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Abstract

Recent advances in artificial neural networks enabled the quick development of new learning
algorithms, which, among other things, pave the way to novel robotic applications.

Traditionally, robots are programmed by human experts so as to accomplish pre-defined
tasks. Such robots must operate in a controlled environment to guarantee repeatability, are
designed to solve one unique task and require costly hours of development.

In developmental robotics, researchers try to artificially imitate the way living beings
acquire their behavior by learning. Learning algorithms are key to conceive versatile and
robust robots that can adapt to their environment and solve multiple tasks efficiently.

In particular, Reinforcement Learning (RL) studies the acquisition of skills through
teaching via rewards. In this thesis, we will introduce RL and present recent advances in
RL applied to robotics. We will review Intrinsically Motivated (IM) learning, a special
form of RL, and we will apply in particular the Active Efficient Coding (AEC) principle to
the learning of active vision. We also propose an overview of Hierarchical Reinforcement
Learning (HRL), an other special form of RL, and apply its principle to a robotic manipulation
task.





Abstrakt

Jüngste Fortschritte auf dem Gebiet der Künstlichen Neuronalen Netze ermöglichten die
rasche Entwicklung neuartiger Lernalgorithmen, die unter anderem den Weg zu neuartigen
Anwendungen von Robotern ebnen.

Üblicherweise werden Roboter von menschlichen Experten programmiert, um vordefinierte
Aufgaben zu erfüllen. Dabei müssen die Roboter in einer kontrollierten Umgebung arbeiten,
um Wiederholbarkeit zu gewährleisten. Darüber hinaus, sind sie meist lediglich für eine
einzige Aufgabe konzipiert und müssen kostspielig und zeitaufwändig konfiguriert werden.

Im Bereich “Developmental Robotics” versuchen Forschende das Lernverhalten von
Lebewesen künstlich zu imitieren. Die daraus resultierenden Lernalgorithmen sind der
Schlüssel zur Entwicklung vielseitiger und robuster Roboter, die sich an ihre Umgebung
anpassen und mehrere Aufgaben effizient lösen können.

Insbesondere das Reinforcement Learning (RL) untersucht den Erwerb von Fähigkeiten,
die allein durch Belohnungs- und Bestrafungssignale vermittelt werden. In dieser Arbeit
werden wir RL eingehend behandeln und aktuelle Fortschritte in der Anwendung von RL in
der Robotik präsentieren. Wir geben einen Überblick über das intrinsisch motivierte Lernen
(IM), eine spezielle Form des RL, und wenden speziell das Prinzip des Active Efficient
Coding (AEC) auf das Lernen des aktiven Sehens an. Wir geben auch einen Überblick über
das hierarchische Verstärkungslernen (HRL), eine andere spezielle Form des RL, und wenden
dessen Prinzip auf eine Robotermanipulationsaufgabe an.





Kurzfassung

In den frühen 70er Jahren kombinierten Seymour Papert und Marvin Minsky einen Computer,
eine Kamera und einen Roboterarm und versuchten, einen allgemeinen Algorithmus zu
konzipieren, der Türme aus Würfeln bauen könnte. Zuerst versuchten sie, Routinen und von
diesen ausgeführte Unterroutinen manuell zu programmieren.

Schnell erkannten sie, dass der Ansatz unpraktisch ist und dass ein cleverer Algorithmus
Fähigkeiten von selbst lernen sollte. Dieses Experiment inspirierte sie zu ihrer berühmtesten
Theorie, der 1988 veröffentlichten “Society of Mind”. Sie beschreibt, wie Intelligenz aus
nicht intelligenten, einfacheren Komponenten entstehen kann. Insbesondere erklärt er, dass
Fähigkeiten wiederverwendbar und in einer “Heterarchie” (im Gegensatz zu einer Hierarchie)
organisiert sein müssen. Zum Beispiel setzt sich die Fertigkeit “einen Würfel auf dem Turm
stapeln” aus einfacheren Fertigkeiten zusammen wie “einen freien Würfel zum Stapeln
anschauen”, “nach dem Würfel greifen”, “greifen”, “heben”, “den Arm bewegen” , “fallen
lassen” usw. Jeder Skill wiederum kann andere Skills aufrufen, höher oder niedriger in der
Hierarchie.

Obwohl es logisch erscheint, das Problem der Robotermanipulation in einfachere, ele-
mentare Aufgaben aufzuteilen, bleibt das Problem, die einfacheren Aufgaben auf eine Weise
zu lösen, die sich gut auf neue, unsichtbare Versuchsanordnungen übertragen lässt. Während
sich die heutigen Computer hervorragend zum Lösen fortgeschrittener Berechnungen eignen,
sind ihre Fähigkeiten sehr begrenzt, wenn es darum geht, selbst einfache Manipulationsauf-
gaben auszuführen. Dies hat der Robotiker Hans Moravec wie folgt formuliert:

Es ist vergleichsweise einfach, Computer dazu zu bringen, bei Intelligenztests
oder Damespielen Leistungen auf Erwachsenenniveau zu erbringen. Es ist
jedoch schwierig oder unmöglich, ihnen die Fähigkeiten eines Einjährigen in
Bezug auf Wahrnehmung und Mobilität zu vermitteln.

Warum sind einfache Dinge für Computer schwerer?
Marvin Minsky bemerkte:

An jedem Punkt in dieser Welt der Blöcke, wo wir gezwungen waren, genauer als
gewöhnlich hinzuschauen, fanden wir ein unerwartetes Universum der Komplika-
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tionen. Betrachten Sie nur das scheinbar einfache Problem, bereits eingebaute
Blöcke im Turm nicht wiederzuverwenden. Für eine Person scheint dies einfach
gesunder Menschenverstand zu sein: Verwenden Sie kein Objekt, um ein neues
Ziel zu erreichen, wenn dieses Objekt bereits an der Erreichung eines früheren
Ziels beteiligt ist. Niemand weiß genau, wie der menschliche Verstand das
macht.

Und er kommt zu dem Schluss,

Im Allgemeinen wissen wir am wenigsten, was unser Verstand am besten kann.

Diese einfachen Aufgaben, die wir Menschen unbewusst erledigen, programmgesteuert
zu lösen, ist auch heute noch eine große Herausforderung im Machine Learning und in der
künstlichen Intelligenz.

Heutzutage werden Roboter in der Industrie typischerweise gesteuert, indem die Ge-
lenkwinkel numerisch berechnet werden, die eine gewünschte Endeffektorposition erzeugen
würden, und dann jeder Motor betätigt wird, um den Zielgelenkwinkel gemäß der Dy-
namik eines PID-Reglers zu erreichen. Der Weg, den der Endeffektor nimmt, wird dann so
beschrieben, dass er eine Liste von Zwischenpunkten durchläuft und optional Aktionen auf
dem Weg auslöst (wie Schweißen, Greifer schließen, öffnen usw.). Dies impliziert, dass ein
menschlicher Experte zuerst die PID-Regler kalibrieren und dann das Skript schreiben muss,
dem der Roboter folgt. Die Umgebung, in der sich der Roboter entwickelt, muss stark kon-
trolliert werden, um die Wiederholbarkeit und Sicherheit der Ausführung zu gewährleisten.

Die Herausforderung der nächsten Jahre in der Robotik wird darin bestehen, Steueralgo-
rithmen zu entwerfen, die sich an ihre Umgebung anpassen können und die ein Minimum
an menschlichem Eingreifen erfordern, um sich selbst auf die Aufgaben zu kalibrieren. Die
Frage ist also, wie können wir Roboter entwerfen, die sich an ihre Umgebung anpassen
können, um ein breiteres Spektrum einfacher Aufgaben zu erfüllen?

Die Antwort von Robotikern ist, sich von der Art und Weise inspirieren zu lassen, wie
Lebewesen ihr Verhalten erwerben: durch Lernen.

In Abschnitt 2.2.1 der Dissertation stellen wir den Formalismus der “Markow-Entscheidungsprobleme”
vor, der die Interaktion zwischen einem Agenten und seiner Umgebung und die Qualität
seines Verhaltens darin durch die Definition einer Quantität namens Belohnung beschreibt.
Das Ziel für den Agenten ist es, seine Interaktionen mit der Umgebung auszunutzen, um
eine Funktion π zu finden, die seine Beobachtungen auf motorische Befehle abbildet, um die
Gesamtmenge an Belohnung, die er erfährt, zu maximieren.

Reinforcement Learning besteht darin, die optimale Funktion π zu finden.
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Die Anwendung von Reinforcement Learning auf Robotersteuerungsaufgaben ist eine
Herausforderung und wirft einige Probleme auf. Das erste Hindernis liegt in der kon-
tinuierlichen Natur der Zustände und Aktionen von Robotern, was es erforderlich macht,
sorgfältig zu entscheiden, wie genau die Kontrolle ist, die wir über den Roboter benötigen,
ob wir Diskretisierung oder Annäherungen an kontinuierliche Funktionen verwenden und
mit welcher Häufigkeit Aktionen durch den Roboter generiert und angewendet werden sollen.
Die zweite Schwierigkeit ist der “Fluch der Dimensionalität” (curse of dimensionality). Er
beschreibt, wie mit zunehmender Dimensionalität des Zustandsraums oder des Aktionsraums
die Komplexität des Problems exponentiell zunimmt. Wenn wir davon ausgehen, dass ein
Agent n kontinuierliche Aktionen zur Verfügung hat, und wenn wir uns entscheiden, diese
Aktionen in 10-Bits zu diskretisieren, beträgt die Anzahl der verschiedenen Kombinationen
von Aktionen 10n. Schließlich ergibt sich Komplexität aus der inhärenten Physik der realen
Welt und des Roboters. Roboter sind oft spröde und können daher ihre Umgebung nicht
energetisch erkunden, Reparaturen sind teuer und bedeuten oft lange Wartezeiten. Die
Versuchsbedingungen können auch während der Trainingszeit variieren. Einige Motoren
reagieren empfindlich auf Temperaturänderungen, Lichtverhältnisse können variieren und die
vom Roboter empfangenen visuellen Informationen beeinflussen, der Roboter kann sich im
Laufe des Trainings abnutzen usw. Eine bemerkenswerte Schwierigkeit, die durch physische
Einschränkungen verursacht wird, ist die Verzögerung zwischen der Erzeugung vom Befehl,
seine Ausführung und das sensorische Feedback, das der Agent erhält. Bei der Anwendung
auf Robotikaufgaben müssen Reinforcement-Learning-Algorithmen all diese Hindernisse
berücksichtigen.

In dieser Arbeit haben wir versucht, die Erfolge von Reinforcement Learning Algorithmen
zu überprüfen, die auf Robotersteuerungsaufgaben angewendet werden.

Das Problem, Entscheidungen in einer Umgebung zu treffen, bringt natürlich die Frage
nach der Repräsentation des Wissens des Agenten über die Welt mit sich, die Gegenstand
des Kapitels 3 ist.

Wenn um uns herum ein Ereignis eintritt, erfassen wir nicht alle durch dieses Ereignis
generierten Informationen. Unser Gehirn nimmt davon nur einen Bruchteil auf, und zwar
gleichzeitig über verschiedene Sinneskanäle: Sehen, Hören, Riechen, Schmecken, Tasten,
aber auch Propriozeption, Nozizeption, Lokalisation im Raum usw. Nehmen wir an, dass
ein Ereignis in der Welt gesehen und gehört wurde, wie zum Beispiel ein Teller, der auf
dem Boden zersplittert. Um ein scharfes mentales Bild des Ereignisses zu konstruieren,
muss das Gehirn die Informationen, die gesehen wurden, und die Informationen, die gehört
wurden, miteinander verschmelzen. Diese Verschmelzung wird dadurch ermöglicht, dass
einige Informationen über das Ereignis gleichzeitig durch beide Sinne gehen. In der Infor-
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mationstheorie wird dies als gegenseitige Information oder Transinformation bezeichnet.
Dabei ist zu beachten, dass letzteres statistisch definiert ist und nicht existiert, wenn ein
einzelnes Ereignis oder eine einzelne Wiederholung betrachtet wird. Indem es lernt, diese
gegenseitigen Informationen zu erkennen, kann das Gehirn die Informationen, die von den
beiden sensorischen Modalitäten kommen, zusammenführen. Beim Brechen des Tellers
hält das Sehen zusammen mit der Propriozeption die Information über die Lokalisierung
des Ereignisses im Bezugssystem des Körpers. In ähnlicher Weise leitet unser Gehirn
durch spektrale Transformationen an eingehenden Geräuschen die horizontale und vertikale
Lokalisierung des Ereignisses ab. In der wechselseitigen Information, die visuelle und
akustische Modalitäten teilen, ist also das höchst relevante Wissen enthalten, wo der Teller
im Bezugssystem des Körpers zerschmettert wird. In dieser Arbeit versuchen wir, die Fragen
zu beantworten, ob die gegenseitigen Informationen algorithmisch isoliert werden können
und welche Art von Wissen wir über die Welt darin erwarten können.

In Kapitel 4 führen wir in das Thema der “intrinsischen Motivationen” (IM) ein. Intrinsis-
che Motivationen existieren innerhalb des Individuums und werden durch die Befriedigung
interner Belohnungen angetrieben, anstatt sich auf äußeren Druck oder extrinsische Beloh-
nungen zu verlassen. In Anlehnung an die von Gianlucca Baldassare eingeführte Taxonomie
präsentieren wir 3 Kategorien intrinsischer Motivationen: Vorhersagebasiert, Neuheitsbasiert
und Kompetenzbasiert.

In Kapitel 5 untersuchen wir insbesondere Active Efficient Coding, eine IM, die, wie
wir zeigen, den Erwerb von aktivem Sehen vorantreiben kann. Das AEC zugrunde liegende
Prinzip ist eng mit dem in Kapitel 3 untersuchten informationstheoretischen Mechanismus
verwandt. Unsere Implementierung des AEC-Prinzips ist durch biologische Beobachtungen
motiviert, und der resultierende Agent lernt, Objekte richtig um sich herum zu fixieren,
um eine Art der Fixierung durchzuführen, die als Zyklovergenz bezeichnet wird, und um
Objekte reibungslos in der Zeit zu verfolgen. Kurz gesagt zeigen wir zunächst, dass das
Maß des Rekonstruktionsfehlers eines Autoencoders, der binokulare Bildpaare codiert, als
Maß für die Redundanz in dem Paar dienen kann. Aus dieser Beobachtung leiten wir dann
eine intrinsische Belohnung ab und trainieren damit einen Agenten. Schließlich messen wir
quantitativ die Leistungen des resultierenden Verhaltens.

Schließlich beschäftigen wir uns in Kapitel 6 mit dem Thema Hierarchical Reinforcement
Learning (HRL). Nach einem kurzen Überblick über die Literatur bringen wir Feudal RL,
Options RL und Movement Primitives (MP) unter denselben Formalismus. Wir schlagen dann
einen inkrementellen Ansatz zum Aufbau eines Algorithmus vor, der Movement Primitives
lernen kann. Wir wenden es dann auf eine Robotermanipulationsaufgabe an und vergleichen
den hierarchischen Ansatz mit dem traditionellen Ansatz. Insbesondere zeigen wir, dass
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das Problem des “Fluchs der Dimensionalität” eher in Bezug auf die Dimensionalität des
“Explorationsraums” als auf die des Aktionsraums definiert wird. Wir zeigen, dass es möglich
ist, eine komprimierte Darstellung der Movement Primitives zu lernen, und darüber hinaus,
dass die Durchführung von Erkundungen in diesem Raum die Geschwindigkeit erhöht, mit
der der Agent seine Kontrollstrategie verbessert.
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Chapter 1

Introduction

1.1 The First Thinking Machines

In 1770, the Hungarian inventor Wolfgang von Kempelen unveiled his most famous machine,
The Turk, to the Vienna court. It is named after the appearance of the automaton which is
dressed as an oriental sorcerer. It stands in front of a cabinet, on top of which lays a chess
board. During the exhibition, guests were proposed to challenge the automaton at a chess
game. While not being completely undefeatable, the automaton often beats his opponents
within 30 minutes and his playing style was described as aggressive.

Before each exhibition, von Kempelen would open the front doors of the cabinet to
show its interior to the spectators. The left part exhibited a complex machinery, while the
right part revealed a red cushion and some brass structures. The design was made in such
a way that an operator could hide inside and stay invisible while the presenter opened the
doors, thus maintaining the illusion. While that story might seem ludicrous nowadays, this
spectacle was very successful in the 18th century. The Turk made a tour in whole Europe
and even played against Benjamin Franklin in Paris when he was serving as United States
ambassador. The fascination for this hoax comes from the projection of human attributes on
the machine, emphasised by the presence of the animated mannequin. The first true chess
playing machine came only 150 years later, in 1912. Called El Ajedrecista, this device could
win a rook-against-king endgame. Although less spectacular than The Turk - it could not
play full games and a human operator had to move the pieces - the device generated great
enthusiasm at its debuts at the University of Paris.
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Fig. 1.1 A copper engraving of The Turk

Fig. 1.2 El Ajedrecista front view on display at the Colegio de Ingenieros de Caminos,
Canales y Puertos in Madrid.
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1.2 The First Intelligent Machines

We have to wait until 1996 to see for the first time IBM’s famous chess machine Deep Blue
defeating Garry Kasparov. While this is an incredible achievement for that epoch, requiring
one of the most powerful computers of that time (the 259th according to the TOP500), the
machine was only following instructions given by human programmers and did not learn
to play chess by itself. Further facilitating the task, the computer did not have to control a
robotic arm to play. The pieces were moved by a human experimenter.

Autonomously learning algorithms are much more recent. The most famous is probably
DeepMind’s Alpha Zero [128], designed to learn by itself to evaluate the quality of a chess
position and to learn which moves are interesting in a given position. The newest version
of this algorithm, Mu Zero [123], goes a step further by also learning the rules of the game.
Those learning machines are made possible by the recent development of neural networks
and deep learning.

According to the Oxford dictionary, intelligence is "the ability to learn, understand and
think in a logical way about things; the ability to do this well". This is well reflected by the
history of chess engines. Deep Blue was programmed to logically think and take decisions,
by solving a two player game using extensive Monte-Carlo tree search. Alpha Zero was
given the additional ability to have intuitions about the quality of a chess position and about
the relevance of a move, by learning from experience. Finally, Mu Zero was designed to
understand the rules of the game by itself, purely from interactions.

Even though playing chess might seem to be an advanced intellectual task for humans, it
is nowadays a trivial task for a computer. Contrarily, the task of physically moving the chess
pieces on the board is easy for even young children, while robots still don’t learn it properly.
This has been formulated by the roboticist Hans Moravec as follows:

It is comparatively easy to make computers exhibit adult level performance on
intelligence tests or playing checkers, and difficult or impossible to give them
the skills of a one-year-old when it comes to perception and mobility.

Why are easy things harder for computers?
Marvin Minsky, AI scientist and co-founder of the Massachusetts Institute of Technol-

ogy’s AI laboratory, together with his collaborator Seymour Papert, were the firsts to combine
a mechanical arm, a numerical camera and a computer, in order to build towers from building
cubes. They discovered the incredible complexity of everyday problems:

At every point, in that world of blocks, when we were forced to look more care-
fully than usual, we found an unexpected universe of complications. Consider
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just the seemingly simple problem of not reusing blocks already built into the
tower. To a person, this seems simple common sense: don’t use an object to
satisfy a new goal if that object is already involved in accomplishing a prior goal.
No one knows exactly how human minds do this.

Minsky concludes,

In general, we’re least aware of what our minds do best.

Solving programmatically those simple tasks, which us humans achieve unconsciously,
is today still a major challenge in machine learning and artificial intelligence.

1.3 Outline of the Thesis

Computers are nowadays able to solve complex problems like playing chess or go, and can
furthermore learn to do so solely from interaction with the game and self-play. However,
open-ended acquisition of simple motor skills like reaching, grasping or locomotion is not
yet understood.

In this thesis, we will try to address the problem of artificially learning simple skills.
More precisely, we will take a developmental perspective on the acquisition of skills by
robots. After introducing the key concepts and reviewing existing work in Chapter 2, we will
address the topic of (multimodal) representation learning in Chapter 3. Next, in Chapter 4
we will introduce Intrinsic Motivations (IM). In Chapter 5, we focus on one type of IM in
particular, to derive an bio-inspired algorithm that autonomously learns to perform accurate
vergence, cyclovergence and tracking movement. Finally, the last Chapter addresses the topic
of robotic manipulation under the scope of Hierarchical Reinforcement Learning.

As an illustration of the interest of the scientific community for the topics addressed in
this thesis, Fig. 1.3 shows the proportion of papers which title contains the terms Intrinsic
Motivation or Hierarchical Reinforcement Learning within all papers of the artificial intel-
ligence category on the arXiv platform containing the term Reinforcement Learning from
2010 to 2022.

https://arxiv.org/
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Fig. 1.3 Proportion of papers which title contains the terms Intrinsic Motivation or Hierarchi-
cal Reinforcement Learning within all papers of the artificial intelligence category on the
arXiv platform containing the term Reinforcement Learning from 2010 to 2022. (Curves
smoothened for improved readability).

https://arxiv.org/




Chapter 2

Overview of learning algorithms for
robotic control

2.1 The First Learning Robotic Setups

In the early 70’s, Papert and Minsky combined a computer, a camera and a robotic arm, and
tried to conceive a general algorithm that could build towers from cubes. At first, they tried
to manually program routines, and subroutines triggered by the firsts. Quickly they realized
that the approach is impractical, and that a clever algorithm should learn skills by itself.
This experiment inspired him his most famous theory, the Society of Mind [80] published in
1988. It describes how intelligence can arise from non intelligent, simpler components. In
particular, he explains that skills must be reusable and organized in a heterarchy (as opposed
to a hierarchy). For example, the skill of stacking a cube on the tower is composed of simpler
skills like looking at a free cube to stack, reaching for the cube, grasping, lifting, moving the
arm, dropping, etc. In turn, each skill can call other skills, higher or lower in the heterarchy.

As of this day, there exists no successful realization of Minsky’s Society of Mind.
We will now introduce concepts and methods developed in order to build intelligent

agents, capable of learning elementary skills like these required for stacking toy bricks. We
will first define the conceptual framework used for the study of learnt robotic control called
Markov Decision Process (MDP) and present evidences that similar mechanisms exist in
the brain. Secondly we will introduce Deep Learning, a technique which recently witnessed
success in the field of Machine Learning and serving as the cement of diverse learning
algorithms. We will show how Deep Learning can be used specifically for robotic control.
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2.2 Extrinsically Motivated Reinforcement Learning

2.2.1 Definition

Learning tasks are generally grouped in 3 categories.
Supervised learning addresses the problem of, given a data-set of (x,y) pairs, learning the

mapping from x to y such that the resulting system can generalize to unseen x. This includes
for example classification of images, in which case the x are images and the y are labels
representing the content of the picture.

Unsupervised learning aims at finding and exploiting structures in a set of data. This
covers for example the tasks of finding clusters of similar data points, the task of learning
an abstract compressed representation of the data, or the task of generating fake new data,
different yet not differentiable from the original data points.

Finally, Reinforcement Learning is a more specific class of problems involving an agent
evolving in an environment. The task is formalized as a Markov Decision Problem (MDP) as
follows:

In the environment, an agent observes states s ∈ S, starting from an initial state sampled
from the distribution I (s), and can perform actions a ∈ A. The environment has an unknown
transition dynamic, not necessarily deterministic, described by the transition probability
density function T (s′|s,a) indicating the probability of transitioning from state s to state s′

when performing action a. Finally, upon transition between two states, the agent receives
a measure of the quality of his behavior called reward. It is determined by the function
R(r|s,a,s′) denoting the probability of getting the reward r when transitioning from state s
to s′ via action a.

The task of Reinforcement Learning is for the agent to learn which actions to take
depending on the states, in order to maximize the total amount of reward received in its
lifetime. We commonly define a policy function π (a|s) quantifying the probability of taking
action a while in state s. Solving the task for the agent thus means finding the function π that
will maximize the expected total reward

Rπ = E

[
∞

∑
t=0

rt

]
(2.1)

summing the rewards rt observed when starting from state s0 ∼ I and sampling actions
from the policy π thereafter. This quantity is referred to as the return.

Note however that this infinite sum is neither guaranteed to converge, nor to be finite. It is
common in Reinforcement Learning to introduce a discounting term to enforce convergence.
The discounted return is defined
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Rπ
γ = E

[
∞

∑
t=0

γ
trt

]
, (2.2)

and depends on the coefficient γ ∈ [0,1] called discount factor controlling how much the
agent must anticipate.

Sometimes, the tasks to be solved are better described by Goal-based MPDs. In Goal-
based MDPs, the task is parameterized by a goal g∈G and the reward r follows a distribution
R(r|s,a,s′,g). A typical use of Goal-based MDP is to define the goals such that they can be
compared against the states, and the reward indicates how close the goal g and the state s are,
thus encouraging the agent to reach the goal. The policy is also parameterized by the goal
g and the distribution of the next action a when in state s and pursuing goal g is π (a|s,g).
Goal-based MDPs can be transposed into regular MDPs by interpreting the states as the
union of the states and the goals.

Two functions called value functions are central in all approaches to solving MDPs.

• The state value function V π (s) representing the expected (and possibly discounted)
return observed when applying the policy π starting from state s.

V π (s) = E

[
∞

∑
t=0

γ
trt |s0 = s,π

]
(2.3)

• The state-action value function Qπ (s,a) representing the expected (and possibly dis-
counted) return observed when applying the policy π starting from state s and after
applying the first action a.

Qπ (s,a) = E

[
∞

∑
t=0

γ
trt |s0 = s,a0 = a,π

]
(2.4)

We will now derive two equations from the value functions called the Bellman equations
which define a recursive relationship between the value in one state and the value in the next
state:
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• For the state value function,

V π (s) = E

[
∞

∑
t=0

γ
trt |s0 = s

]

= E

[
r0 + γ

∞

∑
t=1

γ
t−1rt |s0 = s

]

= E [r0|s0 = s]+ γE

[
∞

∑
t=1

γ
t−1rt |s0 = s

]

= E [r0|s0 = s]+ γ

∫
a∈A

π (a|s)
∫

s′∈S
T
(
s′|a,s

)
E

[
∞

∑
t=0

γ
trt |s0 = s′

]
dads′

= E [r0|s0 = s]+ γ

∫
a∈A

π (a|s)
∫

s′∈S
T
(
s′|a,s

)
V π

(
s′
)

dads′

=
∫

a∈A
π (a|s)

∫
s′∈S

T
(
s′|a,s

)∫
r∈R

R
(
r|s,a,s′

)(
r+ γV π

(
s′
))

dads′ dr (2.5)

The Bellman equation for the state value function can also be expressed using the
expected value operator

V π (s) = Ea∼π(.|s) ,s′∼T (.|a,s) ,r∼R(.|s,a,s′)
[
r+ γV π

(
s′
)]

= Ea,s′,r∼pπ (.|s)
[
r+ γV π

(
s′
)]

(2.6)

with pπ (a,s′,r|s) the probability of taking action a, and transitioning to state s′ with a
reward r given that we start from state s and follow policy π .

• Similarly for the state-action value function we can show that

Qπ (s,a) =
∫

s′∈S
T
(
s′|a,s

)∫
r∈R

R
(
r|s,a,s′

)(
r+ γV π

(
s′
))

ds′ dr

= Es′∼T (.|a,s) ,r∼R(.|s,a,s′)
[
r+ γV π

(
s′
)]

. (2.7)

The Bellman equations are useful for deriving rules to find an approximation of the
optimal policy denoted π∗ that maximizes the (discounted) return. The optimal policy is
defined

π
∗ = argmax

π

Eπ,s∼I

[
∞

∑
t=0

γ
trt |s

]
. (2.8)
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Knowing that π∗ is optimal, tells us that in each state it chooses the action that maximizes
the future return

π
∗ (s) = argmax

a∈A
Eπ∗

[
∞

∑
t=0

γ
trt |a,s

]
= argmax

a∈A
Qπ∗ (s,a) . (2.9)

If we now apply the Bellman equation we get

π
∗ (s) = argmax

a∈A
Es′∼T (.|a,s) ,r∼R(.|s,a,s′)

[
r+ γV π∗ (s′

)]
. (2.10)

Given either one of Qπ∗ or V π∗ , equations 2.9 or 2.10 enable us to derive the optimal
policy π∗. Reinforcement Learning algorithms try to construct approximations of those
functions, from which good policies can be obtained.

Before presenting methods for building these approximations, we will quickly review
how the concepts explained above relate to biological mechanisms in the brain.

2.2.2 Analogy with Reward Mechanisms in the Brain

The Markov Decision Problem formulation is very general, and was modeled to describe a
class of problems that learning beings face continuously in their life. Understandably, the
ability to maximize “the quality” of a behavior in an environment represents a big evolution-
ary advantage, as it is increasing the species’ adaptation power. Learning through rewards
is one of the ways animals adapt their behavior throughout their life, and neuroscientists
recently discovered new mechanisms in the brain involved in such learning.

In particular, measurement in primates primary somatosensory, pre-motor and motor
cortex, show evidences that the brain also makes its own estimation of the return [126, 107,
108, 79]. [136] for example recorded the activity of a population of neurons in M1 during a
Cued Centered Out task (CCT) where monkeys have to place an object on a certain target to
get a reward. Measurements show that as the monkeys get used to the task, some neurons’
activity pattern in the population being recorded tend to resemble the value functions. Even
more surprisingly, other neurons’ activity correlates well with the so-called TD-error, a
measure of the value functions’ error.

Inspiring from advances in the field of Reinforcement Learning, [25] goes a step further,
showing evidences that the brain represents TD-errors not as a single scalar quantity, but
rather as a distribution. The computational counterpart of this model is called Distributional
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Reinforcement Learning (DRL). In DRL, agents make multiple estimations of the return with
varying levels of optimisms. To quantify the resemblance between the biological observations
and the computational model, scientists tested several predictions of DRL using single-unit
recordings in the ventral tegmental area of mice performing tasks with probabilistic rewards.
Specifically, they predicted that different dopaminergic neurons encoding the TD-error should
have different reversal points (threshold at which the neuron encodes a zero TD-error). By
controlling the distribution of the quantity of sugar delivered and comparing with the cells
activity measurements, they discovered a range of TD-error-encoding cells, from optimistic
cells that reversed between the two smallest rewards to others reversing between the two
biggest rewards.

Finally, Prefrontal cortex as a meta-Reinforcement Learning system [145] proposes an
advanced model of Reinforcement Learning in the prefrontal cortex (PFC) and shows how
biological neural networks might not only implement RL via the tuning of the synaptic
strengths, but also through the activity of the cells. In short, as recurrent neural networks
can learn algorithms, they can learn a Reinforcement Learning algorithm. This metatheatre
is referred to in the RL literature as meta Reinforcement Learning. The learnt RL algo-
rithm shows different properties than the traditional one. In particular, meta Reinforcement
Learning shows quicker learning and more adaptability to unseen tasks.

In the last decade, neuroscience and the field of Machine Learning with neural networks
inspired each other. The interface between both remains thin, it is however today recognized
that independently of the biological plausibility of the algorithm chosen, Reinforcement
Learning methods constitute a good way to model cognitive processes involving learning
through rewards.

We will now present two methods to construct an approximation of the value functions
V π and Qπ .

2.2.3 The Approximation of the Value Functions

Monte-Carlo Method

A simple method to solve MDPs is called Monte-Carlo (MC). It is applicable in the case of
episodic tasks, i.e. when the lifetime of the agent is limited to a constant N. MC methods
aim at building an approximation of the state-action value function Qπ for a policy π by
simulating the agent’s behavior when following π , and then update the policy according to
the current estimate of Qπ , according to equation 2.9.

In one iteration of MC, starting from k initial states sampled from I, k episodes are
simulated following the current policy π and the consecutive states, actions and rewards are
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recorded. For each episode, the true discounted return can be computed from the knowledge
of the subsequent rewards. The data samples can then be grouped by (s,a) pairs and averaged,
giving an approximation of Qπ , from which we can compute an improvement of π , according
to equation 2.9.

MC methods have a few limitations however. First, they are practicable only for small
and finite MDPs. A second problem is that the convergence when the returns have a high
variance is slow.

Temporal Difference Method

A second method to solve MDPs is called Temporal Difference learning (TD). TD-learning
builds an approximation of value functions by taking advantage of the Bellman equations 2.6
and 2.7.

Indeed,

V π (s) = Ea∼π(.|s) ,s′∼T (.|a,s) ,r∼R(.|s,a,s′)
[
r+ γV π

(
s′
)]

, (2.6)

therefore r+ γV π (s′) is an unbiased estimate of V π (s) (they have the same expected
value). We can thus iteratively construct an approximation of V π denoted Ṽ π by applying the
update rule

Ṽ π (s)← (1−α)Ṽ π (s)+α
[
R(s,π (s))+ γṼ π

(
s′
)]

, (2.11)

meaning that Ṽ π (s) is slowly moving toward its own, more accurate estimate. The
corresponding approximation method also exists for the Qπ function. In that case, the update
rule is given by

Q̃π (s,a)← (1−α) Q̃π (s,a)+α
[
R(s,a)+ γQ̃π

(
s′,π

(
s′
))]

. (2.12)

TD methods are fundamentally different from MC methods in that they can update
the approximation of the value function and the policy at the same time. TD methods are
performing better than MC methods when the return has a high variance. They are also
practicable for bigger MDPs.

An intermediate approach between Temporal Difference learning and the Monte-Carlo
methods builds more accurate estimations by computing the so-called n-steps return estimate
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R̃n (t) =
t+n−1

∑
i=t

γ
i−trt+i + γ

nV π (st+n) for the state value function and (2.13)

R̃n (t) =
t+n−1

∑
i=t

γ
i−trt+i + γ

nQπ (st+n,at+n) for the state-action value function (2.14)

In that case, the update rules for the value function’s estimates become

Ṽ π (s) ← (1−α)Ṽ π (s) +α

[
t+n−1

∑
i=t

γ
i−trt+i +Ṽ π (st+n)

]
and (2.15)

Q̃π (s,a) ← (1−α) Q̃π (s,a) +α

[
t+n−1

∑
i=t

γ
i−trt+i + Q̃π (st+n,at+n)

]
. (2.16)

Both MC methods and TD methods rely on the ability of numerically approximating a
function. Technically, Reinforcement Learning algorithms make use of numerical methods
for doing so. Recently, a method called Deep Learning (DL) or Differentiable Computing
gained in popularity. Interestingly, Deep Learning shares common features with biological
information processing in the brain.

We will now introduce the general principles of Deep Learning.

2.2.4 From Linear Regressions to Differentiable Computing

In 1957 , the American psychologist Frank Rosenblatt published for the first time a learning
algorithm called perceptron which aims at reproducing the behavior of neurons in computers
[111]. Five years later, he published a book called Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms [112], in which he describes how this algorithm enabled
him to classify images, estimate the size, distance or position of objects, or to detect relations
between objects. The artificial neurons were binary units, organized in two successive
layers. His research was described by the traditional press as a revolutionary technological
advancement.

It however met sharp criticism. Marvin Minsky and Seymour Papert jointly published a
book in 1969 called Perceptrons: An introduction to computational geometry [81], where
they prove that perceptrons can only approximate linear functions and are therefore not suited
for more complex non-linear problems. A sociological study of the official history of the
perceptrons controversy [90] claims that this book steered the research funding away from
neural-imitation based algorithms, back to a more mainstream, symbolic AI research line.
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With the allocation of more research credit to AI in the early 80’s, new researchers
regained interest in nero-based learning techniques. Quickly, Rosenblatt’s binary neurons
got replaced by continuous versions and other changes made it possible for such networks
to approximate non-linear functions. Today, these function approximators find applications
everywhere in Machine Learning, and in particular in Reinforcement Learning, where they
are used to learn the V π or Qπ value functions.

Let us review briefly the development of these techniques before applying them to the
resolution of MDPs.

A neuron in a neural network achieves something similar to a linear regression. Linear
regressions aim at modeling linearly the relationship between variable quantities and a
scalar response. Let {xi0 . . .xip}i<n be a collection of n samples of the p variable quantities
and {yi}i<n be the observed, associated scalar response. Performing a linear regression
consists in optimizing coefficients {w0 . . .wp} and b such that the relation y′i = b+∑ j w jxi j

approximates best the scalars yi for all i. There exists many methods to find the w and b
parameters, among which the maximum likelihood estimation [113], the method of moments,
Bayesian approaches or the method of least squares [67].

The biological interpretation of linear regressions sees the x js as the excitation of the
dendrites of the neuron, which are then re-scaled by the synaptic weights w js. Electric
impulses are then summed at the cell body, and the bias term b is added thus symbolizing the
intrinsic excitability of the cell. The processed signal y′ is then transmitted along the axon.
The tuning of the parameter w corresponds to synaptic plasticity and that of b to changes in
the cell’s intrinsic excitability.

Multiple scalar values responding to the same variable quantities can be linearly approxi-
mated by multiple one-dimensional linear regressions in parallel. This can be interpreted as
multiple neurons with different synaptic weights w all excited by the same electric signal
x. Such a stack of neurons is commonly referred to as a layer. Formally, this is done by
replacing the vector w by a matrix W and the scalar b by a vector:

y′i =Wxi +b (2.17)

This simple construct can efficiently approximate multidimensional linear functions. In
order to approximate non-linear functions, the ensemble of neurons must be given more
expressibility. The principle of recent approaches is - much like in the brain - to construct a
network of neurons, where each sends its information to neighbouring units. Note however
that if we dispose neurons in two successive layers like Rosenblatt did, the outputs of the
firsts being inputs of the second,
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y1 =W1x+b1, (2.18)

y2 =W2y1 +b2 (2.19)

the overall equation of the network can be rewritten

y2 =W2W1x+W2b1 +b2, (2.20)

y2 =W1×2x+b1×2 (2.21)

as it is the composition of two linear functions. The resulting equation is still linear and
the network did not gain in representation power. The discovery that enabled to construct
much more expressive networks is to add a non linear transformation of the signal between
the two layers. Initially, in order to constrain the neurons output in ]0,1[, scientists used a
sigmoidal transformation σ (x) = 1

1+e−x :

y1 = σ (W1x+b1) , (2.22)

y2 =W2y1 +b2 (2.23)

The use of a non linearity also required to change the neuron’s training mechanism. Most
modern approaches are based on gradient descent: given a differentiable objective function L
of the network output (called loss) which we want to minimize, one defines a training step as
the update of all free parameters θ according to the rule

θ ← θ −λ
∂L
∂θ

(x) (2.24)

where λ is a coefficient called learning rate and θ is in the present case the union of W1,
W2, b1 and b2.

Research about this type of neural networks quickly discovered that the expressivity
increases as more layers are stacked sequentially. The number of layers is referred to as
the depth of the network. Recently (2016), [103] showed that the global curvature of a
deep neural network increases exponentially with the depth of the network under certain
conditions. Until the end of 2015 however, architectures were limited by a problem known
as vanishing gradient. As the derivative is computed from the output to the input, it tended to
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diminish down exponentially fast to values nearly equal to zero, thus rendering the learning
impossible. This issue got resolved completely with the use of a different non-linearity
between layers called ReLU [106], the use of Adam, a more efficient update rule than the one
showed in equation 2.24 [55] and a normalization technique which resembles a homeostasis
mechanism of the intrinsic excitability of biological neurons called batch normalization [48].

In parallel, scientists explored new ways of connecting together neurons in order to form
networks. The connectivity of a neural network is commonly referred to as its architecture
or its topology. Notably, a special kind of layer has been designed to efficiently process
data with a spatial structure such as images. Called convolutional neural networks [16], the
resulting networks exploit spatial locality and shift-invariance in the input data, tremendously
reducing the number of required free parameters. An other axis of research focused on
the development and study of techniques to process time-series with neural networks. By
incorporating so called backward connections between neurons, enabling to create loops
of information, networks are given a form of short term memory. Much like traditional
neural networks approximate functions, these network called recurrent neural networks
approximate algorithms. Long-Short Term Memory neural networks are the most notorious
kind of recurrent networks [45]. They were designed specifically to extend the duration in
time of the network’s short term memory.

These successes enabled researchers to design new algorithms solving more and more
complex tasks. Recent advances include generative models like Generative Adversarial
Networks [34, 2, 54], abstract representation learning with Variational Auto-Encoders [1, 44,
110], Neural Turing Machines [35] learning to read and write in differentiable memory, and
various robotic control algorithms, subject of the next sections.

2.2.5 Deep Reinforcement Learning

In Reinforcement Learning, neural networks serve as powerful function approximators for
learning the V π or Qπ value functions. Let’s have a closer look at recent Reinforcement
Learning algorithms.

Deep Q-Network (DQN)

Deep Q-Network (DQN) [83] is one of the simplest RL-algorithms. It is a TD method where
the value function Q is approximated by a deep neural network. It is applicable when the
set A of actions is discrete and finite. We will thus write A = {ai}, i ∈ Nn. DQN aims at
approximating the state-action value function Qπ using 1-step TD estimates (Eq 2.12). To
this end, a neural network takes as input the states s and returns one value per action
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Qθ (s) =

q0
...

qn

 . (2.25)

where each qi is meant to approximate Qπ (s,ai). For simplicity, we will also define the
function of two variables

Qθ (s,ai) = qi for each ai ∈ A . (2.26)

The policy is defined with respect to Qθ as

πθ (s) = argmax
a

Qθ (s,a) , (2.27)

meaning that it chooses the action corresponding to the highest predicted return.
To train the network Qθ , we must collect data in the environment and construct the

return estimates Q̃π (s,a). The data collection is made following a second policy, called the
exploration policy and defined

πe (s) =

random action with probability ε

πθ (s) , otherwise
(2.28)

Its purpose is to ensure that all actions are tried in each state, such that all qis can converge
to their target value Qπ (s,ai).

Following the exploration policy, we can construct trajectories of transitions (s,a,r)

(s0,a0,r0) ,(s1,a1,r1) , . . . ,(sN ,aN ,rN) (2.29)

from which we can compute the 1-step TD return estimates

Q̃π (si,ai) = ri + γQθ (si+1,ai+1) (2.30)

The neural network is then trained in order to minimize the loss

L(si,ai,θ) =
(
Q̃π (si,ai)−Qθ (si,ai)

)2 (2.31)

with respect to the weights θ , bringing the network output closer to the 1-step return
estimate.

We described here the DQN algorithm as it is in its original publication [83]. It has been
shown however that, in this formulation, the DQN algorithm is unstable. Indeed, algorithms
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based on Q-learning have been proved to be unstable in many environments. This is a
direct consequence of 1-step TD learning, prone to divergence as the Q function is updated
according to its own estimate in the next iteration (see eq. 2.12 and 2.30). To addresses
this problem, the authors propose in a second publication [84] to use different function
approximators for learning (a) the function Q and (b) the 1-step target value towards which
Q converges. In practice, the weights of the second Q network (called the target Q network)
are not trained with gradient descent, but rather slowly follow the weights of the Q network.

The 1-step TD return estimate from equation 2.30 therefore becomes

Q̃π (si,ai) = ri + γQθ ′ (si+1,ai+1) (2.32)

with Qθ ′ the target network, of which the weights θ ′ follow the update rule given by

θ
′← τθ +(1− τ)θ

′ (2.33)

with τ a small number defining the speed at which the weights θ ′ are following θ . This
dampening has been shown to prevent divergence due to the unstable nature of the 1-step TD
learning rule.

DPG, DDPG and TD3

DQN is not practicable for continuous action spaces as it requires a global maximization of
Qπ (s,a) with respect to a at every step. A solution to this problem is to directly learn the
policy function πθ (a|s). Algorithms of this sort are called actor-critic methods, as opposed
to value-based methods like DQN.

In particular, Deterministic Policy Gradient (DPG) [129] is the root of a family of
actor-critic methods. Let us now briefly review the history of the DPG family.

Assuming that the agent’s policy π is parameterized by a vector θ ∈ Rn, we can define a
measure of the performance of πθ as

J (πθ ) = Es0∼I [V πθ (s0)] . (2.34)

It has been shown in [134] that the derivative of the policy’s performance with respect to
its parameters - the policy gradient - can be expressed

∇θ J (πθ ) = Es∼ρπ ,a∼πθ (.|s) [Q
πθ (s,a)∇θ logπθ (a|s)] (2.35)

where ρπ (s) is the improper discounted stationary state distribution
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ρ
π
(
s′
)
=

∫
s∈S

∞

∑
t=0

γ
tI (s) p

(
s→ s′, t,πθ

)
ds (2.36)

with p(s→ s′, t,πθ ) the probability of transitioning from state s to state s′ in t iterations.
DPG further assumes that the policy πθ is deterministic and can therefore be expressed

as a function µθ (s) = a. They then show that under this condition, the deterministic policy
gradient can be expressed

∇θ J (µθ ) = Es∼ρµ [∇aQµθ (s,a)∇θ µθ (s)]

= Es∼ρµ [∇θ Qµθ (s,µθ (s))] . (2.37)

This implies that training the parameters θ of µθ to maximize the value of Qµθ (s,µθ (s))
at data points s sampled from ρµ increases the performance of the policy µ as defined in
equation 2.34.

The DPG algorithm exploits equation 2.37 by training the networks Qw (s,a) and µθ (s)
to minimize the losses

LQ =
(
Qw (s,a)− Q̃µθ (s,a)

)2

=
(
Qw (s,a)−

(
r+ γQw

(
s′,µ

(
s′
))))2 with respect to w and (2.38)

Lµ =−Qw (s,µθ (s)) with respect to θ . (2.39)

where Q̃µθ (s,a) = r+ γQw (s′,µ (s′)) is the one-step TD estimate of the state-action value
function, meaning that the policy’s actions are pushed in the direction of increasing return
estimate.

In practice, it is more efficient to - like for the DQN - collect data from the environment
using an exploratory policy different from the behavior policy. Typically the exploratory
policy is defined with respect to the behavior policy as

π (a|s) = N (a|µθ (s) ,σ) (2.40)

where σ is a parameter to control the level of exploration around the behavior policy.
In its original publication, DPG was presented as a proof of concept, showing that policies

could be obtained using the deterministic policy gradient from equation 2.37. It however
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has been shown that DPG is too unstable for solving complex MDPs, partly due to the
impossibility to use large function approximators for Q and µ .

The DDPG algorithm [71] is an extension of DPG which solves this issue by bringing
two enhancements to the approach.

The first is to make the use of a replay buffer from which the training data is sampled.
Most optimization techniques for neural networks assume that training samples are inde-
pendently and identically distributed. In the case of Reinforcement Learning however, as
the data is being generated by the agent following its policy, this assumption is wrong. The
solution to this problem is to place the data in a buffer after it has been collected from the
environment, and then sample from it to train the function approximators. This way the
networks are presented with data coming from different episodes and distant in time. This
technique is also more sample efficient, as it enables to train the neural networks multiple
times on the same data. This is done by increasing the frequency at which we sample from
the buffer, and the number of data points sampled in each iteration.

As the DQN algorithm, the algorithms of the DPG family are based on Q-learning, and
therefore suffer from instabilities as the Q function is updated according to its own estimate
in the next iteration (equation 2.12). Similarly to the DQN [84], the authors of the DDPG
algorithm propose to use different function approximators for learning Q and for learning the
target value towards which Q converges. The loss from equation 2.38 therefore becomes

LQ =
(
Qw (s,a)− Q̃µθ (s,a)

)2

=
(
Qw (s,a)−

(
r+ γQ′w′

(
s′,µ ′

θ ′
(
s′
))))2 (2.41)

where Q′w′ and µ ′
θ ′ are referred to as the critic and actor target networks. They are slower-

moving version of the networks Qw and µθ whose weight update rules are given by

w′← τw+(1− τ)w′ and (2.42)

θ
′← τθ +(1− τ)θ

′ (2.43)

with τ a small number defining the speed at which the weights w′ and θ ′ are following w and
θ .

DDPG is shown to be much more efficient than DPG and has been applied to challenging
problems like complex robotic tasks as well as continuous control tasks from raw pixel
data similar to [83]. However it also revealed its own limitations. In particular, like for
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many others Q-learning based algorithms, DDPG tends to overestimate the action state value
function. Indeed, unavoidable inaccuracies in the approximation of Qµθ lead to favor the
choice of actions exploiting these inaccuracies. It results that the 1-step TD estimate is biased
towards optimistic estimations, which are then propagated backward in time due to the nature
of the TD update rule.

The TD3 algorithm [31] proposes a solution to the overestimation bias, by inspiring from
an older algorithm called Double Q-learning [42]. In TD3, the estimation of the action state
value function Qµθ is defined as the most pessimistic estimation of an ensemble of networks.
In practice, an ensemble of size 2 is sufficient to counteract the overestimation bias. The loss
function for the critic Qw becomes

LQwi
= (Qwi (s,a)−Qµθ (s,a))2

=

(
Qwi (s,a)−

(
r+ γ min

i=1,2
Q′w′i

(
s′,µ ′

θ ′
(
s′
))))2

(2.44)

2.3 Applications

We introduced the reinforcement-learning class of problems, and presented theoretical and
technical solutions to solve MDPs. We will now present applications of Reinforcement
Learning to robotic control. However, DQN and the DPG-inspired algorithms explained
above constitute only a small fraction of all Reinforcement Learning algorithms and we will
therefore not limit ourselves to these algorithms. Other algorithms include Soft Actor-Critic
(SAC) [41]; Natural Actor-Critic (NAC) [100] ; Trust Region Policy Optimization (TRPO)
[124]; Proximal Policy Optimization (PPO) [125]; Relative Entropy Policy Search (REPS)
[99] and Hierarchical Relative Entropy Policy Search (HiREPS) [26]; Continuous Actor-
Critic Learning Automaton (CACLA) [141]; Asynchronous Advantage Actor-Critic (A3C)
[82]; Normalized Advantage Function (NAF) [37].

Applying Reinforcement Learning to robotic control tasks is challenging and poses a
few problems. Reinforcement Learning in Robotics: A Survey [59] details the difficulties in
porting Reinforcement Learning algorithms to real-world robotic agents. The first obstacle
presented in the survey resides in the continuous nature of the states and actions of robots,
necessitating to carefully decide how fine is the control that we need over the robot, whether
to use discretization or continuous function approximations and at what frequency should
actions be generated and applied by the robot. The second difficulty presented in the survey is
that of the Curse of Dimensionality [13]. It describes how, as the dimensionality of the state



2.3 Applications 23

space or of the action space increases, the complexity of the problem increases exponentially.
Indeed, if we assume that an agent has n continuous actions available, and if we decide to
discretize these actions in 10 bits, the number of different combinations of actions is 10n.
Finally, complexity arises from the inherent physics of the real-world and of the robot. Robots
are often brittle and therefore can’t take risks when exploring their environment, repairs are
expensive and often imply long waiting times. The experimental conditions may also vary
during the time of training. Some motors are sensitive to changes in temperature, lighting
conditions may vary and affect the visual information received by the robot, the robot may
wear out over the course of training etc. One notable difficulty induced by physical constraints
is the delay between the generation of a command, its execution and the sensory feedback
received by the agent. When applied to robotics tasks, Reinforcement Learning algorithms
must take into account all these obstacles. It results that only few publications relate pure
applications of Reinforcement Learning algorithms to robots. Most incorporate additional
optimizations specifically designed to solve the aforementioned complications. However,
original publications presenting new Reinforcement Learning algorithms - in particular
algorithms for continuous state and action spaces - often showcase the performance on a
simulated robotic task. Simulated robots offer multiple benefits over real robots, although
simulations do not capture the full complexity of real-world applications. It enables to leave
out the complexity arising from physics and to simulate robots faster than real-time at a much
lower financial cost.

We will try to review here the successes of Reinforcement Learning algorithms applied to
robotic control tasks, both on real robots and in simulations, limiting ourselves to publications
minimizing the additional complexity induced by optimizations specific to robotic problems.
We will group publications by the nature of the robotic task being solved.

2.3.1 Reaching

The most canonical robotic control task is without a doubt the reaching task. In this case, the
task is parameterized by a target location in the environment that the agent must reach with
its end-effector. The reward for that task can be defined in two ways. In the simpler version,
it is defined as the negative distance to the target location. The reward is thus non zero all
the time and it is easy for the agent to determine after each motion if the action affected
the reward positively or negatively. The second option is to reward the agent only once it
reached the target location. This task is harder as the information about the quality of the
motion is delayed. In the first case we describe the reward as dense, as it changes value at
each iteration, in the second case the reward is described as being sparse, meaning that the
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reward is constant and negative all the time but upon successful completion where the reward
is positive.

Reaching tasks often serve as benchmarking tasks for Reinforcement Learning algorithms.
More complex variants include the avoidance of obstacles in the task.

In [38, 72], the reward is expressed in its dense variation and the agent is given successful
demonstrations from which it must learn. Both incorporate obstacles that the agent must
avoid in order to reach the target location. These early work used Gaussian Mixtures Model
obtained from the demonstrations as movement primitives, the reward additionally contains
a term encouraging movements close to the mean of the gaussian distribution. The approach
is applied on real robots. The Reinforcement Learning algorithm used in [38] is the NAC
algorithm [100].

In [76], the authors propose a comparison of dense and sparse rewards and investigate
the benefit of iteratively making the task more complex, a technique known as curriculum
learning. A video of the learnt policy is available following this link1. In the video, you
will see the robot arm getting close to objects in a so-called pre-reaching state. The agent
then hands over the control to a second algorithm designed specifically to perform grasping.
Finally the robot arm moves to a second drop position using the learnt policy, and the object
is released. The Reinforcement Learning algorithm used is a variant of DDPG [71] that the
authors named PCCL.

In [101], the agent learns from a dense reward specifically shaped to avoid collisions. The
motivation is that collisions between the robot and the objects in the environment often result
in either failures of the robot or degradation of the objects. The authors compare multiple
strategies for shaping the reward and are able to successfully learn the reaching task without
colliding with the environment. They propose a new Reinforcement Learning algorithm
called OptLayer, derived from the TRPO algorithm [124]. The approach is validated on a
real robotic setup.

In [28], multiple rewards are compared. Notably the agent is trained with a simple dense
reward, a sparse reward, and with a more complex sparse reward shaped to exploit previously
learned eye-hand coordination. In this research, the agent learns to express the position of
the end-effector and that of the target location to be reached in the reference frame of the
eyes. By then comparing them, an additional term can be added to the reward of the agent
which facilitates learning of reaching. The algorithm used is the DDPG algorithm [71]. The
approach is validated on a real robotic setup. A video of the agent performing reaching is
available under this link2.

1https://www.youtube.com/watch?v=WY-1EbYBSGo&feature=youtu.be
2https://www.frontiersin.org/articles/10.3389/frobt.2018.00110/full#

supplementary-material

https://www.youtube.com/watch?v=WY-1EbYBSGo&feature=youtu.be
https://www.frontiersin.org/articles/10.3389/frobt.2018.00110/full#supplementary-material
https://www.youtube.com/watch?v=WY-1EbYBSGo&feature=youtu.be
https://www.frontiersin.org/articles/10.3389/frobt.2018.00110/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2018.00110/full#supplementary-material
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In [36], the authors investigate the benefit of parallelizing the Reinforcement Learning
algorithm to enable training on multiple robots at the same time. The motivation is that RL
algorithms often need a lot of environment interactions to converge. The approach is tested
on multiple tasks including reaching. The algorithm used is called NAF [37], a video of the
agents is available under this link3.

2.3.2 Picking and Placing

In the pick and place task, a robotic arm must displace an object from a known original
position to an other known target position. The initial and target positions are randomized
in the general form of the task. Usually, the operation of grasping the object is left out by
simplifying the interaction between the robotic hand and the object. One way of doing so
is to employ an electro-magnet type of end-effector which simply attracts the objects to it.
An other way of doing is to let the robot push and pull the object on a table. Finally, when
the robots are required to grasp the objects in pick and place tasks, their grippers are often
mechanically designed such that the grasping operation does not require a precise positioning
of the end-effector and the set of object to be displaced does not match the variability in
shape, size and weight of real world objects.

In the broad sense, pick and place tasks include many real world skills like opening a
door, screwing a cap on a bottle or stacking blocks like Marvin Minsky did in the early 70’s.

[53] proposes a solution specifically designed to (1) take into account the compliance
of the robot and (2) speedup learning via expert demonstrations. The robot is controlled in
torque mode, as opposed to position or velocity control. The aim is to develop compliant
actuation that can operate safely in human environment. The Reinforcement Learning
algorithm used is called PI2 [138] and it is trained from a dense reward. Their approach is
applied on two tasks on a real robot: the first task consists in opening a door, the second
consists in lifting a pen off a table. This work is one of the first to successfully learn a torque
controller using Reinforcement Learning.

The original publications about DDPG and NAF [71, 37] include results of their algo-
rithms when trained on simulated robotic tasks. In both papers, the agent learns to control
a 2D robotic arm in order to pick and place objects. In each, two versions of the task are
presented. In the first version, the base of the 2D arm is fixed to the ground and the agent
must control the joints in order to first reach for an object and then place it at a specified
target location. In the second version, the base of the arm is not fixed anymore, and the agent

3https://sites.google.com/site/deeproboticmanipulation/
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must learn to move it, as well as the joints of the arm, in order to accomplish the same task.
The reward given to the agent is not specified in the papers.

In [36], the authors present an asynchronous parallelization schema for Reinforcement
Learning algorithms that they apply on the NAF algorithm [37]. Results are presented for
training on simulated robots as well as on real hardware. They show that by using multiple
physical robots in parallel, it is possible to teach them to perform picking and placing tasks
in under 3 hours. The first task is a door pushing and pulling task, performed in simulated
environments and on the physical robots. The reward function is dense and is composed of
two parts: the proximity of the end-effector to the door handle, and a measure of how much
the door is opened in the right direction. The second task is a pure pick-and-place task. In
this setup, a stick is positioned in the air close to the robot’s end-effector. The robot must
learn to grasp it and move it to a target location. Again, the reward is dense and composed
of multiple parts: the distance between the grip position and the stick, the distance between
each of the fingers’ tip position and the stick, and the distance between the stick and the
target position. A video of the learnt policies is available under this link4.

In [69], the authors show that it is possible to learn a range of different pick-and-place
tasks on a real robot by supplying the robot with visual information, thus forming visuo-motor
policies, meaning that the visual information is transformed directly into torque commands.
The tasks solved by the robot include placing a hanger on a clothes rack, inserting objects in
a shape sorting cube, screwing a cap onto bottle or placing the teeth of a hammer around a
nail.

2.3.3 Grasping

The reason why grasping is often left out of pick and place tasks is because it is a very
challenging problem for robots. Grasping is often learned independently from picking and
placing. It constitutes a fully-fledged robotic control task. The difficulties are two-fold.
First, there is a big variability of grasping approaches, depending is the size, shape or weight
of the object to be grasped and on the intended use of that object. Secondly, grasping is
tremendously facilitated by the haptic feedback of the contact, which lacks both to robots
and simulators.

The earliest attempt at applying Reinforcement Learning to robotic grasping dates back
to 2010 [61]. It uses a hybrid approach intending to reduce the dimensionality of the state
and action spaces for faster convergence. The authors combine a custom Reinforcement
Learning algorithm (Continuum Gaussian Bandits) generating 6-dimensional hand-poses

4https://sites.google.com/site/deeproboticmanipulation/
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specifying where to grasp the object, and a DMP controller responsible for the action
execution determining how to perform the motion. The 6-dimensional hand-pose can thus be
interpreted as an abstract, high level action.

In 2011, similarly to the aforementioned paper performing picking and placing [53],
[133] applies the PI² algorithm to the robotic grasping task. The RL algorithm optimizes
2 DMPs to learn to perform (1) a prereach motion and (2) a subsequent grasping motion
while keeping the end-effector fixed. The agent learns in simulation from a sparse reward
and using a 3-fingered gripper.

In 2018, [104] proposes a benchmark for vision-based grasping algorithms and measures
the performance of 6 algorithms including DDPG and Deep Q-Learning. Two tasks are
presented: in the first case, a simulated robotic arm must grasp any object from a bin
containing 5. In the second, the arm must grasp a particular object out of the 5. The agent
receives a reward if the correct object is held in the gripper at the end of a fixed-length episode.
The objects are diverse in shape and colors, but not in size. The authors decided to focus on
off-policy Reinforcement Learning algorithms and trained them on a fixed, pre-generated
dataset of grasps. This enables them to present an interesting comparison of the sensitivity
of the algorithms to hyper-parameters, as online learning would have required too many
expensive environment interactions. The agent’s actions correspond to x, y and z end-effector
velocities as well as a φ wrist angular velocity around the z axis. The improvements over the
previously mentioned older methods are that (1) reaching and grasping are not differentiated
anymore in this approach and (2) the policy is learned end-to-end from visual information. A
video of the learnt policies is available under this link5.

[51] proposes a simplistic architecture based on Deep Q-Networks performing grasping
both in simulation and on a real robot. The robot has 2 cameras, one overhead projecting
over the scene and a second in the wrist. The authors achieve quick and reliable grasping
with a clamp gripper of cubic spherical and cylindrical objects.

[86] proposes an application of TRPO to grasping using an anthropomorphic hand with
16 degrees of control. This simulated hand is part of the SouthHampton Hand Assessment
Procedure (SHAP) test suite developed to assess the effectiveness of upper limb prostheses.
In their approach, the agent only knows about the current position and speed of its joints
and 3 numbers denoting the position of the object. They used a dense reward composed of
the distance between the palm and the object and a sparse term upon successful grasping. A
video of the learnt policies is available under this link6.

5https://sites.google.com/view/grasping-icra2018/home
6https://rctn.github.io/deephapticsgrasp/
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Finally, the problem of grasping cluttered or densely packed objects on a table is addressed
by [154]. They propose a technique to learn to perform pushing movements intending to
facilitate subsequent grasping, from visual data. RGB-D information is first converted to
a 3D representation of the scene. One Q-Learning network then transforms the latter in a
2D map evaluating for each pixel the quality of accomplishing a pushing motion. A second
such network outputs a 2D map evaluating for each pixel the quality of accomplishing a
grasping motion. Both networks are trained jointly as a single Q-Network and the choice
between pushing or grasping is determined by the highest Q-value. In this approach, the
authors leverage the process of learning the pushing and grasping motions, replacing them by
Inverse Kinematics based movement primitives: for each pixel in the 2D maps corresponds a
push and a grasp. A video of the learnt policies is available under this link7.

2.3.4 In-Hand Manipulation

Following to grasping, attempts have been made at performing in-hand manipulation, that
is to say performing rotation of an object in one hand by controlling the movement of the
fingers and the wrist. The same way grasping is a useful skill to perform picking and placing,
in-hand manipulation is useful to achieve accurate and reliable grasping. Like for grasping,
one of the main difficulties with dexterous manipulation is the lack of haptic feedback in
virtual reality. Another difficulty lies in the fact that hand manipulations involve a complex
contact dynamic with the object which is hard to simulate reliably. Finally, like human hands,
robotic hands offer a large number of degrees of control, often greater than 16. Large action
spaces have been shown to be much more complex to solve due to the curse of dimensionality.
An open line of research consists in finding good dimensionality reductions that can couple
joints without loosing of the robot’s capabilities.

The very first application of Reinforcement Learning to in-hand manipulation dates
back to 2016 [63]. In this research, a robotic hand composed of 24 joints learns to rotate
elongated objects using it’s fingers. The Reinforcement Learning algorithm used differs
slightly from the RL formalism explained earlier in this thesis. The agent does not learn
actions to be performed but rather complete sequences, each action in the sequence being
a linear transformation of the current state. This results in a sequence of linear models, of
which the weights are learned using Reinforcement Learning. A video of the learnt policies
is available under this link8.

A following paper [105] focuses on a simulated robot in order to learn manipulation
of tools and re-orientation of object. It investigates the benefit of showing demonstrations

7https://vpg.cs.princeton.edu/
8https://www.youtube.com/watch?v=Q9VLr_UGjBI
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of the task to the agent. The demonstrations are recorded using a mechanical glove that
enable to interact with the simulated environment. They exhibit grasping and pick-and-place
movements, as well as in hand manipulation. For each task, 25 demonstrations are provided.
The RL algorithm proposed is derived from the Natural Policy Gradient algorithm (NPG) and
is called Demonstration Augmented Policy Gradient (DAPG). This algorithm is compared
against DDPG and the use of reward shaping is properly reported. A video of the learnt
policies is available under this link9.

Finally, [93] published in late 2018 is the first research able to accomplish successful
in-hand rotation of a cube using a real robot. It applies PPO with recurrent neural networks
(LSTM) in simulation to a robotic hand similar to the hand in [63] offering 24 joints. The
agent trained in simulation is then directly ported onto the real robot. This transferability
is made possible by a technique called domain randomization, which aims at improving
the agent’s generalization ability by training it on a wide spectrum of slightly different
environment. A video of the learnt policies is available under this link10.

2.3.5 Locomotion

An other typical robotic control task is the learning of bipedal and quadrupedal locomotion.
The difficulty in locomotion tasks often resides in the variability of the geometry of grounds
on which the robot must walk, and in the combination of information from very different
sensory modalities. Learning locomotion involves learning equilibrioception, which is the
result of the visual system, the proprioception and the inner ears working together. The
research in RL for locomotion control is mainly driven by robotics companies such as Boston
Dynamics or Agility Robotics.

Quadrupedal Locomotion

Similarly to pick-and-placing and grasping[53, 133], the PI² algorithm has been applied to
quadrupedal locomotion in 2010 [139]. In this experiment, a quadrupedal, dog-like robot
must learn to jump over a gap. To facilitate learning, the algorithm is seeded with an initial
behavior learned from demonstration. Additionally, the agent is not only rewarded for the
jumped distance but also for keeping the correct roll and yaw angles. Like in [53] and [133],
the approach uses DMPs as movement primitives.

Recently, deeper models have successfully been applied to four-legged locomotion. For
example [40] applies a modified Soft Actor-Critic (SAC) algorithm to both simulated and real

9https://sites.google.com/view/deeprl-dexterous-manipulation
10https://www.youtube.com/watch?v=jwSbzNHGflM&feature=youtu.be
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robots. The algorithm is chosen to be sample efficient and the authors accomplished training
on a real robot in about 2 hours. The proposed modification automates the tuning of the
temperature parameter of the SAC algorithm. In this research, the action space is composed
of the extension of each leg and their swing angle, resulting in 8 dimensions. The authors
found that the latencies in the hardware and the partial observation of the environment make
the system non-Markovian. They propose to overcome this problem by augmenting the
observation space to include a history of the last five observations and actions. A video of
the learnt policies is available under this link11.

[131] proposes a new approach to transfer a locomotion behavior learned in simulation
to a real robotic platform. By decomposing the simulated robot’s motion in principal
components with a PCA, they define kinematic motion primitives that can be later used on
the real robot. Again, the action space is composed of the extension and swing angle of each
leg. The RL algorithm used is the PPO algorithm and the reward is composed of a term for
maximizing the speed and a second for minimizing the metabolic cost. A follow-up paper
[17] investigates in simulation the advantage of having a flexible spine for running. Finally, a
third paper [60] investigates the advantage of using Bezier polynomials to output a complete
step trajectory instead of a single next foot position. Using this technique, a full stepping
motion can be described in 8× 4 dimensions. By exploiting conditions on continuity of
motion and symmetries of the trotting gait, this dimensionality is further reduced to only 8.
Again, videos for each of these 3 publications are available: [17]12 [131]13 and [60]14.

Finally, the most efficient approach as of 2020 [65] presents a novel solution demonstrat-
ing zero-shot generalization from simulation to natural environment. Moreover, the agent
does not need to have access to any cameras or LIDARs as the behavior is learned solely
from proprioceptive information. The first contribution is to replace the policy’s Multi-Layer
Perceptron (MLP) with a Temporal Convolution Network (TCN) [5]. In this approach, the
TCN outputs actions given a history of the proprioceptive states. The second contribution is
the use of a technique called privileged learning [23]. The authors report that directly training
the Reinforcement Learning agent on challenging terrain without giving it any information
about the ground it is stepping on fails to learn locomotion with reasonable time budget. The
solution they propose is to decompose this training process in two stages: first they train a
teacher agent by giving it ground truth knowledge of the terrain (the privileged information).
Second they train a student policy using only sensors available to the real robot, guiding its
training with the teacher’s policy. Additionally to using TCN and privileged learning, the

11https://sites.google.com/view/minitaur-locomotion/
12https://www.youtube.com/watch?v=INp4aa-8z2E&feature=youtu.be
13https://www.youtube.com/watch?v=kiLKSqI4KhE&feature=youtu.be
14https://www.youtube.com/watch?v=aFGM_xWeh3U&feature=youtu.be
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authors implemented an automated curriculum. Curriculum learning consists in progressively
increasing the difficulty of the task and enables quicker learning of more complex skills. In
this particular approach, the difficulty of 3 different types of terrain can be adjusted (hills,
steps and stairs) by tuning the width and height of the stairs and steps, and the roughnes,
frequency and amplitude of the hills. The agent learns to follow a command received from
the experimenter, indicating the desired direction of motion and desired turning direction
around the center of mass. To facilitate portage from the simulation to the real world, the
simulation uses a learned dynamics model of the robot’s joint PD controller following ideas
introduced in [47]. This enables them to directly deploy the proprioceptive controller on the
real robot with no additional fine-tuning. Importantly, the robot’s motion is generated using
an hand-crafted leg rhythm. In short, the foot-tips are following a predefined trajectory and
the controller outputs a time offset determining if the agent should lag-behind or precede
it, and a space offset determining a foot position residual with respect to the predefined
trajectory. The resulting foot-tip position is tracked using analytic inverse kinematics (IK).
The Reinforcement Learning algorithm used is the TRPO algorithm. A video of the learnt
policies is available under this link15. The resulting behavior is spectacular in 2020’s stan-
dards. Notably, a foot-trapping reflex emerges from the training. When failing to climb over
a high step, the agent remembers it and its next leg movement will reach higher in order to
successfully pass the obstacle.

Bipedal Locomotion

The first successful realization of bipedal locomotion using deep Reinforcement Learning
dates from 2017 [43]. In this research, a 28 DoF simulated humanoid robot is trained to run
over a challenging terrain, involving climbing and jumping over obstacles. The algorithm is
a plain implementation of PPO with minimal additional optimizations. The agent is provided
with proprioceptive information, as well as extroceptive information like the position with
respect to the center of the track it must run on as well as the profile of the terrain ahead. The
tracks are designed such that their difficulty increases as the agent progresses towards the
end, forming a natural curriculum learning mechanism. The reward consists of 4 components.
The first is a term proportional to the velocity along the x-axis, encouraging the agent to make
forward progress along the track, the second is a small term penalizing torques, the third
penalizes deviations from the center of the track, and the humanoid receives an additional
reward per time-step for not falling. A video of the learnt policies is available under this
link16.

15https://leggedrobotics.github.io/rl-blindloco/
16https://www.youtube.com/watch?v=hx_bgoTF7bs&feature=youtu.be
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A series of publications tracks the progress of a research group about bipedal locomotion
learning on the Cassie robot [150–152]. Similarly to the previous paper [43], [150] is a
plain application of PPO to the Cassie platform, with the nuance that the robot is rewarded
for following a nominal trajectory - a reference motion - given by the experimenter. The
advantage of this technique is that “the reference motion can be a crude sketch of the
desired motion, i.e., it can be unphysical, kinematically inconsistent or having body and foot
velocities that are mutually incompatible”. Typically, reference motions are obtained from
tracking recordings. In this paper, all experiments are conducted in simulation only. The
resulting behavior exhibits undesirable motions like shaking of the pelvis. In the follow-up
papers [151] and [152], the authors address this issue using a method for refining the learned
policy iteratively. This technique enables them to achieve a more stable gait and a reduced
energetic demand. Additionally, they show that is is possible to compress the trained policy
neural network to a much smaller size using supervised learning, while not hindering the
agent’s performance. The policies learned in the simulated environment are transferred
directly onto the real robotic setup. The authors report that they did not need to learn any
dedicated models of the actuators using data collected from the physical robots like it is for
example proposed in [47, 153, 65]. Videos are available for each of the publications: [150]17,
[151]18 and [152]19.

Deep Reinforcement Learning for bipedal locomotion also finds applications in computer
graphics, where the task is to find a physically plausible gait for 3D animation or for video
games. For these applications, the physics simulation does not need to be completely accurate.
[149] proposes a technique to learn bipedal or quadrupedal locomotion in simulation for
varying body shapes. In their approach, the shape of the different body parts is provided
in the agent’s state, enabling to vary the robot’s dimension on the fly during performance
of the movement. Similarly to the previous examples of bipedal locomotion, the agent is
encouraged to follow a reference motion, as well as matching a target velocity instructed by
the experimenter. Finally, a third reward term penalizes motor torques to encourage smoother
joint control. Similarly to the previous examples, the actions are joint positions tracked by a
PD controller and the Reinforcement Learning algorithm used is PPO. A video of the learned
policies is available under this link20.

Finally, deep Reinforcement Learning has been successfully applied to the control of
a virtual model of the entire human body [66]. This enables to simulate musculoskelatal
conditions like muscle contractures or bones malformations, to simulate the improvement in

17https://www.youtube.com/watch?v=z3DMKQwt68Y
18https://www.cs.ubc.ca/~van/papers/2019-CORL-cassie/index.html
19https://www.youtube.com/watch?v=TgFrcrARao0
20http://mrl.snu.ac.kr/publications/ProjectMorphCon/MorphCon.html
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gait resulting from surgery and to design better prostheses. In this research, the body model
is composed of 284 muscles connected to a tree of rigid bones. Behavior learning through
Reinforcement Learning on a 284 dimensional action space in impracticable, however the
reference motion tracking technique described above considerably reduces the part of the
action space that must be explored. Surprisingly, this is sufficient to successfully learn
locomotion in 36 hours of training on a computer. Again, the Reinforcement Learning
algorithm used is the PPO algorithm. Overall, the approach is similar to the ones described
above, however the authors propose a 2-levels architecture to coordinate the muscles. The
first level consists in a policy transforming the skeletal state and the reference motion in a
desired skeletal pose. A PD control mechanism translates this pose into joint accelerations.
The second level transforms the muscular state of the agent and the desired joint accelerations
into a muscle activation command. A video of the learned policies is available under this
link21.

A table summarizing all the publications referenced in this section is available in the
appendix (see table A.1).

2.4 Conclusion

In this chapter, Overview of learning algorithms for robotic control, we introduced the
Markov Decision Problem formalism and presented evidences that similar mechanisms
take place in the brain. We then briefly introduced the concepts of Deep Learning and
Differentiable Programming, also relating it to neural processes. We then showed how Deep
Learning can be used to solve Markov Decision Processes. Finally, we presented the state of
the art in Reinforcement Learning specifically applied to robotic control tasks. The analysis
of the literature shows that as of 2020, the promise of versatile robotic arms has still to be
implemented. However, recent advances enabled researchers for the first time to successfully
achieve robotic locomotion, on 2 or 4 legs, without the use of LiDARs nor cameras.

Learning to manipulate objects in the environment is significantly more challenging than
learning locomotion. The comparison is however unfair: arms and hands serve hundreds
of different purposes (reaching, grasping, throwing, pushing, pulling, clapping, squeezing,
scratching, cleaning, ...) while legged locomotion is only one of the possible uses of robotic
legs (like jumping, kicking in a ball ...). The difficulty in solving robotic manipulation comes
from the wider spectrum of tasks, but also from the fact that important pieces of information
required for solving a task are often unavailable to the agent (precise shape, weight) or
must be abstracted from sensor data (distance, brittleness). In that respect, the absence of

21http://mrl.snu.ac.kr/research/ProjectScalable/Page.htm
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haptic feedback constitutes an additional difficulty yet to be addressed. Finally, additional
complexity comes from the fact that most manipulation tasks involve to structure the behavior
in sequences of different skills (reaching, grasping) or in a hierarchy of skills (find a block
- look, evaluate; stack a block - reach, grasp, lift, stack), thus requiring a way to abstract
sensory information.

In the next chapter, Learning Abstract Representations through Lossy Compression of
Multi-Modal Signals, we will study how information from different sensory modalities can be
integrated together and how, by doing so, meaningful sensory representation can be obtained.



Chapter 3

Learning Abstract Representations
through Lossy Compression of
Multi-Modal Signals

3.1 Introduction

When an event occurs around us, we do not capture all the information generated by this
event. Our brain receives only a fraction of it, and does so through different sensory channels
simultaneously: the sight, hearing, smell, taste, touch, but also proprioception, nociception,
localization in space etc. Let’s say that an event in the world has been seen and heard, like
for example a plate shattering on the floor. In order to construct a sharp mental image of the
event that occurred, the brain needs to fuse together the information that has been seen and
the information that has been heard. This coalescence is made possible by the fact that some
information about the event goes simultaneously through the two senses. In information
theory, this is referred to as the mutual information. Note that the latter is statistically defined
and that it does not exist when considering a single event or a single repetition. By learning
to recognize this mutual information, the brain can coalesce together the information coming
from the two sensory modalities. In the case of the plate shattering, the vision, together with
the proprioception, hold the information about the localization of the event in the referential
of the body. Similarly, by performing spectral transformations to incoming sounds, our brain
deduces the horizontal and vertical localization of the event. Thus the highly relevant piece
of knowledge indicating where the plate shattered in the body’s referential frame is contained
in the mutual information, shared by the visual and acoustic modalities. Can the mutual
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information be algorithmically isolated, and what kind of knowledge about the world can we
expect to find in it?

Let us take an information theoretic perspective on the multimodal perception problem.
We consider two variables, X and Y , representing the data from two sensory modalities, and
we assume that some information, the mutual information, is shared by both modalities X
and Y . That means that the knowledge of X gives us also some prior knowledge about Y , and
reciprocally. In information theory, scientists are interested in the size, measured in bits or in
nats, of the most compact code of a variable. The size of the most compact code representing
the variable X is called the entropy of X and is noted H (X). The mutual information is
defined as the size of the most compact code that represents the prior knowledge about Y
contained in X , which equals the size of the prior knowledge about X contained in Y . It is
noted MI (X ,Y ). An other way to define the mutual information requires to introduce a third
variable Z representing the union of the two variables X and Y . Since some information is
repeated in X and Y , the most compact code representing Z is shorter than the sum of the two
codes representing X and Y . This is noted H (Z)≤ H (X)+H (Y ). The difference in code
length is called the mutual information:

MI (X ,Y ) = H (X)+H (Y )−H (Z) , also noted (3.1)

MI (X ,Y ) = H (X)+H (Y )−H (X ,Y ) (3.2)

The special case when H (Z) = H (X)+H (Y ), and thus MI (X ,Y ) = 0, corresponds to
the case where the two variables are statistically independent, i.e. P(X ,Y ) = P(X)P(Y ) or
P(X |Y ) = P(X) and P(Y |X) = P(Y ).

Similarly to how we defined Z as the union of the variables X and Y , we can define a
variable W that would encompass only the information which is contained in both X and Y .
We can also define the two remaining variables X\Y and Y\X which respectively represent
the information which is in X , but not in Y and reciprocally. By definition, MI

(
W,X\Y

)
=

MI
(
W,Y\X

)
= 0, which means that W , X\Y and Y\X are statistically independent. Thus these

3 variables are holding information about independent aspects of the event that took place, or
in other words they represent independent factors of variation of the event. If we go back
to the example of the plate shattering, the localization in space, which is present in both
modalities, is strictly independent from the shape of the object, which is only seen, or from
the loudness of the sound it produced, which is only heard. And these indeed constitute
independent properties of the event that took place.



3.2 Related Work 37

In the research presented in this chapter, we hypothesize that the information that is
contained in multiple sensory modalities at a time is statistically independent from the infor-
mation contained in only one modality, and thus that it must correspond to an independent
factor of variation of the world. We believe that a representation of the multimodal sensory
information that would identify and isolate the independent factors of variation of the world
is highly relevant in the context of RL.

3.2 Related Work

Within the machine learning community, our work belongs to the field of representation
learning [15, 30, 14, 87]. Representation learning consists in learning a representation of the
data that makes it easier to extract useful information. Historically, in supervised learning,
scientists were hand-crafting feature extractors which would for example, when applied to
image classification, detect vertical, horizontal edges, curved lines, crosses etc. Typically,
linear classifiers would then use these features as inputs. With the regain of interest for neural
networks, engineered feature extractors have been replaced with deep non-linear network
architectures. Arguably, if we slice open a deep neural network trained in a supervised manner,
we have access to a latent representation of the information. Using various techniques, and
notably through a technique known as feature visualization [89], scientists have been able to
better understand how these learned representations are constructed. They found that neural
networks have the ability to abstract the information, and that the learned features often
correspond to real-world concepts (see [89]). Potentially, representation learning could find
uses in RL.

First, by operating on an abstract view of the world, a RL agent would improve its ability
to generalize its behavior to other environments. The lack of generalization constitutes one
of the major flaws of current RL algorithms [75, 146]. Although the perspective of achieving
better generalization in RL is very attractive, past attempts met limited success: when the
learning of the representation is completely decoupled from the reward signal, the benefit in
generalization is often mitigated by slower convergence speed of the algorithm and lower
overall performance. See for example the experiments in the appendix of [132].

Secondly, representation learning might be used in Reinforcement Learning in order to
generate rewards for the agent. By using an abstract representation of a state as a goal that
the agent must reach, one can then compare it against the abstract representation of the state
in which the agent finds itself, and reward the agent according to the distance to the goal,
encouraging the agent to get closer. By comparing together only the abstract representation
of the states, one can discard the specific details in the sensory information and focus rather
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on the abstract features that determine the agent’s environment. It is clear that for this
application, a sensory representation that has isolated the independent factors of variation of
the environment is particularly relevant. Abstract representation learning for goal definition
is closely related to hierarchical Reinforcement Learning and goal-based Reinforcement
Learning [62, 142], which are the subjects of Chapter 6.

The field of representation learning is also closely linked to that of multimodal integration.
Multimodal integration designates the study of the coalescence of the information from
the different sensory modalities into one, which essentially consists in learning a joint
representation of the different sensory modalities [50, 88].

The rest of this chapter heavily draws on a publication in IEEE Transactions On Cognitive
And Developmental Systems published in 2021 and titled Learning Abstract Representations
through Lossy Compression of Multi-Modal Signals [148].

3.3 Methods

Our general approach comprises three processing steps. The first step consists in generating
multimodal sensory data. In order to have more control over the amount of mutual information
among the different sensory modalities, we present a way to generate the latter from noise.
We call this type of data synthetic as it has no real significance. For this we use random multi-
layer neural networks that map independent information sources x onto different “views”
y seen by different sensory modalities. This models the process how multimodal sensory
information is generated from unobserved causes in the world. We also validated our model
using synthetic data on real data, obtained from a robot simulator. In the second step, we train
a neural network autoencoder with varying capacity, i.e., size of the central bottleneck, to
learn a compressed (lossy) representation z from the concatenation of the multimodal inputs
y. This models the process of a developing agent learning an abstract representation from
multimodal sensory information. In the third step we analyze the learned representation z and
measure how much information it retains that is unique to individual modalities versus shared
among multiple modalities. For this we train a third set of neural networks to reconstruct the
original information sources x from the latent code z. The reconstruction error is a proxy for
how much information has been lost during the encoding process. We now explain the three
processing steps in detail.
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A

B

C

Fig. 3.1 Overview of the approaches, assuming only 2 modalities (n = 2). A. baseline
experiment, jointly encoding the dependent vectors yi. B. control experiment, jointly encoding
the dependent vectors yi but reconstructing the original data xi. C. cross-modality prediction
experiment, jointly encoding the predicted vectors ỹ∖i. In each schema, the red areas represent
the random neural networks generating dependent vectors (section 3.3.1), the yellow areas
represent the encoding and decoding networks (section 3.3.2), the green areas represent the
readout networks (section 3.3.3), and the orange area represents the cross-modality prediction
networks (section 3.3.4).
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3.3.1 Step 1: Generating Synthetic Multimodal Input

We produce the multimodal sensory data in such a way that we can precisely control the
amount of mutual information between the different sensory modalities. We first define a
distribution pm from which we sample information that is shared by all sensory modalities.
pm therefore represents independent information sources in the world that affect multiple
sensory modalities. We define it as a dm-dimensional distribution of independent standard
normal distributions. We then define a second distribution pe, from which the information
exclusive to each modality is sampled. We define pe as a de-dimensional distribution of
independent standard normal Gaussians. For a shared vector xm ∼ pm and n vectors xe,i ∼ pe,
i ∈ Nn−1 we can create the vectors xi = xe,i⊕ xm carrying the information of each modality,
where ⊕ is the concatenation operation.

Our sensory modalities do not sample the underlying causes directly (e.g., objects and
light sources), but indirectly (e.g., images provided by the eyes). To mimic such an indirect
sampling of the world without making any strong assumptions, we generate the sensory
inputs y that the learning agent perceives via random neural networks. Specifically, we define
the input to modality i as:

yi =
C
(
xi,θC,i

)
−µi

σi
, (3.3)

where C and θC,i are the input construction network and its weights for the modality i
and µi and σi are constants calculated to normalize the components of yi to zero mean and
unit variance.

Tuning the amount of mutual information between the vectors yi is done by changing the
dimensionalities dm and de of the vectors xm and xe,i, respectively. The amount of information
preserved from the vectors xi in the vectors yi depends on the dimension dy of the vectors yi.
We define dy to be proportional to the dimension dx = dm +de:

dy = k×dx , (3.4)

where k≫ 1. This ensures that the sensory inputs yi essentially retain all information from
the sources xm and xe,i.

3.3.2 Step 2: Learning an Abstract Representation of the Synthetic
Multimodal Input via Autoencoding

Taken together, the set of vectors {yi}i∈N carries once the information from each xe,i and n
times the information from the mutual vector xm. To show that a lossy-compression algorithm
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achieves a better encoding when favoring the reconstruction of the repeated information,
we train an autoencoder to jointly encode the set of the yi. We therefore construct the
concatenation y = y0⊕·· ·⊕ yn−1 to train the autoencoder:

z = E (y,θE) (3.5)

ỹ = D(z,θD) , (3.6)

where E and θE are the encoding network and its weights and D and θD are the decoding
network and its weights. Tuning the dimension dz of the latent representation z enables us
to control the amount of information lost in the encoding process. The training loss for
the weights θE and θD is the mean squared error between the data and its reconstruction,
averaged over the component dimension and summed over the batch dimension:

LE,D = ∑
batch

1
ndy

(y− ỹ)2 . (3.7)

(3.8)

As a control condition, we also study a second encoding mechanism, where, instead of
reconstructing the dependent vectors y0⊕·· ·⊕ yn−1 = y, the decoder part reconstructs the
original data x0⊕·· ·⊕ xn−1 = x. The loss for training the encoder and decoder networks E
and D from equation 3.7 then becomes:

LE,D = ∑
batch

1
ndx

(x− x̃)2 . (3.9)

3.3.3 Step 3: Quantifying Independent and Shared Information in the
Learned Latent Representation

Finally, in order to measure what information is preserved in the encoding z, we train readout
neural networks to reconstruct the original data xm and the vectors xe,i:

x̃m = Rm (z,θm) (3.10)

x̃e,i = Re (z,θR,i) , (3.11)
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where Rm and θm are the mutual information readout network and its weights, and the Re and
θR,i are the exclusive information readout networks and their weights.

The losses for training the readout operations are the mean squared errors between the
readout and the original data summed over the batch dimension and averaged over the
component dimension:

Lm =
1

dm
∑

batch
(x̃m− xm)

2 and (3.12)

Le,i =
1
de

∑
batch

(x̃e,i− xe,i)
2 . (3.13)

Finally, once the readout networks trained, we measure the average per data-point mean
squared errors

rm =
1

dm
E
[
(x̃m− xm)

2
]

and (3.14)

re =
1
de
E
[
(x̃e,i− xe,i)

2
]

, (3.15)

serving as a measure of the portion of the mutual and exclusive data retained in the encoding
z.

3.3.4 An Alternative to Step 2: Isolating the Shared Information

We also compare the previous approach to an alternative architecture, designed specifically
to isolate the information shared between the modalities. Let (A,B) be a pair of random vari-
ables defined over the space A ×B with unknown joint distribution P(A,B) and marginal
distributions P(A) and P(B). Determining the mutual information between the variables A
and B consists in finding either one of P(A,B), P(A|B) or P(B|A). With no other assump-
tions, this process requires to sample many times from the joint distribution P(A,B). We
propose to make the strong assumption that the conditional probabilities are standard normal
distributions with a fixed standard deviation σ

P(B = b|A = a) = N (µ (a) ,σ ,b) (3.16)
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We can then try to approximate the function µ (a) with a neural network M (a,θM) maxi-
mizing the probability P(B = b|A = a). µ (a) thus represents the most likely b associated
with a, under the standard normal assumption. Training the network is done by minimizing
the mean squared error loss

LM =−Ea,b∼P(A,B) [log(N (µ,σ ,b))] (3.17)

= Ea,b∼P(A,B)

[
(µ−b)2

]
·K1 +K2 (3.18)

with K1 and K2 constants depending on σ .
More concretely and using the notation from the first architecture, we define for each

modality i a neural network M (yi,θMi) learning to predict all other modality vectors y j, j ̸= i.
The loss for the weights θMi is defined

LMi = ∑
batch

1
(n−1)dy

(y∖i− ỹ∖i)
2 (3.19)

with

y∖i =
⊕
j ̸=i

y j (3.20)

the concatenation of all vectors y j for j ̸= i and ỹ∖i the output of the network. We then
consider the concatenation of the ỹ∖i for all i as a high-dimensional code of the shared
information. This code is then compressed using an autoencoder, similarly to the description
in Section 3.3.2. We vary the dimension of the encoder’s latent code. Finally, similarly to the
first approach, we train readout networks from the compressed latent code to determine how
mutual and exclusive information are preserved in the process.

Overall, this way of processing the data is analogous to the baseline experiment in that
the cross modality prediction networks and the subsequent auto-encoder, when considered
together, form a network that transforms the vectors yi into themselves. Together, these two
components can thus be considered as an auto-encoder, subject to a cross-modality prediction
constraint.

3.3.5 Neural Network Training

In the following, we compare three architectures against each other (compare Fig. 3.1):

• The baseline architecture, simply auto-encoding the vectors yi jointly (cf. Fig. 3.1A).
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Network M C E D Rm Re

Dimension (n−1)×dy dy dz n×dy dm dx

Table 3.1 Dimension of the last layer of each neural network

• The control condition with a simpler encoding task, where the vectors yi are encoded
into a latent code z, from which the decoder tries to reconstruct the original vectors xi,
from which the inputs yi were generated (cf. Fig. 3.1B).

• The alternative architecture, where for each modality, a neural network tries to predict
all other modalities and then all resulting predictions are jointly encoded, similarly to
the baseline architecture (cf. Fig. 3.1C).

We will now describe the training procedure and implementation details. In order to show
the nature of the information preferably preserved by the encoding process, we measure the
quality of the readouts obtained as we vary the dimension of the latent vector dz. To this
end, for each dimension dz ∈ [1;dz,max], we successively train the cross modality prediction
networks (experiment C only), the autoencoder weights θE and θD and the readout weights
θm and θR,i. Once training is completed, we measure the average mean squared error of the
readouts x̃m and x̃e,i.

We choose the distributions of the vectors xm and xe,i to be multivariate standard normal
with a zero mean and unit variance. Therefore, a random guess would score an average mean
squared error of 1. Each experiment is repeated 3 times and results are averaged.

The neural networks for the input construction C, cross-modality prediction M, encoding
E, decoding D, mutual readout Rm, and exclusive readout Re all have three fully-connected
layers. The two first layers always have a fixed dimension of 200 and use a ReLU as non-
linearity. The final layer is always linear, its dimension for each network is reported in
Table 3.1.

For each model architecture A, B, or C, we show the effect of varying the ratio be-
tween mutual and exclusive data and that of varying the number of modalities. The default
experiment used de = 4, dm = 4, n = 2, k = 10. We then varied de ∈ {4,10,16,22} or
n ∈ {2,3,4,5}, keeping all other parameters fixed.

Each network is trained on 2500 batches of data of size 128 with a learning rate of 10−3

and using the Adam algorithm [55].
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Fig. 3.2 High resolution image of the 2 arms in the simulated environment. The images in
the dataset have a resolution of 32 by 64 pixels only.

3.3.6 Step 1: Generating Realistic Multimodal Input

In order to better assess our approach, we also tested it on realistic data generated from a
robot simulator, in which we placed two 7 degrees of freedom robotic arms side by side (see
figure 3.2). We then generated a dataset comprised of pictures of the 2 arms, representing
the visual modality, and of the joints positions and speeds, representing the proprioceptive
modality. Note how the position information is present both in the visual and proprioceptive
modalities. The velocity information however is present only once, in the proprioception.
So as to also having at our disposal an information stream that is uniquely present in the
visual modality, we decided to provide the encoding networks solely with the proprioceptive
information from one of the two arms (the right arm). Thus, the position information of the
other arm (left arm) is only available through the visual information. Furthermore, by doing
so, the velocity information about the left arm is present in neither of the two modalities and
thus serves as a control factor. Finally, the dataset also contains records of the end effectors
positions of the two arms. We consider the end effector position of the right arm as being
implicitly part of the proprioceptive modality, as it is deducible from the position information,
while not directly feeding it into the networks. A summary of the information available to
each modality is provided in figure 3.3. In section 3.3.1, we named the vectors representing
the different modalities yi. When dealing with the realistic data, we will use y0 = yv for the
visual modality and y1 = yp for the proprioceptive one. The yp is z-scored, i.e. it has a 0
mean and a standard deviation of 1. The yv vector is normalized such that the pixel values
are in [−1,1].
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Fig. 3.3 Schema representing the information available to each modalities for the realistic data
dataset. Note that the positions and velocities of the left arm are not part of the proprioceptive
modality. This way, the information about the position of the left arm is available only
through the vision sensor. It also results that the velocity information of the left arm is present
in neither of the two modalities, and thus serves as a control factor in our experiments.

We will now redefine the steps 2, 3 and the alternative to step 2 for this dataset. The
main difference with the synthetic dataset lies in the fact that the visual information must be
processed with convolutional neural networks. Moreover, we propose to compare 2 ways
of jointly encoding the modalities which we call options. The first option is analogous to
the way the synthetic data is encoded, with the difference that the visual information is
processed by a convolutional neural network. The second option consists in learning a latent
representation of the visual information with an convolutional autoencoder prior to jointly
encoding it with the proprioceptive information.

3.3.7 Step 2: Learning an Abstract Representation of the Realistic Data

Similarly to section 3.3.2, the yv and yp vectors are jointly encoded and decoded with an
autoencoder (E,θE ,D,θD). This time however, the encoding and decoding steps are divided
in two parts

zpre = Ev (yv,θEv)⊕Ep
(
yp,θEp

)
(3.21)

z = Epre
(
zpre,θEpre

)
(3.22)

for the encoder and
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zpost = Dpost
(
z,θDpost

)
(3.23)

ỹv = Dv (zpost,v,θDv) (3.24)

ỹp = Dp
(
zpost,p,θDp

)
(3.25)

for the decoder, where zpost,v and zpost,p form a partition of zpost . The index within zpost

at which the split occurs is an hyper-parameter. The loss is then defined

LE,D =
1

2dp
∑

batch
(ỹp− yp)

2 +
1

2dv
∑

batch
(ỹv− yv)

2 (3.26)

with dp and dv the size of the proprioception and vision tensors.
Dividing the encoding and decoding process in two parts enables to use convolutional

and deconvolutional networks Ev and Dv to encode and decode the visual information. We
did not find any difference when pre-encoding the proprioceptive information with a MLP
compared to directly feeding it to the Epre network, we will therefore report the results for
Ep = id and Dp = id. In the case of option number 2, the yv is a compressed representation of
the visual information and there is no need to process it with a convolutional neural network.
In that case, we also set Ev = id and Dv = id, meaning that the architecture of the networks
in that case is the same as for the synthetic dataset.

3.3.8 Step 3: Deciphering the Latent Code

Similarly to section 3.3.3, we train readout neural networks to decipher the information
contained in the encoding z. This time however, since we don’t have access to the original
vectors x which induced the vectors yv and yp, the readout operation aims at reconstructing the
proprioceptive information from both arms ytarget = ypos,l⊕yvel,l⊕yee,l⊕ypos,r⊕yvel,r⊕yee,r.
The readout operation is written

yreadout = R(z,θreadout) (3.27)

and its loss is

Lreadout =
1

dtarget
∑

batch
(yreadout− ytarget)

2 (3.28)



48 Learning Abstract Representations through Lossy Compression of Multi-Modal Signals

.

3.3.9 An Alternative to Step 2 for the Realistic Data: Isolating the
Shared Information

Finally, similarly to section 3.3.4, we propose an alternative to step number 2 aiming at
isolating only the information shared by both modalities. This is done by training two
cross-modality prediction networks

ỹ∖p = Mv (yp,θMv) and (3.29)

ỹ∖v = Mp
(
yv,θMp

)
(3.30)

with the losses

LMv = ∑
batch

1
dv

(ỹ∖p− yv)
2 and (3.31)

LMp = ∑
batch

1
dp

(ỹ∖v− yp)
2 (3.32)

.
Again, like in section 3.3.7, the representations ỹ∖p and ỹ∖v are encoded using the

autoencoder networks Ev, Ep, Epre, Dpost , Dv and Dp:

zpre = Ev (ỹ∖p,θEv)⊕Ep
(
ỹ∖v,θEp

)
(3.33)

z = Epre
(
zpre,θEpre

)
(3.34)

zpost = Dpost
(
z,θDpost

)
(3.35)

ỹv = Dv (zpost,v,θDv) (3.36)

ỹp = Dp
(
zpost,p,θDp

)
(3.37)

.
For the option number 2, since the yv is a one dimensional vector, we set Ev = Dv = Ep =

Dp = id.
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3.3.10 Description of the Networks

In the case of the option number 1, the network Ev is a convolutional neural network
composed of 2 convolutional layers with kernel size 4 and stride 2 followed by a dense layer
with output size 100. The network Epre is a 3-layered MLP where all layer sizes but the last
are 200. The last layer uses a linear activation function and has a size dz. The network Dpost

is a 3-layered MLP where all layer sizes but the last are 200. The last layer uses a linear
activation function and has a size 100+ dp. The network Dv is a deconvolutional neural
network composed of a dense layer of size 8192 followed by two transposed convolutional
layers with kernel sizes 4 and strides 2. Finally, the readout network is also a 3-layered MLP
where all layer sizes but the last are 200. The last layer uses a linear activation function and
has a size dtarget .

For the cross-modality prediction, the network Mv is a deconvolutional neural network
composed of a dense layer of size 8192 followed by two transposed convolutional layers with
kernel size 4 and stride 2 and the network Mp is a convolutional neural network composed of
two convolutional layers with kernel size 4 and stride 2 followed by a dense layer of size dp.

Finally, as stated above, in the case of option number 2, yv is a learned code of size
100 representing the visual information. In this case we set Ev = Dv = Ep = Dp = id. The
network learning the code is a convolutional autoencoder composed of 2 convolutions, one
dense layer of size 100, one dense layer of size 8192 and 2 transposed convolutions.

3.4 Results

3.4.1 Lossy Compression of Multimodal Input Preferentially Encodes
Information Shared Across Modalities

Figure 3.4 shows the reconstruction errors for exclusive vs. shared information as a function
of dz, the size of the autencoder’s bottleneck, for the three different architectures. Each data
point represents the mean of 3 repetitions of the experiments, and the shaded region around
the curves indicate the standard deviation.

The grey dotted vertical line indicates the latent code dimension dz matching the number
of different univariate gaussian distributions used for generating the correlated vectors
yi, dmin = dm + nde. Assuming that each dimension in the latent vector can encode the
information in one normally distributed data source, when dz = dmin both the exclusive data
and the shared data can theoretically be encoded with minimal information loss. Knowing
that random guesses would score a reconstruction error of 1.0, we can augment the data with
the theoretical values rm = 1 and re = 1 for dz = 0.
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Fig. 3.4 Each plot represents the reconstruction error of the readout operation for the exclusive
data re in blue, and for the shared data rm in red, as a function of the auto-encoder latent
dimension. The dotted vertical line indicates the latent dimension matching nde +dm. The
data point for a latent dimension of 0 is theoretically inferred to be equal to 1.0 (random
guess). The four plots in one row correspond to different dimensions de of the exclusive data.
The results are presented for the three architectures A, B and C.
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The results for the baseline architecture (A), jointly encoding the correlated vectors
yi, show that the data shared by all modalities is consistently better reconstructed by the
autoencoder for all latent code sizes dz. In particular, this is also true for over-complete
codes when dz > dmin. Information loss in that regime is due to imperfections of the function
approximator. When the code dimension is bellow dmin, the information loss is greater, as
not all of the data can pass through the antoencoder’s bottleneck. These results confirm our
intuition from the Introduction (Sec. 3.1) that shared information should be preferentially
encoded during lossy compression of multimodal inputs.

This information filtering is a consequence of neural networks’ continuity, implying
topological properties on the functions that they can learn. Indeed, while there exist non-
continuous functions for which the dimensionality of the codomain is greater than that of
the domain, the continuity property enforces that the dimension of the codomain is less or
equal to that of the domain [19]. As a consequence, the dimensionality of the codomain
of the decoder network of an autoencoder is less than or equal to the dimensionality of the
latent code. If the dimension of the latent code is itself lower than that of the data, as can be
enforced by a bottleneck, it follows that the data and its reconstruction sit on manifolds of
different dimensionality, implying information loss.

In the under-complete regime, dz < dmin, the autoencoder shows a stronger preference for
retaining the shared data, partly filtering out the exclusive data. The chief reason for this is
that the shared data is essentially counted n times in the network’s reconstruction loss, while
the exclusive data is counted only once. As the dimension of the exclusive data de increases,
we still observe the two training regimes for dz less or greater than dmin, even though the
boundary between both tends to vanish as we reach the network’s capacity.

The results for the second (control) architecture (B), jointly encoding the correlated
vectors yi by reconstructing the original data vectors xi rather than yi, are similar in nature to
those of experiment A. The main differences occur at low values of dz. The readout quality
of the exclusive data is overall higher and that of the shared data lower.

Finally, results for the alternative architecture (C), encoding the cross-modality pre-
dictions, are significantly different and confirm that it is possible to isolate the mutual
information between different data sources. Notice how for de = 4, the readout quality of the
exclusive data re seems to improve slowly as the dimension dz increases. We verified that the
values of re remain high for high values of dz, measuring reconstruction errors converging
around 0.8. Thus, this architecture is more effective in stripping away any exclusive infor-
mation. This is because, by definition, exclusive information cannot be encoded during the
initial cross-modality prediction (Fig. 3.1C, orange part).
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3.4.2 Increasing the Number of Modalities Promotes Retention of Shared
Information

Figure 3.5 shows the results for varying the number of modalities. For architectures A and B,
they show how increasing the number of modalities reinforces the retention of the shared
data over the exclusive data. Note how the reconstruction errors for the shared information
(red curves) decay more rapidly for higher numbers of modalities n. This is in contrast to
architecture C, where results are very similar for different numbers of modalities. This is
because the initial cross-modality prediction network (Fig. 3.1C, orange part) effectively
removes all modality-specific information, leaving essentially the same encoding task for the
subsequent autoencoder despite the different numbers of modalities n.

3.4.3 Results on the Realistic Data Dataset

Figure 3.6 shows the readout errors for the proprioceptive information from both arms, for the
architecture jointly encoding the 2 modalities (A) and the one performing a cross-modality
prediction (C), as a function of the size of the latent code. In both cases, the velocity
information about the left arm, which is present in neither of the 2 modalities and thus serves
as a control factor, is not recovered for any latent code size. This is indicated by a chance-
level reconstruction quality of 1.0. For the joint-encoding architecture, the information which
is present in both modalities (i.e. the right arm’s joints positions and the right end-effector
position) is well reconstructed. For the cross-modality architecture however, the right arm’s
joints positions are recovered with a MSE of around at best 0.2. The reason for this is that
the position of some of the joints is not visible at all on the frames (like for example the
last joint in the arm rotating the wrist) and in some positions, occlusion effects occur. The
information about these joints is therefore not present in the mutual information and is thus
filtered out by the cross-modality prediction. The joints velocities information has inherently
a low entropy, making it easier to compress. As a result, the joint encoding approach shows a
very good recovering of this information channel. The other approach however has properly
filtered it out, even-though some of the information seems to have leaked out during the
proprioception→ vision cross-modality prediction. This is understandable given the big
increase in dimensionality taking place in this operation. For the cross-modality prediction
approach, the position of the left arm, which is present only in the visual modality, is properly
filtered out with MSEs greater than 0.7 for all latent sizes. In the first approach however, only
the left end-effector position is recovered for latent sizes greater than 14, which corresponds
to the point where the proprioception of the right arm is fully represented in the code.
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Fig. 3.5 Similarly to Fig. 3.4, each plot represents the reconstruction error of the readout
operation for the exclusive data re in blue, and for the shared data rm in red, as a function
of the auto-encoder latent dimension. The four plots correspond to a different number n of
modalities. The results are presented for the three architectures A, B and C.
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Fig. 3.6 Readout reconstruction errors for the joint-encoding and cross-modality approaches
as a function of the size of the bottleneck of the encoding for the option number 1. Blue
and red curves correspond to right and left arms respectively, solid lines correspond to
information present in both modalities, dashed lines to information present in one modality
only, and the dotted line to information present in none of the modalities.

Fig. 3.7 Readout reconstruction errors for the joint-encoding and cross-modality approaches
as a function of the size of the bottleneck of the encoding for the option number 2. Blue
and red curves correspond to right and left arms respectively, solid lines correspond to
information present in both modalities, dashed lines to information present in one modality
only, and the dotted line to information present in none of the modalities.
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Fig. 3.8 Reconstruction error of the visual modality for the joint-encoding and cross-modality
approaches as a function of the size of the bottleneck of the encoding for the option number
1. The error is split in two parts corresponding to the left and right halves of the frames. The
results show that the pixels which share information with the proprioceptive modality are
better reconstructed.

Fig. 3.9 Reconstruction error of the visual modality for the joint-encoding and cross-modality
approaches as a function of the size of the bottleneck of the encoding for the option number
2. The error is split in two parts corresponding to the left and right halves of the frames. The
results show that the pixels which share information with the proprioceptive modality are
better reconstructed.
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Fig. 3.10 Error map showing the mean reconstruction error of the visual modality for the
joint-encoding and cross-modality approaches as a function of the size of the bottleneck of
the encoding for the option number 1.

Fig. 3.11 Error map showing the mean reconstruction error of the visual modality for the
joint-encoding and cross-modality approaches as a function of the size of the bottleneck of
the encoding for the option number 2.

Figure 3.8 shows the reconstruction error of the visual information as a function of
the latent code size for the joint-encoding (A) and cross-modality (C) approaches. The
reconstruction error is split into two parts corresponding to the left and right half of the
frames. Note that the chance reconstruction error is around 0.027 (MSE). The results show
that in both approaches, the pixels corresponding to the right arm are better reconstructed. In
the joint-encoding approach, when the latent code size allows it, the entirety of the frame is
encoded while for the cross-modality approach, the left half of the frame is never encoded.

Finally, figure 3.10 shows a map of the visual reconstruction’s MSE for each latent code
size. The results clearly show that the joint-encoding approach (A) goes from a regime where
neither the left nor the right part of the frame is reconstructed, to a regime where the right
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part is, but not the left, to a regime where the whole frame is correctly reconstructed. For the
cross-modality prediction (C), the system only goes through the 2 first regimes.

Figures 3.7, 3.9 and 3.11 show similar results for the option number 2. Note that for the
figures 3.9 and 3.11, the frame reconstruction is B

(
Dpost

(
z,θDpost

)
,θB

)
with B the decoder

part of the autoencoder learning the latent representation yv.

3.5 Conclusion

3.5.1 Learning Abstract Representations

In this Chapter, we have focused on an unsupervised approach to learning abstract repre-
sentations of multimodal sensory data. Our analysis has been conducted on a synthetic
dataset imitating multimodal sensory information, and validated on data coming from a
simulated robotic setup. Our key result is that the lossy compression of multimodal sensory
data naturally favors the retention of shared information.

We compared two architectures, yielding different results. The joint encoding approach
shows the existence of two possible regimes in the training of autoencoders. In the non-
saturated regime, almost all the information in the encoder’s input is preserved in the
representation. In this regime, autoencoders could be used to perform multimodal integration
[88, 97, 127]. Next we showed that in the saturated regime, the information that is uniquely
present in one modality tends to be discarded, thus forming a representation which is an
abstraction of the real world. The latter is particularly relevant for defining abstract goals
that an agent must pursue.

Although the joint-encoding approach favors the retention of the mutual information,
some of the exclusive information is also present in the learned representation. Our second
architecture, the cross-modality architecture, shows that it is possible to isolate precisely the
mutual information from the exclusive information by training prediction networks. The
mutual information is by definition statistically independent from the exclusive information,
and we believe that it corresponds to an independent factor of variation of the world. Thus we
think that this approach is interesting in order to construct a factored, abstract representation
where concepts independent from each others are represented by independent variables.

3.5.2 Information Theoretic Perspective on Autoencoders

As discussed in sec. 2.2.4, in the last decades artificial neural networks have known a regain
of interest within the scientific community. Today, Deep Neural Networks (DNN) are widely
used in various applications and serve as the cement of many machine learning techniques.



58 Learning Abstract Representations through Lossy Compression of Multi-Modal Signals

Fundamentally, DNN are analogue to pipes conducting information which, like a gas, can be
compressed or expanded. And like gases liquefy, when information is maximally compressed,
it takes an incompressible form. This analogy is however not perfect: in the physical world,
gases follow the law of conservation of mass, that is, no mass is neither created nor disappears.
There is however no such thing as a law of conservation of information. In a closed system,
information can be preserved like a gaz, but unlike gases it can also vanish into the void. Thus
it is possible to squeeze an information flux beyond its incompressible form, but this implies
that some information disappears. Our analysis reveals that the first information to disappear
in traditional autoencoders is the information that is the least repeated in the data. Thus, all
pieces of knowledge in an information flux are not equal: some are repeated more than others.
Or in other words, the level of compression in an information flux is heterogeneous. In this
work, we showed that autoencoders retain preferably the least compressed information.

3.5.3 Toward Intrinsically Motivated Reinforcement Learning

In the next Chapter, we will present Intrinsically Motivated Reinforcement Learning (IM-RL),
as opposed to Extrinsically Motivated RL which we introduced in Chapter 2.

In short, in IM-RL rewards originate from the inner psyche of the agent. Jürgen Schmid-
huber for example proposed to use a measure of the compression progress as a reward to
drive an agent to explore parts of its environment where its mental code is improving [121].

As we will show in Chapters 4 and 5, our work about lossy compression is closely related
to IM-RL. First, in Chapter 4 we will introduce the notion of Intrinsic Motivation (IM) and
in Chapter 5 we will show how lossy compression can be used to generate an IM that can
drive the acquisition of active vision.



Chapter 4

Intrinsically Motivated Reinforcement
Learning

4.1 Introduction

In Chapter 2, we presented how a system - biological or artificial - can learn a behavior
through the maximization of a measurement of its quality called reward. The rewards
discussed so far are provided to the agent by the experimenter. For biological systems,
external rewards correspond for example to resources found in the environment like food,
or to external encouragements or punishments given by a teacher. Intuitively, rewards
originating from the agent’s environment are defined as extrinsic, as opposed to rewards that
would be internal to the mind’s working, called intrinsic.

It is important to note however that rewards themselves do not truly exist in the world.
Our organism has only evolved to release neuromodulators (dopamine, serotonine, ocytocine,
noradrenaline, endorphine...) as a function of its sensory experience. Ultimately, all rewards
are internal. Therefore, what sense does it make to talk about intrinsic or extrinsic rewards?
The concept of Intrinsic Motivation originates in the psychological literature in an attempt to
explain why animals naturally engage in puzzles, or can be conditioned to have particular
responses to neutral stimuli.

One way to categorize motivations is differentiating between those that are close to
sensory experiences (i.e. a few variables only suffice to easily determine in what quantity
the agent should be rewarded) and those that are more complex (i.e. the reward level is
determined by a long history of sensory experiences and/or is function of abstract features
present in the sensory experiences combining all sensory modalities). This schema (i.e.
simple to complex rewards) sets a one-dimensional axis of reflection to try and classify
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motivations. On one side of the spectrum, motivations are described as extrinsic (there is a
simple link between experiences and reward), one the other side of the spectrum, motivations
are described as intrinsic (significant internal computation is required to translate experiences
in a reward signal).

In [6], Gianluca Baldassare proposes that they differ in that extrinsic motivations qualify
the drive to maintain the homeostasis of needs detected within the visceral body (the integu-
mentary, ingestive, excretory, circulatory, endocrine lymphatic and reproductive systems)
such as for example the body temperature, energy level or thirst. Intrinsic Motivations on the
other hand qualify the drive to improve skills and gain knowledge which is based on measure-
ments from inside the brain. In a second publication [7], Baldassare proposes a more general
definition: extrinsic motivations have the overall function of driving behavior and learning
towards the acquisition of material resources, while Intrinsic Motivations are processes that
drive the acquisition of knowledge and skills in the absence of extrinsic motivations.

Additionally to the distinction between intrinsic and extrinsic motivations, the literature
offers more precise classifications of the Intrinsic Motivations.

In the following, we will present a typology of Intrinsic Motivations (IM) introduced by
Jürgen Schmidhuber and a categorisation of IMs proposed by Gianluca Baldassarre. Then we
will detail a few concrete implementations. In the next Chapter, we will introduce the Active
Efficient Coding (AEC) IM and review existing work applying its principle. We will then
verify that AEC’s core idea is compatible with Deep Learning techniques, and finally we will
present an application of AEC to the learning of active vision based on Deep Learning.

4.2 Classification of the Different Types of Intrinsic Moti-
vations

Intrinsic Motivations have been studied both by the psychology branch of science, and
the computational branch. In the latter, Formal Theory of Creativity, Fun, and Intrinsic
Motivation (1990 - 2010) [122] by Jürgen Schmidhuber proposes a typology of Intrinsic
Motivations defined with respect to the description of 3 elementary components:

1. A predictor, compressor or model of the history of sensory inputs, internal states,
Reinforcement Learning signals and actions.

2. A real-valued intrinsic reward indicative of the learning progress of (1).

3. A Reinforcement Learning based agent able to maximize the future expected reward.
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Schmidhuber then proposes for each of these 3 components questions helping to further
characterize the Intrinsic Motivation. (1) What can the predictor predict? The compressor
compress? Is it deterministic or stochastic? Is the entire history of sensory experiences used
to generate the real-valued reward, or only a portion? (2) Which measure is used to indicate
the learning progress? Is the computation time of the predictor / compressor taken into
account when measuring its performance? (3) How does the system deal with the problems
of online learning and non-stationary reward?

A second classification of IM exists in the literature, distinguishing between 3 differ-
ent classes of Intrinsic Motivations. In [94], the authors propose to differentiate between
knowledge-based IMs and competence-based IMs. The first class covers all Intrinsic Motiva-
tions which encourage the acquisition of new information about the world. The second covers
Intrinsic Motivations based on measurements of the quality of an already-learned behavior.
In [10], the authors further refine the first class by distinguishing between novelty-based IMs
and prediction-based IMs. In this section, we will try to define with more details the 3 classes
of Intrinsic Motivations and give, when possible, examples of biological and computational
implementations.

4.2.1 Novelty-Based IM

Novelty-based IMs (NB-IM) aim at improving an agent’s knowledge of the world by encour-
aging it to discover new sensory experiences. This involves that the agent has a long term
memory of its past experiences, such that it can estimate the level of novelty of the current
observation. In [7], Baldassarre proposes an example of a hippocampal mechanism possibly
implementing a NB-IM. The hippocampus is an important brain structure for memorization
processes. It has been observed that simultaneous lesions to both left and right hippocampi
cause profound difficulties in forming new memories, while also partly deteriorating memo-
ries already presents before the lesion. Measurements show that the hippocampus strongly
responds to the perception of novel objects or novel arrangements of familiar items [64].
This activation in turn excites dopaminergic neurons of the ventral tegmental area, which
sends dopamine to the hyppocampus itself, reinforcing the formation of memories. It is
hypothesized that, through a dopamine delivery, the ventral tegmental area also drives the
learning of a novelty seeking behavior.

There are many examples of novelty based IMs in the computational literature [12, 39,
21, 4]. [12] proposes to define the novelty reward based on a pseudo-count mechanism.
Precisely counting how many times each state has been visited is often infeasible due to the
dimensionality of the state space and to the fact it is often continuous rather than discrete. The
authors propose to derive an approximation of the counter from a density model estimating
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the probability of being in a state. They tested their approach on 5 Atari 2600 games
acknowledged as hard, in the sense that an ε-greedy policy is inefficient at exploring them.
One of these games in particular - Montezuma’s Revenge - serves as a common IM benchmark.
The reward used is r = 1√

N(x)+ε
where N (x) is the pseudo-count of times visiting the state x,

thus rewarding the agent for visiting infrequent states.
[21] proposes a simple and innovative technique named Random Network Distillation

(RND) to estimate the familiarity of an agent with a state. In this approach, a student neural
network learns to approximate a random teacher network. The degree of proximity between
their output informs us about the frequency at which the input state has been visited. Similarly
to [12], the approach is tested on the Montezuma’s Revenge Atari game. The authors show,
that not only the agent learns to explore the entirety of the 24 rooms composing the game -
which requires to unlock doors using keys that must be found in the environment - but it also
develops interesting behaviors targeted towards enemies or items in the game.

In the 2 previous examples, the rewards are based on a life-long notion of novelty,
meaning that a state is considered new if it has never been encountered since the beginning
of training. [4] proposes an extension of [21] called Never Give Up (NGU) in which an
additional term based on an episodic sense of novelty is added to the reward. This means that
the agent is punished for visiting twice the same state within an episode - or rewarded for
visiting a state that has not been visited yet within the episode. This new reward term is based
on a memory buffer containing a representation of the last states observed by the agent during
the current episode. The newly observed state is then compared with the k-nearest-neighbors
already present in the buffer in order to derive its episodic novelty level. The publication
investigates the benefit of the additional sense of episodic novelty over the life-long sense of
novelty only.

Finally, inspiring from Maximum State-Visitation Entropy (MSVE), [39] proposes a new
reward encouraging an agent to uniformly visit all states of an MDP. Moreover, building on
the Geometry Aware Information Theory (GAIT) [32], this measurement of uniformity is
defined with respect to a measure of similarity between the states (the geometry of the state
space), discouraging the visitation of common states, ie states that are similar to many other
states. The authors further propose a simple similarity metric based on a time adjacency
principle: states that are close in time are considered similar. The approach is tested on simple
discrete and continuous MDPs and the authors compare the results with the two previously
presented IMs, Random Network Distillation (RND) [21] and Never Give Up (NGU) [4].
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4.2.2 Prediction-Based IM

Prediction-based IMs describe the interest of an agent for surprises. It is defined with respect
to the agent’s ability to predict the future, given the past and the present. In [7], Baldassarre
proposes an example of a tectal mechanism possibly implementing PB-IM in the brain
[109]. In this publication, the authors show that in a few milliseconds, unexpected events
like changes of the environment caused by an action activate the superior colliculus, which
causes phasic dopamine bursts of the substantia nigra compacta which in turn reach the basal
ganglia. They hypothesize that the dopamine signal reinforces the choice of the action that
immediately precede an unpredicted event.

The first article presenting a prediction based IM dates back from 1991 [120]. In this
publication, a controller network is trained to maximize the error of a predictior network at
every timestep. As the author comments in [122], one drawback of this approach is that in
highly stochastic environments, learning progress of the prediction model might be prevented
instead of promoted, due to the fact that the agent is drawn to focus its search on parts of
the environment where the prediction error is high. This flaw is commonly referred to as the
noisy-TV problem. This name comes from the observation that a prediction-based curious
agent like the one presented in [120] when placed in a maze explores its environment until it
finds a source of stochasticity (the noisy-TV) whithin it. To address this issue, the author
proposes in [118, 119] to focus on the improvement of the quality of the prediction model
rather than on its quality itself. Indeed, if the prediction model can not be improved it means
that either the prediction is already good or that it can not be learned. This describes well
how infants are bored by things they already understand and master or by things that they
can not apprehend.

More recently, [98] proposed an other model architecture that addresses the noisy-TV
issue. The solution consists in learning a state representation z that preserves only the
aspects of the environment that the agent can act on, leveraging the uncontrollable stochastic
features of the state. This is done in a self supervised manner through the learning of an
inverse model (a model learning which action brought the agent from state s to state s′). The
prediction model then learns to predict the next state representation z′, given the current state
representation z and the selected action a. The authors show that with this technique, the
agent is not attracted by stochasticity in the environment anymore. They demonstrate that a
curious agent can learn to play the Nitendo game Super Mario Bross without any (extrinsic)
reward coming from the game, and that it generalizes to previously unseen levels of the
game.

During my PhD, I conducted a small project implementing a prediction-based IM like
the one originally presented in [120] in a fully-deterministic, 2D, continuous world. In this
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experiment, the agent is comprised of 2 arms with 2 joints each, placed in an arena along with
3 cubes that can be pushed (see figure 4.1). The particularity of this agent is that the 2 arms
have a skin, enabling it to feel contacts with the cubes or with itself. It results that self-contacts
are relatively easy to predict compared to contacts with the cubes. In line with our prediction,
we observed that the agent learned to increase the frequency of unpredictable contacts with
the cubes, however we found that it did not reduce the frequency of predictable contacts
with itself. We also experimented with stochastic, as well as deterministic Reinforcement
Learning algorithms, and found that the results were significantly affected. In the case of
stochastic RL, the agent learned a high entropy policy consisting simply in fast stochastic
arm movements that were harder to predict due to the movement inertia of the arms. The
deterministic RL agent however suffered more from the non-stationary nature of the task
which lead to unstable training. The deterministic policies mainly consisted in synchronous
rotation of both arms in the same direction or quick repetitive motion of the arms. Figure 4.1
presents the results for the stochastic RL setup, and additionally details the effect of training
the agent to maximize, minimize, or keep the prediction error around a target value.

The Active Efficient Coding (AEC) principle, subject of Chapter 5, can also be interpreted
as a prediction-based IM. In AEC, instead of maximizing the prediction error, the agent tries
to minimize the encoding error of its sensory experiences. The agent is thus incentivized to
produce easily compressible sensory inputs.

4.2.3 Competence-Based IM

Competence-based IMs are, as the name suggests, based on a measurement of the competence
of the agent at solving a task or accomplishing a goal. It corresponds to an incentive to
do things that we’re good at or things that we can improve at, and serves the purpose of
learning what to learn and when. Competence-based IMs are mostly relevant for solving
tasks that can be decomposed in a hierarchy of sub-tasks. Indeed, often the acquisition of
a sub-skill, like placing an object at a certain location, is conditioned by the acquisition of
an other sub-skill, like grasping the object in the first place. Estimating the progress of the
acquisition of such skills enables an agent to learn to select what competence to train when.
As of this day, no biological examples of competence-based IMs are known and there are
only few examples of implementations in the computational literature. This is partly due
to the fact that they require the agent to be able to learn to solve multiple different tasks in
parallel or in a hierarchy.

The very first occurrence of CB-IMs in the literature is proposed by Andrew Barto and
Satinger Singh [11, 130] as a complement to the option framework [135]. The latter is a
formalization of Hierarchical Reinforcement Learning (HRL), which is the subject of chapter
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(a) Snapshot of the simple environment used to replicate a prediction-based Intrinsic Motivation
similar to [120]. The two arms have a skin providing the agent with haptic feedback.

(b) Agent trying to minimize the prediction error.
The frequency of contacts decreases.

(c) Agent trying to keep the prediction error
around a value of 0.01. The frequency of con-
tacts decreases but does not vanish.

(d) Agent trying to keep the prediction error
around a value of 0.015. The frequency of con-
tacts decreases but does not vanish.

(e) Agent trying to maximize the prediction er-
ror. The frequency of contacts increases.

Fig. 4.1 (a) Snapshot of the environment (b - e) Cumulative plot showing the per-iteration
probability of a contact between the 2 arms and a cube (red) or between themselves (blue),
as a function of training time. Four different training scenarios are presented: minimizing the
prediction error, maximizing it, or keeping the prediction error around a target value (0.01 or
0.015).
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6. In short, HRL is a branch of RL which aims at learning to achieve more complex tasks by
decomposing them in multiple simpler tasks that are orchestrated by a controller. In [11],
for each sub-task in the hierarchy, a model tries to predict the outcome of performing the
associated options (sub-skill). The controller then chooses among the available options and
his choice is rewarded for big prediction errors, similarly to a PB-IM. The reason why this
IM is classified as a CB-IM rather than a PB-IM is because in the present case, the quality
of the prediction also reflects the quality of the agent’s competence at doing. Indeed, the
prediction is much more accurate if the agent has learned to reliably solve the sub-task, in
which case the terminal state after completion is consistently one of the states that trigger the
option’s termination. PB-IMs on the other hand, do not measure the competence of the agent
at doing, but the competence at predicting or at improving the prediction.

Baldassarre proposes TD-CB-IM [8], a competence-based reward mechanism designed
to train a selector network for a hierarchy of actors. In this research, 3 experts learn to
accomplish elementary tasks and the selector decides at every iteration which of the experts
to call. The experiment is then divided in 2 phases. In the childhood phase, the experts
each receive an extrinsic reward and the selector gets the TD-CB Intrinsic Motivation. Then,
during adulthood, the experts stop learning and are only exploited by the selector, which now
receives an extrinsic reward. During childhood, TD-CB-IM rewards the selector for picking
an expert which produced a high TD-error. The latter indicates, when positive, that the expert
performed better than anticipated, and thus reflects the rate of improvement of the expert’s
competence. Interestingly, at the end of childhood, each expert is repeatedly chosen by the
selector until the expert completes its task. This indicates that TD-CB-IM carries relevant
information about the experts’ skills.

Finally, in Which is the best Intrinsic Motivation signal for learning multiple skills? [114],
Baldassarre presents a comparison of various prediction based and competence based IMs
applied to a 2D robotic arm learning to accomplish multiple tasks. In this setup, a selector
agent chooses between 8 experts, each learning to solve one task. 4 out of the 8 possible
tasks are not solvable, and the selector must avoid to pick the associated experts. The latter is
trained to maximize an intrinsic reward, and 15 possible IMs are compared. The results seem
to indicate that the best IM consists in the prediction error of the achivement of the task, as
opposed to the error in predicting the next state only.

4.2.4 Other IMs

More non-traditional Intrinsic Motivations that do not enter the NB / PB / CB categories can
be found in the literature. The notion of reachability for example [115], introduced in 2018,
shares attributes with all categories. In this approach, an agent tries to predict, given 2 states
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sA and sB, the probability that sB can be reached in under k steps when starting from state
sA. The agent then compares the state in which it finds itself with a short (episodic) history
of previously encountered states. A high intrinsic reward is produced if the current state is
not considered reachable from any states in the memory. This type of Intrinsic Motivation
is relatable to NB-IM in the sense that a non-reachable state (according to the reachability
prediction network) is either a completely new state, or a previously visited state for which a
shortcut (a new, shorter path) has been discovered. It is also relatable to PB-IM in the sense
that, given the history of visited states, the agent predicts if the current state was reachable.
It is then rewarded, not for making an error in the prediction like PB-IM implies, but for
reaching the current state faster than predicted.

An other interesting IM that do not entirely fit the categorization is called empowerment
[58]. It is based on an information-theoretic formalism in which actions and future sensations
are considered as an information transmission channel in the sense of Shanon. In information
theory, the capacity of a transmission channel is defined as C = supp(x) I (X ,Y ) where I (X ,Y )
is the mutual information between X and Y and p(x) the probability distribution of X . In
[58], the author proposes to define the empowerment of an agent as the capacity of the
channel between a sequence of actions and the resulting state after performing the actions. It
corresponds to the amount of information that the agent can inject into its sensors through its
actions, or, in other words, to the potential influence that the agent has on its environment.
The n-step empowerment is then defined E = maxp(at ,at+1,...,at+n−1) I (At;t+n−1,St+n) where
At;t+n−1 is a random variable representing a sequence of n actions and p(at ,at+1, . . . ,at+n−1)

its probability distribution. It results that the minimum n-step empowerment is reached if,
independently of the n actions at , . . . ,at+n−1 the resulting state is always the same state st+n

and the maximum when each different sequence of actions results in a different state st+n.
From the principle of empowerment, arise multiple meaningful behaviors. If we consider that
the agent can die, the state of being dead has by definition a single subsequent state and thus
has a very low empowerment. It follows that an agent trying to maximize its empowerment
will naturally learn to avoid death. If you now suppose that the agent has no goal or task to
complete, but knows that one might arise in the future, by maximizing its empowerment,
the agent put itself in a situation where it has a high number of possible future options.
Empowerment can be understood as some measure of preparedness. In the special case of
a 2 players game, by maximizing its empowerment and minimizing the other player’s, an
agent could learn to play games like go or chess. Indeed, at chess, maximising the number
of squares that your pieces can move to while also minimizing your opponent’s space is a
good strategy. Moreover, keeping your pieces alive increases empowerment and the game
stops when the other player does not have any moves left to play due to being checkmate. In
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[52], the authors show how an agent controlling a double pendulum in order to maximize
empowerment learns to reach the unstable equilibrium (i.e. the inverted vertical position).
In [85], the authors demonstrate a few meaningful behavior that naturally arise from the
empowerment principle. For example, an agent placed in a grid-world maze with spreading
deadly lava learns to hide and to build walls to isolate itself. An other example shows how
an empowered agent placed in an environment made of 2 rooms separated by a locked door
learns to first pick-up the key that opens the door before placing itself at the location in the
environment from which it has the most other states available, i.e. next to the door and in the
biggest of the 2 rooms. Finally, they implemented a predator-prey scenario where the agent
is being followed by the predator and show that, by maximizing its empowerment, it learns
to dodge the predator.

4.3 Conclusion

We presented a distinction between extrinsic and intrinsic rewards. We then used a existing
classification of Intrinsic Motivations to propose an overview of the research in that field.
We also provided, when possible, analogies between the computational models and biology.
As a summary, figure 4.2 shows a comparison of a few of the IMs that we detailed above.
For each, the essential components are depicted and the reward equation is given.

As pointed out in [20], where multiple IMs are compared on different gaming environ-
ments,

[The] results show surprisingly good performance, and a high degree of align-
ment between the intrinsic curiosity objective and the hand-designed extrinsic
rewards of many game environments.

This is evidence that there are general concepts, like curiosity, surprise, fun, empowerment,
that are helpful for solving a multitude of tasks. Moreover, the neuro-scientific literature
seems to corroborate this hypothesis as clues have been found, indicating that novelty-based
and/or prediction-based IMs might be implemented in the brain, notably by the hippocampus,
basal ganglia and superior colliculus.

It seems clear that, in order to better understand how learning beings adapt to their
environment, we must understand the reward mechanisms involved in that process. Although
reward delivery is triggered by external sensory experiences, the rewards originate from the
inside of the brain or the body. Thus, understanding how the brain and body convert sensory
inputs into reward signals is key to comprehend the emergence of complex behaviors. The
computational models that we presented in this section are inspired by biological systems,
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however it is true that they remain biologically implausible. Nevertheless, they offer a way
to study how biological systems might transform the sensory experiences into rewards.

In the next Chapter we will focus on an IM called Active efficient Coding (AEC) and
present its first successful implementation using deep learning methods.
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(a) In Random Network Distillation [21], a fixed,
random teacher network transforms the sensory
signal into a latent representation. A second net-
work is trained to reproduce the teacher network
and the error between both representations is
used as a reward.

(b) In a typical prediction-based IM [120, 122],
a model predicts the state resulting from taking
action a while in state s and the error between
the prediction and the true next state is used as
a reward.

(c) Here e = ||s′t − ŝ′t ||2 is the error of the pre-
diction model T . The agent is rewarded for
visiting states where the prediction model can
be improved, thus alleviating the noisy-TV prob-
lem. The improvement of the prediction model
is measured as the difference between e before
and after a weight update [118, 122].

(d) A more advanced prediction-based IM [98]
proposes to learn a sensory representation z that
contains only information about the controllable
features of the environment. This is done via
training an inverse model associating a pair of
consecutive states to the action executed while
in the first. The error of a prediction model
operating in the learned action-dependent space
serves as a reward for the agent.

(e) In Active Efficient Coding [147], the sensory
input is encoded and decoded and the negative
reconstruction error is used as a reward.

(f) A model learns to predict how many itera-
tions ci separate 2 different states [115]. The
agent is then rewarded when it is evaluated as
being ‘far’ from the recent history of states.

Fig. 4.2 Schematic overview of different Intrinsic Motivations. The states and actions
are denoted s and a. The variable z is used to refer to latent representations. The x′

notation indicates the next x (at time t +1) and the x̂ notation that the variable is a learned
approximation of the ground truth x.
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Active Efficient Coding

5.1 The Efficient Coding Hypothesis

Compared to the other organs, the brain has a relatively high energy demand. It represents
about 20% of the total energy budget of the body [24]. However, this corresponds to an
energy consumption of about 20 watts in average, making the brain very efficient energetically
compared to computers. Thus, the processing and transmission of information in biological
systems is both expensive compared to the energy available, and efficient compared to
artificial systems. This suggests that, throughout evolution, the brain has been optimized to
save energetic resources. To do so, it must have discovered a way of efficiently transmitting
and processing information. Influenced by Claude Shannon’s information theory, the neuro-
scientist Horas Barlow proposed in 1961 a hypothesis stating that the transmitted information
in the brain is encoded prior to be sent in order to minimize the number of action potentials
required for the transmission [9]. This hypothesis is called Efficient Coding.

Since 1961, further evidences have been found in favor of Efficient Coding. [92] for
example shows that filters optimized for sparsely coding natural images resemble the receptive
fields of simple-cells found in the visual cortex V1. The same observation has been made
for the auditory domain, where networks optimized to encode natural sounds resemble the
impulse response of cochlear filters in the inner-ear [70].

5.2 Efficiently Encodable Behavior

Multiple scientific evidences show that the brain uses an internal code to both extract
knowledge from the sensory experiences and minimize the amount of energy needed to
transmit information. This code thus depends on the subject’s sensory experiences, which
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themselves depend on the environment and on the behavior of the subject within it. This
naturally raises the question, can the subject’s behavior be optimized so as to produce easily
encodable, low energy cost sensory experiences?

This idea forms the basis of an extension of the Efficient Coding hypothesis, called Active
Efficient Coding (AEC). Starting in 2012, researches have been conducted to implement the
principle of AEC as an Intrinsic Motivation that would shape the emergence of active vision.
Active vision refers to the ability to move the eyes in order to better focus the attention on
the surroundings. It is a cornerstone in the early stages of brain development, facilitating the
learning of other abilities. It includes the learning of vergence and cyclovergence fixations,
enabling stereopsis, and the learning of pursuit of objects in 3 dimensions.

The first paper about AEC [157] presents how this principle can drive the learning of
vergence control only. Intuitively, the visual information reaching the eyes is the easiest to
encode when the images on the two retinas are the same. In that case the encoding of one of
the two images is sufficient to recover both. On the contrary, if the images are completely
different, both must be encoded resulting in a bigger message to be transmitted. This
information theoretic principle is the subject of the previous Chapter 3, Learning Abstract
Representations through Lossy Compression of Multi-Modal Signals. The authors of [157]
propose to use the Matching Pursuit (MP) algorithm [78] to encode two images jointly while
sampling the disparity between the two images (i.e. the horizontal shift in pixels) from a
known distribution with 0 mean. The results of this experiment show that for all disparity
distributions, the binocular images with 0 pixels disparity are the best reconstructed and the
pairs with the biggest absolute disparities are the less well reconstructed. Moreover, the
results show that this effect is more pronounced if the disparity distribution has a low standard
deviation. The authors then propose to use the reconstruction quality as the intrinsic reward
of a Reinforcement Learning algorithm, associating the learnt visual code to a vergence
command corresponding to a relative shift between the two images. This experiment is
performed both given a fixed, already learnt, binocular image encoding and in an online
fashion, where the code is learnt at the same time as the vergence controller. In both cases,
the agent learns to cancel out the initial vergence disparity from which it is initialized at
the beginning of each episode. Note how the AEC-IM is similar in nature to the prediction
based IMs [118–120] quoted above. In the present case, instead of predicting the future
sensory input given the current one, the agent only encodes and decodes the current visual
information.

The encoding mechanism, implemented by the Matching Pursuit algorithm, jointly
encodes left/right patches of size 10× 10 pixels taken from the left/right input images.
Technically, this imposes that the Reinforcement Learning agent can not see vergence
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disparities bigger that 10 pixels. If we assume that the images are taken from standard
low-resolution cameras, one pixel covers an angle of about 0.3° in the field of view and
therefor the agent can not resolve disparities bigger than 0.3×10 = 3.0°. To overcome this
limitation, and inspired by the human visual system, [73] and [74] propose to encode the
visual information at 2 different spatial scales. This is done by training 2 matching pursuit
algorithms in parallel, each encoding the input binocular image at a different resolution. The
two scales are referred to as the fine and coarse scales. While the fine scale still encodes
pixels which cover an angle of 0.3°, the coarse scale now encodes pixels covering 2.4°. This
enables the agent to perceive vergence disparities of up to 2.4× 10 = 24.0°. This second
approach has been ported on a real robotic head and the authors report the resilience of this
method to external perturbations in order to demonstrate its robustness.

An other research [56] applies the AEC principle to the learning of vergence on a bio-
mechanical model of the eyes simulating the eye muscles. The vergence motion of the
human eyes is controlled by two antagonist muscles for each eye. It results that a given eye
position can be accomplished by many muscle contraction intensities. The authors show
that while this redundancy does not alter the performance of the AEC principle, by adding
a penalty term to the reward discouraging high metabolic demands from the muscles it is
possible to learn to perform vergence control using the minimum energy. In a second paper
[57], the authors use this model to study the development of active binocular vision under
alternate rearing conditions. The approach models how impaired vision induces a change in
the distribution of disparity tuned cells in the visual cortex and how it affects the learning of
vergence control.

Next, [162] integrates cyclovergence, an additional type of eye movement, to the con-
troller and shows that the AEC principle generalizes well. Cyclovergence consists in inwards
and outwards rotations of both eyes around the line of view. Cyclovergence motions are par-
ticularly relevant for accurately fixating close objects situated above or bellow the horizontal
plane.

Building on these researches, [156, 143, 137, 68] show how the AEC principle can
also guide the learning of object tracking in time. This is done by encoding sequences of
binocular pairs instead of a single pair, thus encouraging the agent to behave so as to produce
temporally and binocularly constant images. In [155], the AEC model has been used to
model a reflex called optokinetic nystagmus. It is the response of the visual system to a
constant relative motion and is composed of two phases. The first phase consists in a simple
tracking behavior in the direction of movement of the stimulus, and the second phase is a
rapid saccadic movement in the opposite direction. Optokinetic nystagmus is often observed
when looking sideways out of a moving vehicle.
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Further extending the model, [160] proposes an attention mechanism called LBAIM based
on information maximization interspersing object fixation phases with saccadic movements.
The authors show that when augmented with this attention mechanism, the agent performs
saccades to regions of the scene with a high relative binocular disparity so as to maximize
the self-information of the perceived visual observation. Moreover, the system trained with
attention shows a quicker learning compared to agents trained when performing random
saccades or when performing saccades based on other attentional heuristics. In a follow-up
paper [159], the authors propose a clever strategy to learn the attention model instead of
relying on the LBAIM heuristic. It is based on an Intrinsic Motivation antagonist to the AEC,
aiming at maximizing the reconstruction error after the saccade. Again, the learning speed of
the agent using the LBAIM, the learned attention and random saccades are compared and
the results show that both LBAIM and the learned attention yield faster learning. Finally, in
[161] the authors combine this learned attention model with the learning of a cyclovergence
controller similarly to [162].

In the AEC models presented so far, the agent’s eye movements are rewarded for mini-
mizing the loss of information taking place in the encoding process. This formulation lets the
possibility to the agent to minimize the entropy of the visual sensory information, for example
by closing its eyes or looking at a uniform color. This issue is referred to in the free energy and
predictive processing literature as the “dark room problem”. [29] proposes a new definition
of AEC based on the maximization of the mutual information MI (S,C) = H (S)−H (S|C)

between the sensory information and its encoding. In this approach, a vergence control
system is rewarded for minimizing the term H (S|C) while an accommodation control system
learns to maximize the term H (S). This results in successful joint learning of both vergence
and accommodation. Combined with a model of interocular suppression, the resulting model
can be used to study the development of amblyopia, a disorder of the visual system that is
characterized by an interocular difference in visual acuity. The results show that the recovery
from an amblyopia-like state is possible if the receptive fields in the model remain plastic.

In this Chapter, we will present a modern implementation of the AEC principle that

1. replaces the Matching Pursuit algorithm by Deep Auto-Encoders for jointly learning a
sensory representation and generating an intrinsic reward signal, and

2. combines the work in [156, 143, 137, 68] and in [162] to achieve the joint learning of
vergence fixation, cyclovergence fixation and smooth pursuit (i.e. object tracking).

First, we will conduct a study similar to the one in [157] presented above, showing how
the agent’s input statistics affect the quality of the reconstruction of a Deep Auto-Encoder.
Additionally, much like [73, 74], we will show the effect of using multiple spatial scales.
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Finally we will exploit these results to generate an intrinsic reward signal that will drive the
acquisition of the vergence, cyclovergence and tracking skills.

5.3 Efficient Auto-Encoding of Binocular Pairs with Con-
trolled Error Statistics

5.3.1 Introduction

We presented the Efficient Coding hypothesis and its extension Active Efficient Coding and
reviewed existing computational models of AEC. The latter are all based on the Matching
Pursuit algorithm [78] or on the GASSOM algorithm [22] which have been used as models of
the response of cortical neurons. In the field of developmental robotics however, architectures
are more often based on deep networks.

Therefore, in the current section we will try to answer the following questions:

1. Can we use a Deep Auto-Encoder based algorithm instead of the Matching Pursuit
algorithm in order to generate an Active Efficient Coding Intrinsic Motivation?

2. Can the Deep Auto-Encoder based IM drive simultaneously the acquisition of vergence,
cyclovergence and smooth pursuit (i.e. tracking)?

3. What is the effect of using one vs. multiple spatial scales?

Before presenting our approach, we will briefly introduce the parvo- and magno-cellular
pathways of the visual system.

5.3.2 Parvocellular vs. Magnocellular Pathways

The visual system is one of the oldest component of the human brain. It is believed that the
emerging of the eyes precedes that of the brain in the phylogenetic tree of life [33]. Vision is
deeply anchored in the human’s neural system. Understanding the development of active
vision in infants necessitates to study the inner working of the neural visual stream.

Initially, photons are transformed into electrical signals at the retina of each eyes. The
information then travels along the optic nerves, which cross at the optic chiasma. There, the
left eye / right eye separation of the information changes to a left visual scene part / right
visual scene part separation, as half of the optic fibers from each eye do not cross the body
mid-line (see Fig. 5.1). From there, the information is projected onto the Lateral Geniculate
Nucleus (LGN). In the LGN, we will differentiate in particular two types of cells. The firsts
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Fig. 5.1 Human visual system from the retina to the visual cortex V1. Information from
similar regions of the visual scene is joint in the optic chiasma and tagged with velocity
information in the LGN before it projects onto the visual cortex. Figure by Miquel Perello
Nieto licensed under the Creative Commons Attribution-Share Alike 4.0 International license.

are the parvo-cellular cells. They carry the visual information like colors with a fine spatial
resolution, but with a coarse temporal resolution. The seconds are the magno-cellular cells.
As opposed to the parvo-cellular cells, they encode information about the speed of objects
in sight with a finer resolution, but with a coarse spatial resolution. Finally, from the LGN,
neurons project onto the visual cortex V1 where information from both eyes is combined. In
V1, some cells have the property of encoding the apparent vergence disparity resulting from
the incorrect vergence fixation of the presented stimulus.

In our model of AEC, we will also differentiate between 2 pathways of information which
we call parvocellular and magnocellular. The parvocellular pathway conducts binocular
frames coming from the two eyes, while the magnocellular pathway conducts pairs of
consecutive binocular frames, thus capturing temporal information like the speed of the
objects in sight.

5.3.3 Methods

In order to analyse the properties of Deep Auto-Encoders when applied on binocular data,
we simulated 2 eyes separated by 6.8 cm within the robotic simulation software CoppeliaSim
(previously named V-REP) and using the python API PyRep [49]. Following the work from
[73, 74], each of the 2 eyes is composed of multiple cameras with different opening angles
and operating at different resolutions in order to simulate different “spatial scales”. This
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way, we can emulate in simulation how the human visual acuity decreases as we move away
from the fovea. In front of the 2 eyes, we placed a square-shaped screen on which we can
programmatically apply different textures. The screen can be placed at any distance from the
2 eyes and can move in any direction at a controlled uniform speed.

The 2 eyes have the following 4 degrees of freedom:

• pan: joint horizontal movement of the two eyes

• tilt: joint vertical movement of the two eyes

• vergence: inward and outward movement of the two eyes

• cyclovergence: inward and outward rotation of the two eyes around the line of gaze

In the reminder, we will refer to the pan, tilt, vergence, and cyclovergence degrees of
freedom as joints.

Note that, in order to perform vergence and cyclovergence fixation, the agent must find
the correct vergence and cyclovergence angles that will focus the attention of the agent on
the screen, while in order to perform tracking, the agent must find the pan and tilt angular
speeds that match the angular speeds of the screen. There is thus a difference in nature
between the vergence / cyclovergence joints and the pan / tilt joints. The first operate on
absolute angles while the second operate on angular speeds. In our model, this is reflected in
the two pathways of information. The parvocellular pathway controlling the vergence and
cyclovergence angles has no information about speeds (it encodes single left / right binocular
pairs), while the magnocellular pathway does represent temporal information as it encodes
jointly 2 consecutive left / right binocular pairs. In practice, the 2 frames (parvocellular)
or 4 frames (magnocellular) are concatenated together along the color dimension prior to
be encoded. This concatenation step is analogue to the cross-over taking place at the optic
chiasm and the information split taking place at the LGNs (see Fig. 5.1). Indeed, the
information from each retina is separated in 4 quadrants (NE, NW, SE, SW) in 2 consecutive
steps. First at the optic chiasm the left eye / right eye information separation becomes a East
quadrants / West quadrants separation. Next, at the LGNs the information stream is split in
two pathways: one for the northern and one for the southern quadrants. This way, as the
information reaches V1, the information from corresponding quadrants from the 2 retinas are
superimposed.

In the current section, although we needed to explain the difference in nature between the
2 types of joints (parvo/magno-cellular), we will not concern ourselves with the generation
of motor commands (this is the subject of section 5.4). The current section will deal with the
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learning of a representation that we can use to derive an IM. More precisely, in this section
we aim at highlighting the property that for each of the 4 joints, the acuity of the agent’s
mental representation is the highest when the joint errors equal zero. Or in other words, we
aim at showing that the smallest possible reconstruction error of the Auto-Encoder is reached
when the joint errors equal zero. Joint errors are defined as the difference between the angle
or angular speed of the joints and the corresponding angle or angular speed of the screen

ep = α̇p− ṡp for pan, (5.1)

et = α̇t− ṡt for tilt, (5.2)

ev = αv− sv for vergence and (5.3)

ec = αc− sc for cyclovergence (5.4)

with α and α̇ the joints angles and angular speeds, and s and ṡ the position vector and speed
vector of the screen expressed in the referential of the eyes. Note that for the cyclovergence,
the value sc denotes the cyclovergence angle of the eyes that would achieve the best fixation
of the screen. This value is not trivial to obtain, so we limited our performance measurements
to the case when the screen is at the same height as the eyes, in which case sc = 0 and as a
consequence, ec = αc.

For each of the 4 joints, our approach is composed of 3 steps. First we will generate a
dataset with controlled error statistics, then we will train Deep Auto-Encoders at different
spatial scales to encode the samples from this dataset, and finally we will verify that the
expected property is true using a validation dataset.

Step 1: Constructing the Training Datasets

A training dataset in our experiment is determined by a tuple (J,S,σ ,N) with

• J ∈ {pan, tilt,vergence,cyclovergence} characterizing for which joint the dataset is
constructed

– if J ∈ {vergence,cyclovergence}: the dataset consists in binocular pairs
(IL, IR)

– else if J ∈ {pan, tilt}: the dataset consists in temporal binocular pairs
(IL,t−1, IR,t−1, IL,t , IR,t)

• S =
(
S0, . . . ,S|S|

)
is a list of tuples Si = (αi,ri), each describing the properties of a

“spatial scale” and with αi the camera opening angle and ri the height/width resolution
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of the camera in pixels. In practice, we never used more than 2 spatial scales, and
we will therefore replace the indexing Si with the notation Sfine or Scoarse. We used
αfine = 9.0° and αcoarse = 27.0°, rfine = rcoarse = 32px.

• σ represents the standard deviation of a zero-centered gaussian from which the error
of the joint J is sampled. All other joint errors are set to 0.

• N represents the size of the dataset.

The algorithm 5.1 describes how the training dataset samples are generated. In prac-
tice, we generated the combinations of training datasets (J,(Sfine,Scoarse) ,σ ,10000) for all
J ∈ {pan, tilt,vergence,cyclovergence} and all σ ∈ {0,1,2,4,8,16}, resulting in 24 distinct
datasets.

Algorithm 5.1: Generating a new sample for a training dataset
place the screen at a random distance d ∼U (0.5,5) ;
reset the vergence joint such that the eyes fixate the screen ;
reset the cyclovergence joint to an angle of 0.0° ;
reset the pan and tilt absolute angle and angular speed to 0.0° and 0.0°.s−1 ;
sample the joint error e∼N (0,σ) ;
if J is pan then

(IL,t−1, IR,t−1)← retrieve binocular pair ;
move the screen by e pixels horizontally ;
(IL,t , IR,t)← retrieve binocular pair ;
S← (IL,t−1, IR,t−1, IL,t , IR,t) ;

else if J is tilt then
(IL,t−1, IR,t−1)← retrieve binocular pair ;
move the screen by e pixels vertically ;
(IL,t , IR,t)← retrieve binocular pair ;
S← (IL,t−1, IR,t−1, IL,t , IR,t) ;

else if J is vergence then
move the vergence angle by e pixels ;
(IL, IR)← retrieve binocular pair ;
S← (IL, IR) ;

else if J is cyclovergence then
move the cyclovergence angle by e degrees ;
(IL, IR)← retrieve binocular pair ;
S← (IL, IR) ;

add the sample S to the dataset ;
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Step 2: Training the Deep Auto-Encoders on the Dataset

Let v =
(
v0, . . . ,v|S|

)
denote one of the two visual sensory information streams (parvo- or

magno-cellular) with vi the information from the spatial scale indexed i. For each spatial
scale, let Ei and Di be, respectively, the encoder and decoder parts of an Auto-Encoder, such
that

si = Ei (vi,θEi) and (5.5)

ṽi = Di (si,θDi) , (5.6)

with si representing the encoding of vi and ṽi its reconstruction. The loss function for training
the encoder and decoder weights θEi and θDi - also called the reconstruction error - is defined
as the mean pixel-wise MSE

li =
1

3Npixels
∑(vi− ṽi)

2 (5.7)

The mean total reconstruction error is defined

l =
1
|S|∑i

li (5.8)

The auto-encoder for each scale corresponds to a 3-layered fully-connected network
encoding patches of size 8× 8 pixels. This patch-wise autoencoder is implemented as a
convolutional neural network with filter size 8×8 in the first layer and 1×1 in the following
layers. More details about the Auto-Encoder architecture can be found in the appendix in
table B.1.

The network is trained on 50.000 batches of data of size 64 samples taken at random in
the training dataset.

Step 3: Constructing a Testing Dataset for Measuring the Performance of the Deep
Auto-Encoders

Once the Auto-Encoders have been trained on the dataset, we are interested in measuring
the mean reconstruction errors li of the networks as a function of the joint errors. To this
end, we constructed for each joint a testing dataset comprised of (images, joint error) pairs.
Algorithm 5.2 summarizes how the testing datasets are obtained.
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Algorithm 5.2: Constructing the testing dataset
place the screen at a fixed distance d = 2.5m ;
reset the vergence joint such that the eyes fixate the screen ;
reset the cyclovergence joint to an angle of 0.0° ;
reset the pan and tilt absolute angle and angular speed to 0.0° and 0.0°.s−1 ;
for e← emin to emax by estep do

else if J is vergence then
move the vergence angle such that the vergence error equals e pixels ;

else if J is cyclovergence then
set the cyclovergence angle to e degrees ;

for each texture do
apply current texture on the screen ;
if J is pan then

(IL,t−1, IR,t−1)← retrieve binocular pair ;
move the screen by e pixels horizontally ;
(IL,t , IR,t)← retrieve binocular pair ;
S← (IL,t−1, IR,t−1, IL,t , IR,t ,e) ;
move the screen by e pixels in the opposite direction ;

else if J is tilt then
(IL,t−1, IR,t−1)← retrieve binocular pair ;
move the screen by e pixels vertically ;
(IL,t , IR,t)← retrieve binocular pair ;
S← (IL,t−1, IR,t−1, IL,t , IR,t ,e) ;
move the screen by e pixels in the opposite direction ;

else if J is vergence or J is cyclovergence then
(IL, IR)← retrieve binocular pair ;
S← (IL, IR,e) ;

add the sample S to the dataset ;
end

end
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(a) - fine scale - Reconstruction error lfine of the fine scale Auto-Encoder as a function of the joint
errors.
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(b) - coarse scale - Reconstruction error lcoarse of the fine scale Auto-Encoder as a function of the
joint errors.
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(c) - both scales - Reconstruction error l of the fine and coarse scale Auto-Encoders as a function of
the joint errors.

Fig. 5.2 Reconstruction errors (a) lfine (b) lcoarse and (c) l as a function of the joint errors ep,
et , ev and ec for varying distributions of the joint’s error in the training dataset.
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5.3.4 Results

Figure 5.2 summarizes the results when training the fine and coarse Auto-Encoders on each
of the datasets. Figure 5.2a shows the reconstruction error lfine of the fine Auto-Encoder as a
function of the joint errors ep, et , ev and ec for each standard deviation σ . The joint errors
are measured in pixels, rather than in degrees for the sake of clarity. For a camera angle
of 9° and a resolution of 32 pixels, 1px = 9

32 = 0.28125°. Figure 5.2b presents the same
results but for the coarse Auto-Encoder. The joint errors for the coarse scale are expressed
in the same unit as the fine scale, meaning that the errors are measured in fine-scale pixels
(0.28125°), and not in coarse-scale pixels (27

32 = 0.84375°). Finally, figure 5.2c shows the
results for both spatial scales. Note that in all cases, the angles for the cyclovergence joint
are always expressed in degrees. A rotation of 2° of the cyclovergence joint correspond to
the rotation of both eyes by 1° in opposite directions.

In line with our predictions, the curves present a characteristic V-shape centered around
0, confirming that the minimum reconstruction error is reached when the joint errors are
minimum. Moreover, the plots display clearly that this property is further reinforced when
the proportion of samples in the training dataset with small joint errors increases (i.e. when
σ decreases). This implies that in the online setting (i.e. when the eyes are controlled by a
learning RL agent), as the agent learns to cancel out the joint errors, the V-shape profile of
the reconstruction error gets reinforced.

Finally, by comparing the measurements obtained for the fine and coarse scales, we can
confirm the observations made in [73, 74] about the effect of using different scales. The fine
scale’s preference for smaller joint errors is more pronounced than that of the coarse scale,
while the coarse scale captures a wider range of apparent disparities.

5.3.5 Conclusion

In Chapter 3 we showed the general property of learned encoding algorithm to preferentially
retain redundant information. In this Section we showed that this applies in particular to the
encoding of binocular pairs with varying disparities. In the next section, we will define an
intrinsic reward that will encourage the agent to produce movement commands that lower
the resulting reconstruction error. Fig. 5.2 shows that the optimal policy wrt. this intrinsic
reward should learn to minimize all joint errors, that is, to fixate the screen, to track it in time
and to perform correct cyclovergence control.
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Fig. 5.3 Left / right anaglyph of the two eyes before (left) and after (right) a fixation movement.
The images from the left and right eyes are converted to grey scale and then superimposed as
two color channels of a single image.

5.4 Active Efficient Coding with Deep Autoencoders

In this section, we will derive an intrinsic reward signal from the measurements obtained in
the previous section, and quantify the performance of the resulting emerging behavior. This
work is an extension of our publication for the International Conference on Development
and Learning in 2020 called Self-Calibrating Active Binocular Vision via Active Efficient
Coding with Deep Autoencoders [147].

5.4.1 The Model

Sensory Encoding Via Deep Autoencoders

When the two eyes verge on the same point, the foveal regions of the two retinal images
become more and more similar. As a consequence, the mutual information between the left
and right foveal image representations MI(IL, IR) for a given disparity d increases as d goes
to 0. It indicates how redundant the left and right images are and reflects the quality of the
fixation. Similarly, tracking a moving object can be achieved by maximizing the information
redundancy of the foveal image region across time by maximizing MI(It , It−1) (for one or
more eyes).

Accordingly to the experiment presented above, we propose to measure the redundancy
in the visual data via training an Auto-Encoder, following the hypothesis that an information
stream is better reconstructed when it is more redundant (see the offline measurements in
Figs. 5.2, and the online measurements in Fig. 5.5). The first advantage of this technique is
that it is agnostic to the underlying data representation (for example the RGB channels in left
and right data streams could be expressed in different bases or be non-linearly transformed, as
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Fig. 5.4 Architecture of the model. Two regions are extracted at the center of the left / right
camera images and encoded. The condensed representation is used to train the Q-function.
The latter is trained to maximize the reward, which is proportional to the improvement of the
reconstruction error of the encoder.

only the data redundancy truly matters). This makes the system robust to noise and hardware
failures. The second advantage of this technique is that it learns a condensed representation
of the sensory information which can be used by other learning components of the system.
Such lossy compression of information may be essential for learning abstract representations
at higher processing levels. Finally, as discussed in section 3.5.3, the algorithm could also
exploit highly non-linear redundancies between different sensory modalities, given that
the encoding network is sufficiently deep such that it captures these redundancies. This
could enable to model behaviors related to multimodal contingencies: the resulting agents
would learn behaviors directed toward the acquisition of information simultaneously through
multiple sensory modalities, like for example by simultaneously looking at an object and
touching it. This kind of IM could serve as a basis for modeling the emergence of visuo-motor
contingencies.

Similarly to before, let v =
(
v0, . . . ,v|S|

)
denote one of the two visual sensory information

streams (parvo or magno-cellular) with vi the information from the spatial scale indexed i.
Again, for each spatial scale, let Ei and Di be, respectively, the encoder and decoder parts of
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an Auto-Encoder, such that

si = Ei (vi,θEi) and (5.9)

ṽi = Di (si,θDi) , (5.10)

with si representing the encoding and ṽi its reconstruction. The loss for training the Auto-
Encoder for the scale i is the scale’s mean reconstruction error

li =
1

3Npixels
∑(vi− ṽi)

2 (5.11)

and the mean total reconstruction error for all scales is defined

l =
1
|S|∑i

li (5.12)

.
Additionally, we will define the compressed visual information representation as the

union of all the sis

s =
(
s0,s1, . . . ,s|S|

)
(5.13)

= E (v,θE) (5.14)

The notation E (.,θE) is used to denote the union of all encoders Ei (.,θEi).

Intrinsically Motivated Reinforcement Learning Formulation

We consider the classical Markov decision process framework, where at discrete time
t = 0,1,2, . . . an agent observes sensory information st = E (vt ,θE) and chooses action
at according to the distribution π (at |st). After applying the action, the agent transitions to a
new state according to a transition function st+1 = T (st ,at), and receives a reward rt . While
Reinforcement Learning classically considers a reward provided by the agent’s environment
through a potentially stochastic reward model, we here define an intrinsic reward based on
the agent’s sensory encoding of its environment. Specifically, we define the reward

rt =C (lt− lt+1) , (5.15)

where C is a scaling factor. This reward signal measures the improvement of encoding quality,
i.e., it favors movements that cause transitions from high to low reconstruction error of the
Auto-Encoder representing the visual input.
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The goal of Reinforcement Learning is to learn a policy function π that maximizes the
(discounted) sum of future rewards Rt called return

Rt =
∞

∑
i=0

γ
irt+i (5.16)

Where γ is a discount factor in [0,1] ensuring the convergence of the reward sum. In this
particular application of Reinforcement Learning, the agent does not need to plan ahead his
behavior, consistent with our observation that the algorithm works best for γ = 0.

RL-Algorithm

We opted for a synchronously parallelized version of the DQN algorithm [83, 82]. It consists
of a Q-value function approximation

q =

q0
...

qn

= Q(s,θQ) , (5.17)

where q j represents an estimate of the return after performing discrete action j in state s
and n is the number of possible actions. The loss for training the Q-function is the Huber
loss between the estimate and the return target [46]. Exploration during the training phase is
performed via an ε-greedy sampling.

The critic network Q can be described in 2 parts. The first part operates individually on
each scale. It is composed of a convolutional layer followed by a pooling layer. The results
are then flattened and concatenated before being processed by 2 fully-connected layers in the
second part. More details about the critic network architecture are given in the appendix in
Tab. B.1.

5.4.2 Experimental Setup

Experiments were divided in episodes of 10 iterations. At the beginning of each new episode,
a random screen distance is uniformly sampled in [0.5,5](m), a random screen speed is
sampled in [0,4](px/iteration), a random movement direction is sampled in [0,360] (deg),
the vergence joint of the robot is reset such that the agent gaze focuses at a random distance
sampled in [0.5,5](m) and the cyclovergence angle in sampled in [−5,5](deg). A new texture
for the screen is chosen at random amongst natural stimuli taken from the McGill Calibrated
Color Image Database [91].
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All networks are trained using the Adam algorithm [55] with a learning rate of 5.10−4.
We use a value of ε = 0.05 for the ε-greedy sampling. Each time an episode is simulated, all
its transitions are placed in a replay buffer of size 1000 and a batch of data is then sampled
uniformly at random from the buffer for training the networks. We use a batch size of 200. In
practice, we implemented hardware acceleration by parallelizing the data collection following
the principle of synchronous Reinforcement Learning. We used a pool of 20 simulations
in parallel for gathering training data, and we found that the size of the pool has almost no
effect on the normalized training speed of the algorithm.

The pan, tilt and vergence joints used the same following action discretization:[
−4,−2,−1,−1

2 ,0,
1
2 ,1,2,4

]
px/iteration2 (pan and tilt), px/iteration (vergence). The

action-set for the cyclovergence joint is [−3.58,−1.79,0,1.79,3.58] degree/iteration. The
vergence angle of the robot’s eyes is constrained between 0° (parallel optical axes of the two
eyes) and 20° (inward rotation of each eye by 10°) and the cyclovergence angle between
−10° and 10°. The pan and tilt joints are constrained to remain in [−10°,10°].

At regular intervals, the training is paused, and the agents’ performances are measured.
For evaluating the agents’ performances, we gather two sets of data at each testing step.
One, the controlled-error set, gauges the performance of the agents under defined apparent
disparities. This is the same as the testing dataset that we used in the previous section.
The other, the behaviour set, measures how the policies of the agents recover from initial
disparities. All measurements are repeated for 20 stimuli displayed on the screen 2 m away
from the eyes of the robot. To construct the controlled-error set, we simulated various pan,
tilt and vergence errors by manually setting the speed of the screen and the vergence angle of
the eyes. Only one joint was tested at a time, meaning that the errors for all other joints were
artificially set to 0. We then recorded the reconstruction errors of the fine and coarse scales
and the agents’ preferred actions. The behaviour set is the recording of 20 iterations of the
agents’ behaviour, starting from controlled initial pan, tilt, cyclovergence or vergence errors.

5.4.3 Results

For successful learning, the pan, tilt, vergence and cyclovergence errors must become
reflected in the reconstruction errors of the encoders, as explained in Section 5.3. We start
by analyzing the reconstruction errors of the encoders for every pan, tilt, vergence and
cyclovergence error in the online setup, similarly to the previous study conducted with
controlled joint error statistics. Figure 5.5 shows that for each joint, the reconstruction
error is minimal when the absolute joint error is minimal. In particular, Fig. 5.5 shows
the reconstruction error for each individual stimulus displayed on the screen (in blue) and
the average for all stimuli (in red). Repeating the same analysis using random weights for
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Fig. 5.5 The autoencoders’ reconstruction errors averaged across the two scales as a function
of the pan, tilt, vergence and cyclovergence error. Each blue curve corresponds to a different
stimulus displayed on the screen. The red curve represents the mean. For each plot, the error
for the two other joints is set to 0.

the encoder and decoder shows no difference in the reconstruction quality for low or high
absolute errors (the mean error curve is flat instead of being V-shaped, with values around
0.27, not shown). The characteristic V-shaped curves are a consequence of both learning
a compact code of the visual input and adapting the behavior to shape the statistics of the
visual input [158], as shown in Fig. 5.2.

To show the precision of the learnt policies, we represent for each joint the probability of
selecting each possible action in the action set as a function of that joint’s error in Fig. 5.6.
The diagonal shapes in the three policies indicate that the model has learned to accurately
compensate for any pan, tilt, vergence and cyclovergence errors.

To show the speed at which the algorithm converges, Fig. 5.7 plots the average testing
error at the end of episodes, that is, after 10 iterations, as a function of training time. The
testing absolute error is measured at regular intervals as the mean absolute joint error, starting
from initial errors taken in [−4;4] px (vergence) or px/iteration (pan and tilt). The initial
cyclovergence errors are taken in [−5;5] degrees.

Finally, to show how quickly and accurately the algorithm fixates objects and tracks them,
Fig. 5.8 shows the mean accuracy and its standard deviation, during 20 consecutive iterations,



90 Active Efficient Coding

Fig. 5.6 Probability of choosing each action in the action sets as a function of the pan, tilt,
vergence and cyclovergence errors. For each subplot, the error for the three other joints has
been set to 0.
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Fig. 5.7 Reduction of errors with training time. The red curves represent the median absolute
error for each joint. The shaded regions show the distribution of the absolute error. The
dotted horizontal line shows the theoretical precision limit of 1 px/iteration (pan and tilt) or
px (vergence). All joints display sub-pixel fixation accuracy.
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Fig. 5.8 Rapid object fixation and tracking. This figure represents the joint errors as a
function of the iteration number within an episode. Similarly to Fig. 5.7, the coloured regions
indicate the distribution of the joit errors. The red curves show the mean absolute error.
The dashed lines represent the [−1,1] px (vergence) or px/iteration (pan and tilt) interval.
Pan, tilt, vergence and cyclovergence errors are decreasing quickly during one episode and
typically reach sub-pixel levels in one or two steps. The shaded region indicates one standard
deviation.

starting from evenly spaced errors in [−4,4] px (vergence) or px/iteration (pan and tilt) and
[−5;5] degrees (cyclovergence). Subpixel error levels are typically reached in just one or
two iterations despite the discrete action set. Note that an error of, e.g., 3 pixels cannot be
reduced to zero in a single step because the two closest discrete actions of 2 pixels and 4
pixels would both lead to a remaining error of 1 pixel.

5.5 Conclusion

In this Chapter, we first presented Efficient Coding and its extension, Active Efficient Coding.
We then reviewed existing work in the literature implementing the AEC principle. We
proposed to replace the Matching Pursuit encoding algorithm by a more modern Deep
Auto-Encoder. To this end, and in line with the research presented in Chapter 3, we first
verified the property that an increase of the redundancy in the input sensory information
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leads to an improvement of the encoding quality. We then exploited this property to define
an Intrinsic Motivation for training a RL algorithm. The results show that the resulting agent
autonomously learns to perform accurate vergence and cyclovergence fixation, as well as to
track moving objects.

Follow-up work could investigate the benefit of differentiating through the critic loss, back
to the encoder part of the Auto-Encoder. Since the apparent disparities are a predominant
factor in order to predict the actions’ values, we can anticipate that optimizing the weights of
the encoder so as to also minimize the critic loss would have the effect of reinforcing the
features that encode disparities in the learned representation.

Next, it would be interesting to compare the AEC-IM with the Prediction-Based IM
proposed by Schmidhuber in [118–120, 122]. In these research, the agent learns to maximize
its own error at predicting the near future. In theory, PB-IMs could be used for learning
tracking of object, by rewarding the agent not for making big prediction errors, but rather
for making accurate prediction of future observations. It is unclear however if the same
kind of IM would also suit the learning of vergence and cyclovergence control. Indeed,
predicting the next binocular pair is the easiest when the 2 eyes do not move. However, a
such temporal PB-IM could also yield successful vergence and cyclovergence fixation if
the loss in prediction quality engendered by the eye movement is compensated by a gain
in reconstruction quality due to the increased redundancy in the left / right pair. For these
two joints, an other kind of PB-IM similar to the cross-modality prediction presented in
Chapter 3 could be used. The agent would then be rewarded for accurately predicting the left
frame given the right frame, and vice-versa. As we have shown in the previous Chapter, the
cross-modality prediction scheme tends to extract the mutual information between multiple
information fluxes. Thus the magnocellular pathway would aim at maximizing the mutual
information between 2 consecutive binocular pairs, while the parvocellular pathway would
maximize the mutual information between the left and right frames within one binocular pair.

Finally, combining the work from Chapters 3 and 5, one could investigate the potential
of Intrinsically Motivated visuo-motor coordination. By exploiting the fact that when an
agent sees its own arm, some information is shared between the proprioceptive and visual
modalities (see Fig. 3.6), one could try to develop an AEC-IM or a PB-IM that would
encourage the agent to seek for this shared information. Foreseeably, such an agent would
learn to look at the part of its arm that gives it the most information about its position, i.e.
the wrist or the hand. Combined with AEC applied to binocular vision, the agent would
potentially learn to fixate its hand, and pursue it as it is moving, enabling to learn to represent
the world around itself in the referential frame of the body, rather that in the referential
frame of the eyes or the hand. It is likely that a rich behavior would only emerge from the
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combination of these different IMs. The coordination and the scheduling of the learned
intrinsic skills is the subject of Hierarchical Reinforcement Learning, which we briefly
introduced with the work of Marvin Minsky in section 2.1 of this thesis.





Chapter 6

Hierarchical Reinforcement Learning

6.1 Introduction

In previous chapters, we introduced Deep Reinforcement Learning and we showed how
RL has been successfully applied to a wide range of robotic tasks, in simulation or on real
robotic platforms. We then presented the sub-field of Intrinsically Motivated Reinforcement
Learning and showed how some tasks are inherently centered around general information
theoretic principles (see for example how the video game Super Mario Bross can be solved
solely by an agent maximizing a prediction error). This chapter will aim at introducing
Hierarchical Reinforcement Learning (HRL).

To better understand the motivations behind HRL, let us first discuss what are the main
limitations of traditional RL. The first is its sample inefficiency, meaning that RL algorithms
need a lot of data-points to converge. This is very problematic, as the data-generation is
often a bottleneck. The second big limitation of RL, named the curse of dimensionality,
resides in the combinatorial explosion as the dimensionality of the action space increases (the
number of possible combinations of actions increases exponentially with the dimensionality).
This renders the application of traditional RL to large-action-spaces problems impracticable.
The third limitation of RL is its very poor generalization capability. Indeed, when trained
multiple times, the same RL algorithm can solve a wide range of different tasks, but however,
a trained agent can only solve one task and generally shows poor generalization to other even
similar tasks. Finally, the fourth limitation of RL algorithms lies in their lack of abstraction
of the states, of the actions and of temporal abstraction of the task in general, preventing
abstract logical reasoning.

Hierarchical Reinforcement Learning holds the promise of alleviating all of these issues,
while also resembling more the way humans and animals apprehend real world problems.



96 Hierarchical Reinforcement Learning

In section 2.1, we introduced the first learning robotic setup with Minsky’s early work
in the 70’s and his book from 1988 called the Society of Mind [80]. Its core idea is that the
mind is not composed of a single individual, but rather by a whole society of agents, each
communicating with its neighbours, parents, children. In this view, a task such as stacking a
cube on a stack is solved by a stacking agent part of the society, which will in turn call other
agents for help in order to solve the task. In short, Hierarchical Reinforcement Learning is
the name given to the branch of RL research trying to implement Minsky’s idea.

The whole benefit of HRL over RL resides in a better abstraction of the tasks, which
enables at the same time to reuse already acquired skills, thus alleviating data inefficiency
and poor generalization capabilities, and to decompose big problems into smaller ones, thus
alleviating the problem of the curse of dimensionality.

It is simple to convince oneself that in nature, humans (and some animals) decompose
tasks in a hierarchy. See for example how each of us triggers a routine composed of steps in
the morning - taking a shower, eating, listening to the radio, cleaning, brushing teeth, leaving
- which each can be subdivided into smaller steps - turning on the water, waiting for it to be
warm enough, shampoo, soap, rinsing, drying. Such mental structuring of tasks makes it
possible to generalize our behavior instantly to new configurations of bedrooms, showers and
kitchens. Indeed, the lower level agents are agnostic to the general configuration of the rooms,
and are acting on very specific parts of the world, while the higher level agents are agnostic
to the specific parts of the world and operate on a more abstract level. When learning really
is required to adapt, low-level agents only need to be (re-)trained which enables very quick
learning of new complex skills. Finally, this structuring enables reasoning at a much more
abstracted level and opens the door to logical thinking and mathematical problem solving.
In section 6.3 we will try to show how the learning of reaching in infants is decomposed in
phases and how this hints at a hierarchical structure of human behavior.

In the HRL literature, a distinction has been drawn between two types of hierarchies. The
first is called Feudal Reinforcement Learning [27] and has been proposed by Geoffrey Hinton
in 1993, and the second is referred to as the Option Framework [135], proposed by Richard
Sutton in 1998. In this Chapter, we will also try to relate Movement Primitives to HRL,
and we will propose a formalism that describes Feudal HRL, Option HRL and Movement
Primitives (MP). Next, we will present our approach to learning Movement Primitives as a
starting point for implementing an HRL agent.
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6.2 Related work

6.2.1 Feudal HRL

In its original publication [27], Feudal Reinforcement Learning is introduced as a way to
speed up traditional RL by allowing learning to take place at multiple spatial and temporal
scales simultaneously. The authors propose to organize different RL-agents in a strict
hierarchy, such that each manager in the organization has a chief and subordinates. The
manager then sends a command to one of its subordinates in order to achieve the task that it
received from its own chief. The command is interpreted by the subordinate as part of its
state space, such that its policy is conditioned on its chief’s command.

The authors have identified two principles that a Feudal hierarchy must follow. The first
is called Reward Hiding. It designates the fact that the subordinates must be rewarded for
accomplishing their task, whether or not the task of the chief is accomplished.

The second is called Information Hiding. It designates the idea that the different managers
in the hierarchy need different kinds of knowledge to take decisions. Agents higher in the
hierarchy need abstract information, often temporally abstracted while agents lower in the
hierarchy need higher resolution, less abstracted information.

The authors then propose an implementation of Feudal RL to path-finding in mazes. They
compare the performances of the Hierarchy against a flat version.

While they state that Feudal Reinforcement Learning holds the promise of operating
simultaneously at different resolutions of time, in practice, their implementation consists
only in a spatial hierarchy.

More recently, in 2017, [142] proposed a modern redefinition of Feudal HRL based on
Deep Reinforcement Learning. The resulting architecture consists in a fully differentiable
2-level hierarchy composed of one manager and one worker only. The manager sets goals
for the worker in a latent space which is itself learnt by the manager. The worker is designed
to interpret the goals as directions to be followed rather than absolute positions to be reached.
The reformulation enables the worker and the manager to operate at different temporal
resolutions. This has the benefit of facilitating long time-scale credit assignment. The new
approach is compared with a standard RL architecture on the Atari game suite. Although
the Feudal Architecture is designed to have only 2 levels, the authors claim that there are
obvious generalizations of the architecture to more levels.
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6.2.2 Options Based HRL

5 years after the original publication about Feudal RL, Richard Sutton published an article
in which he introduced the concept of Options [135]. Options are build upon Semi-MDPs
(SMDP) [18, 77, 96], which are analogues to MDPs but differ in that actions in SMDPs are
allowed to last for an arbitrary amount of time. The discounting of the rewards must thus
take into account the duration of the actions. An Option in the Option Framework consists in
a tuple (I,π,β ) where I designates a set of states s from which it is allowed to trigger the
Option, where π is a traditional policy function mapping states to a probability distribution
over the actions, and where β is the Option’s termination probability function, conditioned on
the state s. When the controlling agent selects an Option O = (I,π,β ) from state s0 ∈ I, an
action a0 ∼ π (s0) is applied, transitioning to a new state s1, and the Option has a probability
β (s0) to finish immediately. This process is iterated until the termination flag is sampled
from β . Options can be composed hierarchically like the Feudal agents in Feudal HRL.
For example, an open-the-door Option might use as actions 3 Options reach-door-handle,
grasp-door-handle and rotate-door-handle.

6.2.3 Movement Primitives and Trajectory Learning

The primary goal of Movement Primitives (MP) is to allow to compose complex robot skills
out of simple, canonical movements. As we will try to show, MPs are highly related to HRL.
By definition, and as opposed to Options or Feudal agents, MPs consist in sequences of
actions that do not depend on the intermediate states that are visited during the motion.

A significant portion of the movements that we perform daily are actually only very
lightly conditioned on the state that we find ourselves in. Complex movements like walking
for example only require a very limited amount of knowledge about the world around us.
This is well shown in [65], where a quadrupedal robot learns to navigate through all sorts
of very challenging terrain without having access to the visual modality nor any other ways
of sensing the geometry of the ground other than through its legs. Furthermore, as the
authors mention, it is possible to make a quadrupedal robot walk on a flat terrain only using
a crude but well calibrated gaiting mechanism, instructing how to move the foot tips only as
a function of time and completely independently of the state the quadruped finds itself in.

Movement Primitives relate to HRL insofar as they can be combined hierarchically in
the same way Options or Feudal agents are. Moreover, most higher level tasks resemble
scripts, in that they often only consist in a sequence of steps that can be determined ahead of
execution. For example, opening a door will always be decomposed into first reaching for the
handle, then grasping it, and finally rotating it, regardless of the specific position and shape



6.2 Related work 99

of the door and pose of the arm. Only the lower level skills (reaching the handle, grasping
and turning) necessitate knowledge about the environment’s configuration. open-the-door
is thus similar to a movement primitive in the sense that the sub-actions that it takes do not
depend on the intermediate states visited during the performance.

MPs have been extensively studied in the literature. In the simplest form, the experimenter
pre-defines manually sequences of actions available to the agent, or he or she designs the
control interface of the agent to match the specificities of the task at hands, like it is done for
example in [65] and in most Quadrupedal locomotion research (see Sec. 2.3.5). In general
however, MPs are fitted to a pre-recorded dataset of demonstrations given by the experimenter.
Multiple implementations of such generic MPs have been developed over the years. Here we
will introduce only 2, DMPs and ProMPs.

The most common implementation of MPs is based on Dynamic Movement Primitives
(DMPs) [116]. In short, DMPs extend the dynamical system describing a PD (Proportional-
Derivative) gain controller by adding an additional term (the forcing function) such that the
profile of approach towards the fixed point of the system can be shaped through the tuning of
additional parameters. DMPs expose interesting properties of scalability in space and time.
Once a movement has been fitted, it is trivial to play it back faster, slower, or to extrapolate
the motion to further or nearer target positions.

Next, [95] introduces the concept of PRObabilistic Movement Primitives (ProMPs) as a
probabilistic framework for representing and learning MPs. Like DMPs, ProMPs are scalable
in space and time. ProMPs additionally support parallel activation and smooth blending of
multiple MPs, allowing to compose them sequentially and simultaneously. The parameters
of ProMPs can be trained from demonstration or using RL algorithms. Technically, they
correspond to probability distributions over trajectories from which it is possible to sample.

6.2.4 Unifying Feudal Reinforcement Learning, Options and Movement
Primitives

As presented above, Feudal HRL, Options and MPs represent distinct manners of structuring
a complex behavior. In some context, the skills that compose it must be parameterized by a
task description vector. In that case one would prefer the Feudal HRL framework. In some
other context, there is only one way a task can be accomplished and the task description
vector becomes irrelevant. In that case one prefers the Option Framework. Finally, sometimes
the skill only consists in accomplishing a succession of steps, parameterized or not by a task
description vector. In that case, one would adopt the MP approach.
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However, as we start to extrapolate the Options and the Feudal agents to allow for an
uncountable space of children - i.e. an infinite amount of sub-options parameterized by a
continuous vector - the difference between the two frameworks blends out. This suggests
that it must be possible to establish a more general formalism that could encompass both
Frameworks.

If we leverage the notions of initiation set I and termination function β , a manager agent,
picking among children Options can be described by a function

k0→1 = Π
(
s0) (6.1)

with k0→1 ∈K an integer number describing which Option has been picked at the level 1 by
the level 0, and K the action space of the manager. Then, instead of defining each Option
individually as in [135] we define them as a brotherhood

k1→2 = π
(
s1,k0→1) (6.2)

. Similarly, Feudal agents can be described by the controller policy(
k0→1, p0→1)= Π

(
s0) (6.3)

with k0→1 ∈K an integer number describing which child Feudal agent has been picked at the
level 1 by the level 0, K the manager’s action space and p0→1 ∈P the task parameterization
vector passed to the child. The Feudal brotherhood is then defined(

k1→2, p1→2)= π
(
s1,k0→1, p0→1) (6.4)

From this formulation of Feudal HRL and Options, it stands out that the only difference
between them is the nature of the information going from the controller at level 0 to the
worker at level 1. For the Option framework (Eq. 6.1) it consists in only k0→1, an integer
value determining which Option is selected. For the Feudal framework (Eq. 6.3) it consists
in k0→1 and p0→1, where k0→1 is again an integer value determining which child agent to
select, and where p0→1 is the parameter passed to it, and which is often a multidimensional
vector living in a continuous space.

Note that in Eq. 6.2 we assumed that agents at the level 2 were Options, while in Eq. 6.4
we assumed that the agents at level 2 were Feudal. It is possible however to mix Options and
Feudal agents within the same hierarchy.

As stated above, if we try to generalize the Option framework such that agents in the
hierarchy can chose among a continuous set of child Options, the boundary between the
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Options and Feudal Frameworks starts to vanish. Formally, doing so corresponds to taking
k0→1 in a continuous space rather than a discrete one in Eqs. 6.1 and 6.2. The resulting
system is equivalent to a hierarchy composed of a controller sending commands to a single
Feudal agent.

We propose that the exact nature of a brotherhood of agents can be described by the
nature of the space in which the information transferred between two levels is living. We
will reuse the notation k ∈K to describe this information:

k0→1 = Π
(
s0) (6.5)

The different possible topologies of the space K describe the different possible hierar-
chies. The elements k ∈K can be interpreted as task descriptors.

• If K = {0,1, . . . ,n}, the controller chooses among n Options.

• If K = Rn, the controller passes a n-dimensional task parameterization vector to its
single Feudal child.

• If K = {0,1, . . . ,n}×Rm, the controller passes a m-dimensional task parameterization
vector to one of its n Feudal children.

• If K = {0,1}×R2∪{2,3}×R3, the controller passes either a 2-dimensional task
parameterization vector to either one of its Feudal children indexed 0 or 1, or a 3-
dimensional one to its children 2 or 3.

• K = {0,1}×R2∪{2,3} describes a brotherhood composed of a mixture of Options
and Feudal agents: the controller passes either a 2-dimensional task parameterization
vector to either one of its Feudal children indexed 0 or 1, or calls the Option 2 or 3.

• . . .

To make our definition of HRL complete, agents in the hierarchy must be accompanied
by a termination function β (s) evaluated before and after every policy evaluation.

Then, in order to be able to incorporate Movement Primitives in the hierarchy as well,
we only need to allow the agents’ policy functions to produce sequences of ks instead of a
single one.
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Putting everything together, under this unified formalism an agent is defined by a tuple
(Π,β ) with

kl→l+1
0 , . . . ,kl→l+1

n−1 = Π

(
sl,kl−1→l

j

)
(6.6)

a sequence of n task descriptors passed to the level l+1 with the intent of solving the chief’s
task at position j in the sequence of the chief’s tasks. The topology of the space K l→l+1

determines the nature of the child agents in the brotherhood at level l +1.

6.3 The Hierarchization of Motor Skills in Infants

The adoption of the upright gait by primitive men reshaped the pelvis and narrowed the birth
canal, in turn limiting the size of the babies head at birth. The evolutionary answer to this is
to let the human brain finish development outside of the womb. As a consequence, contrary
to most other species, newborns are unable to coordinate their body. Most quadrupeds start
walking after only 30 minutes to one hour after birth while human babies are born with only
few reflexes like sucking, rooting, a palmar grasp reflex, or a walking reflex triggered when
the feet palm is in contact with a flat surface.

The dominant theory of the last century about motor development, the Neural Matura-
tionist Theory, supposed motor skills as a continuation of existing reflexes. However, more
recent scientific evidences disproved that theory, showing that the cortex is already involved
in the modulation of motor behaviours at the fetal age. Today, 2 main theories try to describe
the acquisition of motor skills: the Dynamic Systems Theory (DST) and the Neuronal Group
Selection Theory (NGST). Both have in common that they assume phases of transition during
the development and underline the importance of the experiences and the context.

Let us have a closer look in particular at the acquisition of the reaching skill by newborns.
It starts already inside the mother’s womb, at around 10-12 weeks post-menstrual age (PMA)
with the apparition of hand-face contact. We observe that with increasing fetal age, the
velocity of approach of the hand is tuned according to the sensitivity of the target location
(eyes or mouth). From the first weeks after the birth, the precision of the movements is refined
as the child is already able to make arm movements in response to an object, especially
when fixating the object while in a sitting position. These movements called prereaches are
not always directed towards the object and consist of oscillating or flapping movements, or
movements that bring the hand to the mouth [140]. At around 3 months, these prereaches
are more frequent and between 3 and 5 months their precision is further refined. The rate
of successful reaches increases, finally resulting in successful grasping of objects. Reaches



6.3 The Hierarchization of Motor Skills in Infants 103

are now improved through trial and error. The first successful reaching movements are still
relatively imprecise and are diverse in trajectories. The reaching skill repertoire contains
movements straightforwardly directed to the object, but also others that are composed of
multiple sub-movements, called movement units [144]. Movement units can be isolated
according to peaks in the velocity of the hand. They can be used to better track the evolution
of the reaching competence. At 4 months, reaches can be decomposed into 3 to 7 movement
units. This value decreases to 2.5 to 4 at an age of 6 months.

These observations about the progressive refinement of the reaching movement give
a picture of the learning processes taking place in young infants. The Neuronal Group
Selection Theory explains well this learning processes. It describes 2 phases in the learning
of motor skills:

• The first is the so-called primary phase, during which the fetus or newborn shows
various motor behaviors. They are caused by the spontaneous activity of the nervous
system randomly triggering motor options, or movement primitives from a repertoire.
At that stage, behaviors are already very diverse but have a limited capacity to adapt.

In the frame of the learning of reaching, this explains the prereaching movements.

• During the secondary phase, infants learn to contextually adapt by selecting the
appropriate motor option / movement primitive from the repertoire and learn to improve
it. It is reported that from the first year on, learning is particularly effective in play
with others, supposedly due to neural mirroring capacities.

This second phase explains how children progressively achieve faster and more accurate
reaches between 4 and 6 months.

There are multiple ways in which the observations from the NGS Theory can be inter-
preted in the frame of HRL.

First it is important to note that learning in infants must follow a precise curriculum. A
new skill is learned only when the simpler skills it relies on are sufficiently developed. It is
the role of the caregiver to present tasks to the child that match its competence level. We also
reported in Chapter 4 Intrinsic Motivations based on competence improvement (CB-IMs)
that may play the role of intrinsically forming a curriculum.

Next, when a task candidate for learning has been triggered, the child’s first attempts
resemble very crude and random movements. As the child progresses, the movements get
more assured and the variability decreases in orders of magnitude. The simplest interpretation
using the HRL framework is that the random exploration required for RL learning is following
a precise scheduling. At first, the exploration in the set K is located in the parts of the
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space that induces the most variability on the behavior. Following the rate of improvement of
the skill, the location at which exploratory noise is applied changes towards a region which
induces less variability on the behavior. Finally, noise is only applied on regions that control
very detailed aspects of the behavior, allowing precise fine tuning of the skill. Typically, if
we assume for example K = {0,1}×R3, exploration would first be made on the discrete
component of the space (i.e. {0,1}). Then the entropy of the noise would progressively
decrease, as the entropy of the noise on the other component of the space (i.e. R3) increases.
Finally, as the skill is mastered, the total entropy decreases and no exploratory noise is
applied anymore.

In the reminder of this chapter, we will present our approach to learning movement prim-
itives. We will adopt an incremental approach, starting from a simple implementation of the
TD3 algorithm [31] and will then incrementally incorporate changes to this implementation
that will enable learning of movement primitives.

6.4 Methods

6.4.1 Traditional Reinforcement Learning with TD3

Let us consider a goal-based Markov Decision Problem determined by a state space S, an
action space A, a goal space G, an initial state distribution p0 (s), a state transition probability
function p(s′|s,a) and a reward probability function r (s,s′,g) with g ∈ G and a discount
factor γ .

The goal of Reinforcement Learning is to find a policy function π (s,g) that maximizes
the objective

Rπ
γ = E

[
∞

∑
t=0

γ
tr (st ,st+1,g)

]
(6.7)

for a sequence of states {st}t∈N with s0 ∼ p0 and the following states are obtained by
following the policy π .

Let us now introduce the notations that we will use for the TD3 algorithm [31]. TD3,
like other RL algorithms, relies on target networks which we will denote with a prime. The
policy network will be written πθ (s,g) and the 2 critics Qw0 (s,g,a) and Qw1 (s,g,a).

The update rules for the target networks are given by
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Fig. 6.1 Illustration of the actor and critic networks in the case of traditional actor-critic RL
(i.e. the default approach). Note that in TD3, there are 2 separate critics, plus copies of
each networks, called target networks whose weights geometrically follow that of the firsts,
which are not depicted here.

w′0 = τw0 +(1− τ)w′0 and (6.8)

w′1 = τw1 +(1− τ)w′1 for the critics and (6.9)

θ
′ = τθ +(1− τ)θ

′ for the policy. (6.10)

The policy weights θ are then simply trained using the Adam algorithm in order to
maximize the objective

Oπ =
1
2 ∑

i∈{0,1}
E [Qwi (s,g,πθ (s,g))] (6.11)

.
In the original TD3 publication [31], the critic networks are trained to minimize the

squared, minimum, target 1-step TD-error

δ
2
i =

(
R̃−Qwi (s,g,a)

)2 where (6.12)

R̃ = r+ γ min
j

Qw′j

(
s′,g,πθ ′

(
s′,g

))
is the 1-step target return. (6.13)

For more details about the TD3 algorithm, please refer to the section 2.2.5. Figure 6.1
shows the Actor and Critic networks as used by the TD3 algorithm.

In the remainder of this Chapter, we will refer to the experiments using the plain TD3
algorithm with no other modifications as the default experiment, as opposed to the AS, BN
and H-TD3 experiments detailed below.
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6.4.2 Learning Simple MPs with TD3

Next, in order to learn MPs, we propose that the policy directly outputs trajectories instead
of single actions. This is done by changing the dimensionality of the action space, and
interpreting the actions returned by the policy as a sequence of velocities

a = v0,v1, . . . ,vn−1 = πθ (s,g) (6.14)

.
We call this approach the Action Sequence (AS) approach (see Fig. 6.2). Of course,

such a dramatic increase of the dimensionality of the action space exposes the algorithm
to the problem of the curse of dimensionality. In order to partly counteract this issue, we
reformulated the critic such that it evaluates the value of the intermediate states si visited
during the execution of the MP and of the corresponding intermediate velocities vi rather
than evaluating only (s0,a). In this redefinition of the critic we set it to operate at the same
frequency as the simulation. Thus the loss for the critic becomes

δ
2
j = ∑

i<n

(
R̃i−Qw j (si,g,vi)

)2 where (6.15)

R̃i = ri + γ min
j

Qw′j

(
si+1,g,v′i+1

)
is the 1-step target return with (6.16)

a′ = v′0,v
′
1, . . . ,v

′
n−1 = πθ ′ (s,g) (6.17)

and the loss for the policy becomes

Oπ =
1
2 ∑

j∈{0,1}
∑
i<n

E
[
Qw j (si,g,vi)

]
(6.18)

.

6.4.3 Improving on the 1-step TD Update Rule

TD3 [31] is itself based on the DDPG algorithm [71]. In the original DDPG publication, the
authors proposed to generate exploratory noise from an Ornstein Uhlenbeck random process.
In the subsequent TD3 publication, the authors went back to the more traditional normally
distributed exploratory noise.

Here, we propose to use a slightly different exploration scheme by composing the
exploratory noise’s gaussian distribution with a Bernouilli distribution of parameter pexplore,
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Fig. 6.2 Illustration of trajectory based RL (AS approach). The actor directly outputs se-
quences of actions instead of single actions. The critic however still operates on single
actions, implying that it sees the intermediate states visited during the execution of the action
sequence.

meaning that the agent does not explore at every iteration. In our implementation, the noise
is thus defined

n =

0 with probability 1− pexplore

n∼N
(
0,σexplore

)
with probability pexplore

(6.19)

.
Using this exploration scheme leverages the use of the 1-step TD update rule, which, as

shown in both the DDPG and TD3 publications, is the main cause of instability in the training
of the critic, and is the reason why target networks have been introduced. Indeed, the critic
network’s purpose is to approximate the discounted sum of future rewards, starting by taking
action a in state s, and following the policy π thereafter. The most accurate and quickest
way of estimating this quantity is to empirically measure it, by sampling non-exploratory
experiences from the MDP, or in other words, to perform Monte-Carlo estimates (see section
2.2.3). Exploratory noise is however required in order to efficiently discover improvements
of the behavior, preventing Monte-Carlo estimates and making the approximation of the true
return more complex. The solution found is Temporal Difference learning (see section 2.2.3).
In particular, 1-step TD learning exploits the Bellman equation (eq. 2.7) in order to bootstrap
the return estimate from the estimate of the return in the next iteration. As shown in section
2.2.3, it is possible to obtain more accurate estimates when bootstraping the return estimate
with an estimate of the return n iterations after the current iteration, given that no exploratory
noise is applied during these n steps. This approach is intermediate between 1-step TD and
Monte-Carlo estimates.
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Our new exploration scheme implies that the agent performs a fixed portion of non-
exploring steps, enabling to obtain more precise estimates of the true return. In our proposed
improved version, which we call “ada-step TD”, the critic target is given by

R̃i = ri +αiγ min
j

Qw′j

(
s′,g,πθ ′

(
s′,g

))
+ ᾱiγR̃i+1 (6.20)

with αi ∼ B
(

pexplore
)

the (binary) variable sampled from the Bernoulli distribution
describing if the agent explored at iteration i and ᾱi = 1−αi, meaning that for exploratory
steps, the update rule is the 1-step TD update rule (eq. 6.13 and 6.16) else a Monte-Carlo-like
accumulation of the rewards is made.

In the Results Section 6.6, we will present the advantage of using the ada-step TD
update rule over the 1-step TD for the default and AS architecture. For the BN and H-TD3
approaches presented below, we used the ada-step update rule only.

6.4.4 Expressing the MPs in a Lower Dimensional Space

Next, as depicted in Fig. 6.3, we propose to add a bottleneck on the policy network with
the intent of performing exploration in the resulting latent space, rather than on the very
high-dimensional trajectory space. The hope is that the resulting low dimensional manifold
of trajectories contains meaningful movement primitives and that exploring in the space of
these movement primitives results in faster discovery of better behaviors.

We will denote with the subscript H the part of the policy network before the bottleneck
and with L the part of the policy network after the bottleneck.

πθ (s,g) = πθL (z) with (6.21)

z = πθH (s,g) (6.22)

We will denote dz the dimensionality of the bottleneck.
The bottlenecked experiments are referred to as BN.
In order to perform exploration at the level of the bottleneck, we propose to compose

the exploratory noise distribution with another Bernoulli distribution of parameter pexplore,H

describing whether the exploration is performed at the bottleneck or on the trajectories.
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Fig. 6.3 Illustration of the bottleneck applied on the policy network (BN approach). Generating
action sequences rather than plain actions results in a big increase of the dimensionality of
the policy’s output, which is problematic due to the curse of dimensionality. Applying a
bottleneck on the policy network guaranties that the action sequences are living on a manifold
of lower dimensionality. The noise applied on the action sequence however is still living in a
high dimensional space.

As a results, with probability pexplore,H , the noise

nH =

0 with probability 1− pexplore

n∼N
(
0,σexplore,H

)
with probability pexplore

(6.23)

is applied on z otherwise the noise

nL =

0 with probability 1− pexplore

n∼N
(
0,σexplore,L

)
with probability pexplore

(6.24)

is applied on a.

6.4.5 Forming a Hierarchy by Slicing the Policy Function in 2 Parts

In order to make the approach fully hierarchical, we propose to slice the BN approach in 2
and to interpret each half as an individual TD3 algorithm. To this end, we use a second set of
critics operating on the latent code z (see Fig. 6.4). Again, we’ll use the subscripts H and L
to differentiate between the higher level and lower level critics. In the same way as before,
the cost function for the H critics is

δ
2
j,H =

(
R̃H−QwH, j (s,g,z)

)2 with (6.25)

R̃H = r+ γHα min
j

Qw′H, j

(
s′,g,z′

)
+ ᾱR̃′H and (6.26)

z′ = πθ ′H

(
s′,g

)
(6.27)
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. The cost function for the L critics is

δ
2
j,L = ∑

i<n

(
R̃L,i−QwL, j (si,g,vi)

)2 where (6.28)

R̃L,i = ri + γLαi min
j

Qw′H, j

(
si+1,g,v′i+1

)
+ ᾱiR̃L,i+1 is the target return with (6.29)

a′ = v′0,v
′
1, . . . ,v

′
n−1 = πθ ′L

(
z′
)

the target action for the L agent and (6.30)

z′ = πθ ′H

(
s′,g

)
the target action for the H agent (6.31)

. Note that the two critics use different discount factors γH = γn and γL = γ to account for
the fact that the higher and lower level agents operate at different timescales.

The two objectives for the policy networks become

Oπ,H =
1
2 ∑

j∈{0,1}
E
[
Qw j,H (s,g,z)

]
with (6.32)

z = πθH (s,g) and (6.33)

Oπ,L =
1
2 ∑

j∈{0,1}
∑
i<n

E
[
Qw j,L (s,g,vi)

]
with (6.34)

a = v0,v1, . . . ,vn−1 = πθL (z) (6.35)

and the objectives Oπ,H and Oπ,L are maximized with respect to the weights θH and θL

respectively.
The differences with the BN approach are the following:

• Use of critics operating at the bottleneck

• Use two actors objectives Oπ,H wrt. θH and Oπ,H wrt. θL instead on only Oπ,L wrt.
θH and θL

The resulting architecture, which we call H-TD3, is composed of 2 TD3 algorithms
chained together (see Fig. 6.4). The first algorithm learns to use the low dimensional
movement primitives that are learned by the second. As explained above, performing
exploration at the abstract level is highly desirable, as it is simpler to explore in a low
dimensional manifold, however performing exploration both on the higher and lower level
requires extra care. Indeed, from the perspective of the higher level TD3, applying noise both
on the bottleneck z and on the velocities sequence a at the same time has the apparent effect
of making the world more stochastic. From the perspective of the lower level TD3 on the
other hand, applying noise twice has the apparent effect of making the agent’s sensors noisy.
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Fig. 6.4 H-TD3 approach. In order to apply noise directly inside the low dimensional manifold,
that is, to apply noise on the bottleneck, we need to introduce a second critic for training the
policy parameters prior to the bottleneck.

Both of these disadvantages can be avoided if the exploratory noise is applied only on one of
the two action spaces at a time.

Moreover, applying noise sparsely benefits the ada-step update rule introduced in section
6.4.3.

6.5 Experiment

6.5.1 The Robotic Environment

For the purpose of this experiment, we simulated a 7 DoF robotic arm within CoppeliaSim.
The robot’s joints are controlled in velocity mode. We used a simulation time-step dt = 0.2s.
Next to the arm, we placed various actuators that it can interact with. Each actuator has an
internal state (ON/OFF) which can be switched through interaction. We implemented 3 kinds
of actuators that the robot can interact with: a push button, a lever that can swing left/right
and a tap that can be rotated 90°. In the simplest experiment, we used only 4 push-buttons,
placed in a circle around the base of the robotic arm (see Fig. 6.5).
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Fig. 6.5 Sample picture showing the robotic arm and 4 actuators placed around it.

In order to speed up the computations, our implementation is parallelized following a
synchronous parallelization scheme. In practice, we simulate 40 robotic environments in
parallel.

The internal state of each of the objects forms a binary vector which we use to define
goals. In each new episode, the agent will try to actuate each of the objects such that their
internal state matches with the goal internal state.

6.5.2 Training Procedure and Evaluation Metric

The training is decomposed into episodes of length 30 sec, or 150 iterations. At the beginning
of each episode, the robot is reset to a random pose, the internal states of each of the actuators
is randomized and a new random goal is sampled.

In the end of the episode, the data collected is placed into a replay buffer for training.
If the internal state of the actuators matches with the goal that has been sampled at the
beginning of the episode, the episode is considered successful.

Every 20 exploratory episodes, a non-exploratory episode is performed in order to track
the evolution of the rate of successful episodes. This metric which we call the success rate
serves as our main measure of the quality of the behavior learnt by the agent. The values
reported below are the averages of 10 runs.

If we denote ĝt the vector describing the state of the objects at time t and g the goal
configuration, the agent’s reward at time t is defined as

rt = ||ĝt−1−g||− ||ĝt−g|| (6.36)
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.

6.5.3 Parameters of the Model

Comparing different Reinforcement Learning models is not trivial, and there are multiple
ways in which this can be done. A logical way of doing this, well adapted when comparing
vastly different RL models, is to compare their peak performances, that is, to compare
them on the best set of hyperparameters. This allows to use completely different network
architectures, or to use very different training schemes.

Another approach is to randomize the hyperparameters, and to compare the mean and
max performances. This necessitates that the distribution from which the hyperparameters
are sampled match for the different architectures to be compared. This method however
requires a great computation power.

Our approach in this experiment is to compare the different models on the same set of
parameters. This comparison strategy is fair, in that it offers a simple way to measure the
benefit brought by a single change between two models. However, it brings no guaranty that
for each model the peak performance of the model is reached, and thus it does not allow to
draw conclusions about the absolute performances of the models.

For all neural networks and all losses, we used a learning rate of 10−3. To make the
comparison fair, the total depth of the policy network when training the hierarchical approach
(H-TD3, depth of H plus depth of L) equals the depth of the single policy network in the
non-hierarchical cases (default; AS; BN). We used 3 layers for the high level (H) and 3
layers for the low level (L) policy networks, for a total of 6 layers. Each layer but the
bottleneck (when applicable) contains 200 units. The critic networks (whether we are in the
H-TD3 case or not) are composed of 5 layers of size 500 followed by the output layer of size
1.

The TD3 algorithm depends on 2 hyperparameters: the update rate of the target networks
τ which we set to 0.01 and the policy target smoothing parameter which we set to the very
low value of 0.01.

For the non-hierarchical cases (default; AS; BN), the standard deviation of the gaussian
distribution from which the exploratory noise is sampled σexplore was set to 0.5. For the
hierarchical case (H-TD3), we set σexplore,H to 0.2 and σexplore,L to 0.5. In all cases, the
probability of exploring pexplore was set to 0.1.

The discount factor was set to 0.836 sec−1 (for the H agent in the case H-TD3), or
0.965 it−1.
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Fig. 6.6 Evaluation of the success rate of the default agent throughout training, for 2 values
of the pexplore parameter, and for 2 update rules (1-step TD and ada-step TD).

For training, batches of size 256 were sampled from the replay buffer which has a size of
100000. The training is designed such that on average, each data sample collected from the
environment is used 8 times to train the critic, and 4 times to train the actor.

6.6 Results

Fig. 6.6 shows the result of the default experiment in 2 conditions and for varying values of
the pexplore parameter. The left plot shows the performances when using the 1-step TD update
rule, and the right plot shows the performances of the ada-step update rule. The shaded areas
in Fig. 6.6 (and all other figures in this section) indicate the standard deviation computed
over 10 repetitions.

With the default set of parameters, which enables us to compare the different architectures,
we found that around 45 to 50 % of the default experiments do not result in the improvement
of the agent’s success rate over the course of training. We observe that during these failed
experiments, the policy network’s output tends to diverge to extreme velocity commands
early on, which results in the robotic arm hitting the limit position on many of its joints. The
exploratory noise applied on the policy is not sufficient to counteract the extreme values
outputted by the policy and as a consequence, the agent never experiences any reward,
resulting in no learning.

We found that this issue can be resolved simply by decreasing the depth of the policy
network from 6 layers down to 3 layers. By reducing the number of parameters in the
network, we also reduce the magnitude of the effect of the Adam weight update [55] on the
network, notably in the beginning of training, which helps maintaining the policy’s output in a
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Fig. 6.7 Evaluation of the success rate of the default agent throughout training, for 2 values
of the pexplore parameter, and for 2 update rules (1-step TD and ada-step TD). Out of the 10
repetitions, only the experiments where the average success rate over 100000 episodes is
greater than 10 are taken into account.

reasonable range. A similar outcome is obtained by lowering the actor’s learning rate, which
results in the successful training of an agent with a policy network of depth 6. Our choice of
the value 6 for the depth of the network is such that the default and AS architectures are
comparable with the BN and H-TD3 architectures which require more depth. The results of
the experiments with a shallower network or with a lower policy learning rate are available
in the Appendix (Figs. C.1 and C.2) and are reported in Tab. 6.1.

Fig. 6.7 shows the same result as Fig. 6.6 after filtering out the experiments which failed.
An experiment was considered failed if the average success rate over 100000 episodes did
not exceed 10%. The results show the advantage of the ada-step update rule over the 1-step
TD when in conjunction with a sparse exploratory noise. Interestingly, in the 1-step TD case,
a ten-fold decrease of the amount of noise applied on the policy for exploration results only
in a light decrease of the overall performances.

Next, Fig. 6.8 shows the result of learning actions sequences AS rather than single actions.
The results are presented for multiple lengths of sequences n. When n = 1, the architecture
is equivalent to the default architecture. We chose to keep the pexplore parameter at a value
of 0.1 for these experiments and the next.

The results show that learning action sequences is possible. Moreover, it seems to
really benefit from the ada-step update rule. The problem described earlier for the default
approach, where actions produced by the policy were biased toward extreme values, is not a
problem anymore in the case where the actor outputs action sequences AS. In the default
case, unlucky runs would learn to output extreme velocities in the first few episodes of
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Fig. 6.8 Evaluation of the success rate of the AS agent throughout training for different
sequence lengths and for 2 update rules (1-step TD and ada-step TD).
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Fig. 6.9 Evaluation of the success rate of the agent throughout training, for the BN approach
when varying the bottleneck size (left) or the probability to explore on the bottleneck (right).

training independently of the input presented to the policy network. When repeated for a
few consecutive iterations, these actions result in the arm curling up on itself. In the AS case
however, since each action is composed of multiple velocities, the application of an action
sequence composed of extreme values results in a vibrating movement and the arm does not
curl up on itself, thus not preventing the discovery of rewards.

Next, Fig. 6.9 shows the results for the BN experiments. For these experiments, we used
an action sequence size n = 5 (1 second of movement per sequence) and we leveraged the
1-step TD update rule.

The left subfigure shows the effect of introducing a bottleneck, while still exploring
only at the level of the velocities sequences. The case where |z| = 200 corresponds to
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Fig. 6.10 Evaluation of the success rate of the agent throughout training, for the H-TD3
approach.

using no bottleneck. The graph shows that the performances are essentially not affected by
the presence of the bottleneck. The action sequence of dimentionality 7× 5 = 35 can be
compressed by a factor 7, down to a dimensionality of 5.

The right subfigure shows the effect of varying the proportion of noise applied on the
bottleneck vs. on the velocity sequences, using a bottleneck size |z|= 5. The results show
that there is a small but significant advantage in performing exploration on the abstract z
space. Interestingly, the algorithm even still performs well when exploring only on the z
space (i.e. when pexplore,H = 1.00).

Finally, Fig. 6.10 shows the result of the H-TD3 experiment for different values of the
pexplore,H parameter, describing the probability that the noise is applied on the bottleneck.
We used a bottleneck of size |z|= 5. The results for this experiment and for all others are
also reported in the table 6.1. Although worst than for the BN approach, here too the results
show that there is an advantage in performing exploration on the abstract z space.

It is important to note that, as pointed out in section 6.5.3, comparing different RL
architectures is not trivial. In the present case in particular, the H-TD3 architecture is
significantly different from the default, AS and BN approaches. Many parameters, such
as the critic and actor learning rates, the discount factor or the standard deviation of the
exploratory noise distribution are doubled in the H-TD3 approach since it consists in 2
TD3 algorithms chained together. Our strategy was to try to keep the comparison fair by
keeping the parameters of the H-TD3 approach as close as possible to that of the other
approaches. However, we cannot rule out that additional tuning of the parameters result in
better performances, potentially matching the BN approach.



118 Hierarchical Reinforcement Learning

ARCHITECTURE PARAMETER VALUES

pexplore 0.1 1
default (1-step TD) 38.92 33.21
default (ada-step TD) 48.49 38.57
default (1-step TD, low LR)* 49.99 58.59
default (ada-step TD, low LR)* 78.80 72.20
default (1-step TD, shallow)* 57.42 57.57
default (ada-step TD, shallow)* 82.61 73.19

n 1 3 5 6
AS (1-step TD) 38.92 33.92 30.61 28.73
AS (ada-step TD) 48.49 69.21 83.01 76.07

|z| 5 20 200
BN (bottleneck size) 80.92 83.75 83.01

pexplore,H 0 0.2 0.5 0.8 1
BN (exploration) 79.72 77.11 84.66 79.19 79.94

pexplore,H 0 0.2 0.5 0.8 1
H-TD3 37.32 26.27 36.87 44.98 40.09

Table 6.1 Mean success rate over 100000 episodes for different architectures and for different
parameterizations averaged over 10 runs. The experiments marked with a * use a different
network architecture or different parameters and are thus excluded from the comparison.
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6.7 Conclusion

The first conclusion that we can draw from the results presented above, is that the problem of
instabilities inherent to Q-learning which have been identified and analysed in the original
DDPG [71] and TD3 [31] publications can be efficiently circumvented, at least for robotic
manipulation tasks, by performing a sparser exploration, in conjunction with the use of
the ada-step update rule presented in section 6.4.3. In scenarios where sparse exploration
can be employed, the target networks introduced in the DDPG algorithm become irrelevant
if replaced by the more clever ada-step update rule. However the latter does not affect
the overestimation bias depicted in the TD3 publication. More generally, our observations
regarding the use of sparse exploration raise the question of the exploration-exploitation
problem. The decision whether the agent should explore new options, or instead should
follow its current best policy is a fundamental limitation of RL algorithms. Designing RL
algorithms that would autonomously adapt their exploration-exploitation balance to the task
remains scarcely addressed in the RL literature. [117, 3] proposed to implement 5 exploration
strategies and to treat the problem of choosing the exploration strategy to follow during
training as a non-stationary multi-armed bandit problem. [102] investigated the benefit of
what they called intra-episodic exploration, a type of exploration strategy where the agent
switches from an exploratory mode to a exploitative mode within episodes.

Next, our experiments about the action sequences (AS) reveal that it is possible to train
agents with action-spaces of high dimensions (> 42) using the TD3 algorithm. The AS
approach performs comparatively better than the default approach when used in conjunction
with the ada-step TD update rule, a simple improvement over the 1-step TD update rule.
The problem of the curse of dimensionality seem to be related to the dimensionality of
the exploration space, rather than the dimension of the action-space. Indeed, in the task
that we presented here, the most relevant property of the system that determines above
anything else the acquisition of rewards is the 3 dimensional position of the end effector
of the arm. Although the exploratory noise is applied on a 7 dimensional (default) or
35 dimensional (AS, BN, H-TD3) vector, the consequences of the noise on the arm can
essentially be summarized as the delta position of the end effector of the arm, which lives in
3 dimensions. Increasing the dimensionality of the action space by interpreting the action
as velocity sequences did not result in an effective increase of the dimensionality of the
exploration space. This observation suggests that it must be possible to learn in action-spaces
of even higher dimensions, given that the dimension of the exploration space remains low.
Let’s assume for example that a complete humanoid robot consists in 100 controllable joints.
Exploring simultaneously on the 100 joints won’t produce any meaningful, good exploratory
attempts. A better strategy would be to explore one limb at a time (7−10 dimensions), or
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even only on a couple of well chosen joints at a time (2−3 dimensions). This effectively
reduces the dimensionality of the exploration space. This is also very related to the Neural
Group Selection Theory (NGST) briefly introduced in section 6.3. A similar exploration
scheme is observed in infants: when presented a stimulus, newborns and 1 month old toddlers
react by moving simultaneously both arms and legs. At around 1.5 month old, they learn to
differentiate between the upper and lower body and at the age of 3 months, they differentiate
between the left and right arm, moving preferentially the arm the closest to the stimulus.

In our third and fourth sets of experiments, we found that the velocity sequences can
be highly compressed using a bottleneck, and that performing exploration in the resulting
abstract space speeds up training. However, our specific H-TD3 implementation of abstract
exploration does not outperform the simpler BN approach.



Chapter 7

Conclusion

In this thesis, we tried to answer the question of the acquisition of elementary motor skills -
like for example the development of active vision, or the acquisition of the reaching skill - by
taking inspiration from developmental psychology and by using artificial neural networks, a
technique rooted in computational neurosciences.

In Chapter 2, we first introduced the Reinforcement Learning task, and the key concepts
associated to it. Next, in order to illustrate the relation between learning in silico and learning
in vivo, we pointed out evidences that these key concepts are analogue to mechanisms taking
place in the brain. More specifically, we reported that the Temporal Difference Error - a value
involved in TD-RL algorithms - has been measured in the prefrontal cortex of mammals.
Then, we introduced Deep Q-learning and TD3, the RL algorithms that we used is the
remainder of the thesis, by fitting them into the broader families of algorithms they belong
to. Finally, we reviewed existing works about Reinforcement Learning methods applied to
robotics. The analysis of the literature shows that the promise of versatile robotic arms has not
yet been implemented. As of 2021, it seems that RL methods applied to robotic manipulation
do not compete well against the long established engineered approaches used in the industry.
The main obstacle is probably that by essence, behaviors learned through RL-based methods
are prone to colliding with the environment (especially during training, but also during
execution) while today’s robotic arms are not designed for collisions. Next, combining
together and orchestrating together multiple skills learned through RL also remains an open
question. Finally, robots often don’t have access to any haptic feedback, which might play
a crucial role in the learning of dexterous manipulation. Although RL did not meet a franc
success when applied to robotic manipulation, recent advances have enabled researchers
for the first time to successfully achieve robotic locomotion on 2 or 4 legs, without using
LiDAR cameras. The locomotion task is much more adapted to today’s RL-methods, in
that walking constitutes a single skill to be learned (as opposed to manipulation which is
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a repertoire composed of many skills). Moreover, walking requires online adaptation to
unexpected perturbations, and a short to middle time-scale anticipation ability, for which RL
has displayed good performances. The locomotion task is further facilitated by the use of
modern high efficiency brushless motors in conjunction with backdrivable low gear-ratio
gearboxes giving a natural springness to robotic legs and making them very compliant. It is
likely that the next scientific breakthroughs in the field of RL applied to robotic manipulation
are conditioned by the engineering of hardware both mechanically compliant and resilient to
collisions, that would ideally also integrate haptic sensors.

Besides RL methods and their applications, we addressed the topic of representation
learning in Chapter 3. More specifically, we compared qualitatively and quantitatively two
different ways of learning abstract representations, which are different in nature and serve
different purposes. Our study is conducted with the intent of integrating together sensory
information from different modalities. Our multimodal integration approach naturally brings
the question of measuring the information that is shared between the modalities, and thus
gives an information theoretic perspective on Autoencoders. Speaking informally, we
showed that in an information flux, not all bits of information are equally compressed, and
that Autoencoders have a clear tendency to retain in the learned representation the part of
the information that is the least compressed. Finally, we argued that meaningful Intrinsic
Motivations might be obtained from the learning of a joint representation of multimodal
sensory information. More precisely, we argued that these IMs hold the potential of driving
the learning of sensory-motor contingencies.

Intrinsic Motivations are in the computational literature what approaches best the model-
ing of primitive emotions. In Chapter 4, we proposed a short review of Intrinsic Motivations.
Multiple taxonomies have been proposed to try and classify the different IMs. In particular,
Gianlucca Baldassare’s classification identifies 3 main classes: NB-IM, PB-IM and CB-IM.
NB-IMs and PB-IMs find possible neuroscientific groundings, notably in the hippocampus,
basal ganglia and superior colliculus. A large scale study on IMs showed a high degree of
alignment between the intrinsic curiosity objective and the hand-designed extrinsic rewards
of many game environments [20]. This supports the hypothesis that some emotions (like
surprise, amusement, fear, etc) serve as general purpose rules that drive or facilitate the
acquisition of new skills.

Next, in Chapter 5, we studied in particular the AEC-IM. First, following up on our work
about multimodal integration, we showed that the reconstruction error of a deep autoencoder
can serve as an indicator of the redundancy of the input signal. We then used this property
to derive an IM that drives the acquisition of active vision, comprising the joint control of
the eyes’ vergence and cyclovergence angles, and the joint control of the pan and tilt angles
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in order to achieve smooth pursuit of objects. The resulting agent is able to autonomously
calibrate itself, learning to fixate objects in depth, and in time. Moreover, it resembles closely
the human visual system in its design.

Finally, Chapter 6 addresses the problem of robotic manipulation through the angle of
Hierarchical Reinforcement Learning. Like Marvin Minsky hypothesized in the 80’s, the
NGST neuroscientific and psychological theory about motor-development tends to indicate
that the behavior is hierarchically structured. Inspiring from Minsky’s ideas and from the
NGST theory, we proposed a simple hierarchical RL model based on movement primitives.
Our proposed model is compared with a simpler, non-hierarchical TD3 model. We found that
there is an advantage in learning movement primitives, and that moreover, these primitives
can be expressed in a low dimensional manifold. We also found that exploring in the resulting
low dimensional manifold results in faster learning.

Overall, Reinforcement Learning has known many successes in the last decade, but it has
also shown its limitations. As we have shown, HRL holds the promise of alleviating many of
these obstacles however, so far, researchers failed to successfully apply HRL techniques to
real world scenarios. Most researches in HRL are aiming at building hierarchies of generic
agents which, like stem cells, would then specialize into a specific skill. A less ambitious
approach would consists of manually defining the tasks that compose the hierarchy. This
approach would enable researchers to study other aspects of artificial cognition, like for
example Pavlovian mechanisms.

Consider the simple task of reaching for an object, which we would structure as the
sequence of 2 separate skills pre-reach and post-reach. The reward for the post-reach task is
defined as a sparse reward for reaching the target location within 3cm. Now the reward for
the pre-reach task can be defined as a sparse reward indicating whether or not the post-reach
skill succeeded. As a result, the pre-reach agent is responsible for bringing the agent to a
pose, from which the post-reach agent will manage to successfully reach the target location.
In this simple example, the nature of the tasks composing the hierarchy is fixed by the
experimenter, thus it is not the role of the (sub)agents to figure out which skill to learn. The
interest of the experiment resides in comparing the different possible ways in which the task
can be structured, in order to compare the end performance as well as the learning speed.
From a neuroscientific point of view, this experiment can serve as a simple way of modeling
second order rewards.

Next, let’s consider the very complex problem of controlling 2 robotic arms simultane-
ously. It is clear that a plain RL approach is not adapted: often we would want only one arm
to move at a time, and when exploring, we also want only one arm to explore at a time. A
clever hierarchy that would control 2 arms should be able to execute agents in parallel (i.e.
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to control both arms at the same time, like for example to pass an object from one hand to
the other), but the controller should also learn to idle one of the 2 arms such that learning can
take place on the other. Moreover, a clever hierarchization should enable transfer learning
from one arm to the other. Designing a hierarchy composed only of generic agents for this
scenario is clearly out of our reach in 2022. However comparing hierarchies composed of
pre-defined tasks / skills would give researchers precious insights about how learning should
be structured.

Potentially, one objective for researchers conducting such experiments could be to define
the elementary tasks that define the hierarchy in a manner that allows for generalization,
which would then open the way for the most distant milestone of creating hierarchies of
generic agents.

Another objective in this line of research would be to refine the hierarchy in order to rely
less and less on oracle knowledge, like for example the raw (x,y,z) position and speed of the
objects in the environment. Ideally the hierarchy should be made such that the first skills
to be learned by the agent are those that will latter enable it to locate the objects around it
using nothing else than its sensors. Foreseeably, in such a refined hierarchy, most agents
are Instrinsically Motivated. Some interesting work by our collaborators François De La
Bourdonnaye and Céline Teulière [28] give good insights about how a such refinement can
be done.

In conclusion, instead of focusing on the genericness of the agents composing a hierarchy,
I advocate for concentrating efforts on the modularity of specialized agents, designed to
solve a specific (sub)task. Moreover, I argue that researchers should start with a coarse
hierarchy, at first exploiting extensively the oracle knowledge. Next, from an optimized,
coarse hierarchy, it is possible to later refine it so as to learn to rely less on the ground truth
knowledge. Designing Intrinsically Motivated sub-agents is a very challenging process and
often imposes axes of research orthogonal to the primary goal of learning hierarchies. Finally,
I believe that scientists should agree on one benchmark environment for developmental
robotics, and more importantly, on a common software architectural pattern in order to make
performance comparisons efficient and repeatable.
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Overview of Learning Algorithm for
Robotic Control
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NAC Reaching Gaussian
Mixture
Model

Dense reward based on proximity
to target object

[76] 20
20

ye
s

DDPG /
PCCL-
DDPG

Reaching delta joint
angle

Comparison of dense and sparse
rawards

[101] 20
18

ye
s

OptLayer
(based
on
TRPO)

Reaching delta joint
angle

Multiple reward shaping strate-
gies : dense reward based on the
distance to the target, penaliza-
tion for collision, bonus when
end-effector very close to target
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[28] 20
18
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s

DDPG Reaching delta joint
angle

Comparison between a dense re-
ward based on the proximity to
the target object, a sparse reward
and a shaped reward

[36] 20
16

ye
s

NAF Reaching Velocity
control

Dense reward based on the prox-
imity to the target + metabolic
cost

[36] 20
16

ye
s

NAF Pick-place Velocity
control

Dense reward based on the prox-
imity of the end effector to the
door handle + door opening an-
gle

[53] 20
11

ye
s

PI² Pick-place DMP Sparse reward upon success

[69] 20
16

ye
s

BADMM Pick-place Torque con-
trol

Dense reward based on the dis-
tance to the target + metabolic
cost

[133] 20
11
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PI² Grasp DMP Sparce reward upon successful
grasp

[104] 20
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no multiple Grasp End-
effector
velocities

Sparce reward upon successful
grasp
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DQN,
DDQN

Grasp Delta end-
effector po-
sition

Reward of 10 upon grasp + re-
ward of 1 uppon contact with the
object

[86] 20
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no TRPO Grasp Position
control

Dense reward based on the dis-
tance between the palm and the
object + sparse term based on ob-
ject distance from the table

[61] 20
10

ye
s

CGB Grasp DMP NA
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[154] 20
18
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DQN Grasp IK based
movement
primitives

Reward of 1 for successful
grasps, and 0.5 for pushes that
make detectable changes to the
environment

[105] 20
18

no NPG,
DAPG

In-hand Position
control

Comparison of sparse and shaped
reward

[63] 20
16

ye
s

Custom In-hand Custom Distance between the hand posi-
tion and the desired hand posi-
tion + distance between the ob-
ject pose and the desired object
pose

[65] 20
20

ye
s

TRPO Quad Position
PD in the
reference
frame of a
predefined
motion

Linear velocity reward + angu-
lar velocity reward + base mo-
tion reward + foot clearance re-
ward + body collision reward +
foot motion smoothness reward
+ metabolic cost (see supplemen-
tary material s4)

[139] 20
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ye
s

PI² Quad DMP Jumped distance + keeping roll
and yaw angles

[40] 20
18

ye
s

SAC +
entropy
maxi-
mization

Quad Position PD Walking distance + metabolic
cost

[17] 20
19

ye
s

PPO Quad Position PD Desired velocity + metabolic cost

[131] 20
19
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s

PPO Quad Position PD Desired velocity + metabolic cost

[60] 20
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ye
s

PPO Quad Position PD Desired velocity + metabolic cost
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[151] 20
19

ye
s

PPO Biped Position PD Reward defined with respect to a
reference motion

[152] 20
19

ye
s

PPO Biped Position PD Reward defined with respect to a
reference motion

[149] 20
19

no PPO Biped Position PD Reward defined with respect to a
reference motion

[66] 20
19

no PPO Biped Muscle acti-
vation

Reward defined with respect to a
reference motion

[43] 20
17

no PPO Biped Torque con-
trol

Reward for reaching a target ve-
locity + torque based metabolic
cost + encourage the agent to stay
near the center of the track

[150] 20
18

ye
s

PPO Biped Position PD Reward defined with respect to a
reference motion

Table A.1 Summary of publications cited in the overview of Deep Reinforcement Learning
algorithms applied to robotics.



Appendix B

Active Efficient Coding



142 Active Efficient Coding

Network Architecture

Encoder (vergence, cyclovergence) conv 96 filters, size 8×8 stride 4

conv 24 filters, size 1×1 stride 1

Decoder (vergence, cyclovergence) conv 384 filters, size 1×1 stride 1

Encoder (pan, tilt) conv 192 filters, size 8×8 stride 4

conv 48 filters, size 1×1 stride 1

Decoder (pan, tilt) conv 768 filters, size 1×1 stride 1

Critic conv 2×2 stride 1

max-pooling 2×2 stride 2

flatten

concatenate all scales

fully-connected 200

fully-connected 9

Table B.1 Network architectures
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Parameter Value

Pan range [−10°,10°]

Tilt range [−10°,10°]

Vergence range [0°,20°]

Discount factor γ 0

Encoder learning rate 5.10−4

Critic learning rate 5.10−4

Episode length 10 iterations

Buffer size 1000 transitions

Batch size 200 transitions

Epsilon ε 0.05

Reward scaling factor C 600

Table B.2 Parameter values
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Fig. C.1 Evaluation of the success rate throughout training, for 2 values of the pexplore
parameter, and for 2 update rules (1-step TD and max-step TD). default architecture, with
a policy learning rate decreased from 10−3 down to 10−4.
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Fig. C.2 Evaluation of the success rate throughout training, for 2 values of the pexplore
parameter, and for 2 update rules (1-step TD and max-step TD). default architecture, but
the number of layers has been decreased from 6 down to 3.
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