Aminotransferase-Aktivität in der Blaualge Anacystis nidulans

Activity of Aminotransferases in the Blue Green Alga Anacystis nidulans

Günter Döhler

Fachbereich Biologie - Botanik - der Universität Frankfurt am Main

(Z. Naturforsch. 31 c, 433-435 [1976]; eingegangen am 25. März/19. Mai 1976)

Aminotransferase Activity, Inhibitors, ¹⁴CO₂ Fixation, Anacystis

The blue-green alga Anacystis nidulans (strain L 1402-1) was grown at +37 °C in air (0.03 vol.% CO₂ and in air enriched with 3.0 vol.% CO₂. The effects of several inhibitors on the activity of aminotransferases, ¹⁴CO₂ fixation and radioactive photosynthetic products of Anacystis were studied. No serine-pyruvate aminotransferase activity could be found in 10^{-2} M isonicotinyl hydrazide (INH); under the influence of this inhibitor aspartate and alanine aminotransferase were decreased about 49% respectively 17.6%. Serine-pyruvate and alanine aminotransferase activity decreased to more than 50% in 10^{-3} M glyoxalbisulfite. The obtained inhibitory effect of 10^{-4} M HPMS on serine-piruvate aminotransferase (35%) was stronger than on the other aminotransferases. DCMU (5×10^{-6} M) inhibition on alanine aminotransferase activity was 83.7%. Under the influence of 10^{-3} M glyoxalbisulfite no ¹⁴C-labelled amino acids could be detected after 5 min photosynthesis; ¹⁴C-labelling of phosphoenolpyruvate, malate, phosphoglycolate and glycolic acid increased. Isonicotinyl hydrazide (10^{-2} M) caused in comparison to the control experiment a lower radioactivity in aspartate, glutamate and phosphoenolpyruvate. The results are discussed with reference to the operation of the glycolate pathway and a carboxylation reaction of phosphoenolpyruvate in the blue-green alga Anacystis nidulans.

Neuere Untersuchungen des Glykolatweges in Verbindung mit der Lichtatmung ergaben, daß bei Algen, insbesondere Blaualgen, der Glykolatweg anders als in höheren Pflanzen oder gar nur unvollständig abläuft^{1,2}. So fanden Codd und Stewart³ bei Anabaena einen Glykolatmetabolismus mit Tartronsäuresemialdehyd als Zwischenstufe. Fütterungsversuche mit ¹⁴C-Glykolat deuten darauf hin, daß bei der Blaualge Anacystis nidulans der Glykolatweg über Glyoxylat nur bis zum Glycin verläuft⁴; die Umwandlung von Glycin in Serin ist danach von untergeordneter Bedeutung. Aus Untersuchungen der Kinetik des ¹⁴C-Einbaues in verschiedene Photosyntheseprodukte von Anacystis geht hervor, daß Glycin/Serin und Aspartat neben den Produkten des Calvin-Cyclus in hohem Maße 14C-markiert sind ⁵. Um Hinweise über den Weg der Glycin/ Serin-Synthese zu erhalten, untersuchten wir die Wirkung verschiedener Hemmstoffe auf die Aktivität der am Glykolatweg beteiligten Serin-Pyruvat- und Aspartat-a-Ketoglutarat-Aminotransferase sowie die ¹⁴C-markierten Photosyntheseprodukte. Außerdem haben wir die Aktivität der Aspartat- und Alaninaminotransferase, die bei der Carboxylierung von Phosphoenolpyruvat mit Aspartat als Folgeprodukt von Bedeutung sind ⁶, unter dem Einfluß von Inhibitoren getestet.

Experimentelles

Objekt der Untersuchungen war die Blaualge Anacystis nidulans (L 1402-1) der Algenreinkulturensammlung, Göttingen. Die Anzucht der Algen erfolgte bei +37 °C, einem Licht-Dunkel-Wechsel von 16:8 h und unter Begasung mit Preßluft (0,03 Vol.% CO₂) oder 3,0 Vol.% CO₂. Die Aktivität der Aspartat- und Alaninaminotransferase wurde in Anlehnung an die Methode von Hatch und Mau¹² bestimmt. Die Serin-Pyruvataminotransferase ist nach den Angaben von Tolbert⁷ getestet worden. Die ¹⁴CO₂-Fixierungsexperimente, dünnschichtchromatographische Auftrennung der Extrakte und die Bestimmung der Radioaktivität wurde nach der bei Döhler¹⁸ beschriebenen Prozedur ausgeführt.

Ergebnisse und Diskussion

Da der Einfluß der Inhibitoren auf die im Rohextrakt getesteten Aminotransferasen praktisch unabhängig vom CO_2 -Gehalt während der Algenanzucht ist, sind in der Tab. I nur die Enzymdaten von in 0,03 Vol.% CO_2 kultivierten Anacystis-Zellen dargestellt. Die gemessene Aktivität der Serin-Pyruvat-Aminotransferase (8,8 U/mg Protein h), die zwar nicht die von Yamazaki und Tolbert⁷ an Spi-

Sonderdruckanforderungen an Prof. Dr. G. Döhler, Botanisches Institut der Johann-Wolfgang-Goethe-Universität, Siesmayerstr. 70, D-6000 Frankfurt.

natblättern ermittelten Werte erreicht, kann als Hinweis für das Vorhandensein eines aktiven Glykolatweges gewertet werden. Die Serin-Pyruvat-Aminotransferase, die in Algen bisher noch nicht untersucht wurde², katalysiert in Verbindung mit der Hydroxypyruvatreduktase die Bildung von Glycerat aus Serin. 10⁻² M Isonicotinylhydrazid (INH) hemmt die Aktivität dieses im Rohextrakt von Anacystis-Zellen getesteten Enzyms vollständig, was mit den Beobachtungen von Youatt⁸ an Mycobakterium übereinstimmt. In 10⁻³ M INH wurde noch eine 30-prozentige Hemmung festgestellt, obwohl erst Konzentrationen ab 10⁻² M eine Hemmwirkung zeigen sollen. INH soll im Glykolatweg vor allem die Serinbildung aus Glycin blockieren. Die Serin-Pyruvat-Aminotransferase-Aktivität wird durch Glyoxalbisulfit (BS) um 40 - 50% und α -Hydroxypyridylmethansulfonsäure (HPMS) - einen relativ spezifischen Inhibitor der Glykolatoxidase - sowie Dichlorphenyldimethylharnstoff (DCMU) um 35% gehemmt. Die genannten Substanzen beeinflussen die Aktivität der Aspartat-a-Ketoglutarat-Aminotransferase nicht im gleichen Maße; dies läßt sich vielleicht damit erklären, daß dieses Enzym außer am Glykolatweg noch am C₄-Weg der Photosynthese beteiligt ist, also noch über eine zweite Stoffwechselquelle verfügt. Die Alaninaminotransferase, die ebenfalls eine wichtige Rolle im C4-Weg der Photosynthese spielt, wird nur durch BS und DCMU deutlich gehemmt. Die Hemmwirkung des gereinigten DCMU-Präparates ist kein Artefakt bedingt durch das bei der Löslichmachung verwendete Äthanol. Die photosynthetische CO₂-Fixierung wird durch DCMU über die Blockierung der Photophosphorylierung sehr stark gehemmt; es sind nur Aspartat, Glutamat, Glycin/Serin und 3-Phosphoglycerat ¹⁴Cmarkiert 5.

Inhibitor	Serin-Pyru amino- transferase EC 2.6.1	vat- Hem- mung [%]	Aspartat- amino- transferase EC 2.6.1.1.	Hem- mung [%]	Alanin- amino- transferase EC 2.6.1.2.	Hem- mung [%]
10^{-2} M INH 10^{-3} M INH 10^{-3} M BS 10^{-4} M BS 10^{-4} M HPMS 5×10^{-6} M DCMU	8,8 6,1 4,0 6,2 5,8 5,7		3,0 1,5 2,4 2,4 2,6 2,1 2,7	 49,0 22,1 22,1 14,2 29,3 12,1	1,88 1,55 1,88 0,77 1,09 1,55 0,31	

Tab. I. Wirkung verschiedener Inhibitoren auf die Aktivität der Serin-Pyruvat-, Aspartat- und Alaninaminotransferase, getestet in Extrakten der Blaualge Anacystis nidulans (L 1402-1). Die Enzymdaten sind Durchschnittswerte aus 2–6 Meßreihen und in U/mg Protein h angegeben. Pigmentverhältnis von Chlorophyll a/Phycocyan 1:7,5; Hemmstoffeinwirkung 15 min. Anzucht der Algen bei +37 °C unter Begasung mit atmosphärischer Luft (0,03 Vol% CO₂).

In weiteren Versuchsreihen prüften wir eingehend die Abhängigkeit der Enzymaktivität von der Einwirkungszeit der einzelnen Inhibitoren bei den angegebenen Konzentrationen. Dabei zeigte sich, daß je nach Einwirkungsdauer und Vorbehandlung der Algen starke Schwankungen auftreten können. Da die Aktivität der getesteten Enzyme erst nach einer Lagerzeit von 3 h deutlich abnimmt, spielt ein Aktivitätsverlust während der Versuchsdauer als Fehlerquelle keine Rolle. Bei der Versuchsdurchführung haben wir daher stets auf die genaue Einhaltung der Einwirkungszeit des Hemmstoffes geachtet.

In Ergänzung zu den enzymatischen Tests untersuchten wir den Einfluß von 10⁻² M INH und 10⁻³ M Glyoxalbisulfit auf das Verteilungsmuster der ¹⁴C-markierten Photosyntheseprodukte (vgl. Tab. II); über die Wirkung von 10⁻⁵ м HPMS und 5×10^{-6} M DCMU auf die Kinetik des ¹⁴C-Einbaues während der Photosynthese-Induktion wurde bereits berichtet⁵. Durch 10⁻³ M Glyoxalbisulfit wird die Synthese der Aminosäuren (hier Aspartat, Glycin/Serin, Alanin, Glutamat, Valin und Threonin) völlig blockiert. Der prozentuale Anteil an der Gesamtfixierungsrate von 3-Phosphoglycerinsäure, Phosphoenolpyruvat, Phosphoglykolsäure und Glykolsäure steigt an, alle übrigen Substanzen haben praktisch die gleiche Markierungsrate wie die unbehandelte Kontrolle. Nach Zelitch⁹ hemmt Bisulfit ähnlich wie HPMS auch die Glykolatoxidase bzw. Dehydrogenase; auf diese Weise wird die Bildung von Glyoxylat und damit auch von Glycin und Serin blockiert. Auch kommt es zu einer Anreicherung

G. Döhler · Aminotransferase-Aktivität in Anacystis nidulans

Substanz	Kontrolle	[%]	INH	[%]	BS	[%]
Aspartat	7380	15,4	1272	4,4	_	_
Malat	152	0,3	_	_	226	0,8
Phosphoenolpyruvat	1071	2,2	334	1,1	1938	7,5
Phosphoglykolsäure	473	0,9	324	1,1	734	2,8
Glykolsäure	262	0,5	295	1.0	1064	4.1
Glycin/Serin	1877	3,9	1045	3,6		_
Alanin	2628	5,4	1153	4.0		_
Glutamat	906	1.8	148	0.5	-	
Valin	984	2.0	-	_	-	_
Threonin	830	1.7	346	1.2	-	
Glucose-1-phosphat	10100	21,1	6943	24.2	6000	23,2
Fructose-6-phosphat	2375	4.9	1268	4.4	1362	5.2
Fructose-1.6-diphosphat	395	0.8	209	0.7	712	2,7
3-Phosphoglycerinsäure	14223	29,7	13105	45.7	11621	45,1
Citrat/Glycerat	991	2,0	231	0.8	225	0,8
Uridindiphosphoglucose	2327	4.8	1388	4.8	1450	5,6
Ribulose-1.5-diphosphat	820	1.7	614	2.1	421	1,6
Gesamtfixierungsrate	47794	-,-	28675	_,_	25753	

Tab. II. Einfluß von 10^{-2} M Isonicotinylhydrazid (INH) und 10^{-3} M Glyoxalbisulfit auf das Verteilungsmuster der ¹⁴Cmarkierten Produkte nach 5 min Photosynthese von Anacystis nidulans (L 1402-1); der Hemmstoff wurde im Dunkeln 20 min vor Lichtbeginn zugegeben; Versuchstemperatur +35 °C; Begasung der Algen mit normaler atmosphärischer Luft (0,03 Vol% CO₂). Die Radioaktivität ist in dpm angegeben.

und/oder Ausscheidung von Glykolat. In diesem Sinne lassen sich die Befunde unserer autoradiographischen Untersuchungen nach NaH¹⁴CO₃-Fütterung (vgl. Tab. II) interpretieren. Die vollständige Blockierung der Synthese der anderen Aminosäuren, vor allem Aspartat und Alanin, geht offensichtlich auf die Hemmung der Aspartat- und Alaninaminotransferase-Aktivität (vgl. Tab. I) zurück. Bei C₄-Pflanzen wurde nach Bisulfitgabe eine starke Beeinträchtigung der PEP-Carboxylierung beobachtet ¹⁰, was vermutlich ähnlich wie hier bei *Anacystis* auf die Blockierung der Aminotransferasen zurückgeht.

Isonicotinylhydrazid (10^{-2} M) wirkt sich dagegen nicht so drastisch auf das Verteilungsmuster der ¹⁴Cmarkierten Photosyntheseprodukte aus. Die Aspartat- und Glutamat-Markierungsrate wird um 2/3 verringert, die der anderen Aminosäuren – abgesehen von Valin – dagegen nur geringfügig. In Übereinstimmung mit Kisaki und Tolbert¹¹, die nach Zugabe von 10^{-2} M INH eine 52-prozentige

- ¹ M. J. Merret u. J. M. Lord, New Phytologist **72**, 751-767 [1973].
- ² N. E. Tolbert, Algal Physiology and Biochemistry (W. D. P. Stewart, ed.), pp. 474-504, Blackwell Scie. Publ., Oxford, London, Edinburgh, Melbourne 1974.
- ³ G. A. Codd u. W. D. P. Stewart, Arch. Mikrobiol. 94, 11 -28 [1973].
- ⁴ K.-R. Przybylla, Dissertation, Frankfurt 1974.
- ⁵ G. Döhler, Planta 118, 259-269 [1974].
- ⁶ M. D. Hatch, T. Kagawa u. S. Craig, Aust. J. Plant Physiol. 2, 111-128 [1975].

Hemmung der Glyoxylat-Glutamat-Aminotransferase fanden, kann angenommen werden, daß INH direkt mit der Aminotransferase reagiert. Die Inhibitoren INH. BS und HPMS führen zu einer Verminderung der Photosyntheseleistung (s. auch Gesamtfixierungsrate der Tab. II) um fast 50%. Dies ist verständlich, da nicht nur die Aktivität der Aminotransferasen, sondern auch die der PEP- und RuDPcarboxylase von Anacystis gehemmt wird⁵. Auffällig ist die starke Zunahme des ¹⁴C-Einbaues in 3-Phosphoglycerinsäure von 29,7% der Kontrolle auf 45,7%, was allerdings noch nicht gedeutet werden kann. Unsere autoradiographischen Untersuchungen und die Ergebnisse der enzymatischen Tests sprechen dafür, daß der Glykolatweg und die PEP-Carboxylierung in der Blaualge Anacystis nidulans ablaufen.

Frau Rosemarie Reuter und Frau Liselotte Tramp danke ich für ihre bewährte technische Mitarbeit.

- ⁷ R. K. Yamazaki u. N. E. Tolbert, J. Biol. Chem. 245, 5137-5144 [1970].
- ⁸ J. Youatt, Biochem. J. 68, 193-197 [1958].
- ⁹ I. Zelitch, J. Biol. Chem. 224, 251-260 [1957].
- ¹⁰ C. B. Osmond u. P. N. Avadhani, Plant Physiol. 45, 228 -230 [1970].
- ¹¹ T. Kisaki u. N. E. Tolbert, Plant Physiol. 44, 242-260 [1969].
- ¹² M. D. Hatch u. S.-H. Mau, Arch. Biochem. Biophys. 156, 195-206 [1973].
- ¹³ G. Döhler, Planta 107, 33-42 [1972].