute similarity. The bootstrap sampling
generates a bootstrap distribution of correlation between transfer performance
and similarity measures, which allows measuring the variance in Spearman’s
correlation with transfer performance when selecting different images from the
same dataset.

4.2 Does DDS find best layer representation within a model to
transfer from?

In previous works [42,8,35], a major focus was to select a model to initialize
from. However, once the model is selected as an encoder for initialization, the
new layers of decoder usually branch out from the last layer of the pre-trained
encoder. Such an approach is based on the a priori assumption that, for any
new task, the output from the last layer of the pre-trained encoder is the best
representation for transfer learning. We argue that this is task-type dependent.
For instance, it has been shown that earlier layers of DNNs trained on ImageNet
object recognition learn low-level visual features while deeper layers learn high-
level categorical features [24]. Therefore, one would expect for low-level visual
task, the representation in earlier layers of DNN might be better for transfer
learning. Based on this intuition, we investigate if layers at different depths of
the network are better suited to transfer to different types of tasks. We compute
DDS of a pre-trained model at different depths with Taskonomy models to assess
representation types at different depths (Fig. 3). To validate it, we select 3 task
types (2D, 3D, and semantic) from NYUv2 and Pascal VOC dataset and perform
transfer learning by attaching the decoder to different encoder layers.
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5 Experimental Setup

We implemented the DDS general framework in python4, in which new param-
eters and functions (Q, D, f , g) can be incorporated in the future. Below, we
first provide details of datasets and models used for comparing the DDS combi-
nations for model selection. Then, we describe the datasets and models used for
layer selection from a pre-trained encoder.

5.1 Dataset and models for Model Selection

Datasets. To compare different DDS combinations against the Taskonomy
affinity and winrate matrix, we randomly select 200 images from the Taskonomy
dataset. We use 200 images based on an analysis that shows that the correlation
of DDS with transfer learning performance saturates at around 200 images (see
Supplementary S3). To perform the bootstrap based comparison on a new se-
mantic segmentation task on the Pascal VOC dataset, we randomly select 5000
images from Taskonomy, 5000 images from Pascal VOC, and all (1449) images
from NYUv2 dataset.

Models. We use the selected 200 images to generate features from the last
layer of the encoder of 17 models trained on 17 different tasks on the Taskon-
omy dataset. The Taskonomy models have an encoder/decoder architecture. The
encoder architecture for all the tasks is a fully convolutional Resnet-50 without
pooling to preserve high-resolution feature maps. The decoder architecture varies
depending on the task. The models were trained on different tasks independently
using the same input images but different labels corresponding to different tasks.
For comparing two models, we use the features of the last layer of the encoder
following [42,8]. The Pascal VOC semantic segmentation model that we use also
has the same encoder architecture as Taskonomy models, and the decoder is
based on the spatial pyramid pooling module, which is suitable for semantic
segmentation tasks [5]. For comparison with the Pascal VOC model, we use the
features of the last layer of the encoder of 17 Taskonomy models and the one
Pascal VOC semantic segmentation model trained from scratch. We also report
comparison with a small Pascal VOC model from [8] in Supplementary S4 to
show that model selection can be performed even using small models.

5.2 Dataset and models for layer selection

Datasets. To validate whether the proposed layer selection using similarity
measures reflects transferability, we perform training on different datasets and
tasks by branching the decoders from different layers of the encoder. Specifically,
we evaluate on 3 tasks (Edge Detection, Surface Normal Prediction and Seman-
tics Segmentation) on Pascal VOC [10] dataset, and 3 tasks (Edge Detection,
Depth Prediction and Semantic Segmentation) on NYUv2 [23] dataset. Follow-
ing Zamir et al. [42], we use Canny Edge Detector [4] to generate groundtruth
edge maps while other labels were downloaded from Maninis et al. [21].

4 Code available at https://github.com/cvai-repo/duality-diagram-similarity
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Q,D
f kernels distances

linear Laplacian RBF Pearson euclidean cosine

Identity 0.632 0.815 0. 800 0.823 0.688 0.742
Z-score 0.842 0.860 0.841 0.856 0.850 0.864

Batch norm 0.729 0.852 0.840 0.857 0.807 0.850
Instance norm 0.849 0.835 0.838 0.850 0.847 0.850

Layer norm 0.823 0.806 0.786 0.823 0.813 0.823
Group norm 0.829 0.813 0.790 0.829 0.814 0.829

Table 2. Finding best DDS combination (Q, D, f ,g). We report the results of
comparison with transferability for differents sets of Q, D and f . Top 3 scores are
shown in green, blue, brown, respectively. Best Q, D for each f is shown in bold.

Models. We describe the models’ encoder and decoder.
Encoder: We use a ResNet-50 [11] pre-trained on ImageNet [7] as our encoder,
which has four blocks, each of the block consist of several convolution layers
with skip connections, followed by a pooling layer. The branching locations that
we explore are after each of the four pooling layers. We also consider Resnet-50
pre-trained on Places [43] using the same experimental set-up, and report the
results in Supplementary S5.
Decoder: Following the success of DeepLabV3 [5] model, we use their decoder
architecture in all our experiments. Since the output channels of the ResNet-50
encoder varies at different branching locations, we stack the output feature maps
to keep the number of parameters in the downstream constant. More specifically,
the encoder outputs 256, 512, 1024, 2048 channels for location 1, 2, 3 and 4
respectively, we stack the output of early branchings multiple times (8× for
location 1, 4× for location 2 and 2× for location 3) to achieve a constant 2048
output channels to input to the decoder.

Training. ImageNet [7] pre-trained encoder is fine-tuned for the specific tasks,
while the decoder is trained from scratch. In all the performed experiments, we
use synchronized SGD with momentum of 0.9 and weight decay of 1e-4. The
initial learning rate was set to 0.001 and updated with the ”poly” learning rate
policy [5]. The total number of epochs for the training was set to 60 and 200,
for Pascal VOC [10] and NYUv2 [23], respectively as in Maninis et al. [21].

6 Results

In this section, we first report the comparison results of different similarity mea-
sures. After selecting the best similarity measure we apply it for identifying the
representation type at different depth of the pre-trained encoder. Finally, we
validate if the branching selection suggested using similarity measures gives the
best transfer performance, by training models with different branching locations
on NYUv2 and Pascal VOC datasets.
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Method Affinity Winrate Total time(s)

Taskonomy Winrate[42] 0.988 1 1.6× 107

Taskonomy affinity[42] 1 0.988 1.6× 107

saliency[35] 0.605 0.600 3.2× 103

DeepLIFT[35] 0.681 0.682 3.3× 103

ε-LRP[35] 0.682 0.682 5.6× 103

RSA[8] 0.777 0.767 78.2

DDS (f = cosine) 0.862 0.864 84.14
DDS (f = Laplacian) 0.860 0.860 103.36

Table 3. Correlation of DDS based affinity matrices with Taskonomy affinity and win-
rate matrix, averaged for 17 Taskonomy tasks, and comparison to state-of-the-art. Top
2 scores are shown in green, and blue respectively. For this experiment, Q and D are
selected to perform z-scoring, in all DDS tested frameworks.

6.1 Finding best DDS combination (Q, D, f ,g) for transferability

We perform a thorough analysis to investigate which combinations of (Q, D,
f , and g) of the DDS lead to higher correlation with transferability rankings.
We focus on how to assign weights to different feature dimensions using Q,
D and distance functions f to compute the pairwise similarity between obser-
vations. In Table S2, we report results on the correlation with transferability
rankings showing the effect of applying combination of Q and D instantiated as
identity, z-score, batch/instance/group/layer normalization, and using different
distance/kernel function as f . For g we use Pearson’s correlation on unbiased cen-
tered dissimilarity matrices because it consistently showed a higher correlation
with transfer learning performance (Supplementary Section S6). We observed
a similar trend in results using Spearman’s correlation for g (Supplementary
Section S7).

In Table S2 we report the mean correlation of all the columns of the Taskon-
omy winrate matrix with the corresponding columns of a DDS based affinity
matrix, which serve as the measure for computing how each of the similarity
measures best predicts the transferability performance for each model. We first
observe the results when Q and D are identity matrices. Laplacian and RBF
kernels outperform linear kernel. For distance functions, Pearson outperforms
euclidean and cosine. A possible reason for the better performance of Pearson’s
could be due to its invariance to translation and scale.

We next observe the effect of normalization using appropriate Q and D.
We observe that the correlation with transferability rankings improves for all
distance and kernel functions especially for low-performance distance and kernel
functions. The gain in improvement is highest using z-scoring in most of the
cases. A possible reason for overall performance improvement is that applying
z-scoring reduces the bias in distance computation due to feature dimensions
having high magnitude but low variance. Hence, for our next experiments, we
choose z-scoring and select the top performing f : Laplacian and cosine.
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Method Taskonomy Pascal VOC NYUv2

DDS (f = cosine) 0.525 ±0.057 0.722 ±0.049 0.518 ±0.034
DDS (f = Laplacian) 0.5779 ±0.050 0.765 ±0.038 0.521 ±0.029

Table 4. DDS correlation with transfer learning for Pascal VOC Semantic Segmen-
tation. Here each row represents a particular distance/kernel function as f , and each
column represents a dataset. The values in the table are bootstrap mean correlation
and standard deviation of a particular similarity measure computed using the image
from a particular dataset. Top score is shown in green.

6.2 Comparison with state-of-the-art on Taskonomy

We first compare the DDS based affinity matrices on the Taskonomy transfer-
ability benchmark. To quantify in terms of mean correlation across all the tasks,
we report mean correlation with Taskonomy affinity and winrate matrix in Ta-
ble S3. In Table S3 (also Supplementary Section S8), we observe that all the
proposed DDS based methods outperform the state-of-the-art methods [35,8] by
a large margin. DDS (f = cosine) improves [8] and [35] by 10.9% (12.6%) and
26.3% (26.6%) on affinity (winrate), respectively. We report the correlation of
different DDS based rankings with the rankings based on winrate and task affini-
ties for 17 Taskonomy tasks in Supplementary S9 and find that proposed DDS
based methods outperform state-of-the-art methods for almost all the tasks. We
also report comparison using PR curve following [35] in Supplementary S10.

To compare the efficiency of different methods with respect to bruteforce
approach, we report the computational budget required for different methods.
A single forward pass of Taskonomy models on Tesla V100 GPU takes 0.022
seconds. Thus, for 17 tasks and 200 feedforward passes for each task, the total
time for feedforward pass is 74.8 sec. Hence, the DDS based methods are several
orders of magnitude faster than bruteforce approach, used in the Taskonomy
approach [42], that requires several GPU hours to perform transfer learning on
all the models. The number reported in Table S3 for Taskonomy was calculated
by taking the fraction of the total transfer time (47,886 hours for 3000 trans-
fers) for 172 transfers used for comparison in this work. Further, the time for
obtaining DDS based rankings takes only a few seconds on CPU and is an order
of magnitude faster than attribution maps based methods.

6.3 Evaluating robustness on a new task and dataset

In the evaluation benchmark that we proposed, which was used in the above re-
ported experiments, we considered models that were trained using images from
the Taskonomy dataset, and the images used to compute the DDS were also
from the same dataset. To evaluate the robustness of DDS against a new task
and images used to compute DDS, we consider a new task, namely Pascal VOC
semantic segmentation, and use images from different datasets to compute DDS.
To evaluate effect of selecting different images within the same dataset, we per-
form bootstrap to estimate the variance in correlation with transferability.
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In Table 4, we report the bootstrap mean and standard deviation of cor-
relation of different similarity measures with transfer learning performance on
the Pascal VOC semantic segmentation task. We observe that the similarity
measures show a high correlation (>0.70 for f = cosine and >0.75 for f =
Laplacian) when using images from Pascal VOC, but low correlation when us-
ing images from another dataset (Taskonomy and NYUv2). We also observed a
similar trend in Taskonomy benchmark (Supplementary Section S11). Thus, the
similarity measure is effective when using images from the same distribution as
the training images for the model of the new task. We believe that using images
from the same data distribution in DDS as the ones used to train the model on
the new task for selecting the best initialization is important because the model
in the new task is trained using data sampled from this distribution. Since high
correlation of DDS (f = Laplacian) with transferability is obtained in all the
investigated scenarios using the images from the dataset of the new task that we
want to transfer to, we argue that this is the most suitable choice for estimating
transferability as compared to other similarity measures and set-ups.

6.4 Finding representation type at different depth of a model

In the previous experiments, we demonstrated DDS ability to select models for
transfer learning to a new task, given a set of source models. Here, we use DDS to
interpret the representation type at different depths of the model, which would
allow us to select which model layer to transfer from for a given type of task.
For this purpose, we generate the features of the last layer of the encoder of 20
Taskonomy models to get the representation of each task type. We then compute
the DDS (f = Laplacian) of Taskonomy features with each output block of the
pre-trained ImageNet model. We use images from the same data distribution
(Taskonomy) as used in the trained models to reveal the correlation with each
layer and task type, as suggested in the previous experiment.

As shown in Fig. 4, we observe that the representation of block 1 is more
similar to 2D models, block 3 is more similar to 3D and block 4 to semantic
models. These results suggest that the representation of block 1 is better suited
to transfer for 2D tasks, block 3 for 3D tasks and block 4 for semantic tasks.
There is no clear preference for block 2. We observe a similar pattern with the
pre-trained Places model (see Supplementary S5).

6.5 Does DDS predict best branching location from an encoder?

Here we report the results of transfer learning performances of 4 tasks: surface
normal prediction on Pascal VOC [10], Depth Prediction on NYU Depth V2 [23],
and edge detection and semantic segmentation on both datasets. These 4 tasks
cover the 3 task clusters we observed in the previous section. The results are
shown on Table 5. We report the qualitative comparison of different block out-
puts in Supplementary S5. We observe that branching out from block 3 gives
the best performance on depth and surface normal, branching out from block 1
provides the best result on edge detection, and branching out from block 4 is
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Fig. 4. Block selection using DDS on pre-trained encoder on Imagenet, and with DNNs
trained on Taskonomy dataset on different tasks.

Pascal VOC NYUv2

Block
Task

Edge
(MAE)

Normals
(mDEG DIFF)

Semantic
(mIOU)

Edge
(MAE)

Depth
(log RMSE)

Semantic
(mIOU)

1 0.658 18.09 0.257 0.823 0.322 0.124
2 0.686 15.59 0.392 0.857 0.290 0.165
3 0.918 14.39 0.627 1.297 0.207 0.219
4 0.900 15.11 0.670 1.283 0.208 0.285

Table 5. Transfer learning performance of branching ImageNet pre-trained encoder
on different tasks on Pascal VOC and NYUv2. Results show that branching out from
block 1, 3, 4 of the encoder have better performances on edge, normals (depth) and
semantic tasks, respectively. This is consistent with the diagram similarity in Fig. 4.

best for semantic segmentation. The transfer learning results are consistent with
the similarity results in Fig. 4, which suggests that DDS (f = Laplacian) is a
robust method for encoder block selection for different tasks.

7 Conclusion

In this work, we investigated duality diagram similarity as a general framework
to select model initialization for transfer learning. We found that after taking into
account the weighing of feature dimension, DDS (for all distance functions) show
a high correlation (>0.84) with transfer learning performance. We demonstrated
on Taskonomy models that the DDS (f = Laplacian,f = cosine) shows 10%
improvement in correlation with transfer learning performance over state-of-
the-art methods. DDS (f = Laplacian) is highly efficient and robust to novel
tasks to create a duality diagram. We further show the DDS (f = Laplacian)
effectiveness in layer selection within a model to transfer from.
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We provide the following items in the supplementary material, which comple-
ment the results reported in the main paper:

S1 RSA and CKA as a special case of duality diagram similarity (DDS).

S2 Different normalizations in DDS Framework.

S3 Results on DDS’s dependence on number of images.

S4 Results on model selection using coarse task representations.

S5 Quantitative and qualitative results of layer selection using a
ImageNet/Places365 pre-trained encoder.

S6 Effect of unbiased centering.

S7 Results with Spearman’s correlation as g.

S8 DDS Results on Taskonomy and Pascal VOC for all distance/kernels as f .

S9 DDS Results for 17 Taskonomy tasks.

S10 Precision and Recall curves for DDS.

S11 DDS dependences on image dataset choice.

S1 RSA and CKA as special cases of duality diagram
similarity (DDS)

The duality diagram of a matrix X ∈ Rn×d1 can be calculated by the product
of QX, X and D, where Q ∈ Rd1×d1 is a matrix that quantifies dependencies
between the individual feature dimensions, and D ∈ Rn×n is a matrix that
assigns weights on the observations.

Let X̂ and Ŷ be the duality diagrams obtained from two different models
(layers), the duality diagram similarity (DDS) between those two can be calcu-
lated by first computing pairwise distance matrices, MX, MY, using a distance
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function, f , then use another function, g, to compare MX and MY to obtain
the final similarity score, S. The formulation of DDS can be written as:

S = g

(
f
(
DXQX

)
, f
(
DYQY

))
(1)

RSA as DDS. To compute RSA, one needs to obtain for each model (layer)
the Representation Dissimilarity Matrices (RDMs), which is populated by com-
puting a dissimilarity score 1−ρ, where ρ is the Pearson’s correlation coefficient
between each pair of images (observations). Once the RDMs for each model
(layer) is computed, then Spearman’s correlation of the upper triangular part of
the 2 RDMs is used to compute the final similarity score between the two RDMs.
Here, one can observe the connection between RSA and DDS. In Equation 1,
RDMs are the above-mentioned pairwise distance matrices, MX and MY, the
distance function f used in RSA is the dissimilarity score 1−ρ. If no normaliza-
tion is used, matrix D and matrix Q are both identity matrices, I (ones in the
diagonal and the rest of the elements in the matrix are zeros). In [8], they use
a centering matrix C (C = In − 1

n1n, where 1 is the n × n matrix of all ones)
as D in the formulation of the duality diagram, and Q as the identity matrix.
The final similarity score, g, used in RSA is the Spearman’s correlation between
lower/upper triangular part of the two RDMs. Finally, RSA as a special case of
DDS can be written as:

S = rts

(
1− ρ

(
CXI

)
, 1− ρ

(
CYI

))
(2)

where rts denotes the Spearman’s correlation of the upper traingular part of the
two input matrices, the dissimilarity score 1− ρ is computed with the Pearson’s
correlation, C is the centering matrix for X and Y, and I is the identity matrix.

CKA as DDS. The formulation of CKA [17] can be written as:

CKA
(
X,Y

)
= tr

(
KHLH

)
/

√
tr
(
KHKH

)
tr
(
LHLH

)
, (3)

in which K and L are the output matrices after applying either the RBF or
linear kernel (kernel function k) on data matrices X and Y, respectively. Mathe-
matically, K and L can be expressed as , Kij = k(xi,xj) = exp(−γ2||xi−xj ||2),
Lij = k(yi,yj) = exp(−γ2||yi − yj ||2) for RBF, and, Kij = k(xi,xj) = xT

i xj ,

Lij = k(yi,yj) = yT
i yj for the linear kernel. Here xi and yi denote the ith col-

umn of X and Y respectively, H is the centering matrix(H = In − 1
n1n, where

1 is the n× n matrix of all ones) , and T denotes the transpose. To obtain the
equivalent formulation in DDS, in the following equations, we substitute KH
and LH with K̂ and L̂ for simplification. Since K̂ij = K̂ji, we can get KT = K,
similarly, LT = L, thus the above equation can be written as:

CKA
(
X,Y

)
=
∑

ij

K̂ijL̂ij/

√∑

ij

K̂2
ij

∑

ij

L̂2
ij, (4)
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which corresponds to the cosine similarity between K̂ and L̂. Since Kij =
k(xi, xj) and Lij = k(yi, yj), we can treat them as pairwise distance matrix
MX, MY, respectively, in the formulation of DDS. In both cases, Q and D are
both identity matrix here, and the distance function f is the linear or the RBF
kernel. The final similarity function g used here is the cosine distance combined
with the multiplication of the input matrices with the centering matrix H. From
above, we can derive CKA as a special case of DDS, and it can be written as:

S = cos

(
k
(
IXI

)
H, k

(
IYI

)
H

)
(5)

where cos is the cosine distance, k is either the linear or the RBF kernel, and I
is the identity matrix.

S2 Different normalizations in DDS framework

In Table S1, we show how different normalizations used in deep learning and
z-scoring can be reformulated in the DDS framework. Let X ∈ Rn×c×h×w be the
output feature map of a convolutional layer with number of channels c, height
h, width w for n input images. By swapping axes and reshaping the feature map
X, all the normalizations investigated in this work can be described in Duality
Diagram setup. It is crucial to note that after reshaping the feature map, D and
Q no longer represent weighing image and feature dimensions.

Norm D X Q

Z-score In×n − 1n×n/n Xn×chw Schw×chw

Batch Norm Inhw×nhw − 1nhw×nhw/nhw Xnhw×c Sc×c

Group Norm I c
g
hw× c

g
hw − 1 c

g
hw× c

g
hw/

c
g
hw X c

g
hw×ng Sng×ng

Table S1. Different normalizations in DDS framework. Here I denotes an identity
matrix, 1 denotes matrix filled with all 1’s, X is the output feature map of a convolu-
tional layer with number of channels c, height h, width w for n input images, g is group
size for group normalization, and S is a diagonal matrix with diagonal values equal
to standard deviation of X calculated across its rows. For each normalization, X is
reshaped as indicated in the table. Layer and Instance normalization can be described
by setting the group size g in Group norm to 1 and c respectively.

S3 DDS’s dependence on number of images

To calculate similarity between 2 Deep Neural Networks (DNNs) using DDS,
we need to perform feedforward pass through both DNNs on a selected set of
images. Here we analyse the impact of the number of images selected to compute
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the similarity measure. We varied the number of images from 10 to 500, in in-
crements of 10, in a randomly selected set of Taskonomy images for Taskonomy
benchmark and Pascal VOC images for Pascal VOC transfer learning bench-
mark, to calculate DDS. We plotted the correlation with transfer learning on
Taskonomy tasks and on Pascal VOC semantic segmentation task in Figure S1a
and Figure S1b respectively. We show the results for DDS with different f ,
namely Laplacian, RBF, linear, cosine, Euclidean and Pearson’s correlation. We
observe from the plots that correlation value with transfer learning saturates
at around 200 images for all functions. For this reason, in all the experiments
reported in the main paper we use 200 images in the selected sets.

S4 Model selection using a coarse task representation

Using task affinities as a method for source model selection, which is common
also in all related works [8,35,42], requires a pre-trained model on the new task
itself to measure affinities. In [8], it was proposed to train a small model on
the new task, instead of a full large model, because it can be trained faster. The
small models learn a coarse representation of the new task, and the task affinities
to the source models can be compared faster. We use the small model from [8],
and compare the correlation with transfer learning performance for DDS(f =
Laplacian) using small models and big models. We show the comparison in
Figure S2, and we observe that correlation with transfer learning performance
using small model is very close to the correlation using fully trained Taskonomy
type model. Further, we observe that using DDS(f = Laplacian) even with small
model we outperform baseline RSA [8] that uses fully trained Taskonomy type
models. Overall, the above results suggest that even with a coarse representation
obtained by training a small model on new task can assist in model selection
using the similarity measures proposed in this work.

S5 Results of Layer selection(ImageNet/Places
pre-trained encoder)

In addition to the experiments conducted with ImageNet pre-trained encoder,
reported in the main paper, here we also provide results for an encoder pretrained
on Places365 [43]. The representation type of different blocks of Places pre-
trained model, as shown in Figure S3, is similar to what we observed in Imagenet
pre-trained model, reported in the main paper. From Table S2 and Table S3,
we observe that our similarity measure successfully predicted best branching
location for 5 out of 6 cases. Only exception is NYUv2 depth estimation task,
where the transfer learning performance of block 3, selected by the method,
is slightly lower than the best branching location (block 4). Overall from the
above results combined with ImageNet results from the main text, we find that
the proposed method reliably selects high performing branching locations to
transfer to new tasks.
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Block
Task Edge

(MAE)
Normals

(mDEG DIFF)
Semantic
(mIOU)

1 0.680 17.89 0.244
2 0.777 15.62 0.368
3 1.012 14.35 0.532
4 1.002 14.73 0.616

Table S2. Transfer learning performance of branching Places pre-trained encoder on
3 tasks on Pascal VOC dataset. The results indicate that branching out from block
1, 3, 4 of the encoder have better performances on edge, normals and semantic tasks,
respectively.

Block
Task Edge

(MAE)
Depth

(log RMSE)
Semantic
(mIOU)

1 1.027 0.320 0.125
2 1.188 0.286 0.167
3 1.183 0.223 0.216
4 1.120 0.201 0.291

Table S3. Transfer learning performance of branching Places pre-trained encoder on
3 tasks on NYUv2 dataset. The results are mostly consistent with branching location
prediction based on DDS.

We show qualitative results on Pascal VOC[10] and NYUv2[23] datasets in
Figure S4 and Figure S5. Here we illustrate branching results of 3 tasks: Edge
Detection, Surface Normal (Depth) Prediction and Semantic Segmentation. For
each task, ImageNet pre-trained encoder results are shown on the upper row,
and Places 365 pre-trained encoder results are shown on the lower row. We
observed some visual quality degradation in the results of non-optimal branching
locations predicted by our similarity measures: Edge contours become blurry as
the branching location goes deeper; semantic segmentation maps become closer
to the ground truth at deeper layers.

S6 Effect of unbiased centering

We report in Table S4 the effect of applying unbiased centering (eq. 3.1 in [36])
to MX and MY on the correlation with transferability. We observe that for all
cases unbiased centering improves the correlation with transfer learning, and
hence, in all the reported results in the main paper we used unbiased centering.

S7 Results with Spearman’s correlation as g

In the main text, we reported the results with g as Pearson’s correlation between
unbiased centered (dis)similarity matrices MX and MY. Here, in Table S5, we
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Centering
(MX, MY)

f kernels distances

linear Laplacian RBF Pearson euclidean cosine

No centering 0.818 0.691 0.690 0.776 0.613 0.792
Unbiased centering 0.842 0.860 0.841 0.856 0.850 0.864

Table S4. Effect of unbiased centering. We report the results of comparison with
transferability on Taskonomy transfer learning for with and without unbiased centering
on pairwise (dis)similarity matrices MX and MY

Q
f kernels distances

linear Laplacian RBF Pearson euclidean cosine

Identity 0.778 0.828 0.803 0.816 0.798 0.803
Z-score 0.858 0.864 0.846 0.844 0.862 0.860

Table S5. Spearman’s as g. We report the results of comparison with transferability
on Taskonomy transfer learning benchmark for with and without z-scoring when using
Spearman’s as g.

report results when g is the Spearman’s correlation between upper/lower trian-
gular part of unbiased centered (dis)similarity matrices MX and MY, as in [8],
on Taskonomy transfer learning benchmark. We observe that the results show
similar trend with Spearman’s correlation (improvement on applying z-scoring
on X,Y) as using Pearson’s correlation as g, shown in main text Table 2 .

S8 DDS results for all distance/kernels as f

In Table 3 and Table 4 of main paper we reported the best f selected using the
results in Table 2. Here we report the complete results for Table 3 and Table 4
with all investigated functions as f . Due to efficiency of our method it was possi-
ble to perform multiple bootstrap to calculate standard deviation in correlation
with transfer learning. In the tables below (Table S6 and Table S7), we report
bootstrap mean and standard deviation of correlation with transfer learning
for Taskonomy tasks and Pascal VOC semantic segmentation task. We observe
that DDS(f = Laplacian) is the most robust (in Top 1,2 ) measure across both
Taskonomy benchmark and Pascal VOC semantic segmentation tranfer learning.

S9 DDS similarity measure comparison for 17 Taskonomy
tasks

In the main paper, we reported the mean correlation of similarity measures
with transfer learning across 17 Taskonomy tasks. In Figure S6, we provide the
detailed results on all tasks. We find that almost on all the tasks our proposed
similarity measures outperform the state-of-the-art method [35,8].
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Method Affinity Winrate

DDS(f = pearson) 0.853 ±0.090 0.851 ±0.090
DDS(f = euclidean) 0.852 ±0.076 0.855 ±0.079
DDS (f = cosine) 0.862 ±0.076 0.863 ±0.078
DDS(f = linear) 0.837 ±0.084 0.841 ±0.088
DDS (f = Laplacian) 0.862 ±0.072 0.861 ±0.072
DDS(f = rbf) 0.854 ±0.086 0.854 ±0.088

Table S6. Correlation (Bootstrap mean ±standarddev) of DDS based affinity matrices
with Taskonomy affinity and winrate matrix, averaged for 17 Taskonomy tasks. Top 2
scores are shown in green, and blue respectively. For this experiment, Q is set to z-
scoring and D to the identity matrix, in all DDS tested frameworks.

Method Taskonomy Pascal VOC NYUv2

DDS (f = Pearson) 0.534 ±0.063 0.726 ±0.049 0.505 ±0.033
DDS (f = euclidean) 0.534 ±0.055 0.746 ±0.051 0.518 ±0.030
DDS (f = cosine) 0.525 ±0.057 0.722 ±0.049 0.518 ±0.034
DDS (f = linear) 0.496 ±0.063 0.718 ±0.062 0.515 ±0.033
DDS (f = Laplacian) 0.577 ±0.050 0.765 ±0.038 0.521 ±0.029
DDS (f = RBF ) 0.591 ±0.053 0.753 ±0.051 0.534 ±0.030

Table S7. DDS correlation with transfer learning for Pascal VOC Semantic Segmen-
tation. Here each row represents DDS with a particular distance/kernel function as f ,
and each column represents the dataset from which the images were selected to get
similarity scores. The values in the table are bootstrap mean correlation and standard
deviation of a particular similarity measure computed using the image from a particular
dataset. Top score is shown in green.

S10 Precision and Recall curve for DDS

In the main text, we used correlation of similarity measure based source model
rankings with transfer learning performance based rankings as our evaluation
criteria. Song et al. [35] used precision and recall of selecting top-5 source tasks
as the evaluation criteria. We use the evaluation code provided by [35], and we
plot precision and recall curve for one of our most robust proposed method,
DDS(f = Laplacian), against state-of-the-art methods [35,8], in Figure S7. In
Figure S7, we plot results using 200 Taskonomy images for all the similarity
measures that we compared. We further add the results of the methods from
Song et al. [35] using 1000 images from indoor dataset used in Song et al. [35]
that showed best performance in their paper. We observe from Precision and
Recall plots in Figure S7 that DDS(f = Laplacian) outperforms the state-of-
the-art methods.

S11 DDS dependences on image dataset choice

In this section, we investigate the effect of image dataset used to calculate Dual-
ity Diagrams. We report the results of DDS correlation with Taskonomy winrate
in Table Table S8when images from Taskonomy, Pascal VOC, and NYUv2 were
used to calculate Duality Diagrams. We observe a slight drop in DDS’s correla-
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Method Taskonomy Pascal VOC NYUv2

DDS (f = cosine) 0.864 0.818 0.822
DDS (f = Laplacian) 0.860 0.811 0.818

Table S8. DDS correlation with transfer learning on Taskonomy Tasks. Here each
row represents DDS with a particular distance/kernel function as f , and each column
represents the dataset from which the images were selected to obtains similarity scores.

tion with Taskonomy winrate matrix when using images from Pascal VOC and
NYUv2 dataset.

These results are consistent with [35] where they show that their method is
robust to choice of images used to compute similarity between neural networks.
In the aforementioned results, both source and target tasks were trained using
the same training dataset, i.e. Taskonomy, and we believe that is the reason we,
as well as [35], do not observe much difference.

However, when we compare transferability on Pascal VOC, source models
are trained on Taskonomy dataset and target task is on Pascal VOC, which has
significantly different statistics than Taskonomy. In this more challenging setting,
we observe the impact of using images from different datasets, as reported in
Section 6.3 in the main text.
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Fig. S1. Spearman’s correlation of DDS and transfer learning performance on a)
Taskonomy tasks, and b) Pascal VOC semantic segmentation task. The above plots
shows how Spearman’s correlation of DDS with transfer learning varies with the num-
ber of images used to compute similarity using DDS with different distance/kernel
functions as f . The images are randomly sampled from the Pascal VOC dataset.
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Fig. S2. Correlation of DDS(f = Laplacian) based rankings obtained using a small
model trained on Pascal VOC semantic segmentation task with the transfer learning
performance. We show how correlation varies with different stages of training. We fur-
ther compare the results with the upper bound obtained by using the large trained
Taskonomy type model on Pascal VOC semantic segmentation as the task representa-
tion and also a baseline RSA using the large model.

Fig. S3. Block selection using DDS on pre-trained encoder on Places, and with DNNs
trained on Taskonomy dataset on different tasks.

115



28 Dwivedi et al.

Input GT Block 1 Block 4Block 3Block 2

Im
ag

eN
et

Im
ag

eN
et

Im
ag

eN
et

Pl
ac

es
Pl

ac
es

Pl
ac

es

Fig. S4. Qualitative Results on Pascal VOC. Branching results of all locations
on three tasks are shown: Edge Detection, Surface Normal Prediction and Semantic
Segmentation. For each task, ImageNet pre-trained encoder are shown on the upper
row, while Places 365 pre-trained encoder are shown on the lower row. Best results are
circled with dotted lines.
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Fig. S5. Qualitative Results on NYUv2. Branching results of all locations on three
tasks are shown: Edge Detection, Depth Prediction and Semantic Segmentation. For
each task, ImageNet pre-trained encoder are shown on the upper row, while Places 365
pre-trained encoder are shown on the lower row. Best results are circled with dotted
lines.
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Fig. S6. Similarity measures’ comparison on Taskonomy Tasks. Spearman’s correlation
of different similarity measure based rankings with transfer learning performance based
rankings from Taskonomy affinity matrix (left), and Taskonomy winrate matrix (right)
for 17 Taskonomy tasks as target. We show the results for 17 Taskonomy tasks (rows) for
different similarity measures (columns). More yellow indicates higher the correlation,
hence, is better.

Fig. S7. Precision and Recall Curve for comparing similarity measures. The x-axis in
all the plots above refers to the number of source tasks used for calculating precision
and recall value.
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Abstract

Today’s state of the art visual navigation agents typi-
cally consist of large deep learning models trained end to
end. Such models offer little to no interpretability about the
learned skills or the actions of the agent taken in response to
its environment. While past works have explored interpret-
ing deep learning models, little attention has been devoted
to interpreting embodied AI systems, which often involve
reasoning about the structure of the environment, target
characteristics and the outcome of one’s actions. In this pa-
per, we introduce the Interpretability System for Embodied
agEnts (iSEE) for Point Goal and Object Goal navigation
agents. We use iSEE to probe the dynamic representations
produced by these agents for the presence of information
about the agent as well as the environment. We demonstrate
interesting insights about navigation agents using iSEE, in-
cluding the ability to encode reachable locations (to avoid
obstacles), visibility of the target, progress from the initial
spawn location as well as the dramatic effect on the behav-
iors of agents when we mask out critical individual neurons.

1. Introduction
The research area of Embodied AI – teaching embodied

agents to perceive, communicate, reason and act in their en-
vironment – continues to receive a lot of interest from the
computer vision, natural language processing and robotics
communities. A growing body of work has resulted in the
emergence of several powerful and visually rich simulators
including AI2-THOR [20], Habitat [25] and iGibson [37];
works that require agents to navigate [2], reason [5], collab-
orate [18], manipulate [12] and follow instructions [3].

While fast progress is being made across a variety of
tasks and benchmarks, most solutions being employed are
black box neural networks trained to either imitate a se-
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Figure 1. The iSEE framework. (a) An agent learns to perform
the OBJECTNAV or POINTNAV tasks. (b) We wish to explore what
information is encoded in the hidden representations of the agent.
(c) To achieve this, we evaluate how well the agent’s hidden repre-
sentation can predict human interpretable concepts e.g. target vis-
ibility in ObjectNav. (d) Then we apply an explainablity method
SHAP [23] to identify the top-k relevant units.

quence of human/oracle actions or trained via reinforce-
ment learning with a careful selection of positive and nega-
tive rewards. These models offer little to no interpretability
out-of-the-box about the concepts and skills learned by the
model or about the actions taken by the model in response to
a task or observation. Developing interpretable systems is
particularly important in embodied AI since we expect these
systems to eventually be deployed onto robots that will nav-
igate the real physical world and interact with people in it.

In the image classification literature, a number of inter-
pretability methods have been developed over the past few
years [7, 14, 28, 49]. These methods rely on probing model
activations via various inputs or generating synthetic inputs
that lead to a spike in an activation. While such methods
are useful in probing Embodied AI models, they do not take
into account the rich metadata (such as perfect segmenta-
tion, depth maps, precise object localization, etc.) available
in synthetic environments commonly used to train these
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models. Simulated worlds provide us a unique opportunity
to expand interpretability research to embodied agents and
develop new methods that take advantages of rich metadata.

We propose a framework to interpret the hidden repre-
sentations of embodied agents trained in simulated worlds.
We apply our framework to two navigation tasks (Fig-
ure 1a): Object Navigation (OBJECTNAV) [6], the task of
navigating to a target object and Point Goal Navigation
(POINTNAV) [2], the task of navigating to a specified rela-
tive co-ordinate, within the AI2THOR environment; but our
methods are general and can be easily applied to more tasks
and other environments. We train agents to perform these
tasks and then probe their hidden representations to evaluate
if they encode aspects of their task, progress and surround-
ings (Figure 1b and 1c). We then apply the model interpre-
tation method SHAP [23] to identify which hidden units are
most relevant for predicting these concepts (Figure 1d). Our
framework allows us to gather evidence towards answering
two fundamental questions about a trained model: (1) Has
the model learned a particular concept ? (2) Which units
within a recurrent layer encode this concept ? Using this
framework, we were able to find several interesting insights
about OBJECTNAV and POINTNAV agents.

The key contributions of this work are:
• A new interpretability framework specialized for nav-

igation agents with no linearity assumptions between
concepts and hidden units.

• New insights about what navigation agents encode and
in which units:

– sparse target representation in OBJECTNAV
(50/512 units) and POINTNAV (5/512 units);

– learning of concepts such as reachable locations
and visit history by OBJECTNAV agents; encod-
ing of progress towards target and less reliance
on visual information by POINTNAV agents.

• Ablation experiments showing no impact on model
performance after removal of 10% units suggesting re-
dundancy in the representation.

2. Related Work
We explore representations stored within an agent’s hid-

den units by predicting a human interpretable piece of in-
formation about the agent and its environment. Our work is
related to two directions in interpretability research: (1) In-
terpretability of individual hidden units and (2) Explaining
model’s predictions.
Interpretability of hidden units. A common approach to
investigate what a hidden unit encodes is to find the input
image also referred to as “preferred image” that leads to a
maximal activation of the unit of interest. The preferred im-
age can be from within the examples in a dataset [49, 50]
or obtained using gradient descent by optimizing over the
input [13, 16, 28, 29, 39, 42]. One disadvantage of the meth-

ods using preferred images is that it is difficult to quantify
the association of a unit with a concept. To address this
issue, NetDissect [7, 51] uses overlap of a unit’s spatial ac-
tivation with groundtruth segmentation maps of a human
interpretable concept as a measure to quantify a unit’s as-
sociation with a concept. The idea was further extended in
Net2vec [14] to investigate whether a single unit or a group
of units encode a concept. However, these approaches re-
quire groundtruth pixel-level annotation for every concept
of interest and therefore for new concepts, new annotations
are required. On the other hand, simulation environments
[20, 25, 37] have annotations readily available as a part of
the metadata. However, given the vast amount of metadata
beyond simply object information, there is a need to develop
new methods for these environments to interpret embodied
agents. Recent embodied AI works [43, 48] have started
focusing in interpretability by linear decoding of concepts
from hidden units [43] and finding computational structure
of the agent’s recurrent units using fixed point analysis [48].
Patel et al. [31] explored interpretation of emergent commu-
nication in collaborative embodied agents. However these
works do not focus on identifying which hidden units en-
code a given concept which is one of the main contributions
of the present work.

Explaining model predictions. Saliency methods [4, 30,
33,35,40] use gradients to find which pixels of an image are
relevant for model’s prediction. Additive feature attribution
methods [24,34,38] investigate the effect of adding an input
feature in model prediction. A disadvantage of these meth-
ods is that they focus on explaining the model predictions
on raw pixel level. To explain the model prediction using
human-interpretable concepts, TCAV [19] and subsequent
works [15, 17, 21] were proposed that use concept vectors
instead of raw pixels to explain model prediction. To find
concept vectors additional human annotations are required.
In the embodied environments [20, 25, 37], we have the ad-
vantage of already annotated human interpretable concepts.

The above two directions of research have been consid-
ered as independent directions of interpretability research
– one focusing on interpreting what the hidden units learn
and the other on interpreting the decisions made by the
model. In this work, we observe the potential of linking
two approaches to interpret what the hidden units learn by
using human interpretable concepts. Specifically, we train
an interpretable model (Gradient boosted Tree) to predict
human intepretable concepts from the hidden units of the
model and then apply a global model explainability method
SHAP [23] to explain which units are relevant for which
concept prediction. In this work, we use SHAP because (a)
it provides a unique solution with three desirable proper-
ties: local accuracy, missingness and consistency [24], (b)
it unifies several model agnostic [34, 38] and tree based ex-
planation methods [1], and (c) it provides explanation on
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both local (single example) and global (dataset) levels.
Embodied tasks. Several approaches have been proposed
[8–11, 22, 26, 27, 32, 37, 41, 45–47, 52] to tackle the navi-
gation problem, which is a core task in Embodied AI. In
this paper, we analyze standard base models for two popu-
lar navigation tasks, PointNav [2] and ObjectNav [6].

3. Interpretability Framework
We introduce the Interpretability System for Embodied

agEnts (iSEE). iSEE probes agents at their understanding
of the task given to them, their progress at this task and the
environment they act in. This probing is done via training
simple machine learning models that input network activa-
tions and output the desired information. Simulated envi-
ronments provide us with a gamut of metadata about the
agent, task and surroundings, allowing us to train a series of
models for probing this information. iSEE also helps iden-
tifying specific neural units that store this information. This
is done via computing the SHapley Additive exPlanations
(SHAP) [36] values for individual neural units. Finally we
study the effect of switching off individual neural units on
the downstream tasks that the agents are trained for.

We study embodied agents trained for POINTNAV [2]
(navigation towards a specific coordinate in a room) and
OBJECTNAV [6] (navigation towards a specific object). Our
agents encode their visual observations via a convolutional
neural network and encode their target/goal via an embed-
ding layer. The outputs of the visual and goal encoders are
fed into a gated recurrent unit (GRU) to add memory. The
hidden units of the GRU are then linearly transformed into
the policy (distribution over actions) (Figure 2a). There are
more complex, customized models for each of these tasks
that achieve higher performance. However, we utilize these
simple, generic models that can be applied to various tasks
and make the comparisons across tasks more fair. In this
work, we use iSEE to probe the hidden units in the GRU and
use gradient boosted trees (GBT) as the ML model to deter-
mine the presence of relevant information within these hid-
den units (Figure 2b). We focus here specifically on GRU
units since (a) we are interested in analyzing dynamic vi-
sual representations (GRU units) as opposed to static visual
representations (CNN visual encoder) and (b) some of our
models use a frozen visual encoder and only optimize the
parameters within the GRU.

We now describe the metadata extracted from the simu-
lator, probing for this metadata via building GBTs and using
SHAP to identify individual hidden units that store the rel-
evant information.

3.1. Metadata

We probe agents at their understanding of the target, their
position in the scene, the reachability of objects in their
surroundings and their memory of visited locations as they

navigate their world. This information is easily extracted by
us from the metadata provided by the simulator.

Target Information: Agents trained for the OBJECT-
NAV and POINTNAV tasks must navigate to the location of
a specified object or a point, respectively. In either case, one
might expect an agent to be able to estimate its positioning
with respect to the goal. Therefore, at a given timestep t,
we extract metadata containing the distance (Rt) and ori-
entation (θt) of the agent from the target (Figure 2c). In
OBJECTNAV, an agent is successful if the object lies within
1m of the agent and is visible; thus we additionally extract
target visibility (visiblet). Since an object may be visible
in the frame but not within the specified distance to deter-
mine success, we also extract the percent of pixels covered
by the target object using segmentation masks provided by
AI2-THOR (Areat).

Agent’s information: Memory of how far and in what
direction one has travelled can be relevant to avoiding re-
visiting locations in the scene. Therefore, we extract the
agent’s distance (Ra) and orientation (θa) with respect to
its starting location (Figure 2c).

Reachability: For an agent to successfully navigate in
a scene it should be able to detect obstacles and its path
around them. Thus, we extract metadata to detect whether a
particular location with respect to the agent’s current loca-
tion is reachable or not. Given an agent’s location, we first
extract all reachable gridpoints in the scene. Then, with the
agent’s location as the center we consider three concentric
circles with radii=2, 4,and 6 times the grid size and locate
points on these circle that are at angles from 0 to 360 in the
steps of the agents rotation angle (=30 degrees). For each
of these points Rr, θangle, where r is the radius and angle
is the orientation of the grid point with respect to agent in
degrees, we check whether the closest reachable gridpoint
is within gridSize/

√
2 or not. Figure 2d illustrates such

reachable gridpoints in the scene.
Visited History: The metadata extracted above captures

a global summary of the agent’s movements. We also ex-
tract its local visit history. This is done by checking if a
location (visited l), rotation (visited lr) and camera
horizon (visited lrh) has been visited by the agent or not.

3.2. Metadata extraction

As the agent traverses around in a scene, we extract the
GRU activations of the agent along with the agent and scene
metadata described above. This is done within the train-
ing and validation scenes. The latest model architectures
and training algorithms for POINTNAV and OBJECTNAV
lead to very capable agents that (a) exhibit little variabil-
ity in their trajectories (b) do not collide often (c) make few
mistakes such as revisiting locations. Such trajectories are
less useful to probe agents, since the events of interest oc-
cur sparsely. Hence we use human trajectories (trajectories
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Figure 2. iSEE: a) At a given timestep, AI2THOR generates an observation that is fed as input to the agent along with a goal embedding.
For that time step, we also extract relevant event metadata from AI2THOR which is unseen by the agent. b) After sampling rollouts from
multiple training and validation episodes, we train a gradient boosted tree to predict metadata from the agent’s hidden representation (GRU
units). We then apply SHAP, an explainability method that identifies the top-k most relevant units for predicting a given metadata type.
c) At a given timestep, we extract agent’s orientation with respect to its initial spawn location (Ra, θa) and target location (Rt, θt). d) We
extract reachable positions at distance 2,4,6 times the grid size and different angles with step size of 30 degrees to identify whether these
locations can be reached by the agent or not.

specified by humans navigating around) that encourage ex-
ploration and have intentional collisions and mistakes. Us-
ing a pre-defined set of human trajectories also enables us
to fairly compare findings across agents.

3.3. Metadata prediction

We train GBTs to predict specific metadata concepts us-
ing the GRU’s hidden units as inputs. GBTs are trained us-
ing episodes within the training scenes and evaluated using
correlation between the predicted metadata and groundtruth
metadata on the validation episodes. For a given model, we
trained one GBT of depth = 10 for each concept using
xgboost library. For binary variables (such as target visi-
bility) we use the logistic loss function and for continuous
variables (such as distance from target/agent’s initial posi-
tion) we use the mean squared error loss function. Total
training and evaluation time of GBT was 8 seconds on a
single NVIDIA RTX 2070 GPU. We use GBTs because:
(1) they are more interpretable in comparison to many other
ML models when the mapping from inputs to outputs is not

linear; (2) allow exact computation of SHAP values as com-
pared to other models where SHAP values can only be ap-
proximated [23].

3.4. Identifying explainable units using SHAP

Given a set of hidden units, SHAP computes the impor-
tance of each individual unit by quantifying its contribution
towards predicting a concept. SHAP values are based on a
game theory concept called Shapley values [36]. We first
train a GBT to predict a concept using all hidden units. We
then use a subset of hidden units and mask other units to
predict a concept using pretrained GBT. Then we add in
a new hidden unit and compute the change in the model’s
prediction capability. This difference quantifies the contri-
bution of a hidden unit with regards to the chosen subset.
By averaging this contribution over all possible subsets of
hidden units, we get the Shapley value of the unit of inter-
est. For instance, we use this method to compute the con-
tribution of a specific GRU hidden unit towards predicting
the visibility of the specified target. Note that the obtained
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SHAP values distribution on validation set
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Figure 3. Schematic to read a SHAP plot: The plot shows the
top-4 relevant GRU units to predict the target visibility. Each row
shows the distribution of SHAP values of a given GRU unit for all
the examples in the validation set with each dot in the row corre-
sponding to an individual data point. The color of the dot indicates
whether the GRU unit’s output was low or high for that data point.

Shapley value indicates the impact of the hidden unit on
the model’s outcome for a single example. To quantify the
global impact of hidden unit on model’s outcome we calcu-
late the mean of absolute SHAP values over all examples in
the validation set (for more details please see Appendix A).

Figure 3 is a SHAP beeswarm plot to visualize the global
contribution of the top-k relevant GRU units. We use this
plot to explain how one can interpret SHAP plots. This
plot visualizes the contribution of the top 4 relevant units
to predict target visibility. Each row corresponds to a given
GRU unit, and each dot in the row corresponds to the GRU
unit’s Shapley value for a given example. Each row dis-
plays the distribution of SHAP values on all the samples of
the validation set. The location of a dot on the x axis shows
whether the impact of the GRU unit on model’s prediction
(i.e. Shapley value) is positive or negative. The GRU unit’s
value for a sample is visualized using the colorbar on right.
As an example, for the circled dot in Figure 3, the Shap-
ley value of GRU unit 10 is negative and the color of the
dot indicates that GRU unit 10’s value is also low. For the
examples on the right side of x-axis the shapley values are
positive and the GRU unit’s values are also higher. This
means that GRU unit 10 is positively correlated with target
visibility. Using a similar logic GRU unit 477 seems to be
negatively correlated with target visibility. In a nutshell, the
SHAP plot shows the global contribution of a GRU unit in
prediction of a concept (rows sorted by contribution), dis-
plays the distribution over the validation examples (points
in each row) and indicates whether a unit is positively or
negatively correlated with the concept (colors of the points
in accordance with the x-axis values).

4. Experimental Setup
We use the AllenAct [44] framework to train models for

the tasks OBJECTNAV and POINTNAV tasks in the iTHOR
rooms within AI2THOR [20]. For both tasks, we use the

a) b) c)

Prediction by OBJECTNAV agents

Figure 4. Metadata prediction by OBJECTNAV GRU units: a)
Reachability b) Target information c) Visited history

same split of rooms for training and validation.

4.1. OBJECTNAV Models and Baselines

We consider two models for OBJECTNAV. The first
model uses a frozen ResNet18 as the visual encoder and is
named RNON , while the second uses a 5 layer CNN (re-
ferred to as SimpleConv) as the visual encoder, denoted
by SCON . In SCON , the visual encoder is optimized using
the gradients of the actor critic loss. The visual representa-
tion is concatenated with the goal embedding which is then
fed to a GRU. The GRU is connected to two linear layers
predicting the policy and value. To ascertain if the repre-
sentations learned by OBJECTNAV agents are due to train-
ing, we consider two randomly initialized models with the
same architetcures as the baselines. For the random ResNet
model, named RNr

ON
, we initialize ResNet with ImageNet

weights and initialize the GRU randomly. For the random
SimpleConv model, named SCr

ON
, both the visual encoder

and GRU are initialized randomly. RNON and SCON are
trained for 300 Million steps using the default hyperparam-
eters from the AllenAct framework.

4.2. POINTNAV Models and Baselines

Similar to OBJECTNAV models we consider a ResNet
based model (RNPN) and a SimpleConv based model
(SCPN). The distance and orientation to target are used as a
sensory input to the model for target information. The cor-
responding random baselines are named RNr

PN
and SCr

PN
.

RNPN and SCPN are trained for 300 Million steps using the
default hyperparameters from AllenAct.

ObjectNav PointNav
ResNet18 SimpleConv ResNet18 SimpleConv

Trained RNON SCON RNPN SCPN

Random RNr
ON SCrON RNr

PN RNr
PN

4.3. Human Trajectories

After training the OBJECTNAV and POINTNAV mod-
els, we collect human sampled trajectories for the training
and validation rooms. The training trajectories contain 59
episodes with average episode length of 480 while valida-
tion trajectories contain 42 episodes with average episode
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a) d)Target units Reachability units

b)

c)

e)

f)

Figure 5. Visualization of hidden units. a) Target Visibility Unit: Top-4 most relevant units to predict target distance. b) The bar plot on
left shows unit 10’s (target unit) response. The center image is agent’s current observation. The polar plot on right shows the distance (in
meters) and orientation of the agent (in degrees) wrt target. In this case, the agent is at around 3 meters away from the target and is oriented
around 0 degrees. The response of unit 10 is negative. c) In this case, the agent is now closer to target (around 1 meters) and unit 10’s
(target unit) response is positive. d) Reachability Unit: Top-4 most relevant hidden units to predict reachability at distance 2 × gridSize
and theta zero. e) The bar plot on the left shows unit 402’s (reachability unit) response. The polar plot on right shows if the locations
at radii of 2, 4, 6 × gridSize and a given orientation in degrees are reachable or not. In this case, all the locations ahead are green i.e.
reachable. The response of unit 402 is negative. f) All the locations ahead are red i.e. not reachable. The response of unit 402 is positive.

length of 470. The subject was encouraged to completely
explore the rooms with intentional collisions and visits to
previously visited locations with an episode length upper
limit of 500. All 8 models are forced to follow these trajec-
tories. The corresponding metadata and GRU activity was
extracted resulting in 28,000 training samples and 20,000
validation samples for GBT training.

5. Results

5.1. OBJECTNAV

The validation performance of OBJECTNAV models sat-
urates at around 50 million steps, therefore we select a
checkpoint right after 50 million steps from both models.
RNON (success = 0.458, SPL = 0.23) significantly outper-
forms SCON (success = 0.124, SPL = 0.056). Here suc-
cess indicates the fraction of episodes the agent success-
fully reached the target and SPL refers to Success weighted
by Path Length introduced in [2]. We consider concepts de-

rived from metadata that are related to target information
(Rt,θt,visible t,Area t) , reachability (Rrθangle where
r is the radius and angle is the orientation of the neighboring
grid point w.r.t. the agent), agent’s information (Ra,θa) and
visited history (visited l,visited lr,visited lrh).

Metadata prediction: We train GBTs to predict meta-
data from the GRU units. We observe that RNON pre-
dicts reachability much better than the other three OBJECT-
NAV models (Figure 4a) with a correlation of 0.45 and
ROC AUC=0.75 for reachability in front (R2θ000). We also
observe an interesting pattern that prediction of reachabil-
ity drops as one moves from 0 (front of the agent) to 180
(behind) degree then it starts increasing from 180 to 330
degrees suggesting the reachability of locations in front is
more predictable than behind the agent. In Figure 4a, we
show the results for reachability with radius = 2×gridsize.
We observe a similar pattern for radius = 4× gridsize and
radius = 6× gridsize (refer to Appendix B).
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Figure 6. Impact of removing units from RNON .

For the target information (Rt,θt,Area t,visible t)
RNON shows a higher correlation than the other
three models (Figure 4b). Visited history also
(visited l,visited lr,visited lrh) shows a higher
correlation for RNON (Figure 4c). The agent’s information
(Ra,θa) is not predicted well and RNON model shows a
correlation similar to baselines suggesting this informa-
tion is not learned by the agent during training (refer to
Appendix B). Overall, we observe that RNON learns the
reachability, target relevant information and visited history
from OBJECTNAV training. This suggests that these three
features are very crucial for performing this task.

While we present the results only on four concepts we
also considered collision but found that it was poorly pre-
dicted for all 4 models (refer to Appendix B).

Hidden unit visualization: To identify which hidden
units are relevant to the mentioned concepts we apply
SHAP on the two most interesting concepts (visible t

and R2θ000). In Figure 5a we show the top-4 units that are
most relevant in predicting the target visibility. On observ-
ing the SHAP plot of unit 10 (Figure 5a) we see that when
the unit’s value is higher it has a positive impact on target
visibility and vice-versa suggesting that the unit’s value is
high when the target is visible (for aggregate SHAP values
over units see Appendix E). The polar plots show the agent’s
trajectory (Figure 5 b,c), blue line represents trajectory and
green dot indicates the agent’s current location wrt target.
Bar plot shows the RNN unit’s response for current obser-
vation. Here, the target is a bowl; when the agent is away
from the target its response is negative (Figure 5b) and when
it is closer its response is positive (Figure 5c). These results
also suggest that this unit might be positively correlated to
target visibility.

In Figure 5d, we show the top-4 units most relevant in
predicting R2θ000 (for distribution of aggregate SHAP val-
ues over units see Appendix E). On observing the SHAP
plot of unit 402 (Figure 5d) we can see that when the unit’s
value is higher it has negative impact on R2θ000 and vice-
versa suggesting that the unit value is high when the loca-
tion ahead is not reachable. In Figure 5e,f, the dots are
located at radii = 2, 4, 6× stepsize from the agent and at
angles from 0 to 330 in steps of 30◦, where 0 is the front
of the agent. Dot color indicates if the location is reachable

(green) or not (red). Here, when the location in front of the
agent is reachable the unit’s response is negative (Figure 5e)
and when there is an obstacle in front the unit’s response
is positive (Figure 5f). These results suggest that this unit
might be detecting obstacles ahead.

Unit ablation: While SHAP provides a way to quantify
the impact of hidden units on the prediction of a particu-
lar metadata concept, it does not imply causality. To iden-
tify causality we perform an ablation and measure the im-
pact on the evaluation metrics. We remove units relevant to
visible t and R2θ000 prediction and measure the impact
on the model’s performance in terms of SPL, success, and
episode length. We compare the ablation results to remov-
ing a random selection of units as a baseline. To remove a
unit, we set the unit’s activity as a constant that is equal to
the mean of that unit’s activity over the training episodes.

In Figure 6, we observe that removing only 10 target
units leads to a huge drop in SPL as compared to removing
as many as 50 random units or units encoding reachability.
As we remove more target units, the success also begins
to drop. This suggests that target units are crucial and re-
moving them first deteriorates the agents ability to identify
targets thus leading to longer episodes and low SPL scores
and beyond a certain point, the agent ability to be successful
is also affected. Removing reachability units also leads to
drop in SPL but the impact is not as drastic as in the case of
target units. Interestingly removing reachability units lead
to increase in success rate potentially due to an increase in
exploration. Removing randomly selected units do not sig-
nificantly impact any of the performance measures.

5.2. POINTNAV

Similar to OBJECTNAV, we choose checkpoints after 50
million steps for our POINTNAV models. RNPN (success
= 0.925, SPL = 0.755) and SCPN (success = 0.878, SPL =
0.712) are highly successful at this task. We consider con-
cepts derived from metadata that are related to target infor-
mation (Rt,θt) , reachability (Rrθangle where r is the radius
and angle is the orientation of the neighboring grid point
with respect to the agent), agent’s information (Ra,θa) and
visited history (visited l,visited lr,visited lrh).

Metadata prediction: We train the GBTs to predict
metadata from the GRU units. We first observe from Figure
7a (left) that reachability is predicted at all the angles well.
Another interesting thing to note is that models that are not
even trained on the POINTNAV task (RNr

PN
and SCr

PN
) can

predict reachability. This result is surprising as compared to
OBJECTNAV, where the only model that predicted reach-
ability well was the one that performed well on the OB-
JECTNAV task (RNON). Further, RNON only predicted the
reachability in the view of the agent. Our intuition for the
above result is that this could be due to additional informa-
tion from GPS + compass sensor that provides the distance
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a) b) c)POINTNAV (target + visual) POINTNAV (visual) POINTNAV (target) POINTNAV (target + visual) POINTNAV (target + visual)

Figure 7. Metadata prediction by POINTNAV GRU units: a) Reachability b) Target information and c) Agent information

Figure 8. Impact of removing units from SCPN .

and orientation of the target. To tease apart the prediction
due to visual sensor and GPS sensor we perform an ablation
study where in one case we replace the output of the GPS
sensor by random noise (visual-only; Figure 7a center) and
in the other we replace the image with all zeros (only GPS;
Figure 7a right).

In the visual-only case, we now observe a pattern simi-
lar to OBJECTNAV where reachability in the field of view
is more predictable than out of view. However, it is impor-
tant to note that prediction of reachability does not improve
with training RNPN suggesting that ResNet with ImageNet
weights is sufficient to predict reachability required to solve
POINTNAV. SCr

PN
however does not seem to predict front

reachability (R2θ000) as effectively as SCPN suggesting that
a random initialization is not sufficient to predict reachabil-
ity required to solve POINTNAV.

In the target-only case, we observe that the reachability
of the backside of the agent is more predictable compared
to the angles in the field of view. One possible explanation
for this could be that when the distance between target and
the agent changes in a given step that means the position
at the back was reachable since the agent was there in the
previous step. Therefore, using the change in GPS sensor
values reachability at back can be predicted in some cases.

The target distance and orientation is predictable when
the GPS sensor is available for all the models (Figure 7b
and Appendix C). This finding is expected as we provide
this information as input, and when the GPS sensor is noise
it can not be predicted (refer to Appendix C). Interestingly
when the GPS sensor is available (Figure 7c and Appendix
C), hidden units in trained POINTNAV models can predict
the distance of the agent (Ra) from the initial spawn loca-

tion. When using the SHAP method to find the relevant
units for predicting Ra, we observe that top most relevant
units have a constant value (refer to Appendix D) at almost
every step in the episode and show very low variance in its
output. On further inspection, we found that the 2 units in
top-20 most relevant units for Ra prediction were also rele-
vant for target distance Rt prediction. To predict Ra, GBT
might be using a combination of a constant unit(s) and unit
that encodes the target information.

Unit ablation: Similar to OBJECTNAV we perform ab-
lations by removing units and measuring the impact on the
metrics. As shown in Figure 8 removing random and reach-
ability units have almost no impact on the performance.
Even after removing 50 units we observe similar perfor-
mance on all three metrics. Removing the units that are
relevant for predicting Ra causes a significant drop in the
performance and on dropping 50 units both SPL and suc-
cess rate almost reach zero. The episode length also reaches
the highest possible value (500) set in the task definition i.e.
the episode ends if agent takes 500 steps. On further inspec-
tion, we found that in top-50 Ra units, there are 6 units from
the top-50 Rt units. This is the key reason why POINTNAV
performance dropped as the target distance information is
lost. We further performed an ablation by removing only
these 6 target units, which resulted in a drastic drop.

6. Conclusion

We propose iSEE to investigate if concepts about the
agent, environment and task are encoded in the hidden rep-
resentation of embodied agents. While we focus on visual
navigation agents trained in AI2-THOR, the framework is
generic and can be applied to agents trained on any task in
any virtual environment with relevant metadata available.
Our analysis shows the OBJECTNAV agent encodes target
orientation, reachability and visited locations history in or-
der to avoid obstacles and visiting the same locations re-
peatedly. POINTNAV agents encode target orientation and
its progress towards the target and show less reliance on vi-
sual information.
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Košecká, Ayzaan Wahid, and James Davidson. Visual rep-
resentations for semantic target driven navigation. In ICRA,
2019. 3

[28] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas
Brox, and Jeff Clune. Synthesizing the preferred inputs for
neurons in neural networks via deep generator networks. In
NeurIPS, 2016. 1, 2

[29] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert.
Feature visualization. Distill, 2017. 2

[30] Daniel Omeiza, Skyler Speakman, Celia Cintas, and Kom-
minist Weldermariam. Smooth grad-cam++: An enhanced
inference level visualization technique for deep convolu-
tional neural network models. arXiv, 2019. 2

910284
128



[31] Shivansh Patel, Saim Wani, Unnat Jain, Alexander Schwing,
Svetlana Lazebnik, Manolis Savva, and Angel X. Chang.
Interpretation of emergent communication in heterogeneous
collaborative embodied agents. In ICCV, 2021. 2

[32] Santhosh K Ramakrishnan, Ziad Al-Halah, and Kristen
Grauman. Occupancy anticipation for efficient exploration
and navigation. In ECCV, 2020. 3

[33] Sylvestre-Alvise Rebuffi, Ruth Fong, Xu Ji, and Andrea
Vedaldi. There and back again: Revisiting backpropagation
saliency methods. In CVPR, 2020. 2

[34] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”
why should i trust you?” explaining the predictions of any
classifier. In KDD, 2016. 2

[35] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In ICCV, 2017. 2

[36] Lloyd S Shapley. 17. A value for n-person games. 2016. 3,
4

[37] Bokui Shen, Fei Xia, Chengshu Li, Roberto Mart’in-Mart’in,
Linxi (Jim) Fan, Guanzhi Wang, S. Buch, Claudia. Pérez
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4 Discussion and Outlook

4.1 Summary

This thesis aimed to pave the way forward in understanding the representations of

the human visual cortex and deep neural networks trained for visual tasks. Our

works from Chapter 1 and Chapter 2 demonstrated that DNNs trained on different

tasks have the potential to reveal insights into representations of the human visual

cortex and DNNs. Our work from Chapter 3 exploited the untapped potential

of simulation engines to develop a new method for interpreting representations of

hidden neurons of DNNs. We also demonstrated the potential of the proposed new

approach in revealing the new insights into representations learned by navigation

models.

4.1.1 Insights into human visual cortex representations

In Chapter 1, we first investigated the scene-selective regions OPA and PPA by

comparing their representations to DNNs trained on scene classification task and

scene parsing task and randomly initialized DNNs as a baseline. We first observed

that both scene classification and scene-parsing DNNs explained OPA and PPA

responses better than randomly initialized DNNs. The results suggest that training

on scene classification and scene parsing tasks brings DNN representation closer to

representations in OPA and PPA. We further found that the variance of OPA and

PPA responses were better explained uniquely by scene-parsing DNNs than scene-

classification DNNs, suggesting the representation in OPA and PPA is closer to

scene-parsing DNNs. A key difference between scene parsing and scene classification

tasks is that scene parsing requires identifying which components are present in the

scene and where they are present, while scene classification only requires identifying

the type of scene. Therefore, our results suggest that spatial information of where
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the objects are located in the scene is also present in scene-selective regions.

In the second part of chapter 1, we focused on the entire visual cortex and in-

creased the number of DNNs to 18 to focus on different aspects of scene understand-

ing (2D, 3D, and semantic). We found a systematic mapping of tasks on the visual

cortex with 2D DNNs best explaining the early visual cortex, 3D DNNs best ex-

plaining the dorsal regions, and semantic DNNs best explaining the ventral regions.

Overall our findings converged with well-established neuroscience theory [89] that

proposes two streams in the visual cortex: “What” stream in the ventral regions

and ”where” stream in the dorsal regions. “What” represents what type of objects

are present in the scene and therefore is related to semantic information about the

scene. “Where” represents the spatial location of different objects in the scene and

therefore is related to 3D information of the scene. While our findings converged

with dual-stream theory, using our proposed method, we were able to find new in-

sights into representations of several brain regions that can advance the investigation

of the human visual cortex by designing new neuroimaging experiments based on

what we found.

4.1.2 Insights into DNN representations

In the first part of Chapter 2, we focused on finding how training on different tasks

leads to different representations in the DNNs with identical architecture. We found

that earlier layers of all the DNNs have very similar representations irrespective of

the tasks they were trained on. On the other hand, the deeper layers were more

task-specific and showed more diversity in the representation. The representations

of deeper layers of the DNNs trained on related tasks were more similar than DNNs

trained on less related tasks. In other words, the representations of DNNs trained on

3D tasks were more similar to other DNNs trained on 3D tasks than DNNs trained

on 2D or semantic tasks. We observed a similar pattern in the case of DNNs trained

on 2D and semantic DNNs.

We then showed that task similarity obtained using representational similarity

analysis is highly related to transfer learning-based task similarity. Using the rep-

resentational similarity analysis’s relation to transfer learning, we showed that the

proposed approach could be used for model selection in transfer learning.

In the second part of chapter 2, we defined a new representational similarity
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measure called Duality Diagram Similarity that unifies other similarity measures.

The duality diagram consists of multiple components. By investigating the different

combinations of components, we showed that comparing the feature spaces after z-

scoring leads to a very high correlation with transfer learning compared to previous

works. We then used DDS to show that early layers of a Resnet50 [90] trained on

Imagenet [38] (also Places [91]) classification task have representations similar to 2D

DNNs, middle layers have representations similar to 3D DNNs, and deeper layers

have representations similar to semantic DNNs. The above observation shows that

DDS can be applied to branching location selection for transfer learning.

In the final chapter, we took inspiration from explainability research and devel-

oped a new method to find what concept a neuron encodes. We found that DNNs

trained on the Objectnav task learn to encode target visibility, obstacles (or reach-

ability), and history of visits to successfully navigate to the target object. Ablating

target units significantly dropped the DNN’s performance compared to ablating

other irrelevant units, validating our approach’s effectiveness in finding relevant

units. DNNs trained on the Pointnav task learned to encode the agent’s progress

towards the target and showed less reliability on visual information. Overall, we

observed that concepts are sparsely represented in units suggesting that models can

be compressed easily by 25% without a noticeable change in performance.

Overall, the studies in this thesis revealed new insights into the representations

of the visual cortex and DNNs. While the earlier chapters used an existing well-

established method, the last work proposed a new approach to interpreting DNN

representations and showed the potential of simulation engines in interpretability

research.

4.2 Limitations

In the first chapter, we found representations in the human visual cortex in terms

of 2D, 3D and semantic tasks. These tasks are only a fraction of all possible vi-

sual functions the human brain can perform. Further, the images used in these

chapters were from indoor scenes. So, our findings are limited in the scope of tasks

considered and only valid for indoor scene perception. Although we expect the rep-

resentational insights we found to be consistent with the image domain, we make
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no claims whether our findings will be valid for outdoor scenes, videos, and active

tasks where humans can interact with the scenes. Another limitation was that the

brain responses were collected on only 50 selected images, so we are not sure what

these results will look like for a larger sample.

In the second chapter as well, we had the same limitations regarding the number

of tasks considered. The number of computer vision tasks considered is only a

fraction of all possible computer vision tasks. Although we would like to extend

our approach to all possible computer vision tasks, the datasets for different tasks

are usually different. This leads to ambiguity about whether the difference in the

representation of DNNs is due to the training dataset or task. Further, the task

similarities we obtained were for the tasks in indoor scenes, so again, similar to

chapter 1, we make no claims whether our results will be consistent for the same

task setting in outdoor images.

In the third chapter, the number of concepts we looked at was not exhaustive

for navigation. The concepts we chose were what we thought were relevant for

performing Objectnav and Pointnav tasks, but the agent might be learning some

other concepts and possible biases in the dataset. We only looked at the baseline

models and not the state-of-the-art models on these tasks: those could have led to

a better understanding of what concepts are relevant for solving these tasks. Again,

the number of tasks we investigated here was limited.

4.3 Future directions

Although this work has made progress towards understanding representations in

both the human visual cortex and DNNs, it has also opened several new directions

to explore. We discuss some of these possible directions below:

4.3.1 New brain datasets

The approach we presented to find the representation of a brain region in terms of

the task a DNN was trained for is not limited to indoor scene perception. One can

apply a similar approach to find representational insights about the auditory cortex,

language regions, hippocampus, and prefrontal cortex. Even in the visual cortex,

one can use a larger dataset like BOLD 5000 [92] or NSD [93] and probe the visual
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regions using DNNs trained on different tasks from MSCOCO dataset [39]. Another

large-scale dataset of fMRI responses to video clips [34] can be used to probe which

regions are involved in motion, event understanding, and action recognition. Almost

all the fMRI datasets for vision involve passive viewing of images, so there is also

a need for a collection of new brain recordings where humans actively engage in

the environments, such as playing a video game or performing a navigation task in

photorealistic simulation environments.

4.3.2 New DNNs

Recently there is a growing interest in new DNN architectures for vision tasks such

as vision transformers [63], swin transformers [94], MLP mixers [95], hybrids of con-

volutions and transformers [96] and many others. These architectures lead to better

performance on several benchmarks, and hence it would be interesting to apply

methods such as representational similarity analysis or neuron-to-concept mapping

to find out how different the representations are in these architectures. Another

hot research area is self-supervised learning [97, 98, 99, 100], where people focus

on designing new tasks without the need for human annotations or labels. The

self-supervised learning has shown tremendous potential in learning generic repre-

sentations that outperform DNNs trained in a supervised manner in transfer learn-

ing scenarios. What makes these representations more transferable and better than

supervised DNNs? One might consider applying the approaches presented in this

thesis to answer these questions.

4.3.3 Transfer learning

While in this work, we investigated transfer from the models trained on Taskonomy

datasets or Imagenet/Places datasets, the number of new DNN architectures and

self-supervised DNNs has grown exponentially. These new DNN architectures and

self-supervised DNNs have shown promising results on transfer to downstream tasks.

Further, new benchmarks have been created to compare transferability estimates,

such as one proposed in Agostinelli et al. [101] investigating transferring from an

ensemble of models. Hence, extending the presented methods in this thesis may

allow selecting multiple models for transfer learning.
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4.3.4 Tapping the full potential of simulation engines

Most DNN interpretability research and research on the human visual cortex focuses

on passive image/video viewing. In both cases, either a human or a DNN processes

the visual input passively without engaging with the environment. These passive

viewing datasets are usually selected from natural images with limited groundtruth

annotations. The tasks that one can use for training a DNN are also less related

to how humans interact with the world. The simulation engines such as AI2Thor

[1] and Habitat [77] provide photorealistic scenes where humans/DNNs can interact

with the world to perform more complex tasks such as navigation, following language

instructions, rearranging a room, and interacting with objects, that are more related

to how humans perform the tasks in the natural world. Therefore, there is a lot of

potential in designing new tasks in these simulation environments that are related to

human learning and can be explored via new brain recordings to provide wholesome

insights into how humans/DNNs solve these complex tasks.
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A List of Figures

0.1 Overview: a) Given a set of DNNs trained on n tasks, b) In Chapter

1, we compare representations of n DNNs to a brain region’s repre-

sentations to reveal insights about brain representation in terms of

n tasks. c) In Chapter 2, we compare representations of n DNNs to

a target DNN’s representation to reveal insights about this DNN’s

representations in terms of n tasks. d) In Chapter 3, we develop a

new method to find out where in the hidden layers of a target DNN

are the concepts (like target visibility, obstacle detection) encoded. . . 23
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and M. van Gerven, “End-to-end neural system identification with neural in-

formation flow,” PLOS Computational Biology, vol. 17, no. 2, p. e1008558,

2021.

[11] P. Bashivan, K. Kar, and J. J. DiCarlo, “Neural population control via deep

image synthesis,” Science, vol. 364, no. 6439, p. eaav9436, 2019.

[12] C. R. Ponce, W. Xiao, P. F. Schade, T. S. Hartmann, G. Kreiman, and M. S.

Livingstone, “Evolving images for visual neurons using a deep generative net-

work reveals coding principles and neuronal preferences,” Cell, vol. 177, no. 4,

pp. 999–1009, 2019.

[13] M. Khosla and L. Wehbe, “High-level visual areas act like domain-general

filters with strong selectivity and functional specialization,” bioRxiv, 2022.

[14] K. Grill-Spector and R. Malach, “The Human Visual Cortex,” Annual

Review of Neuroscience, vol. 27, no. 1, pp. 649–677, 2004. eprint:

https://doi.org/10.1146/annurev.neuro.27.070203.144220.

[15] B. A. Wandell, S. O. Dumoulin, and A. A. Brewer, “Visual field maps in

human cortex,” Neuron, vol. 56, no. 2, pp. 366–383, 2007.

[16] B. A. Wandell and J. Winawer, “Imaging retinotopic maps in the human

brain,” Vision research, vol. 51, no. 7, pp. 718–737, 2011.

[17] K. Grill-Spector, Z. Kourtzi, and N. Kanwisher, “The lateral occipital complex

and its role in object recognition,” Vision Research, vol. 41, pp. 1409–1422,

May 2001.

140



[18] N. Kanwisher and G. Yovel, “The fusiform face area: a cortical region spe-

cialized for the perception of faces,” Philosophical Transactions of the Royal

Society B: Biological Sciences, vol. 361, no. 1476, pp. 2109–2128, 2006.

[19] R. Epstein, A. Harris, D. Stanley, and N. Kanwisher, “The parahippocampal

place area: Recognition, navigation, or encoding?,” Neuron, vol. 23, no. 1,

pp. 115–125, 1999.

[20] S. V. Astafiev, C. M. Stanley, G. L. Shulman, and M. Corbetta, “Extrastriate

body area in human occipital cortex responds to the performance of motor

actions,” Nature neuroscience, vol. 7, no. 5, pp. 542–548, 2004.

[21] E. L. Josephs and T. Konkle, “Large-scale dissociations between views of ob-

jects, scenes, and reachable-scale environments in visual cortex,” Proceedings

of the National Academy of Sciences, vol. 117, no. 47, pp. 29354–29362, 2020.

[22] K. Vinken, T. Konkle, and M. Livingstone, “The neural code for’face cells’ is

not face specific,” bioRxiv, 2022.

[23] D. L. K. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and J. J.

DiCarlo, “Performance-optimized hierarchical models predict neural responses

in higher visual cortex,” Proceedings of the National Academy of Sciences,

vol. 111, no. 23, pp. 8619–8624, 2014.

[24] S.-M. Khaligh-Razavi and N. Kriegeskorte, “Deep supervised, but not unsu-

pervised, models may explain it cortical representation,” in PLoS Computa-

tional Biology, 2014.

[25] U. Guclu and M. A. J. van Gerven, “Deep Neural Networks Reveal a Gradi-

ent in the Complexity of Neural Representations across the Ventral Stream,”

Journal of Neuroscience, vol. 35, pp. 10005–10014, July 2015.

[26] P. Agrawal, D. Stansbury, J. Malik, and J. L. Gallant, “Pixels to vox-

els: modeling visual representation in the human brain,” arXiv preprint

arXiv:1407.5104, 2014.

[27] R. M. Cichy, A. Khosla, D. Pantazis, A. Torralba, and A. Oliva, “Compar-

ison of deep neural networks to spatio-temporal cortical dynamics of human

141



visual object recognition reveals hierarchical correspondence,” Scientific re-

ports, vol. 6, p. 27755, 2016. Publisher: Nature Publishing Group.

[28] M. Eickenberg, A. Gramfort, G. Varoquaux, and B. Thirion, “Seeing it all:

Convolutional network layers map the function of the human visual system,”

NeuroImage, vol. 152, pp. 184–194, 2017.
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