
Program Equivalences for Concurrency
Abstractions in a Concurrent Lambda

Calculus with Buffers, Cells and
Futures.

Martina Willig

March 23, 2009

in partial fulfilment of the requirements for the degree of
Bachelor of Science in Computer Science

at the Goethe Universität Frankfurt
Department of Computer Science and Mathematics

Thesis Supervisor:
Prof. Dr. Manfred Schmidt-Schauß

Professur für Künstliche Intelligenz und Softwaretechnologie

Danksagung
Acknowledgments

Ich bedanke mich bei allen Menschen, die mich beim Schreiben dieser Ar-
beit unterstützt haben. Mein Dank geht insbesondere an Dr. David Sabel
für seine hervorragend engagierte Betreuung, die vielen anregenden Diskus-
sionen und guten Ratschläge, ohne die diese Arbeit nicht möglich gewesen
wäre.
Besonderer Dank gilt Herrn Prof. Dr. Schmidt-Schauß für seine außeror-
dentlich wertvollen Vorlesungen, die mein Interesse an der Theorie der Pro-
grammiersprachen geweckt haben, und mich immer wieder aufs Neue mo-
tivierten, und der mich schließlich in seine Arbeitsgruppe aufnahm.
Ich danke auch meiner Schwester Tanja, meinem Partner Ingo und meinen
Freunden Markus und Daniel, für ihre Unterstützung während meines Studi-
ums.

Erklärung
Declaration

Ich versichere hiermit, dass ich vorliegende Bachelorarbeit selbstständig und
ohne Zuhilfenahme anderer Quellen oder Hilfsmittel, als der in der Arbeit
angegebenen, verfasst, sowie noch nicht anderweitig für Prüfungszwecke vorgelegt
habe.

I declare that this thesis was composed by myself, that the work contained
herein is my own except where explicitly stated otherwise in the text, and
that this work has not been submitted for any other degree or professional
qualification except as specified.

Frankfurt am Main, March 23, 2009

Martina Willig

Abstract

Various concurrency primitives had been added to functional programming
languages in different ways. In Haskell such a primitive is a MVar, joins
are described in JoCaml and AliceML uses futures to provide a concurrent
behaviour. Despite these concurrency libraries seem to behave well, their
equivalence between each other has not been proven yet. An expressive for-
mal system is needed. In [SSNSS08] a universal calculus for concurrency
primitives was defined known as the typed lambda calculus with futures.
There, equivalence of processes had been proved. An encoding of simple
one-place buffers had been worked out. This bachelor’s thesis is about en-
coding more complex concurrency abstractions in the lambda calculus with
futures and proving correctness of its operational semantics. Given the new
abstractions, we will discuss program equivalence between them. Finally, we
present a library written in Haskell that exposes futures and our concurrency
abstractions as a proof of concept.

Contents

1 Introduction 4

2 A Formalism For Concurrency 7
2.1 Objectives In Concurrent Programs 7
2.2 The λτ (fchb) Calculus . 9

2.2.1 Main Concepts . 9
2.2.2 Syntax . 10
2.2.3 Abbreviations . 13
2.2.4 Operational Semantics 14
2.2.5 Observational Semantics 17
Summary . 19

2.3 Encoding Primitives . 20
2.3.1 Test And Set . 20
2.3.2 Channels . 21
2.3.3 Quantity Semaphores 26
2.3.4 Bounded Channels . 30
2.3.5 Rendezvous And Barrier 34
Summary . 37

3 Properties Of The Encodings 38
3.1 Properties Of The Buffer Operations 40
3.2 Properties Of The Channel Abstraction 41
3.3 Properties Of The Quantity Semaphore Abstraction 51
3.4 Properties Of The Bounded Channel Abstraction 59
3.5 Properties Of The Barrier Abstraction 66
3.6 Program Equivalence . 77
Summary . 85

2

4 Implementation 86
4.1 Concurrent Haskell . 86
4.2 The Future Library . 86

4.2.1 Futures In Haskell . 87
4.2.2 Control.Concurrent.Futures.Buffer 89
4.2.3 Control.Concurrent.Futures.Chan 90
4.2.4 Implementing Quantity Semaphores In Haskell 92
4.2.5 Control.Concurrent.Futures.BChan 93
4.2.6 Implementing Barrier In Haskell 94

4.3 Using The Library . 95
Summary . 95

Conclusion 96

3

1. Introduction

In the last decade functional programming languages became extremely pop-
ular. Today the demand for features of functional programming languages
is growing enormously. On the one hand, this is reflected by the ongoing
integration of functional features into object-oriented languages like Scala1

in the case of Java or Cω2 and F#3 respectivly for C# .
On the other hand this shift towards functional languages can be observed

in the growing number of users of languages like Haskell or OCaml. These
provide by design the benefits of pure functional languages [Bac78]. Some of
these benefits are

• No Side Effects: An expression in a pure functional language is a math-
ematical function and function application. Its value depends only on
its arguments. For example, the function f(x) will produce the same
result for a given argument x at any time. This avoids saving the pro-
gram state and mutable data. Because there is no need for changing
the value of already calculated computations, functional programming
languages do not have any side effects.

• Type Safety: The type system prevents type errors at run time because
typing mistakes are already found by the type-checker during the com-
pilation process.

• Program clarity [Bac78]: Programs written in a functional language
are intuitive, lean and easy to read.

1The object-oriented Java is mixed with the functional features of ML into Scala,
developed at École polytechnique fédérale de Lausanne

2Cω (formerly known as Polyphonic C#, developed at INRIA) is based on the join
calculus and developed at Microsoft Research [Res09a].

3F# stems from the ML family of languages and has a core language compatible with
that of OCaml, Microsoft Research [Res09b].

4

• Provableness: Functional languages are based on a mathematical ax-
iomatic system - a calculus - which is a powerful tool for providing
program correctness.

• Abstraction: The semantics of functional languages is as abstract as
possible.

• Platform Independence: This follows from abstraction: the higher the
abstraction the better the integration of a language on different archi-
tectures.

Functional programming languages are very powerful but programmers can-
not write real world applications with this pure but limited approach. Real
world applications usually need data access, input/output, multiple processes
which interchange their values and have connections to other systems. Fur-
thermore they may be distributed themselves. Therefore common functional
programming languages had been extended by libraries empowering them in
one particular task like for example concurrency, parallelism or communica-
tion. But at the same time this also weakens them: In the case of concurrency
indeterminism is not always avoidable. Think of two processes that try to
write to a storage location in memory in parallel. One of them had to be
chosen as the first writer so the other process fails to write and must try again
later. This example breaks the rule of absence of side effects and conflicts
with the original idea of the functional approach and its powerful features.
But although these unfavourable properties are not avoidable, they can be
reduced to a small set of cases in which they occur. This requires the exten-
sions to be written in a formal way. Once we have a formalism we can use
it to verify that the semantics satisfy a particular specification and observe
how programs behave.

Concurrent behaviour is especially interesting, since its programming
model is essential in modern programming. There are many different ways
to add concurrent behaviour to a programming language. The concurrency
libraries differ from implementation to implementation. For example in
Haskell’s Control.Concurrent module a synchronisation between two pro-
cesses is provided by simple semaphores4 while in JoCaml5 the same be-

4Semaphores are called MVars here. They are simple lock variables. See [PGF96,
Pey09].

5JoCaml is a derivate of the join calculus. See [INR09] for further reading.

5

haviour is achieved by joins6.
A basic formalism that describes the syntax and semantics of a language

supporting concurrent behaviour had been developed in [NSS06]. It is called
the lambda calculus with futures and its speciality is a paradigm descended
from the field of parallel computing called a future. This calculus has been ex-
tended numerous times with new syntactical and semantical elements. Each
extension means creating a new calculus. Thus, the extensions form a chain
of calculi differing only in a few minor points. Within the development of
this chain an observational semantics for the lambda calculus with futures
had been introduced and improved. The observational semantic turned out
to be an excellent proving tool for concurrent calculi.

We refer to the calculus called λτ (fchb), which was lately recalled in
[SSNSS09]. So far, λτ (fchb) is a sleek calculus that models a minimal need
of concurrency paradigms, whereas it is an extremely expressive method of
proof for correctness of program transformations and calculi translations.

In this thesis we extend the lambda calculus with futures by more com-
plex concurrency primitives (Chapter 2.2). We translate them into terms of
λτ (fchb). In chapter 3 we show properties of these concurrency abstractions
and correct transformation rules making use of the powerful observational
semantics. We also show program equivalences between new concurrency
abstractions. In doing so, we stay at the level of λτ (fchb). These program
equivalences can be used in the proofs of translations between two calculi in
the future. Finally, we implement the primitives encodings in Haskell (Chap-
ter 4) using the Control.Concurrent library based on [PGF96]. By doing
so we make them comparable to Haskell’s implementation.

6Joins are a primitive for synchronising processes.

6

2. A Formalism For
Concurrency

A formal system for concurrent behaviour must fulfil the requirements of
concurrent programming issues. We give an overview of the main aspects in
this section.

2.1 Objectives In Concurrent Programs

S: let x = 0

in x:=x+1; x:=x+2;

print x

Figure 2.1: A sequential program.

P: let x = 0

in x:=x+1 | x:=x+2;

print x

Figure 2.2: A parallel program.

Safety. While in sequential programming the order of execution is deter-
ministic, in concurrent programs it is not. This arises some difficulties for
instance if two or more independent processes access a shared memory. In
this case the order of execution can affect the result of the program. To il-
lustrate this, consider program S (Fig. 2.1) and P (Fig. 2.2) that manipulate
data. The printing command in the sequential programm S will output ’3’,
every time the code is executed. In contrast P can produce ’1’, ’2’ or ’3’ as
the output for print. This behaviour is called interference. Each part in
the code where an assignment is made for x represents a critical region be-
cause it uses the shared memory variable x whose state can change. Critical
regions are a source for interference and can be avoided by synchronisation
mechanisms. If a concurrent program never enters a bad state, then it fulfills

7

the safety property.

Liveness. Deadlocks arise from the situation of two threads blocking each
other. In Fig. (2.3) both processes await the access permission of the variable
held by the other process. They will wait forever. Livelocks arise from a cycle

P: acquire A; acquire B; compute; release B; release A
Q: acquire B; acquire A; compute; release A; release B

Figure 2.3: A Deadlock situation, in [Rep99]

in the dependence of ressources of two processes, not blocking each other. In

P

1: acquire A;

if (B is held):

release A; goto 1

else

acquire B;

compute;

release B;

release A

Q

1: acquire B;

if (A is held):

release B; goto 1

else

acquire A;

compute;

release A;

release B

Figure 2.4: A Livelock situation, in [Rep99]

Fig. (2.4) the processes P and Q are both retrying to evaluate the state of
A (B) in the if condition. Here, the code is cyclic because the condition will
never evaluate to True. The liveness property asserts that a program will
always reach a desirable state: convergence (termination) or divergence.

Fairness. Assume a situation where a scheduler is only based on priority.
There may always exist processes with a higher priority than a given process
p. Thus p will always be delayed. This is called starvation. In concurrent
programs processes and threads should be executed in a fair order. Every
process must have its chance to execute. This presumes the fairness property.

These objectives define a part of the measure of power that the semantic
of λτ (fchb) needs.

8

2.2 The λτ (fchb) Calculus

2.2.1 Main Concepts

Processes and Components. A program in λτ (fchb) consists of processes.
A process is a collection of components combined into parallel computation.
Components are either threads or handles, cells or buffers. A component is
a sequentially computated expression. Threads are lazy or eager : A lazy
thread evaluates its value by need, an eager thread immediately evaluates.
Lazy and eager threads can be mixed together. We do not distinguish be-
tween structural congruent processes: The order of introducing threads in
a process does not affect any order of evaluation in a parallel computation.
Processes synchronise on future values: A successful thread evaluates to a
proper value and binds it to a future. Processes can observe other processes
on unbound names. Bound names are hidden from observation via the key-
word (ν).

Synchronisation: Futures and Handles. Processes synchronise their
values via futures. Future values are lazily evaluated so they explicitly sus-
pend the computation. Each future object is associated with a background
thread that computes the future value. As long as this expression has not
been evaluated, the value of the future is unknown. Whenever an unknown
future is accessed the computation will suspend on this future. Once the
value has been evaluated the computation resumes. A handle is a compo-
nent that points to an unevaluated future and computes its value on demand.
Therefore, handles are used to associate a value to a future. They provide a
synchronisation mechanism for processes.

The λτ (fchb)’s evaluation strategy is a strict one, except it is explicitly
expressed by the use of futures and lazy threads. λτ (fchb) is typed. The
language also models case-expressions and data constructors that include also
tuples such as pairs and lists. Finally, reference cells point to a location in
memory, to mutable data.

9

τ ∈ Type ::= unit || ref τ || τ → τ || κ(τ1, . . . , τar(κ)) || buf τ

c ∈ Const ::= unit || cellτ || threadτ || lazyτ || handleτ || newBufτ || getτ

π ∈ Pat ::= kτ (x1, . . . , xar(k))

e ∈ Exp ::= x || c || λx.e || e1 e2 || exch(e1, e2) || kτ (e1, . . . , ear(k)) ||
caseκ e of π1 ⇒ e1 | . . . | πm ⇒ em || put(e1, e2)

v ∈ Val ::= x || c || λx.e || kτ (v1, . . . , var(k))

p ∈ Proc ::= p1 | p2 || (νx)p || x c v || x⇐e || x susp⇐= e || y hx || y h • ||
x b − || x b v

Figure 2.5: Syntax description of λτ (fchb)

p1 | p2 ≡ p2 | p1 (p1 | p2) | p3 ≡ p1 | (p2 | p3)
(νx)(νy)p ≡ (νy)(νx)p (νx)(p1) | p2 ≡ (νx)(p1 | p2) if x is not free in p2

Figure 2.6: Structural congruence of processes

2.2.2 Syntax

The syntax consists of two layers: Expressions e ∈ Exp which sequen-
tially compute λ-expressions and case-expressions, and processes p ∈ Proc
which compose components in parallel. Constants or higher-order functions
are: threadτ introduces a new eager thread. lazyτ introduces a new lazy
thread. cellτ introduces a reference cell and handleτ introduces a new han-
dle. exch(e1, e2) is the operation for exchanging cell values. Values are
variables, λ-expressions or data constructors. A cell is the smallest unit for
data storage. A buffer is like a cell with a synchronisation ability. newBufτ

creates an empty buffer that swells in a new process; getτ takes the con-
tents of a buffer or suspends on an empty buffer until it holds a value and
put(b, v) is a binary operator that puts a value v into an empty buffer b or
suspends until the buffer becomes empty. Processes p are composed in paral-
lel from smaller components p1 | p2, whereas the operator | does not define
any computation order. (Fig. 2.6). The table (2.1) lists all distinguishable
forms of components. All processes satisfy the distinct variable convention.
That means, new binders use fresh variables. Thus, if values with bound
variables had been copied by β-cbv(ev), case.beta(ev) or fut.deref(ev),
they must be α-renamed before applying the next rule. We assume that the

10

x⇐e is an eager thread. An eager thread binds a future x to the value of
expression e unless it diverges or suspends;
x is called a concurrent future.

x
susp⇐= e is a lazy thread. A lazy thread is a suspended computation that

starts once the value of x is needed elsewhere;
x is called a lazy future.

y hx is a handle. A handle associates y to a future x, so that y can be
used to assign a value to x; x is called a handled future.

y h • is a used handle. A used handle has already bound its associated
future to a value.

x c v associates the value v to the cell x.
x b− is a new empty buffer.
x b v is a buffer containing the value v.

Table 2.1: Forms of components

distinct variable convention holds: All free variables are distinct from bound
variables and bound variables are pairwise distinct.

Definition 2.2.1 (Variable introduction). A process p ≡ D[p′] introduces a

variable x for p′ such that p′ is x⇐v, x c v, x
susp⇐= e, x h v, y hx, x h • or x b v.

Introduced variables are called process variables.

Definition 2.2.2 (Well-formedness). A process is well-formed, if it does not
introduce any variable twice.

An empty buffer x is denoted as x b−. A buffer x that contains a value v is
represented by x b v. Finally, the syntax of λτ (fchb) includes patterns π ∈ Pat
to distinguish between different data constructors in a case-expression.

Typing. The finite set of data and type constructors Σ = (K,D) consists
of type constructors κ ∈ K and data constructors k ∈ D. For all variables
x there is a unique type Γ(x). τ denotes a monomorphic type. unit is a
monomorphic type representing the empty value and ref τ is a monomorphic
type that denotes a reference to a memory location. Monomorphic types
are polymorphic types without type variables. Each data constructor has a
unique polymorphic type upt(k). upt(k) is of the form τ̂1 → · · · → τ̂ar(k) →
κ(α1, . . . , αar(k)). ar() is the arity of k. Polymorphic types are denoted as

11

x : Γ(x) unit : unit cellτ : α→ref α
threadτ : (α→α)→α lazyτ : (α→α)→α getτ : buf α→ α

handleτ : (α→(α→unit)→β)→β newBufτ : unit→ buf α

x : τ1 e : τ2

(λx.e) : τ1 → τ2

e1 : τ1 → τ2 e2 : τ1

(e1 e2) : τ2

e1 : ref τ e2 : τ

exch(e1, e2) : τ

e1 : bufτ e2 : τ

put(e1, e2) : unit

k ∈ Dκ e1 : τ1 . . . ear(k) : τar(k) k : τ1 → . . .→ τar(k) → κ(τ ′1, . . . , τ
′
k)

k(e1, . . . , ear(k)) : κ(τ ′1, . . . , τ
′
k)

D(κ) = {k1, . . . , kn} e : κ(τ ′1, . . . , τ
′
k) ∀i = 1 . . . n : ei : τ ∀i, j : xi,j : τi,j

∀i = 1 . . . n : ki : τi,1 → . . .→ τi,mi → κ(τ ′1, . . . , τ
′
k)

(caseκ e of (ki(x1, . . . , xar(ki)) ⇒ ei)
i=1...n) : τ

Figure 2.7: Typing rules for expressions

p1 : wt p2 : wt

p1 | p2 : wt

x:τ e:τ

x⇐e:wt

x:τ e:τ

x
susp⇐= e:wt

x:ref τ v:τ

x c v:wt

p:wt

(νx)p:wt

y h • : wt

x : τ y : τ → unit

y hx : wt x b− : wt

x : buf τ v : τ

x b v : wt

Figure 2.8: Typing of processes

τ̂ ∈ PolyType ::= α || unit || ref τ̂ || τ̂ → τ̂ || κ(α1, . . . , αar(k)) where α belongs
to a finite set of type variables. Monomorphic instances τ of polymorphic
types τ̂ are denoted as τ � τ̂ . The type system allows n-tuples 〈v1, . . . , vn〉
of all possible types τ1 × · · · × τn.

Example 2.2.1. Let Bool ∈K be a type constructor. ThenDBool = {True,False}
is the set of data constructors for Bool. Bool is of arity 0. True and False are
monomorphic types of arity 0.

Example 2.2.2. We define a polymorphic type for lists. Let List ∈ K be the
type constructor of polymorphic lists. Then we define two data constructors,
one for the empty list nil ∈ D(List) and one for a list holding at least one

12

α-typed element cons ∈ D(List) with upt(nil) = List(α) and upt(cons) =α→
List(α) → List(α). List is of arity 1, nil of arity 0 and cons of arity 2.

Process components have to be well-typed, denoted by p : wt. Type
assignments for expressions are written e : τ . Typing Rules for expressions
and processes are shown in the Fig. 2.7 and Fig. 2.8.

Remark. We omit type lables for constants and constructors if they do not
play an important role. Mostly in the proofs in chapter 3, typing remains
out of consideration without affecting the result.

With all these syntactical elements we can construct programs in λτ (fchb).
For illustration consider the Example 2.2.3.

Example 2.2.3. A syntactically valid program in λτ (fchb) is for example

(νz)(νh)(νb)(z⇐getτ b︸ ︷︷ ︸
a thread

|| h h f︸︷︷︸
a handle

|| b b 4︸︷︷︸
a buffer

)

︸ ︷︷ ︸
process 1

|| (νy)(y
susp⇐= e︸ ︷︷ ︸

a susp. thread

)

︸ ︷︷ ︸
process 2︸ ︷︷ ︸

a program
where e is an expression in Exp.

2.2.3 Abbreviations

While describing the semantics and especially when encoding new primitives, we
use the following syntactical abbreviations:

• let x1=e1, . . . , xn=en in e is shorthand for let x1=e1 in , let x2=e2 in , . . . , let xn=en in e

and this is shorthand for (λxn.(λxn−1.(. . . (λx1.e)e1 . . .))en−1)en
• e1; e2 is the sequencing computation and is equal to (λ .(e2))e1
• Patterns (guards) π in abstractions λπ.e are used instead of λx.case x of π⇒ e.
• if e then e1 else e2 is shorthand for case e of True⇒ e1 |False⇒ e2
• wait e is used instead of if e then True else True

• stands for an arbitrary fresh variable.
• ⊥ is a must-divergent computation
• (νx1, . . . , xn) means that x1, x2 . . . xn are bound variables.

Concerning the buffer primitive we write newBuf v for creating a new buffer con-
taining the value v. So newBuf v equates to let b = newBuf unit in put(b, v); b.
In our proofs in chapter 3 we use ∗−→ for the reflexive-transitive closure of → and
+−→ for the transitive closure. We often label the arrow by the applied reduction,

e.g. p
β-cbv(ev)−−−−−−→ p′.

13

2.2.4 Operational Semantics

ECs E::=x⇐Ẽ
Ẽ::=[] || Ẽ e || v Ẽ || exch(Ẽ, e) || exch(v, Ẽ)

|| case Ẽ of (πi ⇒ ei)
i=1...n || k(v1, . . . vi−1, Ẽ, ei+1, . . . , en)

put(Ẽ, e) || put(v, Ẽ)

Future ECs F ::=x⇐F̃
F̃ ::=Ẽ[[] v] || Ẽ[exch([], v)] || Ẽ[case [] of (πi ⇒ ei)

i=1...n]

Ẽ[put([], v)] || Ẽ[get[]]

Process ECs D::= [] || p |D || D | p || (νx)D

Figure 2.9: Evaluation contexts

Evaluation Contexts and Strategies. Reduction rules apply in an eval-
uation context (Fig. 2.9). A context is a process or expression with a single
occurrence of the hole marker [].

Definition 2.2.3 (Substitution). Let γ be a context, and η be a term that
can be plugged into its hole, then the result of replacing the hole [] in γ by
η is written as γ[η].

A restriction is that the hole marker cannot occur at positions that are
reserved for variable introduction or in a cell-value v, except it is an abstrac-
tion v = λx.e. In this case the hole may occur in e. A context is called flat,
if the hole does not occur below a λ-binder or a case-alternative, otherwise
the context is deep.

Which contexts are affected by a reduction rule is defined by the ap-
plied evaluation strategy. The strategy defines the validity of a reduction
rule in a specific context. The standard evaluation strategy of λτ (fchb) is
denoted by ev. Strategy ev permits reduction in ECs except for the rules
(fut.deref(ev)) and (lazy.trigger(ev)). They apply in future contexts
F, using ev as the strategy.

Contexts EC encode the standard call-by-value, left-to-right reduction
strategy. Call-by-value means that all arguments of a function are evaluated
before function application is evaluated. Futures ECs are used to trigger
suspended threads or while dereferencing a futures value. Future ECs encode
a data-driven synchronisation: If x⇐e is a future then another thread will

14

(β-cbv(ev)) E[(λy.e) v] −→ E[e[v/y]]

(thread.new(ev)) E[threadτ v] −→ (νz)(E[z] | z⇐v z)
(fut.deref(ev)) F [x] |x⇐v −→ F [v] |x⇐v
(handle.new(ev)) E[handleτ v] −→ (νz)(νz′)(E[v z z′] | z′ h z)

(handle.bind(ev)) E[x v] |x h y −→ E[unit] | y⇐v |x h •
(cell.new(ev)) E[cellτ v] −→ (νz)(E[z] | z c v)

(cell.exch(ev)) E[exch(z, v1)] | z c v2 −→ E[v2] | z c v1

(lazy.new(ev)) E[lazyτ v]→ (νz)(E[z] | z
susp⇐= v z)

(lazy.trigger(ev)) F [x] |x
susp⇐= e → F [x] |x⇐e

(case.beta(ev)) E[case kj(v1, . . . , var(kj)) of (ki(x1, . . . , xar(ki))→ ei)
i=1...n]

→ E[ej[v1/x1, . . . , var(kj)/xar(kj)]]

(buff.new(ev)) E[newBufτ v]→ (νx)(E[x] || x b−)

(buff.put(ev)) E[putτ (x, v)] |x b− → E[unit] |x b v

(buff.get(ev)) E[getτ x] |x b v → E[v] |x b−

Figure 2.10: Reduction rules . One-step reduction relation of λτ (fchb) is denoted
by → or ev−→

use x like it was a value until it needs the computed value of x. At this point
of time the thread must evaluate the future. Finally, process ECs D are
contexts for evaluating process components, since programs in our language
are composed by processes.

Example 2.2.4. A reduction inside a thread x⇐e means to reduce a subex-
pression e′ in an evaluation context E where e = E[e′]. The expression e′

evaluates call-by-value in Ẽ. In contrast, futures have their own evaluation
context F because a future should only be replaced by its value if it is needed
to proceed with the computation of a thread.

Reduction Rules. The reduction rules are listed in Fig. 2.10. The rule
(β-cbv(ev)) is called call-by-value beta-reduction. In an expression (λy.e) v
it replaces the bound variable y in all occurences of e by v. The rule
(case.beta(ev)) compares a data constructor with the patterns π. If a
match was found it returns the right handside of the corresponding alterna-
tive. For each higher order function there exists a reduction rule.

15

(det.put) (νx)(E[putτ (x, v)] || x b−)→ (νx)(E[unit] || x b v)

(det.get) (νx)(E[getτ x] || x b v)→ (νx)(E[v] || x b−)

(det.exch) (νx)(y⇐Ẽ[exch(x, v1)] || y c v2)→ (νx)(y⇐Ẽ[v1] || y c v1)

(cell.deref(ev)) p || y cx || x⇐v → p || y c v || x⇐v
(gc) p | (νy1) . . . (νyn)p′ → p if p′ is successful

and y1, . . . , yn contain all process variables of p′

Figure 2.11: Correct transformation rules

The rule (cell.new(ev)) creates a new cell z with content v resulting in
a new component z c v. The rule (cell.exch(ev)) encodes the behaviour of
the exchange operation exch(z, v1) that writes v1 to the cell z and returns
the previous contents of the cell in one atomic step. (cell.exch(ev)) is a
non-deterministic rule:

Example 2.2.5. Assume a process which creates a cell and gives access to
that cell for other threads. The cell can be changed by different threads in
parallel. p⇐let c = cellτ x in (threadτ (fc); threadτ (gc))
∗−→ p⇐threadτ (fz); threadτ (gz) || z cx

The rule (thread.new(ev)) spawns a new eager thread x that computes
an expression e resulting in a thread component x⇐e. Note, that if the thread
is recursive, x may occur in e such that x = e. The rule (lazy.new(ev))

spawns a new suspended thread component x
susp⇐= e. The dereferencing

operation of future values (fut.deref(ev)) replaces a future by its value.
The rule (lazy.trigger(ev)) triggers a suspended computation resulting

in a non-suspended thread. The rule (handle.new(ev)) creates a new han-

dle component y hx. The rule (handle.bind(ev)) applied on Ẽ[z⇐yv || y hx]
consumes the handle y and binds x to v, resulting in a used handle and new
thread x⇐v.

The rule (buff.new(ev)) introduces a new buffer component x b−.
The rule (buff.put(ev)) can only be applied on an empty buffer and reduces
to the empty value after writing into the buffer. The rule (buff.get(ev))
can only be applied on a non-empty buffer, empties it and returns its value.
(buff.put(ev)) and (buff.get(ev)) are non-deterministic: The identifier
variable x of a buffer component is not (ν)-bound, thus it could be coinci-
dentally altered by more than one thread. Therefore in [SSNSS08] deter-
ministic variants are given as transformation rules (Fig. 2.2.4). Here, the

16

identifier is bound and simultaneous modification is excluded. (det.put)
and (det.get) are correct transformation rules [SSNSS08]. λτ (fchb) also
has a garbage collector (gc). Once, the garbage collection transition is used,
it removes all finished and unreferenced threads. (gc) is also a correct trans-
formation.

Example 2.2.6. Using (handle.bind(ev)) the program x⇐yv || y h f reduces
to x⇐unit || y h • || f⇐v. Applying gc to the term removes all its components
(x, f, y), since they all have finished the computation.

2.2.5 Observational Semantics

Observational semantics for λτ (fchb) programs allows us to reason about the
correctness of transformations of stateful and concurrent computations. If
we want to reason about programs in λτ (fchb), we need some well-defined
program properties such as successfullness, convergence and correctness of
programs. Once we have these terminologies we can use them to give evidence
of the correctness of encodings and of new primitives from chapter 2.3 and
to show equivalences of programs.

Theorem 1 (Successfullness, [SSNSS09]). A process p is successful if it is
well-formed and in every component x⇐e of p, the identifier x is bound
possibly via a chain e⇐x1 |x1⇐x2 | . . . |xn−1⇐xn to a non-variable value,
a cell or a lazy future, a handled future, a handle or a buffer.

Hence, in λτ (fchb) the computations x⇐λy.y, x⇐y | y⇐〈x, x〉 and x⇐y | y c z
are successful, while x⇐(λba.a)(y unit) | y⇐(λba.a)(x unit) (a deadlock) and
x⇐x (a black hole) are ruled out.

A Notion for Equivalence. To show contextual equivalence of two pro-
cesses or expressions in λτ (fchb), we must show first that they reduce to the
same values. Secondly it must state that for all contexts, where the terms
may occur in, their convergence behaviour is equal. We need a terminology
that clearly defines convergency. This is done by the formal definition of
may-must-convergence.

Definition 2.2.4 (May-Must Convergence,[SSNSS08]). Let p be a process,
then p is may-convergent (p↓) if there exists a sequence of reductions p →∗
p′ such that p′ is successful or p is must-convergent (p⇓) if all reduction
successors p′ of p are may-convergent. If p has no reduction descendant that

17

succeeds then p is must-divergent (p⇑). It is may-divergent (p↑) if some
reduction descendant of p is must-divergent. Thus,

p⇑ ⇔ ¬p↓ and p↑⇔ ¬p⇓.

We define a binary relation between processes p1, p2 ∈ Proc and expres-
sions e1, e2 : τ ∈ Exp so that:

p1 ≤ p2 ⇔ ∀D : D[p1]↓⇒ D[p2]↓ and D[p1]⇓⇒ D[p2]⇓ and
e1 ≤τ e2 ⇔ ∀D : D[C[e1]]↓⇒ D[C[e2]]↓ and e1, e2 : D[C[e1]]⇓⇒ D[C[e2]]⇓

The relation ≤ is called contextual preorder. ≤τ is the contextual preorder
with consideration of types. These definitions lead us to the contextual
equivalence:

Definition 2.2.5 (Contextual Equivalence,[SSNSS08]). Let p1, p2 ∈ Proc
then p1 ≤ p2 and p2 ≤ p1 ⇒ p1 ∼ p2. We say that p1 and p2 are contextual
equivalent.

Transformations. In the correctness proofs of the encoding of new prim-
itives we will use correct program transformations. Thus, we need a formal
definition of correct transformations.

Definition 2.2.6 (Correctness of Transformations, [SSNSS08]). A transfor-
mation t is correct if and only if p, p′ ∈ t⇒ p ∼ p′.

All reduction rules in (Fig. 2.10) of λτ (fchb) except (cell.exch(ev)) as
well as the transformation rules in (Fig. 2.2.4) are correct. The proofs can
be found in [SSNSS08].

Translations. Our proofs of correct transformations in λτ (fchb) are a base
for a proof of a translation T : λ′ → λτ (fchb). A translation T between two
calculi maps types to types, processes to processes, and contexts to contexts,
such that their types correspond. Good translations between two calculi C
and C ′ should have the following useful properties:

Definition 2.2.7 (Full Abstraction,[SSNSS08]). Let T be a translation, then
T is fully abstract if ∀ p1, p2:

T (p1) ≤C′,T (τ) T (p2) ⇔ p1 ≤C,τ p2

18

Definition 2.2.8 (Convergence Equivalence,[SSNSS08]). Let T be a trans-
lation, then T is convergence equivalent if ∀ p1, p2:

T (p) ⇓ ⇔ p ⇓ and T (p) ↓ ⇔ p ↓

Definition 2.2.9 (Compositionality,[SSNSS08]). Let T be a translation,
then T is compositional if

∀ contexts D and processes p: T (D)[T (p)] = T (D[p]).

Theorem 2 (Adequacy,[SSNSS08]). If a translation T is compositional and
convergence equivalent, then T is adequate.

Summary

In this Section of Chapter 2 we learned about syntax and semantics of the
λτ (fchb) calculus. We now know about the concept of futures, handles, cells
and processes. We read about how types can be constructed in λτ (fchb).
We can use reduction rules to reduce a term in the lambda calculus with
futures. Further more we saw important properties of process components:
well-formedness, successfulness and observability. The observability lead us
to a observational semantic. This semantic supports defining a further prop-
erty of process components: The may-must-convergence. With this in mind,
we are able to proof program equivalences in λτ (fchb). Finally we learned
about how ’good’ translations of λ-calculi can be identified in general.

19

2.3 Encoding Primitives

In this section we extend the syntax and semantics of λτ (fchb) to provide
new concurrency primitives. For every new primitive we give an informal
description of its behaviour and a formal specification of the primitive fol-
lowed by a syntactical and semantical extension. The syntactical extension
includes new types and typing rules. The semantic extension consists of new
reduction rules and new contexts. For each primitive we give a translation
to λτ (fchb) if neccessary. The translation consists of an implementation of
the primitive in terms of the λτ (fchb) calculus, a type mapping and new
transformation rules.

2.3.1 Test And Set

The Test and Set [Tan01] primitive is usually implemented in the hardware
of every modern computer system. Test and set models the operations of
testing a variable against a condition and setting its value if the test did not
fail in one atomic step.

Formal Specification. If the condition is false, the thread sets it to true,
enters the critical code and resets the value to false. If the condition is true,
the calling thread must wait or do something else until it is set to false.

TSet :: ref α→ β → bool
TSet ::= λxy.case exch(x,True) of

True→ False
False→ y; exch(x,False)

Figure 2.12: Encoding of Test and Set in λτ (fchb).

Implementation Of Test And Set. We give an implementation of the
test and set in λτ (fchb). X represents a cell. Y is the critical code. The
exch(x, 1) operation in the case expression sets the value of the cell to the
blocking state 1. If the exchanged value had already been 1, then the calling
thread must wait and may retry accessing X at a later date. Otherwise, the
calling thread becomes the blocker itself and is allowed to execute the critical
code. For the typing we assume a boolean type as presented in Example 2.2.1.
A translation is not neccessary since the implementation of test and set is
denoted in the λτ (fchb) calculus.

20

2.3.2 Channels

A channel is a list of elements of type τ with a read-end at one side and a
write-end at the other. Elements put into the channel can be read out in
a first in, first out order. A read and a write operation can be executed in
parallel by several threads. A channel has no capacity bounding.

Syntax extension:

τ ∈ Type ::= chan τ || . . .
c ∈ Const ::= newChanτ || readChanτ || . . .
e ∈ Exp ::= writeChan(e1, e2) || . . .
p ∈ Proc ::= c ch [v1 . . . vn] || c ch − || . . .

Extensions of the type system:

newChanτ : unit→ chan τ
readChanτ c : chan τ → τ

writeChan c v : τ → chan τ → unit

x ch− : wt

x : τ vi : τ

x ch [v1, . . . , vn] : wt
Extensions of the reduction rules:

(chan.new(ev)) E[newChanτ c]→ (νc)(E[c] || c ch−)

(chan.read(ev)) E[readChanτ c] || c ch [v1 . . . vn]→ E[v1] || c ch [v2, . . . , vn]

(chan.write(ev)) E[writeChan(c, vn+1)] || c ch [v1 . . . vn]

→ E[unit] || c ch [v1, . . . , vn, vn+1] for 0 ≤ n

E[writeChan(c, (w1, . . . , wm)] || c ch [v1 . . . vn]

→ E[unit] || c ch [v1 . . . vn , w1, . . . , wm] for 0 ≤ n,m

New contexts:

Ẽ ::= writeChan(Ẽ, e) || writeChan(c, Ẽ) || . . .
F̃ ::= Ẽ[writeChan([], v)] || Ẽ[readChanτ []] || . . .

Figure 2.13: Extensions of λτ (fchb) for λτ (fchb) + chan

Formal Specification. In Fig. 2.13 the syntactical extension from λτ (fchb)
to a calculus λτ (fchb)+chan is shown. A channel has a new type constructor
chan of arity 1. Channel components c ch [v1 . . . vn] associate channels c to a

21

list of elements v1 . . . vn representing the channel content. c ch− represents
an empty channel. There are new constants newChanτ to spawn a new
channel with an empty list and readChanτ to get the content of a channel.
writeChan writes a new value into a channel. Placing the new constants into
an evaluation context produces four new reduction rules. Note that the re-
duction rule (chan.read(ev)) can only be applied on a non-empty channel.
Therefore a channel implicitly blocks a read operation on the empty channel.
If a channel component or a value written to a channel itself are evaluation
contexts, then writeChan will reduce in a normal call-by-value EC. If the
hole marker is at the position of the channel, then the writeChan operation
reduces in a future context. Any read operation may have lazy computation,
so it reduces inside a future context as well.

Implementing Channels Using Buffers.

newChan=̂λ . let hole = (newBuf unit),
read = (newBuf unit),
write = (newBuf unit)

in put(read, hole);
put(write, hole);
(read, write)

readChan=̂λ〈read, write〉.
let r = (get read),

hd = (get r),
in case hd of

Item(res, tl)⇒ put(read, tl);
res

writeChan=̂λ〈read, write〉, v.
let newhole = (newBuf unit),

oldhole = (get write)
in put(write, newhole);

put(oldhole, Item(v, newhole))

Figure 2.14: Encoding of channels using buffers.

Inspired by Haskell’s channel implementation we denote a channel as a
linked list of buffers with a read-end and a write-end. This is illustrated in
Fig. 2.3.2. Once a read operation is executed on a channel, it returns the
value from the read-end’s referenced buffer and moves the next buffer to the
read-end’s pointer. A write operation firstly writes a value to the last buffer
in the chain and then appends a new buffer where its write pointer moves.
newChan introduces a new channel component and its members which are a
read, a write and a hole buffer. writeChan firstly creates a new empty buffer.

22

Then it reads the write-ends buffer hn. Secondly it creates a new item and
puts the new buffer and the value into it. This item is the content for the
buffer hn. Finally, it writes the new empty buffer to the write-end. readChan
can only apply on a non-empty channel. It returns the value of the item’s
second value in read-end’s buffer and writes the item’s first value to the read
buffer.

Figure 2.15: A channel with n-1 Items

Note. Later in chapter 3, we will use writeChanc (v1 . . . vn) as new shorthand
for writeChan c v1; writeChan c v2; . . . ; writeChan c vn.

The types of the implemented operations are

newChan :: unit→ (buf (buf (item τ)), buf(buf (item τ)))
readChan :: (buf (buf (item τ)), buf(buf (item τ)))→ τ

writeChan :: (buf (buf (item τ)), buf(buf (item τ)))→ τ → unit

Here, we assume a type constructor item with a data constructor Item.
Given this encoding we have new transformation rules in λτ (fchb):

(tchan.new)
E[newChan unit]
→ (νc)(νr)(νw)(νh1)(E[c] || c⇐ (r, w) || r bh1 || h1 b − || w bh1)

(tchan.write) for n ≥ 0
(νc)(νr)(νw)(νh1, . . . , hn)
(E[writeChan (c, v)] || c⇐ (r, w) || r bh1

|| h1 b Item(v1, h2) || . . . || hn−1 b Item(vn−1, hn) || hn b − || w bhn)
→ (νc)(νr)(νw)(νh1, . . . , hn+1)
(E[unit] || c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || . . .
|| hn−1 b Item(vn−1, hn) || hn b Item(v, hn+1) || hn+1 b − || w bhn+1)

23

(tchan.writen) for n,m ≥ 0
(νc)(νr)(νw)(νh1, . . . , hn)
(E[writeChan (c, (w1, . . . , wm))] || c⇐ (r, w) || r bh1

|| h1 b Item(v1, h2) || . . . || hn−1 b Item(vn−1, hn) || hn b − || w bhn)
→ (νc)(νr)(νw)(νh1, . . . , hn, hn+1, . . . , hn+m)
(E[unit] || c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || . . .
|| hn−1 b Item(vn−1, hn) || hn b Item(w1, hn+1) || . . .
|| hn+m−1 b Item(wm, hn+m) || hn+m b − || w bhn+m)

(tchan.read) for n > 0
(νc)(νr)(νw)(νh1, . . . , hn)
(E[readChan c] || c⇐ (r, w) || r bh1

|| h1 b Item(v1, h2) || . . . || hn−1 b Item(vn−1, hn) || hn b − || w bhn)
→ (νc)(νr)(νw)(νh2, . . . , hn)
(E[v1] || c⇐ (r, w) || r bh2 || h2 b Item(v2, h3) || . . .
|| hn−1 b Item(vn−1, hn) || hn b − || w bhn

In chapter 3 we will show that these transformation rules are correct.

Translation From λτ (fchb) + chan→ λτ (fchb).

T (c ch [v0, . . . , vn−1]) 7→ c⇐ (r, w) || r bh0 ||
h0 b Item(v0, h1) || . . . || hn−1 b Item(vn−1, hn) ||
hn b − || w bhn || . . .

T (c ch−) 7→ c⇐ (r, w) || r bh0 || h0 b − || w bh0

Figure 2.16: Translation of components from λτ (fchb) + chan to λτ (fchb)

The implementation of channels with buffers gives rise to a translation T from
λτ (fchb) + chan → λτ (fchb). The translation maps constants in λτ (fchb) +
chan to the implementation in λτ (fchb): T (newChanτ) 7→ newChan, T (readChanτ) 7→
readChan and T (writeChan) 7→ writeChan. In Fig. 2.16 a translation for the
process components is shown. The channel type translation is given by
T (chan τ) 7→ (buf (buf (item T (τ))), buf(buf (item T (τ)))). Besides this,
the notion of successful processes in λτ (fchb) is extended by components
y ch [v1 . . . vn] and y ch− as successful processes. These processes are well-
formed if they do not introduce a variable twice.

24

Note. Giving evidence for this translation is not part of this thesis, since this
task exceeds the scope of a bachelor’s thesis.

Additional Channel Operations. We extend the set of operations on

mergeList2Chan=̂λl1 l2.
let cm = (newChan unit)
in thread(λ .merge l1 cm);

thread(λ .merge l2 cm); cm

merge=̂λl c.case l of
x : xs→ writeChan c x

merge xs c
x → writeChan c x

Figure 2.17: A merge operation of two lists to one channel.

channels by a merge operation (Fig. 2.3.2). mergeList2Chan takes two lists
and merges them to a channel with a recursive function merge using two
threads in parallel. After finishing merging it returns the new channel.

A more tricky version could be a merge of two channels to one channel,
Fig. 2.3.2. The operation mergeChan2Chan takes two channels and merges
them to a new channel. But there is a limitation in use of this implemen-
tation: Because we have no chance to determine when a channel is empty,
we need a special symbol ε which marks a sequence’s end. With that the
termination of mergec2c is ensured.

mergeChan2Chan=̂λc1 c2.
let cm = (newChan unit)
in thread(λ .mergec2c c1 cm);

thread(λ .mergec2c c2 cm); cm

mergec2c=̂λc cm.
let v = writeChan c
in case (v == ε) of

False→ writeChan cm v;
mergec2c c cm

True→ unit

Figure 2.18: A merge operation of two channels to one channel.

25

2.3.3 Quantity Semaphores

Syntax extension:

τ ∈ Type ::= qsem τ || . . .
c ∈ Const ::= newQSemτ || upτ || downτ || . . .
p ∈ Proc ::= q sκ n, (κ ∈ N0 and 0 ≤ n ≤ κ) || . . .

Extensions of the type system:

newQSemτ κ : α→ qsem τ
upτ q : qsem τ → unit

downτ q : qsem τ → bool

q : qsem τ n, κ : Int

q sκ n : wt

Extensions of the reduction rules:

(qsem.new(ev)) E[newQSemτ κ]→ (νq)(E[q] || q sκ κ)

(qsem.up(ev)) E[upτ q] || q sκ n→ E[unit] || q sκ n+ 1 for n < κ

(qsem.down(ev)) E[downτ q] || q sκ n→ E[True] || q sκ n− 1

for 0 < n ≤ κ

New contexts:

F̃ ::= Ẽ[downτ , []] || Ẽ[upτ , []] || . . .

Figure 2.19: Extensions of λτ (fchb) for λτ (fchb) + qsem

A quantity semaphore is initialised with a maximum number of threads
that are allowed to run code protected by the semaphore. The value of the
semaphore counts the number of additional threads that may execute. If a
thread tries to execute the protected code the semaphore’s counter decre-
ments. If a thread leaves, the counter increments. If the counter is zero, the
quantity semaphore blocks until one of the threads inside exits.

Formal Specification. Fig. 2.19 shows the extension for λτ (fchb) to
λτ (fchb) + qsem. There is a new type constructor qsem τ . We also have
a new process component q sκ n where κ ∈ N0 and n ≤ κ. κ denotes the ca-
pacity of the quantity semaphore and n counts how many threads may enter
additionally. newQSemτ creates a new quantity semaphore construct. upτ

increments the count variable if the list is empty. Otherwise it gives signal

26

to a waiting thread from the list. downτ 1 decrements the count variable if
it is not zero otherwise the calling thread is delayed. The reduction rule
(qsem.up(ev)) can only apply on quantity semaphore components where the
counter value n has not reached the value κ (n < κ must hold). In con-
trast, the reduction rule (qsem.down(ev)) is not allowed to apply in cases
of n < 0. Therefore a quantity semaphore implicitly blocks if κ threads have
executed downτ .

Implementation Of Quantity Semaphores.

newQSem=̂λκ.let l = (Nil)
q = newBuf unit

in put (q, (κ, l)); q

up=̂λqs.
let 〈cnt, ls〉 = get qs in
case ls of
[]→ put qs (cnt+ 1, ls)
x : xs→ x True;

put qs (cnt, xs)

down=̂λqs.
let 〈cnt, ls〉 = get qs
in case (cnt == 0) of

True→ let 〈x, f〉 = newhandled
in put qs (cnt, x : ls); case x of

True→ True
False→ ⊥

False→ put qs (cnt− 1, ls); True

Figure 2.20: Encoding of quantity semaphores using handles.

In terms of the λτ (fchb) calculus, a quantity semaphore is a buffer holding
a tuple of the count variable and a list of handles (Fig. 2.20) (respectively
buffers Fig. 2.21) for the waiting threads. newQSem creates a new quantity
semaphore as a buffer containing the count variable and an empty list. The
operation up increments the count variable if the list is empty. Otherwise
it gives signal to a waiting thread by taking the first item from the list and
consuming it. In the case of handles, it binds True to the handle. In the case
of buffers it puts a value into the buffer. down creates a new handle (resp.
a new buffer) that blocks the accessing thread and adds it to the list if the
count is zero. Otherwise it decrements the count.

1In other literature, up and down are often called signal and wait. This describes what
they are often used for.

27

up=̂λqs.
let 〈cnt, ls〉 = get qs in
case ls of
[]→ put qs (cnt+ 1, ls)
x : xs→ put (x,True);

put qs (cnt, xs)

down=̂λqs.
let 〈cnt, ls〉 = get qs
in case (cnt == 0) of

True→ let x = (newBuf unit)
in put qs (cnt, x : ls); get x

False→ put qs (cnt− 1, ls); True

Figure 2.21: Encoding of quantity semaphores using buffers.

The types of the implemented operations are

newQSem :: Int→ List bool→ buf (Int, [bool])
up :: buf (Int, [bool])→ unit

down :: buf (Int, [bool])→ bool

Translation From λτ (fchb) + qsem→ λτ (fchb).

T (q sκ n) 7→ q b (n, []) for 0 ≤ n ≤ κ

Figure 2.22: Translation of components from λτ (fchb) + qsem to λτ (fchb)

A translation T from λτ (fchb) + qsem → λτ (fchb) maps: T (newQSemτ) 7→
newQSem, T (upτ) 7→ up and T (downτ) 7→ down. We give only a translation
in terms of handles, since a translation from handles to buffers had been
shown in [SSNSS09]. In Fig. 2.22 a translation for the process component is
shown. A quantity semaphore contains a tuple of the counter and in the case
of 0 < n ≤ κ an empty list. If the counter value is zero then the list could
be empty or contain handles (resp. buffers) if there are threads blocking
on the semaphore. There are new transformation rules for the implemented
operations in λτ (fchb):

(tqsem.new)
E[newQSem κ]→ (νq)(E[q] || q b (κ, []))

(tup) for n < κ (and an empty list)
(νq)(E[up q] || q b (n, []))→ (νq)(E[unit] || q b (n+ 1, []))

(tup) for n = κ (and the list may not be empty)
(νq)(νh1, . . . , hm)(νf1, . . . , fm)

28

(E[up q] || q b (κ, [h1, . . . , hm]) || h1 h f1 . . . hm h fm)
→ (νq)(νh1, . . . , hm)(νf1, . . . , fm)
(E[unit] || q b (κ, [h2, . . . , hm]) || h2 h f2 . . . hm h fm || h1 h • || f1⇐True)

(tdown) for 0 < n ≤ κ (and an empty list):
(νq)(E[down q] || q b (n, []))→ (νq)(E[True] || q b (n− 1, []))

(tdown) for n = 0,m ≥ 0:
(νq)(νh1, . . . , hm)(νf1, . . . , fm)
(E[down q] || q b (0, [h1, . . . , hm]) || h1 h f1 . . . hm h fm)
→ (νq)(νh)(νf)(νh1, . . . , hm)(νf1, . . . , fm)
(E[h] || q b (0, [h : h1, . . . , hm]) || h1 h f1 . . . hm h fm || h h f)

The rule (tqsem.new) creates a new semaphore with capacity κ stored by
the index parameter containing a tuple of κ and an empty list. The list mod-
els a waiting queue for blocked threads. Therefore, the rule (tdown) decre-
ments n, if n threads may enter (0 < n ≤ κ). In the case of n = 0 the context
evaluates to a new handle that is appended to the quantity semaphore’s wait-
ing queue. The rule (tup) increments the quantity semaphore’s counter value
if the queue is empty. Otherwise the counter value remains κ while one of
the handles from the list is bound to True and its thread may continue. A
mapping of the type qsem τ is given by T (qsem τ) : buf (Int, [bool]).

Remark. To ensure that down is always run before up, we could define a
function like enterQSem=̂λ q c.down q; c; up q, with q being the semaphore
and c the code encapsulated by q.

29

2.3.4 Bounded Channels

Syntax extension:

τ ∈ Type ::= bchan τ || . . .
c ∈ Const ::= newBChanτ || readBChanτ || . . .
e ∈ Exp ::= writeBChan(e1, e2) || . . .
p ∈ Proc ::= c bchκ [v1, . . . , vκ], κ ∈ N0 || c bchκ − || . . .

Extensions of the type system:

newBChanτ κ : α→ bchan τ
readBChanτ c : bchan τ → τ

writeBChan c v : bchan τ → τ → unit

c bchκ− : wt

c : bchanτ vi : τ

c bchκ [v1, . . . , vκ] : wt
Extensions of the reduction rules:

(bchan.new(ev)) E[newBChanτ κ], κ ∈ N0 → (νc)(E[c] || c bchκ−)

(bchan.read(ev)) E[readBChanτ c] || c bchκ [v1, . . . , vκ]

→ E[v1] || c bchκ [v2, . . . , vκ]

(bchan.write(ev)) E[writeBChan(c, v)] || c bchκ− → E[unit] || c bchκ [v]

E[writeBChan(c, vn+1)] || c bchκ [v1 . . . vn]

→ E[unit] || c bchκ [v1 . . . vn , vn+1] for n < κ

New contexts:

Ẽ ::= writeBChan(Ẽ, e) || writeBChan(c, Ẽ)

F̃ ::= Ẽ[writeBChan([], v)] || Ẽ[readBChanτ []]

Figure 2.23: Extensions of λτ (fchb) for λτ (fchb) + bchan

A bounded channel is a channel that has a limited capacity. Once the
capacity is reached, it blocks the write operation until a place gets free be-
cause a read operation was performed.

Formal Specification. There is a new type constructor bchan τ for the
new channel type. Fig. 2.23 shows operations on bounded channels similar to
the ones for ordinary channels. newBChanτ spawns a new bounded channel
with a given capacity κ. The constant readBChanτ reads a value from the

30

channel and decrements the current capacity count. If the channel is empty,
the calling thread suspends while no value is available. writeBChan writes a
value to the channel and increments the current capacity count. If the cur-
rent capacity count has reached the maximum capacity the thread suspends
on the computation until a place becomes free. A bounded channel process
component c bchκ [v1, . . . , vκ] consists of the capacity κ ∈ N0 and a list of
values. The empty bounded channel component is denoted as c bchκ−. A
bounded channel’s reduction rules are similar to the channel ones: There is
only an additional restriction for the write operation that is only allowed to
be performed when the capacity κ has not been reached.

Implementation Of Bounded Channels.

newBChan=̂λκ.
let qsem = (newQSem κ);

chan = (newChan unit)
in (chan, qsem)

readBChan=̂λ〈c, qsem〉.
up qsem;
readChan c

writeBChan=̂λ〈c, qsem〉, v .
down qsem;
writeChan c v

Figure 2.24: Encoding of bounded channels using a channel and a qsem.

Using a quantity semaphore with buffers or handles, the implementation of
bounded channels is straightforward. A bounded channel is implemented as a
tuple of a quantity semaphore and a channel. For each entry in the bounded
channel the semaphore decrements until it reaches zero. Then threads writ-
ing to a bounded channel get suspended on the quantity semaphore. In a
read operation the quantity semaphore’s counter increments and the value of
the channel’s read-end is returned. In this case a suspended writing thread
my continue. The types are:

newBChan :: ref α→ (ref α, List bool)→ (buf (buf (item τ)), buf(buf (item τ)))
→ ((buf (buf (item τ)), buf(buf (item τ))), (ref α, List bool))

readBChan :: ((buf (buf (item τ)), buf(buf (item τ))), (ref α, List bool))→ τ
writeBChan :: τ → ((buf (buf (item τ)), buf(buf (item τ))), (ref α, List bool))→ unit

31

Translation From λτ (fchb) + bchan→ λτ (fchb).

T (c bchκ−) 7→ c⇐ (c′, q) || q b (κ, []) || c′ ⇐ (r, w) || r b b1 ||
b1 b − || w b b1

T (c bchκ [v1, . . . , vn]) 7→ c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w) || r b b1 ||
b1 b Item(v1, b1) || . . . || bn b Item(vn, bn+1) ||
bn+1 b − || w b bn+1 for 0 < n ≤ κ

Figure 2.25: Translation of components from λτ (fchb) + bchan to λτ (fchb)

A translation T maps writeBChan → writeBChan, readBChanτ → readBChan
and newBChanτ → newChan. In Fig. 2.25 a bounded channel component
is translated to a tuple containing a non-bounded channel and a quantity
semaphore that counts the entries of the channel.

(tbchan.new)
E[newBChan κ]
→ (νc)(νq)(νc′)(νr)(νw)(νb1)
(E[c] || c⇐ (c′, q) || q b (κ, []) || c′ ⇐ (r, w) || r b b1 || b1 b − || w b b1)

(tbchan.write) for 0 < n ≤ κ
(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[writeBChan (c, v)] || c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b −
|| w b bn+1)
→ (νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+2)
(E[unit] || c⇐ (c′, q) || q b (κ− n− 1, []) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b Item(v, bn+2)
|| bn+2 b − || w b bn+2)

(tbchan.write) for n > κ
(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bκ+1)(νh1, . . . , hm)(νf1, . . . , fm)
(E[writeBChan (c, v)] || c⇐ (c′, q) || q b (0, [h1, . . . , hm]) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b −
|| w b bκ+1 || h1 h f1 || . . . || hm h fm)
→ (νc)(νq)(νc′)(νr)(νw)(νb1 . . . bκ+1)(νh1, . . . , hm+1)(νf1, . . . , fm+1)
(E[wait hm+1] || c⇐ (c′, q) || q b (0, [h1, . . . , hm+1]) || c′ ⇐ (r, w)

32

|| r b b1 || b1 b Item(v1, b2) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b −
|| w b bκ+1 || h1 h f1 || . . . || hm+1 h fm+1)

(tbchan.read) for 0 < n ≤ κ
(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[readBChan c] || c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w) || r b b1
|| b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)
→ (νc)(νq)(νc′)(νr)(νw)(νb2 . . . bn+1)
(E[v1] || c⇐ (c′, q) || q b (κ− n+ 1, []) || c′ ⇐ (r, w)
|| r b b2 || b2 b Item(v2, b3) || . . . || bn b Item(vn, bn+1) || bn+1 b− || w b bn+1)

(tbchan.read) for n > κ
(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bκ+1)(νh1 . . . hm)(νf1 . . . fm)
(E[readBChan c] || c⇐ (c′, q) || q b (0, [h1, . . . , hm]) || c′ ⇐ (r, w) || r b b1
|| b1 b Item(v1, b2) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b −
|| w b bκ+1 || h1 h f1 || . . . || hm h fm)
→ (νc)(νq)(νc′)(νr)(νw)(νb2 . . . bn+1)(νh2 . . . hm)(νf1 . . . fm)
(E[v1] || c⇐ (c′, q) || q b (0, [h2, . . . , hm]) || c′ ⇐ (r, w) || r b b2
|| b2 b Item(v2, b3) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b −
|| w b bκ+1 || h1 h • || f1⇐True || h2 h f2 || . . . || hm h fm)

The new transformation rules are similar to the channel ones combined with
the rules for quantity semaphores. (tbchan.new) creates the new bounded
channel. The rule (tbchan.write) evaluates to unit until the capacity of
κ reached. If the channel contains already κ entries, then (tbchan.write)
evaluates to the handle created by the quantity semaphore that blocks the
write operation. (tbchan.read) is only defined on a non-empty bounded
channel. The bounded channel type iy mapped via T (bchan) to
((buf (buf (item T (τ))), buf(buf (item T (τ)))), (ref T (α), List bool)).

33

2.3.5 Rendezvous And Barrier

Syntax extension:

τ ∈ Type ::= bar τ || . . .
c ∈ Const ::= newBarτ || syncBarτ || . . .
p ∈ Proc ::= x barκ

Extensions of the type system:

newBarτ : Int→ bar τ
syncBarτ x : bar τ → (bar τ → bool)→ unit

x : τ

x barκ : wt

Extensions of the reduction rules:

(bar.new(ev)) E[newBarτ κ], κ ∈ N0 → (νx)(E[x] || x barκ)

(bar.sync(ev)) (νx)(E1[syncBarτ x] || . . . || Eκ[syncBarτ x] || x barκ)

→ (νx)(E1[True] || . . . || Eκ[True] || x barκ)

New contexts:

Ẽ ::= Ẽ[syncBarτ x] || . . .

Figure 2.26: Extensions of λτ (fchb) for λτ (fchb) + bar

A rendezvous ensures that two threads meet at a specific point before
continuing their computation. The rendezvous idiom blocks at this point
until both threads have arrived. A barrier (Fig. 2.27) is a rendezvous for a
group of processes. Assume that a application is divided into phases where
a couple of threads compute several interims to be the input for the next
phase. Then all threads must complete the current phase before entering the
next. To achieve this behaviour a barrier is placed at the end of a phase.
Note that a barriers is purely for synchronisation and not for exchange of
data.

Figure 2.27: The barrier specification

34

Formal Specification. A barrier component x barκ of type bar τ with
capacity κ will be created by newBarτ κ. It stores a variable κ that stands
for the number of threads that may synchronise on the barrier. Threads
that have synchronised on it via syncBarτ will be blocked until all other
threads reach the same evaluation context. Therefore the reduction rule
(bar.sync(ev)) is only applicable on programs with κ evaluation contexts
E[syncBarτ]. In this case the rule forces all contexts to reduce to True.

Implementing Barriers.

newBar=̂λκ.
let cntact = (newBuf unit),

cntfin = (newBuf unit)
in put(cntact, κ);

put(cntfin,Nil);
(cntact, cntfin, κ)

openBar=̂λl.case l of
(x : xs)→ x True;

openBar xs
[]→ unit

syncBar=̂λ〈cntact, cntfin, κ〉.
let act = (get cntact),

f in = (get cntfin)
in case (act == 1) of

True→ put(cntact, κ);
put(cntfin,Nil);
openBar fin;
True

False→ put(cntact, act− 1);
let 〈 f, h 〉 = newhandled
in put(cntfin, h : fin); wait h

Figure 2.28: Encoding of a barrier.

The implementation of the barrier specification in λτ (fchb) is more concise
about the internal functionality. It consists of three functions: newBar creates
a new barrier. This 3-tuple consists of two buffers and the capacity value κ.
One buffer is for the count of active threads, the other holds a list of already
synchronised, waiting threads. The counting buffer initially is of value κ.
With every syncBar-operation it will be decremented, because there is one
active thread less. Furthermore syncBar creates a new handle component
and adds it to the list of already synchronised threads. If the active count
reaches 1, then the next syncBar operations is last one, thus it evaluates to
the case where it uses openBar to bind all handles from the list to True before

35

returning True to the calling thread. The types of the three functions are:

newBar :: τ → (buf τ, buf (List bool), τ)
syncBar :: (buf τ, buf (List bool), τ)→ bool
openBar :: List τ → unit

Translation From λτ (fchb) + bar→ λτ (fchb).

T (x barκ) 7→ (νa)(νf)(x⇐(a, f, κ) || a bκ || f b [])

Figure 2.29: Translation of components from λτ (fchb) + bar to λτ (fchb)

In a translation T from λτ (fchb) + bar to λτ (fchb) a barrier component is
mapped to the 3-tuple from the implementation (Fig. 2.29). Any barrier
configuration is mapped to an empty barrier in λτ (fchb). The active thread
counting buffer a is of value κ and the waiting queue of the second buffer f
is empty. We define the following transformation rules:

(tbar.new)
E[newBar κ]→ (νx)(νa)(νf)(E[x] || x⇐(a, f, κ) || a bκ || f b [])

(tsync) for 0 < n ≤ κ− 1
(νx)(νa)(νf)(νh1, . . . , hn)(νf1, . . . , fn)(E[syncBar x]
|| x⇐(a, f, κ) || a bκ− n || f b [h1 . . . hn] || h1 h f1 || . . . || hn h fn)
→ (νx)(νa)(νf)(νh1, . . . , hn+1)(νf1, . . . , fn+1)(E[hn+1]
|| x⇐(a, f, κ) || a bκ−n−1 || f b [h1 . . . hn+1] || h1 h f1 || . . . || hn+1 h fn+1)

(tsync)
(νx)(νa)(νf)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)(E[syncBar x]
|| x⇐(a, f, κ) || a b 1 || f b [h1 . . . hκ−1] || h1 h f1 || . . . || hκ−1 h fκ−1)
→ (νx)(νa)(νf)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)(E[True]
|| x⇐(a, f, κ) || a bκ || f b [] || h1 h • || . . . || hκ−1 h • ||
f1⇐True || . . . || fκ−1⇐True)

(tbar.new) creates new barrier components. (tsync) is a transformation
rule for syncBar, that evaluates to True if the active thread counting buffer
is of value 1. Then the barrier returns to the state of newBar. In all the
other cases syncBar swells in a new handle. The barrier type bar τ maps to
(buf T (τ), buf (List bool), T (τ)).

36

Summary

In this section of chapter 2 we described more complex and more powerful
concurrency primitives and denoted each of them as an extension for the
λτ (fchb) calculus. We showed implementations of the primitive’s operations
in λτ (fchb) where we have used the resources of the language λτ (fchb). Each
implementation led us to a translation of the primitive as a new abstrac-
tion in λτ (fchb). These new abstractions are now ready for examination of
equivalence between each other in the next chapter.

37

3. Properties Of The Encodings

In this chapter we propose program equivalences based on the encodings from
section 2.3. As mentioned in section 2.2.5 there are two ways for showing
equivalence of two terms t, t′ in λτ (fchb). One is to show equivalence between
two processes and the other is based on equivalence between expressions. In
both cases we must show that they are equal in terms of may-must conver-
gence (Definition 2.2.4) for all contexts. Having done this we can say that
t, t′ are contextually equivalent.

Initially we show the properties of the operational behaviour of expres-
sions in λτ (fchb). We investigate the reduction of expressions e1 to e2. If we
only use correct reduction rules (Fig. 2.10) respectively correct transforma-
tion rules here, (Fig. 2.2.4) then the reduction from e1 to e2 is also correct
and e1 ∼ e2 holds. We use this method to show correctness of some trans-
formation rules of new concurrency abstractions in λτ (fchb). Once we have
proven correctness of a transformation rule, we may use it in further contexts
as a correct rule.

In section 3.6 we show program equivalences in λτ (fchb).
We investigate processes that use different concurrency
abstractions that result in an equal behaviour. To prove
this we must show that p1 ∼ p2 holds. This proof has
two parts: One is showing that p1 → v and p2 → v′ are
correct transformations. If v = v′ then it follows that
p1 ∼ p2. This is illustrated on the right.

p1

∗
��

∼ ___ p2

∗
��

v ∼ ___ v′

38

To show that the translation of a calculus λτ (fchb) +x is
correct, we need to prove the translation T : λτ (fchb) +
x → λτ (fchb) as being adequate. This proof needs our
properties of encodings in λτ (fchb) and should be a task
for the future, not being discussed here. The illustration
shows the coherence between programs of a new calculus
and the λτ (fchb).

p1

T :λτ (fchb)+x→λτ (fchb)
���
�
�

∗ // p2

���
�
�

T (p1)
∗ // T (p2)

Please look at the table of abbreviations at page 13 that may help following
the proofs.

In the proofs in section 3.6 we often use a new thread that reduces to
(νz)(E[z] || z⇐e) to show reduction of E[e], where e ∈ Exp. This is allowed
because of proposition 3.0.1.

Proposition 3.0.1.

E[e] ∼ (νz)(E[z] || z⇐e)
if E[e]

∗−→ E[v]

Proof. Given the precondition E[e]
∗−→ E[v], then

(νz)(E[z] || z⇐e)
∗−→ (νz)(E[z] || z⇐v)

fut.deref−−−−−−→ (νz)(E[v] || z⇐v)
gc−→ E[v]

and
E[v]

gc←− (νz)(E[v] || z⇐v)
fut.deref←−−−−−− (νz)(E[z] || z⇐v)

∗←− (νz)(E[z] || z⇐e)
Thus, (νz)(E[z] || z⇐e) ∗−→ E[v].
Therefore E[e] ∼ (νz)(E[z] || z⇐e) holds.

39

3.1 Properties Of The Buffer Operations

Our new concurrency primitives from section 3.6 are based on buffers. The
correctness of the buffer implementation in λτ (fchb) had been shown in
[SSNSS09]. So we can freely use reduction and transformation rules for
buffers in our proofs.

Proposition 3.1.1.

E[thread (λ . let b = (newBuf unit) in put(b, v); get b)]
∼ E[v]

Proof. We begin the proof with the reduction of
thread (λ . let b = (newBuf unit) in put(b, v); get b).
Applying thread.new:

(νz)(E[z] || z⇐(λ .let b = (newBuf unit) input(b, v); get b) z)

Applying β-cbv(ev):

(νz)(E[z] || z⇐let b = (newBuf unit) in put(b, v); get b)

Removing let expression

(νz)(E[z] || z⇐(λb.(put(b, v); get b))(newBuf unit))

Removing sequential computation ;

(νz)(E[z] || z⇐(λb.((λ .get b)(put(b, v))))(newBuf unit))

Performing some reduction rules
buff.new(ev)−−−−−−−→ (νz)(νxb)(E[z] || z⇐(λb.(λ .(get b))(put(b, v)))xb || xb b−)

β-cbv(ev)−−−−−→ (νz)(νxb)(E[z] || z⇐(λ .(get xb))(put(xb, v)) || xb b−)
det.put−−−−→ (νz)(νxb)(E[z] || z⇐(λ .(get xb)) unit || xb b v)

β-cbv(ev)−−−−−→ (νz)(νxb)(E[z] || z⇐get xb || xb b v)
det.get−−−−→ (νz)(νxb)(E[z] || z⇐v || xb b−)

gc−→ E[v]

40

3.2 Properties Of The Channel Abstraction

We show correct transformations for the channel abstraction in λτ (fchb). We
start with an expression where a channel operation is being used. Further-
more we reduce this expression until we reach an evaluation context for the
specific channel operation. Here we replace the operation by its implemen-
tation. If both, the start of a proof and the result of the reduction, equal to
a transformation rule’s start and result, and if we only use correct reduction
(resp. transformation) rules, then the transformation rule is also correct.

Proposition 3.2.1.

E[newChan unit]
∼ (νxh)(νxr)(νxw)(E[(xr, xw)] || xw bxh || xr bxh || xh b−)

Proof. We begin giving the context E[newChan unit]. Replacing the opera-
tion newChan by its implementation results in →

E[(λ .let hole = (newBuf unit)
read = (newBuf unit)
write = (newBuf unit)

in put(read, hole); put(write, hole); (read, write))unit]

Removing some syntactical sugar let . . . in and the operator for sequential
execution ; changes the term to:

E[λ .(λhole.(λread.(λwrite.(λ .(λ .(read, write))
put(write, hole))put(read, hole))(newBuf unit))(newBuf unit))(newBuf unit))unit]

Now we β-cbv(ev)-reduce unit on the outer λ-expression:

E[(λhole.(λread.(λwrite.(λ .(λ .(read, write))
put(write, hole))put(read, hole))(newBuf unit))(newBuf unit))(newBuf unit)]

We create a new buffer xh using buff.new(ev):

(νxh)(E[(λhole.(λread.(λwrite.(λ .(λ .(read, write))
put(write, hole))put(read, hole))(newBuf unit))(newBuf unit))xh] || xh b−)

Binding xh to hole in the λ-expression via β-cbv(ev):

(νxh)(E[(λread.(λwrite.(λ .(λ .(read, write))
put(write, xh))put(read, xh))(newBuf unit))(newBuf unit)] || xh b−)

41

Creating a new buffer xr with buff.new(ev):

(νxh)(νxr)(E[(λread.(λwrite.(λ .(λ .(read, write))
put(write, xh))put(read, xh))(newBuf unit))xr] || xr b − || xh b−)

Binding xr to read in the λ-expression via β-cbv(ev):

(νxh)(νxr)(E[(λwrite.(λ .(λ .(xr, write))
put(write, xh))put(xr, xh))(newBuf unit)] || xr b − || xh b−)

buff.new(ev)−−−−−−−→

(νxh)(νxr)(νxw)(E[(λwrite.(λ .(λ .(xr, write))
put(write, xh))put(xr, hole))xw] || xw b − || xr b − || xh b−)

Binding xw to write in the λ-expression via β-cbv(ev):

(νxh)(νxr)(νxw)(E[(λ .(λ .(xr, xw))
put(xw, xh))put(xr, xh)]
|| xw b − || xr b − || xh b−)

Putting the hole xh into buffer r with det.put:

(νxh)(νxr)(νxw)(E[(λ .(λ .(xr, xw))put(xw, xh))unit]
|| xw b − || xr bxh || xh b−)

β-cbv(ev)−−−−−→
(νxh)(νxr)(νxw)(E[(λ .(xr, xw))put(xw, xh)]

|| xw b − || xr bxh || xh b−)

Putting the hole xh into buffer w via det.put:

(νxh)(νxr)(νxw)(E[(λ .(xr, xw))unit]
|| xw bxh || xr bxh || xh b−)

Finally, beta-reducing the unit value with β-cbv(ev)leads to:

(νxh)(νxr)(νxw)(E[(xr, xw)] || xw bxh || xr bxh || xh b−)

As we only used correct reduction and transformation rules buff.new(ev),
beta(ev), det.putand gc, we conclude that this is also a correct transfor-
mation.

42

Proposition 3.2.2.

(νx)(T (x ch [v1 . . . vn]) || E[writeChan x vn+1])
∼ (νx)(T (x ch [v1 . . . vn , vn+1]) || E[unit])

Proof. In this proposition we use the translation of the channel encoding for
clarity. In our proof we translate the channel component into its represen-
tation in λτ (fchb). We start with E(writeChan x v), given a channel that
already contains n items.

(νc)(νr)(νw)(νh1 . . . hn+1)
(E[writeChan c vn+1] || c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b − || w bhn+1)

Replacing the operation writeChan by its implementation:

(νc)(νr)(νw)(νh1 . . . hn+1)
(E[(λ〈read, write〉, v.let newhole = (newBuf unit), oldhole = (get write)

in put(write, newhole); put(oldhole, Item(v, newhole))) c vn+1]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b − || w bhn+1)

We remove the guard λ〈read, write〉:

(νc)(νr)(νw)(νh1 . . . hn+1)
(E[(λx. case x of〈read, write〉 →

λv.let newhole = (newBuf unit), oldhole = (get write)
in put(write, newhole); put(oldhole, Item(v, newhole))) c vn+1]

|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)
|| . . . || hn b Item(vn, hn+1) || hn+1 b − || w bhn+1)

We β-cbv(ev)-reduce c to the λ-expression using:

(νc)(νr)(νw)(νh1 . . . hn+1)
(E[(case c of 〈read, write〉 →

λv.let newhole = (newBuf unit), oldhole = (get write)
in put(write, newhole); put(oldhole, Item(v, newhole))) vn+1]

|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)
|| . . . || hn b Item(vn, hn+1) || hn+1 b − || w bhn+1)

43

We replace c in the case-expression with a dereference of its value by fut.deref(ev):

(νc)(νr)(νw)(νh1 . . . hn+1)
(E[(case (r, w) of 〈read, write〉 →

λv.let newhole = (newBuf unit), oldhole = (get write)
in put(write, newhole); put(oldhole, Item(v, newhole))) vn+1]

|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)
|| . . . || hn b Item(vn, hn+1) || hn+1 b − || w bhn+1)

Now we can apply case.beta(ev):

(νc)(νr)(νw)(νh1 . . . hn+1)
(E[(λv.let newhole = (newBuf unit), oldhole = (get w)

in put(w, newhole); put(oldhole, Item(v, newhole))) vn+1]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b − || w bhn+1)

We replace v by vn+1 in the λ-expression with β-cbv(ev):

(νc)(νr)(νw)(νh1 . . . hn+1)
(E[let newhole = (newBuf unit), oldhole = (get w)

in put(w, newhole); put(oldhole, Item(vn+1, newhole))]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b − || w bhn+1)

Replacing let . . . in :

(νc)(νr)(νw)(νh1 . . . hn+1)
(E[(λ newhole.(λ oldhole.

put(w, newhole); put(oldhole, Item(vn+1, newhole)))(get w))(newBuf unit)]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b − || w bhn+1)

Creating a new buffer hn+2 with buff.new(ev) →

(νc)(νr)(νw)(νh1 . . . hn+1, hn+2)
(E[(λ newhole.(λ oldhole.

put(w, newhole); put(oldhole, Item(vn+1, newhole)))(get w))hn+2]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b − || hn+2 b − || w bhn+1)

44

β-cbv(ev) replaces newhole by hn+2:

(νc)(νr)(νw)(νh1 . . . hn+1, hn+2)
(E[(λ oldhole.put(w, hn+2); put(oldhole, Item(vn+1, hn+2)))(get w)]

|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)
|| . . . || hn b Item(vn, hn+1) || hn+1 b − || hn+2 b − || w bhn+1)

Now we can get the contents of buffer w with det.get:

(νc)(νr)(νw)(νh1 . . . hn+1, hn+2)
(E[(λ oldhole.put(w, hn+2); put(oldhole, Item(vn+1, hn+2)))hn+1]

|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)
|| . . . || hn b Item(vn, hn+1) || hn+1 b − || hn+2 b − || w b−)

β-cbv(ev) replaces oldhole by hn+1:

(νc)(νr)(νw)(νh1 . . . hn+1, hn+2)
(E[put(w, hn+2); put(hn+1, Item(vn+1, hn+2))]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b − || hn+2 b − || w b−)

det.put writes hn+2 into buffer w:

(νc)(νr)(νw)(νh1 . . . hn+1, hn+2)
(E[unit; put(hn+1, Item(vn+1, hn+2))]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b − || hn+2 b − || w bhn+2)

Removing sequential notation:

(νc)(νr)(νw)(νh1 . . . hn+1, hn+2)
(E[(λ .put(hn+1, Item(vn+1, hn+2)))unit]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b − || hn+2 b − || w bhn+2)

β-cbv(ev) of unit:

(νc)(νr)(νw)(νh1 . . . hn+1, hn+2)
(E[put(hn+1, Item(vn+1, hn+2))]

|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)
|| . . . || hn b Item(vn, hn+1) || hn+1 b − || hn+2 b − || w bhn+2)

45

det.put writes a new item (vn+1, hn+2) into the empty buffer hn+1:

(νc)(νr)(νw)(νh1 . . . hn+1, hn+2)
(E[unit] || c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b Item(vn+1, hn+2) || hn+2 b − || w bhn+2)

Finally we apply the translation T on the channel:

(νx)(E[unit] || T (x ch [v1 . . . vn , vn+1]))

This is also the result of the transformation rule tchan.write. As we only
used correct reduction and transformation rules buff.new(ev), beta(ev),
det.putand gc, we conclude that tchan.write is also a correct transfor-
mation rule.

Proposition 3.2.3.

(νx)(T (x ch [v1 . . . vn]) || E[writeChan x (w1 . . . wm)])
∼ (νx)(T (x ch [v1 . . . vn , w1 . . . wm]) || E[unit])

for all finite n,m.

Proof. Our induction base is 3.2.2. To prove the induction hypothesis 3.2.3
we add an induction step: m → m+1:

(νc)(νr)(νw)(νh1 . . . hn+1)
(E[writeChan x (w1 . . . wm, wm+1)] || c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b − || w bhn+1)

As stated in section 2.3, the channel encoding, we use writeChan c (v1 . . . vn)
as new shorthand for writeChan c v1; writeChan c v2; . . . ; writeChan c vn here.
Given that, we can split the writeChan operation:

(νc)(νr)(νw)(νh1 . . . hn+1)
(E[writeChan c w1; writeChan c (w2, . . . , wm+1)]

|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)
|| . . . || hn b Item(vn, hn+1) || hn+1 b − || w bhn+1)

Performing writeChan c w1 using the induction base:

(νc)(νr)(νw)(νh1 . . . hn+2)
(E[unit; writeChan c (w2, . . . , wm+1)]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b Item(w1, hn+2) || hn+2 b − || w bhn+2)

46

Performing writeChan c (w2, . . . , wm+1) using the induction hypothesis results
in:

(νc)(νr)(νr)(νw)(νh1 . . . hn, hn+m+2)(E[unit; unit]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b Item(w1, hn+2) || . . . ||
hn+m+1 b Item(wm+1, hn+m+2) || hn+m+2 b − || w bhn+m+2)

Removing sequential computation changes the term to
(. . . E[(λ .unit)unit] || . . .). Performing β-cbv(ev) leads to:

(νc)(νr)(νr)(νw)(νh1 . . . hn, hn+m+1)(E[unit] ||
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2)

|| . . . || hn b Item(vn, hn+1) || hn+1 b Item(w1, hn+2) || . . . ||
hn+m+1 b Item(wm+1, hn+m+2) || hn+m+2 b − || w bhn+m+2)

And this is exactly:

(νx)(T (x ch [v1 . . . vn , w1 . . . wm+1]) || E[unit])

With that we have proven the assumption. tchan.writen is a correct
program transformation in λτ (fchb).

Proposition 3.2.4.

(νz)(νc)(νr)(νw)(νh1, . . . , hn)
(E[readChan c] || c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || . . .

|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)
∼

(νz)(νc)(νr)(νw)(νh2, . . . , hn)
(E[v1] || c⇐ (r, w) || r bh2 || h2 b Item(v2, h3) || . . .

|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

for n ≥ 0

Proof. We start with the following program:

(νc)(νr)(νw)(νh1, . . . , hn)
(E[readChan c] || c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || . . .

|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

47

Removing the operation readChan by its implementation results in:

(νc)(νr)(νw)(νh1, . . . , hn)
(E[(λ〈read, write〉 .
let r′ = (get read)
hd = (get r′)

in case hd of Item(res, tl)→ put(read, tl); res) c]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || . . .
|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

Removing the guard λ〈read, write〉 . and the let-expression:

(νc)(νr)(νw)(νh1, . . . , hn)
(E[(λy.case y of 〈read, write〉 →

(λr′(λ hd(case hd of Item(res, tl)→ put(read, tl); res))(get r′))(get read))c]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || . . .
|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

β-cbv(ev) of c:

(νc)(νr)(νw)(νh1, . . . , hn)
(E[case c of 〈read, write〉 →

(λr′ (λ hd(case hd of Item(res, tl)→ put(read, tl); res))(get r′))(get read)]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || . . .
|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

We get the contents of c with fut.deref(ev):

(νc)(νr)(νw)(νh1, . . . , hn)
(E[case (r, w) of 〈read, write〉 →

(λr′ (λ hd(case hd of Item(res, tl)→ put(read, tl); res))(get r′))(get read)]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || . . .
|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

Now the case-expression is evaluable through case.beta(ev):

(νc)(νr)(νw)(νh1, . . . , hn)
(E[(λr′(λ hd(case hd of Item(res, tl)→

put(r, tl); res))(get r′))(get r)]
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || . . .
|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

48

We empty the buffer r with det.get and get its content h1:

(νc)(νr)(νw)(νh1, . . . , hn)
(E[(λr′(λ hd(case hd of Item(res, tl)→

put(r, tl); res))(get r′))h1]
|| c⇐ (r, w) || r b − || h1 b Item(v1, h2) || . . .
|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

β-cbv(ev)−−−−−→
(νc)(νr)(νw)(νh1, . . . , hn)

(E[(λhd(case hd of Item(res, tl)→
put(r, tl); res))(get h1)]

|| c⇐ (r, w) || r b − || h1 b Item(v1, h2) || . . .
|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

The next step empties the buffer h1 and gets the contents (det.get):

(νc)(νr)(νw)(νh1, . . . , hn)
(E[(λhd(case hd of Item(res, tl)→

put(r, tl); res))Item(v1, h2)]
|| c⇐ (r, w) || r b − || h1 b − || h2 b Item(v2, h3) || . . .

|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

β-cbv(ev) replaces hd by Item(v1, h2):

(νc)(νr)(νw)(νh1, . . . , hn)
(E[(case Item(v1, h2) of Item(res, tl)→ put(r, tl); res)]
|| c⇐ (r, w) || r b − || h1 b − || h2 b Item(v2, h3) || . . .

|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

case.beta(ev)−−−−−−−−→
(νc)(νr)(νw)(νh1, . . . , hn)

(E[put(r, h2); v1]
|| c⇐ (r, w) || r b − || h1 b − || h2 b Item(v2, h3) || . . .

|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

Putting h2 into the buffer r with det.put:

(νc)(νr)(νw)(νh1, . . . , hn)
(E[unit; v1]

|| c⇐ (r, w) || r bh2 || h1 b − || h2 b Item(v2, h3) || . . .
|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

49

We do some sequential computation removement
∗−→

(νc)(νr)(νw)(νh1, . . . , hn)
(E[v1]

|| c⇐ (r, w) || r bh2 || h1 b − || h2 b Item(v2, h3) || . . .
|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

In a final step the garbage collection removes the empty buffer h1.
gc−→

(νc)(νr)(νw)(νh2, . . . , hn)
(E[v1] || c⇐ (r, w) || r bh2 || h2 b Item(v2, h3) || . . .
|| hn−1 b Item(vn−1, hn) || hn b − || w bhn)

This is also the result for the transformation rule tchan.read. As we only
used correct reduction or transformation rules we conclude that tchan.read
is also a correct transformation rule.

Theorem 3 (Correctness of transformation rules of the channel abstraction
in λτ (fchb)). tchan.new, tchan.write, tchan.writen and tchan.read
are correct transformation rules in λτ (fchb).

Proof. The correctness of tchan.new follows from proposition 3.2.1, as the
result (νxh)(νxr)(νxw)(E[(xr, xw)] || xw bxh || xr bxh || xh b−) can reversely
be transformed:
gc←−

(νc)(νxh)(νxr)(νxw)(E[(xr, xw)] || c⇐(xr, xw) || xw bxh || xr bxh || xh b−)

fut.deref←−−−−−−

(νc)(νxh)(νxr)(νxw)(E[c] || c⇐(xr, xw) || xw bxh || xr bxh || xh b−)

And this is exactly the resulting term of the rule tchan.new.
The correctness of tchan.write, tchan.writen and tchan.read fol-

lows from propositions 3.2.2, 3.2.3 and 3.2.4.

50

3.3 Properties Of The Quantity Semaphore

Abstraction

We show correct transformation rules for the quantity semaphore abstraction
in λτ (fchb). We proceed as aforementioned: We start with an expression
using an operation on a quantity semaphore. We reduce it and compare the
result with the resulting expression from the related transformation rule. If
this holds and we only used correct reduction (resp. transformation) rules,
then the transformation rule is also correct. We examine the operations up
and down according to the implementation with handles.

Proposition 3.3.1.

E[newQSem κ] ∼ (νz)(E[q] || q b (κ, []))

Proof. We start the proof with E[newQSem κ]. Replacing newQSem by its
implementation:

E[(λk.let l = Nil; b = newBuf unit in put (b, (k, l)); b)κ]

β-cbv(ev)−−−−−→

E[let l = Nil; b = newBuf unit in put (b, (κ, l)); b]

Removing let and in :

E[(λ l.(λb.put (b, (κ, l)); b)newBuf unit)Nil]

β-cbv(ev)−−−−−→
E[λb.put (b, (κ, [])); b)newBuf unit]

Note that Nil is represented as []. We perform some reduction rules:

buff.new(ev)−−−−−−−→ (νq)(E[(λb.put (b, (κ, [])); b)q] || q b−)
β-cbv(ev)−−−−−→ (νq)(E[put (q, (κ, [])); q] || q b−)

det.put−−−−→ (νq)(E[unit; q] || q b (κ, []))
→ (νq)(E[(λ .q)unit] || q b (κ, []))

β-cbv(ev)−−−−−→ (νq)(E[q] || q b (κ, []))

The result is exactly the term that is also produced by the transformation
rule tqsem.new.

51

Proposition 3.3.2.

(1) (νq)(E[down q] || q b (1, [])) ∼ (νq)(E[True] || q b (0, []))

(2) (νq)(E[down q] || q b (0, []))
∼ (νq)(νh)(νf ′)(E[wait h] || q b (0, h : []) || h h f ′)

Proof.

Case 3.3.2.1. (1) We start directly with

(νq)(E[down q] || q b (1, []))

Replacing down by its implementation (handle-version):

(νq)(E[(λqs.let 〈cnt, ls〉 = get qs
in case (cnt == 0) of

True→ let 〈x, f〉 = newhandled
in put qs (cnt, x : ls); case x of

True→ True
False→ ⊥

False→ put qs (cnt− 1, ls); True) q] || q b (1, []))

We replace qs by q in the λ-expression using β-cbv(ev):

(νq)(E[let 〈cnt, ls〉 = get q
in case (cnt == 0) of

True→ let 〈x, f〉 = newhandled
in put q (cnt, x : ls); case x of

True→ True
False→ ⊥

False→ put q (cnt− 1, ls); True] || q b (1, []))

Removing let . . . in :

(νq)(E[(λ〈cnt, ls〉.case (cnt == 0) of
True→ let 〈x, f〉 = newhandled

in put q (cnt, x : ls); case x of
True→ True
False→ ⊥

False→ put q (cnt− 1, ls); True) get q] || q b (1, []))

52

Getting the contents of the quantity semaphore q with det.get leads to:

(νq)(E[(λ〈cnt, ls〉.case (cnt == 0) of
True→ let 〈x, f〉 = newhandled

in put q (cnt, x : ls); case x of
True→ True
False→ ⊥

False→ put q (cnt− 1, ls); True) (1, [])] || q b−)

We β-cbv(ev)-reduce (1, []) and bind it to 〈cnt, ls〉:

(νq)(E[case (1 == 0) of
True→ let 〈x, f〉 = newhandled

in put q (1, x : []); case x of
True→ True
False→ ⊥

False→ put q (1− 1, []); True] || q b−)

case.beta(ev) reduces the term to the right-handside of the False-alternative:

(νq)(E[put q (1− 1, []); True] || q b−)

det.put−−−−→
(νq)(E[unit; True] || q b (0, []))

We remove the sequential computation:

(νq)(E[(λ .True)unit] || q b (0, []))

At last we β-cbv(ev)-remove unit:

(νq)(E[True] || q b (0, []))

This is also what tdown in the case of a non-zero-valued quantity semaphore
produces. Now we consider the other case:

Case 3.3.2.2. (2)
(νq)(E[down q] || q b (0, []))

53

Replacing down by its implementation (handle-version):

(νq)(E[(λqs.let 〈cnt, ls〉 = get qs
in case (cnt == 0) of

True→ let 〈x, f〉 = newhandled
in put qs (cnt, x : ls); case x of

True→ True
False→ ⊥

False→ put qs (cnt− 1, ls); True) q] || q b (0, []))

β-cbv(ev) replaces qs by q in the λ-expression:

(νq)(E[let 〈cnt, ls〉 = get q
in case (cnt == 0) of

True→ let 〈x, f〉 = newhandled
in put q (cnt, x : ls); case x of

True→ True
False→ ⊥

False→ put q (cnt− 1, ls); True] || q b (0, []))

Removing let . . . in :

(νq)(E[(λ〈cnt, ls〉.case (cnt == 0) of
True→ let 〈x, f〉 = newhandled

in put q (cnt, x : ls); case x of
True→ True
False→ ⊥

False→ put q (cnt− 1, ls); True) get q] || q b (0, []))

Getting the content of q with det.get:

(νq)(E[(λ〈cnt, ls〉.case (cnt == 0) of
True→ let 〈x, f〉 = newhandled

in put q (cnt, x : ls); case x of
True→ True
False→ ⊥

False→ put q (cnt− 1, ls); True) (0, [])] || q b−)

54

We replace 〈cnt, ls〉 via (0, []) with a β-cbv(ev) reduction:

(νq)(E[case (0 == 0) of
True→ let 〈x, f〉 = newhandled

in put q (0, x : []); case x of
True→ True
False→ ⊥

False→ put q (0− 1, []); True] || q b−)

Now the case-expression can be reduced with case.beta(ev) to:

(νq)(E[let 〈x, f〉 = newhandled in put q (0, x : []); case x of
True→ True

False→ ⊥] || q b−)

Removing let . . . in results in:

(νq)(E[(λ〈x, f〉.put q (0, x : []); case x of
True→ True

False→ ⊥)newhandled] || q b−)

Creating new handle components with handle.new(ev)→

(νq)(νh)(νf ′)(E[(λ〈x, f〉.put q (0, x : []); case x of
True→ True

False→ ⊥)〈h, f ′〉] || q b − || h h f ′)

Beta-reducing the handle components
β-cbv(ev)−−−−−→

(νq)(νh)(νf ′)(E[put q (0, h : []); case h of
True→ True

False→ ⊥] || q b − || h h f ′)

Putting in a new value to the quantity semaphore by det.put:

(νq)(νh)(νf ′)(E[unit; case h of
True→ True

False→ ⊥] || q b (0, h : []) || h h f ′)

Removing sequential computation results in:

(νq)(νh)(νf ′)(E[(λ .case h of
True→ True

False→ ⊥)unit] || q b (0, h : []) || h h f ′)

55

Now we can bind unit to with β-cbv(ev):

(νq)(νh)(νf ′)(E[case h of
True→ True

False→ ⊥] || q b (0, h : []) || h h f ′)

Finally, we can replace the case expression by shorthand wait:

(νq)(νh)(νf ′)(E[wait h] || q b (0, h : []) || h h f ′)

Since this is also the result of tdown in the case of a zero-valued quantity
semaphore, we showed correctness of the rule tdown.

In the case of up we also must consider two cases.

Proposition 3.3.3.

(1) (νq)(E[up q] || q b (0, [])) ∼ (νq)(E[unit] || q b (1, []))

(2) (νq)(νh)(νf)(E[up q] || q b (0, [h]) || h h f)
∼ (νq)(νh)(νf)(E[unit] || q b (0, []) || h h • || f⇐True)

Proof.

Case 3.3.3.1. We start with the following program:

(νq)(E[up q] || q b (0, []))

Replacing up by its implementation (handle-version):

(νq)(E[(λqs.
let 〈cnt, ls〉 = get qs in

case ls of
[]→ put qs (cnt+ 1, ls)

x : xs→ x True;
put qs (cnt, xs)) q] || q b (0, []))

β-cbv(ev) of q to qs:

(νq)(E[let 〈cnt, ls〉 = get q in
case ls of

[]→ put q (cnt+ 1, ls)
x : xs→ x True;
put q (cnt, xs)] || q b (0, []))

56

Removing let . . . in :

(νq)(E[(λ〈cnt, ls〉.
case ls of

[]→ put q (cnt+ 1, ls)
x : xs→ x True;

put q (cnt, xs)) get q] || q b (0, []))

Performing det.get on the quantity semaphore q:

(νq)(E[(λ〈cnt, ls〉.
case ls of

[]→ put q (cnt+ 1, ls)
x : xs→ x True;

put q (cnt, xs)) (0, [])] || q b−)

We bind (0, []) to 〈cnt, ls〉 in the λ-expression with a β-cbv(ev)-reduction:

(νq)(E[case [] of
[]→ put q (0 + 1, [])
x : xs→ x True;

put q (0, xs)] || q b−)

case.beta(ev) evaluates the term to the first alternative’s right-handside:

(νq)(E[put q (0 + 1, [])] || q b−)

Putting (0 + 1, []) into q with det.put:

(νq)(E[unit] || q b (1, []))

In this first case we can conclude that the corresponding case of the trans-
formation rule tup is correct. We only used correct reduction (resp. trans-
formation) rules here.

Case 3.3.3.2. We consider the second case by starting with:

(νq)(νh)(νf)(E[up q] || q b (0, [h]) || h h f)

Then, replacing up by its implementation (handle-version) results in:

(νq)(νh)(νf)(E[(λqs.
let 〈cnt, ls〉 = get qs in

case ls of
[]→ put qs (cnt+ 1, ls)

x : xs→ x True;
put qs (cnt, xs)) q] || q b (0, [h]) || h h f)

57

Replacing qs by q in the λ-expression with β-cbv(ev):

(νq)(νh)(νf)(E[let 〈cnt, ls〉 = get q in
case ls of

[]→ put q (cnt+ 1, ls)
x : xs→ x True;

put q (cnt, xs)] || q b (0, [h]) || h h f)

We remove the let . . . in construct:

(νq)(νh)(νf)(E[(λ〈cnt, ls〉.
case ls of

[]→ put q (cnt+ 1, ls)
x : xs→ x True;

put q (cnt, xs)) get q] || q b (0, [h]) || h h f)

We get the contents of q
det.get−−−−→

(νq)(νh)(νf)(E[(λ〈cnt, ls〉.
case ls of

[]→ put q (cnt+ 1, ls)
x : xs→ x True;

put q (cnt, xs)) (0, [h])] || q b − || h h f)

Binding (0, [h]) to 〈cnt, ls〉 in the λ-expression via a β-cbv(ev)-reduction:

(νq)(νh)(νf)(E[case [h] of
[]→ put q (0 + 1, [])
x : xs→ x True;

put q (0, xs)] || q b − || h h f)

Using a case.beta(ev)-reduction on [h] results in:

(νq)(νh)(νf)(E[h True; put q (0, [])] || q b − || h h f)

Removing sequential computation:

(νq)(νh)(νf)(E[(λ .put q (0, []))(h True)] || q b − || h h f)

We bind the handle h to True with handle.bind(ev):

(νq)(νh)(νf)(E[(λ .put q (0, []))unit] || q b − || h h • || f⇐True)

58

The last step produced a unit-value. We bind it to with a β-cbv(ev)-
reduction:

(νq)(νh)(νf)(E[put q (0, [])] || q b − || h h • || f⇐True)

Now we put new contents to the quantity semaphore
det.put−−−−→

(νq)(νh)(νf)(E[unit] || q b (0, []) || h h • || f⇐True)

gc may remove the used handle and future:

(νz)(νq)(E[unit] || q b (0, []))

With these two results which are exactly the results of tdown in both
cases, we showed that tdown is a correct transformation rule.

Theorem 4 (Correctness of transformation rules of the quantity semaphore
abstraction in λτ (fchb)). tqsem.new, tup and tdown are correct trans-
formation rules in λτ (fchb).

Proof. This follows from proposition 3.3.1, 3.3.3 and 3.3.2.

3.4 Properties Of The Bounded Channel Ab-

straction

We show correct transformations for the bounded channel abstraction in
λτ (fchb). Doing this we follow the same approach as for channels.

Proposition 3.4.1.

E[newBChan κ] ∼
(νz)(νq)(νc)(νr)(νw)(νh1)

(E[(c, q)] || q b (κ, []) || c⇐(r, w) || r bh1 || h1 b − || w bh1)

Proof. We start with E[newBChan κ]. Replacing the operation newBChan by
its implementation results in:

E[(λk.let qsem = (newQSem k), chan = (newChan unit) in (chan, qsem))κ]

59

β-cbv(ev)−−−−−→

E[let qsem = (newQSem κ), chan = (newChan unit) in (chan, qsem)]

Removing the let . . . in construct:

E[(λ qsem.(λ chan.(chan, qsem))(newChan unit))(newQSem κ)]

We use tqsem.new to create q. Since it is a correct transformation rule our
reduction stays correct for now:

(νq)(E[(λ qsem.(λ chan.(chan, qsem))(newChan unit)) q] || q b (κ, []))

We replace qsem with q in the λ-expression with β-cbv(ev):

(νq)(E[(λ chan.(chan, q))(newChan unit)] || q b (κ, []))

We use tchan.new to create a new channel. Since tchan.new is a correct
transformation rule our reduction stays also correct for now:

(νq)(νc)(νr)(νw)(νh1)(E[(λ chan.(chan, q)) c]
|| q b (κ, []) || c⇐(r, w) || r bh1 || h1 b − || w bh1)

Replacing chan by c with β-cbv(ev):

(νq)(νc)(νr)(νw)(νh1)
(E[(c, q)] || q b (κ, []) || c⇐(r, w) || r bh1 || h1 b − || w bh1)

Since we only used correct rules doing this, we can conclude that this is a
correct transformation as well.

Proposition 3.4.2.

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[writeBChan (c, v)] || c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w)

|| r b b1 || b1 b Item(v1, b2)
|| . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

∼
(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+2)

(E[unit] || c⇐ (c′, q) || q b (κ− n− 1, []) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2)

|| . . . || bn b Item(vn, bn+1) || bn+1 b Item(v, bn+2) || bn+2 b − || w b bn+2)

for 0 < n < κ

60

Proof. We begin with the situation of a bounded channel that has already
stored n values:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[writeBChan (c, v)] || c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w)

|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

Replacing writeBChan by its implementation leads to:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[(λ〈c′, qsem〉, v′ .

down qsem;
writeChan c′ v′)(c, v)]

|| c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

β-cbv(ev) reduction binds c to 〈c′, qsem〉 and v to v′:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[down q; writeChan c v]

|| c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

Removing sequential computation:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[(λ .writeChan c v)down q]

|| c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

We decrement the value of the quantity semaphore q using the correct trans-
formation rule tdown:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[(λ .writeChan c v)True]

|| c⇐ (c′, q) || q b (κ− n− 1, []) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

Now a β-cbv(ev)-reduction on the term removes True:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[writeChan c v]

|| c⇐ (c′, q) || q b (κ− n− 1, []) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

61

We use the correct transformation rule tchan.write to write value v to the
channel c:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1, bn+2)
(E[unit]

|| c⇐ (c′, q) || q b (κ− n− 1, []) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b Item(v, bn+2)

|| bn+2 b − || w b bn+2)

With that we have proven the statement.

Proposition 3.4.3.

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[readBChan c] || c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w)

|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)
∼

(νc)(νq)(νc′)(νr)(νw)(νb2 . . . bn+1)
(E[v1] || c⇐ (c′, q) || q b (κ− n+ 1, []) || c′ ⇐ (r, w)

|| r b b2 || b2 b Item(v2, b3) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

for 0 < n ≤ κ

Proof. We start with the following program:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[readBChan c] || c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w)

|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

Replacing readBChan by its implementation:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[(λ〈c∗, qsem〉.up qsem; readChan c∗) c]
|| c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w)

|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

We dereference the bounded channel c’s value (c′, q):

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[(λ〈c∗, qsem〉.up qsem; readChan c∗) (c′, q)]
|| c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w)

|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

62

Now a β-cbv(ev)-reduction replaces λ〈c∗, qsem〉 with (c′, q):

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[up q; readChan c′] || c⇐ (c′, q) || q b (κ− n, []) || c′ ⇐ (r, w)

|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

We use the correct transformation rule tup to increment the value of the
quantity semaphore:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[unit; readChan c′] || c⇐ (c′, q) || q b (κ− n+ 1, []) || c′ ⇐ (r, w)

|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

Removing sequential computation:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)
(E[(λ .readChan c′)unit] || c⇐ (c′, q) || q b (κ− n+ 1, []) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

β-cbv(ev)−−−−−→
(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bn+1)

(E[readChan c′] || c⇐ (c′, q) || q b (κ− n+ 1, []) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

Now we perform the correct transformation rule tchan.read to read a value
from channel c′:

(νc)(νq)(νc′)(νr)(νw)(νb2 . . . bn+1)
(E[v1] || c⇐ (c′, q) || q b (κ− n+ 1, []) || c′ ⇐ (r, w)

|| r b b2 || b2 b Item(v2, b3) || . . . || bn b Item(vn, bn+1) || bn+1 b − || w b bn+1)

We have proven the proposition.

Proposition 3.4.4.

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bκ+1)(νh1 . . . hm)(νf1 . . . fm)
(E[readBChan c] || c⇐ (c′, q) || q b (0, [h1, . . . , hm]) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b−

|| w b bκ+1 || h1 h f1 || . . . || hm h fm)
∼

(νc)(νq)(νc′)(νr)(νw)(νb2 . . . bκ+1)(νh1 . . . hm)(νf1 . . . fm)
(E[v1] || c⇐ (c′, q) || q b (0, [h2, . . . , hm]) || c′ ⇐ (r, w)

|| r b b2 || b2 b Item(v2, b3) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b−
|| w b bκ+1 || h1 h • || f1⇐True || h2 h f2 || . . . || hm h fm)

63

Proof. We start with:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bκ+1)(νh1 . . . hm)(νf1 . . . fm)
(E[readBChan c] || c⇐ (c′, q) || q b (0, [h1, . . . , hm]) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b−

|| w b bκ+1 || h1 h f1 || . . . || hm h fm)

Replacing readBChan by its implementation:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bκ+1)(νh1 . . . hm)(νf1 . . . fm)
(E[(λ〈c∗, qsem〉.

up qsem;
readChan c∗) c] || c⇐ (c′, q) || q b (0, [h1, . . . , hm]) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b−

|| w b bκ+1 || h1 h f1 || . . . || hm h fm)

We dereference the bounded channel c’s value (c′, q):

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bκ+1)(νh1 . . . hm)(νf1 . . . fm)
(E[(λ〈c∗, qsem〉.

up qsem;
readChan c∗) (c′, q)] || c⇐ (c′, q) || q b (0, [h1, . . . , hm]) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b−

|| w b bκ+1 || h1 h f1 || . . . || hm h fm)

We β-cbv(ev)-reduce (c′, q), binding it to 〈c∗, qsem〉:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bκ+1)(νh1 . . . hm)(νf1 . . . fm)
(E[up q; readChan c′] || c⇐ (c′, q) || q b (0, [h1, . . . , hm]) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b−

|| w b bκ+1 || h1 h f1 || . . . || hm h fm)

Using the correct transformation rule tup to increment the quantity semaphore’s
counter:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bκ+1)(νh1 . . . hm)(νf1 . . . fm)
(E[unit; readChan c′] || c⇐ (c′, q) || q b (0, [h2, . . . , hm]) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b−

|| w b bκ+1 || h1 h • || . . . || hm h fm || f1⇐True)

64

Removing sequential computation:

(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bκ+1)(νh1 . . . hm)(νf1 . . . fm)
(E[(λ .readChan c′)unit] || c⇐ (c′, q) || q b (0, [h2, . . . , hm]) || c′ ⇐ (r, w)

|| r b b1 || b1 b Item(v1, b2) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b−
|| w b bκ+1 || h1 h • || . . . || hm h fm || f1⇐True)

β-cbv(ev)−−−−−→
(νc)(νq)(νc′)(νr)(νw)(νb1 . . . bκ+1)(νh1 . . . hm)(νf1 . . . fm)

(E[readChan c′] || c⇐ (c′, q) || q b (0, [h2, . . . , hm]) || c′ ⇐ (r, w)
|| r b b1 || b1 b Item(v1, b2) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b−

|| w b bκ+1 || h1 h • || . . . || hm h fm || f1⇐True)

We read v1 from the channel c′ using the correct transformation rule tchan.read:

(νc)(νq)(νc′)(νr)(νw)(νb2 . . . bκ+1)(νh1 . . . hm)(νf1 . . . fm)
(E[v1] || c⇐ (c′, q) || q b (0, [h2, . . . , hm]) || c′ ⇐ (r, w)

|| r b b2 || b2 b Item(v2, b3) || . . . || bκ b Item(vκ, bκ+1) || bκ+1 b−
|| w b bκ+1 || h1 h • || . . . || hm h fm || f1⇐True)

With that, we have proven the proposition.

Theorem 5 (Correctness of transformation rules of the bounded channel
abstraction in λτ (fchb)). tbchan.new, tbchan.write and tbchan.read
are correct transformation rules in λτ (fchb).

Proof. The correctness of tbchan.write and tbchan.read follows from
proposition 3.4.2, 3.4.3 and 3.4.4. In proposition 3.4.1 we reduced the term to
the same term that is produced by the rule tbchan.new after a fut.deref
and gc transformation:

(νq)(νc)(νr)(νw)(νh1)(E[(c, q)]
|| q b (κ, []) || c⇐(r, w) || r bh1 || h1 b − || w bh1)

gc←−
(νz)(νq)(νc)(νr)(νw)(νh1)(E[(c, q)] || z⇐(c, q)
|| q b (κ, []) || c⇐(r, w) || r bh1 || h1 b − || w bh1)

fut.deref←−−−−−−
(νz)(νq)(νc)(νr)(νw)(νh1)(E[z] || z⇐(c, q)
|| q b (κ, []) || c⇐(r, w) || r bh1 || h1 b − || w bh1)

Thus, tchan.new is also a correct transformation.

65

3.5 Properties Of The Barrier Abstraction

We show correct transformations for the barrier abstraction in λτ (fchb). Do-
ing so, we follow the same approach as for all the other abstractions.

Proposition 3.5.1.

E[newBar κ] ∼ (νa)(νf)(E[(a, f, κ)] || a bκ || f b [])

Proof. We begin with E[newBar κ]. Replacing newBar by its implementation:

E[(λk.let cntact = (newBuf unit),
cntfin = (newBuf unit)

in put(cntact, k);
put(cntfin,Nil);

(cntact, cntfin, k)) κ]

A β-cbv(ev)-reduction replaces k by κ in the λ-expression:

E[let cntact = (newBuf unit),
cntfin = (newBuf unit)

in put(cntact, κ);
put(cntfin,Nil);

(cntact, cntfin, κ)]

Replacing let . . . in :

E[(λ cntact.(λcntfin.put(cntact, κ); put(cntfin,Nil); (cntact, cntfin, κ))
(newBuf unit))(newBuf unit)]

We create a new buffer a using buff.new(ev):

(νa)(E[(λ cntact.(λcntfin.put(cntact, κ); put(cntfin,Nil); (cntact, cntfin, κ))
(newBuf unit))a] || a b−)

A β-cbv(ev)-reduction replaces cntact by a:

(νa)(E[(λcntfin.put(a, κ); put(cntfin,Nil); (a, cntfin, κ))
(newBuf unit)] || a b−)

Creating the second buffer f with buff.new(ev) →

(νa)(νf)(E[(λcntfin.put(a, κ); put(cntfin,Nil); (a, cntfin, κ))f]
|| a b − || f b−)

66

A β-cbv(ev)-reduction replaces cntfin by f :

(νa)(νf)(E[put(a, κ); put(f,Nil); (a, f, κ)] || a b − || f b−)

Putting κ into buffer a
det.put−−−−→

(νa)(νf)(E[unit; put(f,Nil); (a, f, κ)] || a bκ || f b−)

Removing sequential computation and β-cbv(ev)-reducing unit:

(νa)(νf)(E[put(f,Nil); (a, f, κ)] || a bκ || f b−)

Putting the empty list Nil into buffer f with det.put results in:

(νa)(νf)(E[unit; (a, f, κ)] || a bκ || f b [])

Removing sequential computation and β-cbv(ev) removes unit and results
in:

(νa)(νf)(E[(a, f, κ)] || a bκ || f b [])

This transformation is correct since we only used correct rules.

Proposition 3.5.2.

(1) (νx)(νa)(νf)(νh1 . . . hκ−1)(νf1 . . . fκ−1)
(E[syncBar x] || x⇐(a, f, κ) || a b 1 || f b [h1 . . . hκ−1] || h1 h f1 || . . . || hκ−1 h fκ−1)
∼ (νx)(νa)(νf)(E[True] || x⇐(a, f, κ) || a bκ || f b [])

(2) (νx)(νa)(νf)(νh1 . . . hn)(νf1 . . . fn)
(E[syncBar x] || x⇐(a, f, κ) || a bκ− n || f b [h1 . . . hn] || h1 h f1 || . . . || hn h fn)
∼ (νx)(νa)(νf)(νh1 . . . hn+1)(νf1 . . . fn+1)

(E[hn+1] || x⇐(a, f, κ) || a bκ− n− 1 || f b [h1 . . . hn+1] || h1 h f1 || . . . || hn+1 h fn+1)

Proof.

Case 3.5.2.1. We begin with:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[syncBar x] || x⇐(a, f, κ) || a b 1 || f b [h1 . . . hκ−1]

|| h1 h f1 || . . . || hκ−1 h fκ−1)

67

We replace syncBar by its implementation:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[(λ〈cntact, cntfin, κ′〉.

let act = (get cntact),
f in = (get cntfin)

in case (act == 1) of
True→ put(cntact, κ′);

put(cntfin,Nil); openBar fin; True
False→ put(cntact, act− 1);

let 〈 f, h 〉 = newhandled
in put(cntfin, h : fin);h) x]

|| x⇐(a, f, κ) || a b 1 || f b [h1 . . . hκ−1] || h1 h f1 || . . . || hκ−1 h fκ−1)

We dereference the value of x:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[(λ〈cntact, cntfin, κ′〉.

let act = (get cntact),
f in = (get cntfin)

in case (act == 1) of
True→ put(cntact, κ′);

put(cntfin,Nil); openBar fin; True
False→ put(cntact, act− 1);

let 〈 f, h 〉 = newhandled
in put(cntfin, h : fin);h) (a, f, κ)]

|| x⇐(a, f, κ) || a b 1 || f b [h1 . . . hκ−1] || h1 h f1 || . . . || hκ−1 h fκ−1)

Now we bind (a, f, κ) to 〈cntact, cntfin, κ′〉 with a β-cbv(ev)-reduction:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[let act = (get a),

f in = (get f)
in case (act == 1) of

True→ put(a, κ); put(f,Nil); openBar fin; True
False→ put(a, act− 1);
let 〈 f, h 〉 = newhandled

in put(f, h : fin);h]
|| x⇐(a, f, κ) || a b 1 || f b [h1 . . . hκ−1] || h1 h f1 || . . . || hκ−1 h fκ−1)

68

Removing let . . . in:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[(λ act.(λfin.case (act == 1) of

True→ put(a, κ); put(f,Nil); openBar fin; True
False→ put(a, act− 1);
let 〈 f, h 〉 = newhandled

in put(f, h : fin);h)(get f))(get a)]
|| x⇐(a, f, κ) || a b 1 || f b [h1 . . . hκ−1] || h1 h f1 || . . . || hκ−1 h fκ−1)

Getting the contents of buffer a using det.get:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[(λ act.(λfin.case (act == 1) of

True→ put(a, κ); put(f,Nil); openBar fin; True
False→ put(a, act− 1);
let 〈 f, h 〉 = newhandled

in put(f, h : fin);h)(get f))1]
|| x⇐(a, f, κ) || a b − || f b [h1 . . . hκ−1] || h1 h f1 || . . . || hκ−1 h fκ−1)

Replacing act by 1
β-cbv(ev)−−−−−→

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[(λfin.case (1 == 1) of

True→ put(a, κ); put(f,Nil); openBar fin; True
False→ put(a, 1− 1);
let 〈 f, h 〉 = newhandled

in put(f, h : fin);h)(get f)]
|| x⇐(a, f, κ) || a b − || f b [h1 . . . hκ−1] || h1 h f1 || . . . || hκ−1 h fκ−1)

Getting the contents of f using det.get:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[(λfin.case (1 == 1) of

True→ put(a, κ); put(f,Nil); openBar fin; True
False→ put(a, 1− 1);
let 〈 f, h 〉 = newhandled

in put(f, h : fin);h)[h1 . . . hκ−1]]
|| x⇐(a, f, κ) || a b − || f b − || h1 h f1 || . . . || hκ−1 h fκ−1)

69

Binding the list of handles to fin in the λ-expression using β-cbv(ev):

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[case (1 == 1) of

True→ put(a, κ); put(f,Nil); openBar [h1 . . . hκ−1]; True
False→ put(a, 1− 1);
let 〈 f, h 〉 = newhandled

in put(f, h : [h1 . . . hκ−1]);h]
|| x⇐(a, f, κ) || a b − || f b − || h1 h f1 || . . . || hκ−1 h fκ−1)

Evaluating (1 == 1):

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[case True of

True→ put(a, κ); put(f,Nil); openBar [h1 . . . hκ−1]; True
False→ put(a, 1− 1);
let 〈 f, h 〉 = newhandled

in put(f, h : [h1 . . . hκ−1]);h]
|| x⇐(a, f, κ) || a b − || f b − || h1 h f1 || . . . || hκ−1 h fκ−1)

Reducing the case-expression with case.beta(ev):

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[put(a, κ); put(f,Nil); openBar [h1 . . . hκ−1]; True]

|| x⇐(a, f, κ) || a b − || f b − || h1 h f1 || . . . || hκ−1 h fκ−1)

For improved readability we do not remove all the sequential computation
here. We put κ into the buffer a using det.put:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[unit; put(f,Nil); openBar [h1 . . . hκ−1]; True]

|| x⇐(a, f, κ) || a bκ || f b − || h1 h f1 || . . . || hκ−1 h fκ−1)

Removing sequential computation & gc removes unit:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[put(f,Nil); openBar [h1 . . . hκ−1]; True]

|| x⇐(a, f, κ) || a bκ || f b − || h1 h f1 || . . . || hκ−1 h fκ−1)

Putting a new empty list Nil into buffer f with det.put:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[unit; openBar [h1 . . . hκ−1]; True] || x⇐(a, f, κ)
|| a bκ || f b [] || h1 h f1 || . . . || hκ−1 h fκ−1)

70

We remove sequential computation & garbage collect unit with gc:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[openBar [h1 . . . hκ−1]; True]

|| x⇐(a, f, κ) || a bκ || f b [] || h1 h f1 || . . . || hκ−1 h fκ−1)

We assume an internal reduction rule topen.
(νh1, . . . , hm)(νf1, . . . , fm)
(E[openBar[h1, . . . , hm]] || f b [h1 . . . hm] || h1 h f1 || . . . || hm h fm)
→ (νh1, . . . , hm)(νf1, . . . , fm)(E[True] || h1 h • || . . . || hm h • ||
f1⇐True || . . . || fm⇐True) that shorts the reduction steps in syncBar. topen
uses all the handles and binds the futures to True:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[unit; True] || x⇐(a, f, κ) || a bκ || f b [] || h1 h • || . . . || hκ−1 h •

|| f1⇐True || . . . || fκ−1⇐True)

Removing sequential computation:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[(λ .True)unit] || || x⇐(a, f, κ) || a bκ || f b [] || h1 h • || . . . || hκ−1 h •

|| f1⇐True || . . . || fκ−1⇐True)

Beta-reducing unit:

(νx)(νf)(νa)(νh1, . . . , hκ−1)(νf1, . . . , fκ−1)
(E[True] || || x⇐(a, f, κ) || a bκ || f b [] || h1 h • || . . . || hκ−1 h •

|| f1⇐True || . . . || fκ−1⇐True)

Using gc removes all used handles and successful futures and results in:

(νx)(νf)(νa)(E[True] || x⇐(a, f, κ) || a bκ || f b [])

Since we used topen, of which we do not know if it is correct, we cannot
conclude, that this reduction is correct.

Case 3.5.2.2. We begin with

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[syncBar x] || x⇐(a, f, κ) || a bκ− n || f b [h1 . . . hn]

|| h1 h f1 || . . . || hn h fn)

71

Replacing syncBar by its implementation:

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[(λ〈cntact, cntfin, κ′〉.

let act = (get cntact),
f in = (get cntfin)

in case (act == 1) of
True→ put(cntact, κ′); put(cntfin,Nil); openBar fin; True

False→ put(cntact, act− 1);
let 〈 f, h 〉 = newhandled

in put(cntfin, h : fin);h)x]
|| x⇐(a, f, κ) || a bκ− n || f b [h1 . . . hn]

|| h1 h f1 || . . . || hn h fn)

Dereferencing the value of x leads to:

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[(λ〈cntact, cntfin, κ′〉.

let act = (get cntact),
f in = (get cntfin)

in case (act == 1) of
True→ put(cntact, κ′); put(cntfin,Nil); openBar fin; True

False→ put(cntact, act− 1);
let 〈 f, h 〉 = newhandled

in put(cntfin, h : fin);h)(a, f, κ)]
|| x⇐(a, f, κ) || a bκ− n || f b [h1 . . . hn]

|| h1 h f1 || . . . || hn h fn)

Renaming variable f in 〈 f, h 〉 to f∗:

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[(λ〈cntact, cntfin, κ′〉.

let act = (get cntact),
f in = (get cntfin)

in case (act == 1) of
True→ put(cntact, κ′); put(cntfin,Nil); openBar fin; True

False→ put(cntact, act− 1);
let 〈 f∗, h 〉 = newhandled

in put(cntfin, h : fin);h)(a, f, κ)]
|| x⇐(a, f, κ) || a bκ− n || f b [h1 . . . hn]

|| h1 h f1 || . . . || hn h fn)

72

Replacing 〈cntact, cntfin, κ′〉 with (a, f, κ) with β-cbv(ev):

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[let act = (get a),

f in = (get f)
in case (act == 1) of

True→ put(a, κ); put(f,Nil); openBar fin; True
False→ put(a, act− 1);
〈 f∗, h 〉 = newhandled

in put(f, h : fin);h]
|| x⇐(a, f, κ) || a bκ− n || f b [h1 . . . hn]

|| h1 h f1 || . . . || hn h fn)

Removing let . . . in :

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[(λact.(λfin.case (act == 1) of

True→ put(a, κ); put(f,Nil); openBar fin; True
False→ put(a, act− 1);
let 〈 f∗, h 〉 = newhandled

in put(f, h : fin);h)(get f))(get a)]
|| x⇐(a, f, κ) || a bκ− n || f b [h1 . . . hn]

|| h1 h f1 || . . . || hn h fn)

Getting buffer a’s values by det.get:

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[(λact.(λfin.case (act == 1) of

True→ put(a, κ); put(f,Nil); openBar fin; True
False→ put(a, act− 1);
let 〈 f∗, h 〉 = newhandled

in put(f, h : fin);h)(get f))κ− n]
|| x⇐(a, f, κ) || a b − || f b [h1 . . . hn]

|| h1 h f1 || . . . || hn h fn)

73

Binding κ− n to act in the λ-expression using a β-cbv(ev)-reduction:

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[(λfin.case ((κ− n) == 1) of

True→ put(a, κ); put(f,Nil); openBar fin; True
False→ put(a, (κ− n)− 1);

let 〈 f∗, h 〉 = newhandled
in put(f, h : fin);h)(get f)]

|| x⇐(a, f, κ) || a b − || f b [h1 . . . hn]
|| h1 h f1 || . . . || hn h fn)

Getting the contents of buffer f
det.get−−−−→

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[(λfin.case ((κ− n) == 1) of

True→ put(a, κ); put(f,Nil); openBar fin; True
False→ put(a, (κ− n)− 1);

let 〈 f∗, h 〉 = newhandled
in put(f, h : fin);h)[h1 . . . hn]]

|| x⇐(a, f, κ) || a b − || f b−
|| h1 h f1 || . . . || hn h fn)

Binding the list of handles to fin
β-cbv(ev)−−−−−→

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[case ((κ− n) == 1) of

True→ put(a, κ); put(f,Nil); openBar [h1 . . . hn]; True
False→ put(a, (κ− n)− 1);

let 〈 f∗, h 〉 = newhandled
in put(f, h : [h1 . . . hn]);h]

|| x⇐(a, f, κ) || a b − || f b−
|| h1 h f1 || . . . || hn h fn)

74

Computing ((κ− n) == 1):

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[case False of

True→ put(a, κ); put(f,Nil); openBar [h1 . . . hn]; True
False→ put(a, (κ− n)− 1);

let 〈 f∗, h 〉 = newhandled
in put(f, h : [h1 . . . hn]);h]

|| x⇐(a, f, κ) || a b − || f b−
|| h1 h f1 || . . . || hn h fn)

Using case.beta(ev) we enter the second alternative:

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[put(a, (κ− n)− 1);

let 〈 f∗, h 〉 = newhandled
in put(f, h : [h1 . . . hn]);h]

|| x⇐(a, f, κ) || a b − || f b−
|| h1 h f1 || . . . || hn h fn)

Putting (κ− n)− 1 into buffer a with det.put:

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[unit;

let 〈 f∗, h 〉 = newhandled
in put(f, h : [h1 . . . hn]);h]

|| x⇐(a, f, κ) || a bκ− n− 1 || f b−
|| h1 h f1 || . . . || hn h fn)

Removing sequential computation and gc removes unit:

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[let 〈 f∗, h 〉 = newhandled

in put(f, h : [h1 . . . hn]);h]
|| x⇐(a, f, κ) || a bκ− n− 1 || f b−

|| h1 h f1 || . . . || hn h fn)

Replacing let . . . in

(νx)(νf)(νa)(νh1, . . . , hn)(νf1, . . . , fn)
(E[(λ〈 f∗, h 〉.put(f, h : [h1 . . . hn]);h)newhandled]

|| x⇐(a, f, κ) || a bκ− n− 1 || f b−
|| h1 h f1 || . . . || hn h fn)

75

Creating a new handle 〈 fn+1, hn+1 〉 with handle.new(ev):

(νx)(νf)(νa)(νh1, . . . , hn, hn+1)(νf1, . . . , fn, fn+1)
(E[(λ〈 f∗, h 〉.put(f, h : [h1 . . . hn]);h)〈 fn+1, hn+1 〉]

|| x⇐(a, f, κ) || a bκ− n− 1 || f b−
|| h1 h f1 || . . . || hn h fn || hn+1 h fn+1)

β-cbv(ev)-reducing the handle binds 〈 fn+1, hn+1 〉 to 〈 f∗, h 〉:

(νx)(νf)(νa)(νh1, . . . , hn, hn+1)(νf1, . . . , fn, fn+1)
(E[put(f, hn+1 : [h1 . . . hn]);hn+1]
|| x⇐(a, f, κ) || a bκ− n− 1 || f b−
|| h1 h f1 || . . . || hn+1 h fn+1)

Putting the modified list [h1 . . . hn, hn+1] into buffer f
det.put−−−−→

(νx)(νf)(νa)(νh1, . . . , hn, hn+1)(νf1, . . . , fn, fn+1)
(E[unit;hn+1] || x⇐(a, f, κ) || a bκ− n− 1 || f b [h1 . . . hn, hn+1]

|| h1 h f1 || . . . || hn+1 h fn+1)

Removing sequential computation and gc results in:

(νx)(νf)(νa)(νh1, . . . , hn, hn+1)(νf1, . . . , fn, fn+1)
(E[hn+1] || x⇐(a, f, κ) || a bκ− n− 1 || f b [h1 . . . hn, hn+1]

|| h1 h f1 || . . . || hn+1 h fn+1)

Theorem 6 (Correctness of transformation rules of the barrier abstraction
in λτ (fchb)). tbar.new is a correct transformation rule in λτ (fchb).

Proof. We can reversely transform the result from proposition 3.5.1.

(νa)(νf)(E[(a, f, κ)] || a bκ || f b [])
gc←− (νz)(νa)(νf)(E[(a, f, κ)] || z⇐(a, f, κ) || a bκ || f b [])

fut.deref←−−−−−− (νz)(νa)(νf)(E[z] || z⇐(a, f, κ) || a bκ || f b [])

Thus, tbar.new is a correct transformation rule.

76

3.6 Program Equivalence

In this section we show equivalence of programs that use different concurrency
abstractions.

Proposition 3.6.1.

(1) E[thread (λ .let x = (newChan unit)
in writeChan(x (v1, v2)); readChan(x); readChan(x);x)]
∼

(2) E[newChan unit]

Case 3.6.1.1. Reducing (1) by applying thread.new→

(νz)(E[z] || z⇐(λ .let x = (newChan unit)
in writeChan(x (v1, v2)); readChan(x); readChan(x);x)z)

Beta-reducing z →

(νz)(E[z] || z⇐let x = (newChan unit)
in writeChan(x (v1, v2)); readChan(x); readChan(x);x)

Removing syntactical let:

(νz)(E[z] ||
z⇐(λx.(λ .(λ .(λ .x)readChan x)readChan x)writeChan(x (v1, v2)))newChan unit)

tchan.new−−−−−−→
(νz)(νc)(νr)(νw)(νh1)(E[z] ||

z⇐(λx.(λ .(λ .(λ .x)readChan x)readChan x)writeChan(x (v1, v2))) c
|| c⇐ (r, w) || r bh1 || h1 b − || w bh1)

β-cbv(ev)−−−−−→
(νz)(νc)(νr)(νw)(νh1)(E[z] ||

z⇐(λ .(λ .(λ .c)readChan c)readChan c)writeChan(x (v1, v2))
|| c⇐ (r, w) || r bh1 || h1 b − || w bh1)

tchan.writen−−−−−−−−→
(νz)(νc)(νr)(νw)(νh1)(νh2)(νh3)(E[z] ||
z⇐(λ .(λ .(λ .c)readChan c)readChan c)unit

|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || h2 b Item(v2, h3) || h3 b − || w bh3)

77

β-cbv(ev)−−−−−→
(νz)(νc)(νr)(νw)(νh1)(νh2)(νh3)(E[z] ||
z⇐(λ .(λ .c)readChan c)readChan c

|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || h2 b Item(v2, h3) || h3 b − || w bh3)

tchan.read−−−−−−−→
(νz)(νc)(νr)(νw)(νh1)(νh2)(νh3)(E[z] ||

z⇐(λ .(λ .c)readChan c) v1

|| c⇐ (r, w) || r bh2 || h1 b − || h2 b Item(v2, h3) || h3 b − || w bh3)

gc−→
(νz)(νc)(νr)(νw)(νh2)(νh3)(E[z] ||

z⇐(λ .(λ .c)readChan c) v1

|| c⇐ (r, w) || r bh2 || h2 b Item(v2, h3) || h3 b − || w bh3)

β-cbv(ev)−−−−−→
(νz)(νc)(νr)(νw)(νh2)(νh3)(E[z] ||

z⇐(λ .c)readChan c
|| c⇐ (r, w) || r bh2 || h2 b Item(v2, h3) || h3 b − || w bh3)

tchan.read−−−−−−−→
(νz)(νc)(νr)(νw)(νh2)(νh3)(E[z] ||

z⇐(λ .c) v2

|| c⇐ (r, w) || r bh3 || h2 b − || h3 b − || w bh3)

β-cbv(ev)−−−−−→
(νz)(νc)(νr)(νw)(νh2)(νh3)(E[z] || z⇐c

|| c⇐ (r, w) || r bh3 || h2 b − || h3 b − || w bh3)

We dereference thread z’s value with a fut.deref:

(νz)(νc)(νr)(νw)(νh2)(νh3)(E[c] || z⇐c
|| c⇐ (r, w) || r bh3 || h2 b − || h3 b − || w bh3)

Now the garbage collection removes the empty buffer h2 and successfully
evaluated thread z →

(νc)(νr)(νw)(νh3)(E[c] || c⇐ (r, w) || r bh3 || h3 b − || w bh3)

The contexts evaluates to the empty channel.

78

Case 3.6.1.2. Reducing (2) with tchan.new

(νc)(νr)(νw)(νh0)(E[c] || c⇐ (r, w) || r bh0 || h0 b − || w bh0)

The contexts evaluates to the empty channel.
The resulting process contains only the empty channel. (1) and (2) reduce
to α-equivalent1 processes.

Proposition 3.6.2.

(1) E[let b = newBar 1 in syncBar b]
∼

(2) E[let q = newQSem n in down q]

for n > 0, if tsync was correct.

Case 3.6.2.1. We start with thread(λ .let b = newBar 1 in syncBar b). Then
thread.new results in:

(νz)(E[z] || z⇐(λ .let b = newBar 1 in syncBar b)z)

β-cbv(ev)−−−−−→
(νz)(E[z] || z⇐let b = newBar 1 in syncBar b)

→
(νz)(E[z] || z⇐(λb.syncBar b)newBar 1)

bar.new(ev)−−−−−−−→

(νz)(νa)(νf)(νx)(E[z] || z⇐(λb.syncBar b)x || x⇐(a, f, 1) || a b 1 || f b [])

β-cbv(ev)−−−−−→

(νz)(νa)(νf)(νx)(E[z] || z⇐syncBar x || x⇐(a, f, 1) || a b 1 || f b [])

bar.sync(ev)−−−−−−−→

(νz)(νa)(νf)(νx)(E[z] || z⇐True || x⇐(a, f, 1) || a b 1 || f b [])

1α-equivalent terms are equal except for renaming.

79

fut.deref(ev)−−−−−−−−→

(νz)(νa)(νf)(νx)(E[True] || z⇐True || x⇐(a, f, 1) || a b 1 || f b [])

gc−→
(νz)(νa)(νf)(νx)(E[True] || x⇐(a, f, 1) || a b 1 || f b [])

Case 3.6.2.2. We start with thread(λ .let q = newQSem n in down q). Then
thread.new results in:

(νz)(E[z] || z⇐(λ .let q = newQSem n in down q)z)

β-cbv(ev)−−−−−→
(νz)(E[z] || z⇐let q = newQSem n in down q)

→
(νz)(E[z] || z⇐(λq.down q)newQSem n)

tqsem.new→

(νz)(νx)(E[z] || z⇐(λq.down q)x || x b (n, []))

β-cbv(ev)−−−−−→
(νz)(νx)(E[z] || z⇐down x || x b (n, []))

tdown→
(νz)(νx)(E[z] || z⇐True || x b (n− 1, []))

fut.deref(ev)→

(νz)(νx)(E[True] || z⇐True || x b (n− 1, []))

gc→
(νx)(E[True] || x b (n− 1, []))

Proposition 3.6.3.

(1) E[let b = newBChan 1 in writeBChan (b,True); readBChan b]
∼

(2) E[let q = newQSem n in down q]

for n > 0

80

Case 3.6.3.1. thread(λ .let b = newBChan 1 in writeBChan (b,True); readBChan b)
thread.new→

(νz)(E[z] || z⇐(λ .let b = newBChan 1 in writeBChan (b,True); readBChan b)z)

β-cbv(ev)−−−−−→

(νz)(E[z] || z⇐let b = newBChan 1 in writeBChan (b,True); readBChan b)

→

(νz)(E[z] || z⇐(λb.writeBChan (b,True); readBChan b)newBChan 1)

tbchan.new→

(νz)(νc)(νq)(νc′)(νr)(νw)(νh0)
(E[z] || z⇐(λb.writeBChan (b,True); readBChan b)c || c⇐(c′, q) || q b (1, [])

|| c′⇐(r, w) || r bh0 || h0 b − || w bh0)

β-cbv(ev)−−−−−→

(νz)(νc)(νq)(νc′)(νr)(νw)(νh0)
(E[z] || z⇐writeBChan (c,True); readBChan c || c⇐(c′, q) || q b (1, [])

|| c′⇐(r, w) || r bh0 || h0 b − || w bh0)

tbchan.write→

(νz)(νc)(νq)(νc′)(νr)(νw)(νh0)(νh1)
(E[z] || z⇐unit; readBChan c || c⇐(c′, q) || q b (0, [])

|| c′⇐(r, w) || r bh0 || r b Item(True, h1) || h1 b − || w bh1)

→
(νz)(νc)(νq)(νc′)(νr)(νw)(νh0)(νh1)

(E[z] || z⇐readBChan c || c⇐(c′, q) || q b (0, [])
|| c′⇐(r, w) || r bh0 || r b Item(True, h1) || h1 b − || w bh1)

tbchan.read→

(νz)(νc)(νq)(νc′)(νr)(νw)(νh0)
(E[z] || z⇐True || c⇐(c′, q) || q b (1, [])
|| c′⇐(r, w) || r bh0 || h0 b − || w bh0)

81

fut.deref(ev)→

(νz)(νc)(νq)(νc′)(νr)(νw)(νh0)
(E[True] || z⇐True || c⇐(c′, q) || q b (1, []) || c′⇐(r, w) || r bh0 || h0 b − || w bh0)

gc→

(νc)(νq)(νc′)(νr)(νw)(νh0)
(E[True] || c⇐(c′, q) || q b (1, []) || c′⇐(r, w) || r bh0 || h0 b − || w bh0)

Case 3.6.3.2. In 3.6.2.2 we have already seen that
thread(λ .let q = newQSem n in down q) reduces to (νx)(E[True] || x b (n−
1, []))

Proposition 3.6.4.

E[thread(λ .let x = (newChan unit) in writeChan(x, v); readChan x]
∼ E[v]

Proof. We start with:

thread(λ .let x = (newChan unit) in writeChan(x, v); readChan x)

Applying thread.new →

(νz)(E[z] || z⇐(λ .let x = (newChan unit) in writeChan(x, v); readChan x)z)

β-cbv(ev)−−−−−→

(νz)(E[z] || z⇐let x = (newChan unit) in writeChan(x, v); readChan x)

Removing syntactical let . . . in :

(νz)(E[z] || z⇐(λx.(writeChan(x, v); readChan x))(newChan unit))

tchan.new−−−−−−→

(νz)(νc)(νr)(νw)(νh1)(E[z] || z⇐(λx.(writeChan(x, v); readChan x))c
|| c⇐ (r, w) || r bh1 || h1 b − || w bh1))

82

β-cbv(ev)−−−−−→
(νz)(νc)(νr)(νw)(νh1)(E[z] || z⇐writeChan(c, v); readChan c

|| c⇐ (r, w) || r bh1 || h1 b − || w bh1)

tchan.write−−−−−−−→
(νz)(νc)(νr)(νw)(νh1)(νh2)(E[z] || z⇐unit; readChan c
|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || h2 b − || w bh2)

gc−→
(νz)(νc)(νr)(νw)(νh1)(νh2)(E[z] || z⇐readChan c

|| c⇐ (r, w) || r bh1 || h1 b Item(v1, h2) || h2 b − || w bh2)

Applying tchan.read:

(νz)(νc)(νr)(νw)(νh2)(E[z] || z⇐v1

|| c⇐ (r, w) || r bh2 || h2 b − || w bh2)

Dereferencing the value of thread z by fut.deref:

(νz)(νc)(νr)(νw)(νh2)(E[v1] || z⇐v1

|| c⇐ (r, w) || r bh2 || h2 b − || w bh2)

Garbage collection removes thread z
gc−→

(νc)(νr)(νw)(νh2)(E[v1] || c⇐ (r, w) || r bh2 || || h2 b − || w bh2)

Conjecture 3.6.1. Assume there is a program p,

p := threadτ (λ .let q = newQSem 2
in threadτ (down q; e; up q)

threadτ (down q; e; up q)
threadτ (down q; e; up q))

thread.new and β-cbv(ev)→

(νz)(z⇐let q = newQSem 2
in threadτ (down q; e; up q) (1)

threadτ (down q; e; up q) (2)
threadτ (down q; e; up q) (3))

then z is must-convergent if all its child threads are must-convergent.

83

Proof sketch.

1 z is must-convergent if (1), (2) and (3) are all must convergent.

2 (i) is must-congvergent if e is must-convergent.

3 If e⇓ then e 6= ⊥ and Ẽ[e]→ v, where v is a value.

4 ∀ threads (i), i ≤ n: (i)⇓. We must show that threadτ (down q; e; up q)⇓
holds. This follows from the reduction rule of down: (qsem.down(ev))
converges for a quantity semaphore of count > 0. In our case the
semaphore is instantiated with n, so n threads may perform down.
Therefore (down q) ⇓ in these cases. From [2] it follows that e re-
duces to a value v. v is must-convergent. The specification of quantity
semaphores provides that for every successful down-operation there may
be one up executed successfully. Therefore (up q)⇓ in the case of i ≤ n.

5 ∀ threads (k), k > n: (k)⇓. From [4] follows, that the first i threads
will converge. Then with [4] the next i threads may operate on the
semaphore, and so on. Thus, all threads k are must-convergent.

Conjecture 3.6.2. Conjecture 3.6.1 holds for n threads.

Conjecture 3.6.3. Let e1 and e2 be critical regions, where only one thread

84

may execute in. Then these programs are equivalent:

(1) p1 := thread(λ .let b = newBar 2 in
thread(λ .e1; syncBar b; e2)
thread(λ .e2; syncBar b; e1))

(2) p2 := thread(λ .let b1 = newBuf True
b2 = newBuf True in

thread(λ .get b1; e1; put (b1,True); get b2; e2; put (b2,True))
thread(λ .get b2; e2; put (b2,True); get b1; e1; put (b1,True)))

(3) p3 := thread(λ .let q1 = newQSem 1
q2 = newQSem 1 in

thread(λ .down q1; e1; up q1; down q2; e2; up q2)
thread(λ .down q2; e2; up q2; down q1; e1; up q1))

(4) p4 := thread(λ .let c1 = newBChan 1
c2 = newBChan 1 in

thread(λ .writeBChan (c1,False); e1; readBChan c1; writeBChan (c2,False); e2; readBChan c2)
thread(λ .writeBChan (c2,False); e2; readBChan c2; writeBChan (c1,False); e1; readBChan c1))

p1 ∼ p2 ∼ p3 ∼ p4

Proof sketch. In every program pi thread i starts with computing ei. After
finishing the computation both threads take turns on the computation. In
the case of buffers, semaphores and bounded channels, each critical region ei
is protected by its own abstraction component. The access of this abstraction
is limited to one accessor. By this we ensure that only one thread is allowed
to compute ei. In the case of barrier e1 and e2 do not need to be protected
with own abstractions. Here one barrier is enough to ensure that threads
wait for each other until they may take their turn.

Summary

In this chapter we firstly proposed some properties concerning the encodings
from chapter 2, section 2.3. We proved correctness of some new transforma-
tion rules in λτ (fchb). Finally, in section 3.6 we have seen coherences between
the encodings.

85

4. Implementation

4.1 Concurrent Haskell

Concurrent Haskell was proposed in [PGF96, Pey09]. It is part of the basic
libraries of Haskell. Its stability state is set to ’experimental’1.

Concurrent Haskell extends Haskell by a primitive forkIO and by syn-
chronising variables called MVar. MVars behave like one-place buffers. The
corresponding operation to newBuf is newEmptyMVar that creates a new
empty MVar. The operation takeMVar is equivalent to get and putMVar be-
haves like put on an empty MVar. Concurrent threads can be started with
forkIO :: IO () -> IO ThreadId. Applied to an IO-action, a concurrent
thread is immediately started to compute the action concurrently.

4.2 The Future Library

We present the library caf written in Haskell2 where all3 discussed prim-
itives from section 2.3 are implemented. The library uses the namespace
Control.Concurrent.Futures.

At first we present the module Futures where several kinds of futures are
implemented. Given the module Futures and our encodings in λτ (fchb), the
implementation of the abstractions is not complicated as we will see.

1see [cha09].
2The name ’future’ is already in use for some kinds of promises. Thus we use the term

Concurrency Abstractions using Futures for our library. See [Kuk09].
3Except the test and set primitive, that is not tested yet. It can be found in Con-

trol.Concurrent.Futures.Buffer but is not exposed.

86

4.2.1 Futures In Haskell

The implementation of futures was proposed in [Sab09]. In his first attempt
Sabel distinguishes two types of futures: Explicit and implicit ones. The
computation of explicit futures (EFuture) must be forced explicitly by calling
force. This is a bit uncomfortable: The programmer must be careful to force
the future at the right moment. Implicit futures are implicitly triggered.

efuture :: IO a -> IO (EFuture a)
efuture act =
do ack <- newEmptyMVar

forkIO (act >>= putMVar ack)
return ack

force :: EFuture a -> IO a
force = takeMVar

Figure 4.1: Implementation of explicit futures

An explicit future is represented by an MVar (Fig. 4.1). The creation
of an explicit future first creates a new empty MVar and starts a concur-
rent thread that computes the action resulting in an MVar ack. The calling
thread immediately gets this new MVar. If it needs the value of the future,
then the future must be explicitly forced, which reads the MVar. The calling
thread must wait, until the computation of the future has finished. To enable
implicity we use unsafeInterleaveIO which can delay computations in the
IO-monad and breaks sequentiality. Important is that unsafeInterleaveIO
does not block any other threads. In Fig. 4.2 the implementation of implicit
futures is shown. The implicit future needs to know the code that should
be computed lazily. The MVar ack will be used to store the result of the
computation. A new thread will be startet that writes the result of the code
into ack. The computation of the result itself is being delayed via unsafeIn-
terleaveIO. Once the computation starts it kills the thread and returns the
result. Along the implementation of futures the future module is equipped
with a global manager. This manager takes care of all introduced futures
and ensures the evaluation of all (strict) futures before terminating the main
thread. With the manager the usage of futures is easy. The programmer
only has to add a global wrapper function withFuturesDo around the main
function (main = withFuturesDo code). The global manager leads to the
implementation of strict futures.

87

future :: IO a � IO a
future code = do ack �newEmptyMVar

thread � forkIO (code >>= putMVar ack)
unsafeInterleaveIO (do result � takeMVar ack

killThread thread
return result)

Figure 4.2: Implementation of implicit futures

Strict futures encapsulate a future’s computation and the registration of
that future in the global Manager.

Finally, there is a need of another type of futures: Lazy futures. Their
behaviour is, that there is no computation until the value is needed. If the
value of a lazy future is needed then lazy futures behave like strict futures.

lazyFuture :: IO a � IO a
lazyFuture code = unsafeInterleaveIO (strictFuture code)

bhandle :: (a -> (a -> IO ()) -> t) -> IO t
bhandle x = do

f’ <- newEmptyMVar
f <- lazyFuture (do

v <- takeMVar f’
putMVar f’ v
return v

)
h <- strictFuture (return (\z -> (putMVar f’ z)))
return (x f h)

newhandled :: IO (a -> IO (), a)
newhandled = bhandle (\f -> \h -> (h,f))

Figure 4.3: Implementation of lazy futures and handles

With both, lazy and strict futures, the implementation of handles is pos-
sible (Fig. 4.3). At first in bhandle, it creates a new MVar f’. Later, f’
will bind the handle to the value of the future. A lazy future delays fetching
the MVar f’s value. Afterwards, the computation component for the han-
dle h is a strict future on a λ-expression that puts an applicated argument

88

into the MVar f’. Finally, bhandle returns the tuple (x f h). The function
newhandled is useful for creating a handle without the purpose of delaying
specific code x. It returns the handle and the handled future as a tuple (h,f)
which is useful for further needs of either h or f.

4.2.2 Control.Concurrent.Futures.Buffer

putBuf :: Buffer a -> a -> IO ()
putBuf (putg,getg,stored,handler) val

= do (h,f) <- newhandled
old_value <- exchange putg f
wait old_value
exchange stored val
old_handler <- exchange handler h
old_handler True

Figure 4.4: Implementation of putBuf using handles and cells.

As specified in chapter 2.3 a channel consists of buffers. The imple-
mentation of buffer in a lambda calculus with futures was developped in
[SSNSS08]. In [SSNSS08] the type of a buffer is denoted as buf τ :: ref bool→
ref bool → ref τ → ref(bool → unit). In Haskell, we implement a buffer as
of type type Buffer a = (Cell Bool, Cell Bool, Cell a, Cell (Bool

-> IO ())) (Fig. 4.4 and 4.5). We have our own cell type because we need
an atomic exchange operation on cells. To provide this exchange operation we
implement a cell as Cell a :: MVar a and use swapMVar as an exchange on
cells. We do not need any other operations from the MVars implementation.
A new Buffer is initialised by True on the ’putg’ cell. The cells ’getg’ and
’stored’ are assigned to futures. The cell ’handler’ is assigned to the handle of
’getg’s future. The function putBuf creates new handle components for the
next put-operation. The old_value is True, if a put is allowed at this time.
Therefore, the function waits on this value, until it becomes true. Not till
then, there is an exchange of the cell ’stored’ with the new value. The new
handle is exchanged with the old one that will bind to true. The function
getBuf creates two new handle components: One for the storage cell and the
other for the next put operation. It exchanges ’getg’ with the new future and
waits on the old_value - that is a future - to become true. If it becomes true,
an exchange of the storage cell with the new future is executed. The new

89

handle is exchanged with the old one that will be bounnd to true. Finally it
returns the read value. Note, that if we want to use a buffer, we need to use
withFuturesDo in our main function.

getBuf :: Buffer a -> IO a
getBuf (putg,getg,stored,handler)

= do (h,f) <- newhandled
(h’,f’) <- newhandled
old_value <- exchange getg f
wait old_value
val <- exchange stored f’
old_handler <- exchange handler h
old_handler True
return val

Figure 4.5: Implementation of getBuf in Haskell.

4.2.3 Control.Concurrent.Futures.Chan

newChan :: IO (Chan a)
newChan = do hole <- newBuf

read_end <- newBuf
write_end <- newBuf
putBuf read_end hole
putBuf write_end hole
return (Chan read_end write_end)

Figure 4.6: Implementation of newChan in Haskell.

As specified in chapter 2.3 a channel is of type (buf (buf (item τ)), buf(buf (item τ))).
We directly translate this encoding into Haskell as: type ChanType a =

((Buffer (ItemType a)), (Buffer (ItemType a))). We also need a type
’item’ type ItemType a = (Buffer (Item a)) and a corresponding data
type ’Item’ data Item a = Item a (ItemType a). Given the module Futures
and the Buffer, the implementation of channels is straightforward. Fig. 4.6
and Fig. 4.7 show the code. The function newChan creates three new empty
buffers and returns the tuple of the write- and read-buffer. writeChan cre-
ates a new buffer being the new write-end. Then it takes the value of the

90

old write-end, puts the new buffer into it and writes a new item contain-
ing the value val into it. The function readChan reads the item out of the
read-end. Then it writes the item’s content back to the read-end and returns
the value val. Note, that if we want to use these channels, we need to use
withFuturesDo in our main function.

writeChan :: Chan a -> a -> IO ()
writeChan (read_end,write_end) val

= do new_hole <- newBuf
old_hole <- getBuf write_end
putBuf write_end new_hole
putBuf old_hole (Item val new_hole)

readChan :: Chan a -> IO a
readChan (read_end,write_end)

= do chan_head <- getBuf read_end
(Item val content) <- getBuf chan_head
putBuf read_end content
return val

Figure 4.7: Implementation of readChan and writeChan in Haskell.

91

4.2.4 Implementing Quantity Semaphores In Haskell

The module Control.Concurrent.Futures.QSem as well as
Control.Concurrent.Futures.HQSem contain an implementation of quan-
tity semaphores. The first one uses a waiting queue of buffers. The imple-
mentation of the functions up and down is shown in Fig. 4.8. In the case
of quantity semaphores with a waiting queue on handles we have the type
type HQSem = Buffer (Int, [Bool -> IO ()]). Due to the new type it
is newQSem :: Int -> IO (HQSem). There is no change in the implemen-
tation of newQSem, but of up and down as we see in Fig. 4.9. Compared with
Haskell, our quantity semaphores QSem and HQSem are convenient to QSemN.
Haskell’s QSem implementation suits our implementation of Buffer.

up :: QSem -> IO ()
up qsem = do
(cnt,ls) <- getBuf qsem
case ls of

[] -> do putBuf qsem (cnt+1,ls)
x:xs -> do putBuf x True

putBuf qsem (cnt,ls)

down :: QSem -> IO Bool
down qsem = do
b <-getBuf qsem
case b of

(cnt,ls) -> case (cnt==0) of
True -> do b1 <- newBuf

putBuf qsem (cnt,b1:ls)
getBuf b1

False -> do putBuf qsem (cnt-1,ls)
return True

Figure 4.8: Implementation of quantity semaphores using buffers.

up :: HQSem -> IO ()
up qsem = do
b <- getBuf qsem
case b of
(cnt,ls) -> case ls of

[] -> do putBuf qsem (cnt+1,ls)
x:xs -> do x True

putBuf qsem (cnt,ls)

down :: HQSem -> IO (Bool)
down qsem = do
b <-getBuf qsem
case b of
(cnt,ls) -> case (cnt==0) of

True -> do (h,f) <- newhandled
putBuf qsem (cnt,h:ls)
(wait f)

False -> do putBuf qsem (cnt-1,ls)
return True

Figure 4.9: Implementation of quantity semaphores using handles.

92

4.2.5 Control.Concurrent.Futures.BChan

The bounded channel module are now briefly discussed. With the new mod-
ules QSem and Chan we can implement bounded channels as proposed in the
encoding section 2.3. The type of the bounded channel is type BChan a

= (Chan a, QSem). The implementation in (Fig. 4.10 and Fig. 4.11) goes
straightforward using quantity semaphores and channels. We used the QSem
and not HQSem. Note that further research could profile the runtime prop-
erties of the two versions of semaphores. After that we could choose the more
efficient one for the implementation of bounded channels. Note that here as
well, we need to use withFuturesDo in our main function.

readBChan :: BChan a -> IO a
readBChan (chan, sem)

= do
up sem
readChan chan

writeBChan :: BChan a -> a -> IO ()
writeBChan (chan, sem) val

= do down sem
writeChan chan val

Figure 4.10: Implementation of operations on a bounded channel in Haskell.

newBChan :: Int -> IO (BChan a)
newBChan n

= do chan <- newChan
qsem <- newQSem n
return (chan , qsem)

Figure 4.11: Implementation of newBChan in Haskell.

93

4.2.6 Implementing Barrier In Haskell

The module Control.Concurrent.Futures.Barrier provides a type for
a barrier type Bar a = (Buffer a, Buffer [Bool -> IO ()], Int) and
the functions newBar and syncBar. In the case of syncBar we made an
important change compared to the implementation in λτ (fchb): After the
evaluation of (act==1) to True, it will firstly run openBar before putting
the new values into the buffers cnt_act and cnt_fin. Note that we need to
use withFuturesDo in our main function when using a barrier.

syncBar :: (Buffer Int, Buffer [Bool -> IO ()], Int) -> IO Bool
syncBar (cnt_act,cnt_fin,k) = do
act <- Buffer.getBuf cnt_act
fin <- Buffer.getBuf cnt_fin
case (act==1) of
True -> do

openBar fin
Buffer.putBuf cnt_act (act-1)
Buffer.putBuf cnt_fin []
return True

False -> do
Buffer.putBuf cnt_act (act-1)
(h,f) <- Futures.newhandled
Buffer.putBuf cnt_fin (h:fin)
wait f

Figure 4.12: Implementation of syncBar in Haskell.

94

4.3 Using The Library

We install our future library by running the command runhaskell Setup install4

from the folder where we unpacked the tarball of the library. This command
registers the library as a new package for ghc5. After installing the package
we can simply import the new modules from the distribution package in our
new Haskell files. To see which modules are provided by our package we
use the command ghc-pkg field caf exposed-modules. For example writing a
new FutureApp that uses concurrency abstractions from the future package,
we just import the abstractions like this:

module FutureApp where

import Control.Concurrent.Futures.Buffer

import Control.Concurrent

Running The Examples. We added a module Examples where one can
test the abstractions. For each abstraction there is one example just using
do and one using withFuturesDo. In the case of using do the main thread
terminates after a while. If we use withFuturesDo as recommended, the
main thread never stops before its child-threads have ended their computa-
tion. See the documentation for further information.

Uninstalling The Distribution Package. The command ghc-pkg list
shows us a list of all installed packages. To unregister the package caf we
use ghc-pkg unregister caf-1.0. caf-1.0 is the name of the future library where
the postfix ’-1.0’ indicates its version.

Summary

In this chapter we have seen the implementation of concurrency abstraction
from λτ (fchb) in Haskell. Owing to the future module from [Sab09] and the
encoding of the abstractions in λτ (fchb) this was straightforward.

4The command runhaskell might be runhugs, runghc or runnhc.
5The Glasgow Haskell Compiler.

95

Conclusion

We have extended the lambda calculus with futures by five new concurrency
primitives. We proposed a translation for each primitive to λτ (fchb). Result-
ing transformation rules for new concurrency abstractions have been proven
as correct. This result illustrates one of the advantages of good observational
semantics. We demonstrated equivalence on concurrent programs. Finally,
the Haskell implementation can be seen as a proof of concept. We wrote it
really quickly and straightforward due to the good encoding.

The encoding of the barrier is very simple. Barrier could be even more
powerful. Compared to Haskell’s barrier implementation our implementation
lacks a count of the current phase. It also lacks the possibility to join the
barrier. In conclusion, we will look forward to improve the encodings.

In the proof section, further research must verify the correctness of topen
to be evidence of the correctness of the barrier transformation rule tsync.
Regarding the quantity semaphores we only considered the handle-version.
We presume that there are much more equivalences between the resprective
concurrency abstractions. Finding equity helps to challenge the research on
showing properties of the proposed translations of λτ (fchb) + x→ λτ (fchb).

The Future package should be committed to the haskell community with
intent to share it. Approaching a stable state it has the potential of being
integrated into Haskell.

In conclusion, the lambda calculus with futures, which was designed to be
a formal system for proving equivalence of concurrent programs, turns out
to be as powerful as expected.

96

List of Figures

2.1 A sequential program. 7
2.2 A parallel program. 7
2.3 A Deadlock situation, in [Rep99] 8
2.4 A Livelock situation, in [Rep99] 8
2.5 Syntax description of λτ (fchb) 10
2.6 Structural congruence of processes 10
2.7 Typing rules for expressions 12
2.8 Typing of processes . 12
2.9 Evaluation contexts . 14
2.10 Reduction rules . One-step reduction relation of λτ (fchb) is de-

noted by → or ev−→ . 15
2.11 Correct transformation rules 16
2.12 Encoding of Test and Set in λτ (fchb). 20
2.13 Extensions of λτ (fchb) for λτ (fchb) + chan 21
2.14 Encoding of channels using buffers. 22
2.15 A channel with n-1 Items . 23
2.16 Translation of components from λτ (fchb) + chan to λτ (fchb) . 24
2.17 A merge operation of two lists to one channel. 25
2.18 A merge operation of two channels to one channel. 25
2.19 Extensions of λτ (fchb) for λτ (fchb) + qsem 26
2.20 Encoding of quantity semaphores using handles. 27
2.21 Encoding of quantity semaphores using buffers. 28
2.22 Translation of components from λτ (fchb) + qsem to λτ (fchb) . 28
2.23 Extensions of λτ (fchb) for λτ (fchb) + bchan 30
2.24 Encoding of bounded channels using a channel and a qsem. . . 31
2.25 Translation of components from λτ (fchb) + bchan to λτ (fchb) . 32
2.26 Extensions of λτ (fchb) for λτ (fchb) + bar 34
2.27 The barrier specification . 34

97

2.28 Encoding of a barrier. 35
2.29 Translation of components from λτ (fchb) + bar to λτ (fchb) . . 36

4.1 Implementation of explicit futures 87
4.2 Implementation of implicit futures 88
4.3 Implementation of lazy futures and handles 88
4.4 Implementation of putBuf using handles and cells. 89
4.5 Implementation of getBuf in Haskell. 90
4.6 Implementation of newChan in Haskell. 90
4.7 Implementation of readChan and writeChan in Haskell. . . . 91
4.8 Implementation of quantity semaphores using buffers. 92
4.9 Implementation of quantity semaphores using handles. 92
4.10 Implementation of operations on a bounded channel in Haskell. 93
4.11 Implementation of newBChan in Haskell. 93
4.12 Implementation of syncBar in Haskell. 94

98

Bibliography

[Bac78] John Backus. Can programming be liberated from the von neu-
mann style?: a functional style and its algebra of programs. Com-
mun. ACM, 21(8):613–641, August 1978.

[cha09] Haskell - haskellwiki, February 2009. http://www.haskell.org.

[INR09] INRIA. Jocaml, February 2009. http://jocaml.inria.fr.

[Kuk09] Christopher Edward Kuklewicz. Hack-
agedb - future-2.0.0, March 2009.
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/future.

[NSS06] Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A con-
current lambda calculus with futures. Theoret. Comput. Sci.,
364(3):338–356, November 2006.

[Pey09] S. Peyton Jones. Tackling the awkward squad: monadic in-
put/output, concurrency, exceptions, and foreign-language calls
in haskell. 2009.

[PGF96] Simon L. Peyton Jones, A. Gordon, and S. Finne. Concurrent
Haskell. In 23rd ACM Symposium on Principles of Programming
Languages, pages 295–308, St Petersburg Beach, Florida, January
1996. ACM.

[Rep99] John H. Reppy. Concurrent Programming in ML. Cambridge
University Press, New York, NY, USA, 1999.

[Res09a] Microsoft Research. C omega, February 2009.
http://research.microsoft.com/en-us/um/cambridge/projects/comega/.

99

[Res09b] Microsoft Research. F sharp, February 2009.
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/.

[Sab09] David Sabel. Implementing concurrent futures in concurrent
haskell. working draft, available at http://www.ki.informatik.uni-
frankfurt.de/persons/sabel/futures.pdf, January 2009.

[SSNSS08] Jan Schwinghammer, David Sabel, Joachim Niehren, and Man-
fred Schmidt-Schauß. On proving the equivalence of concurrency
primitives. Frank report 34, Institut für Informatik. Fachbereich
Informatik und Mathematik. J. W. Goethe-Universität Frankfurt
am Main, October 2008.

[SSNSS09] Jan Schwinghammer, David Sabel, Joachim Niehren, and Man-
fred Schmidt-Schauß. On correctness of buffer implementations
in a concurrent lambda calculus with futures. Frank report 37,
Institut für Informatik. Fachbereich Informatik und Mathematik.
Goethe-Universität Frankfurt am Main, March 2009.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems (2nd Edition)
(GOAL Series). Prentice Hall, 2 edition, March 2001.

100

http://www.ki.informatik.uni-frankfurt.de/persons/sabel/futures.pdf
http://www.ki.informatik.uni-frankfurt.de/persons/sabel/futures.pdf

	Introduction
	A Formalism For Concurrency
	Objectives In Concurrent Programs
	The (fchb) Calculus
	Main Concepts
	Syntax
	Abbreviations
	Operational Semantics
	Observational Semantics
	Summary

	Encoding Primitives
	Test And Set
	Channels
	Quantity Semaphores
	Bounded Channels
	Rendezvous And Barrier
	Summary

	Properties Of The Encodings
	Properties Of The Buffer Operations
	Properties Of The Channel Abstraction
	Properties Of The Quantity Semaphore Abstraction
	Properties Of The Bounded Channel Abstraction
	Properties Of The Barrier Abstraction
	Program Equivalence
	Summary

	Implementation
	Concurrent Haskell
	The Future Library
	Futures In Haskell
	Control.Concurrent.Futures.Buffer
	Control.Concurrent.Futures.Chan
	Implementing Quantity Semaphores In Haskell
	Control.Concurrent.Futures.BChan
	Implementing Barrier In Haskell

	Using The Library
	Summary

	Conclusion

