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Abstract: Theoretical studies in the shell model have led to the conclusion that the shape dependence
of the liguid-drop part of the semi-empirical mass formula of the Weizsicker-Bothe type should
contain terms proportional to the volume, the surface, and the mean-total curvature of the sur-
face of the drop, respectively. Now the surface tension 8, and the curvature tension V.o are fitted
to tha experimenially known fission barriers of 35 nuclei. Furthermore, the parameters of the
liquid-drop part of the mass formula are roughly fitted to the ground-stats masses of about
600 betastable nuclei. For the elementary radius r, the value 1.123 fm (determined by Elion)
is used. As a result, ¥, should be in the range 6-8 MzV, with the value 6.8 MeV bein g the most
probabie, thus 8 = 17.85 MeV. For sufficiently large values of the curvature tension (e.z.
Ve = 13.4 MeV), a small double-hump fission barrier occurs in the region of Ra.

1. The semi-empirical mass formula

Since Weizsicker '), Betheé and Bacher ?) proposed their semi-empirical charged
liquid-drop formula, which describes fairly accurately the binding encrgy of nuclei,
many calculations have been performed by fitting formulae to the about 1000 experi-
mentally determined ground-state energies of beta-stable nuclei. A summary was
given by Wing *). Thus the dependence of the nuclear masses M on 4 (the atomic
weight) is fairly well known. Also the dependence of M on the shape of the nucleus
has been considered. Myers-and Swiatecki **} among others suggested a mass for-
mula which, while depending on the deformation of nuclei, includes an effective three-
parameter shell-correction term E,,, in addition to the commonly used charged
liquid-drop part " £, , and the pairing energy E,,;,, hence o

M(Ap Bs ?) = MnN+MHZ+ELD(A: B, %’)'I'Epah(A’l B: g)""E;heII(A: B: fg), (1)

where M, and My, are the neutron and hydrogen masses, respectively, B := N—Z
snotes the neutron excess, and % is a suitable parameter set which describes the nuclear

t Now at Phys. Inst. Univ. Wirzburg, 87 Wilrzbure, Germany.
Tt Work supportzd by the Deutsche Forschungsgemeinschaft,

1t More generally, we propose that one should define £ as the mean trend of the shell-modet part
of the mass formula; thea for any shell correction £y A = 0.
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shape. Their shell-correction term can describe the shell effects 'up to fairly large de-
formations of the nuclear surfice. Xonecny et al. ®) have suggested that even the
pairing term is shape dependent. '

‘2. The shape dependence of the liquid-drop part

The subject of this article is to study the shape dependence of the liquid-drop pact
of M. Since the Coulomb energy of deformed nuclei was treated by Lawrence 7) and
Fliigge ®), we have to consider only the liquid-drop-part resulting from nuclear bind-
ing. It consists of (i) the volume term, which is proportional tc the volume ¥ or to 4
and is due to the saturation binding, i.e. constant nuclear density inside the nucleus.
(i) Weizsicker 1) introduced the sucface term, which is proportional to the sucface
S or to A3 for spherical nuclei and is a consequence of the assurmed analogy to a liquid
drop. In 1951, Swiatecki ®-*®) deduced the volume and surface tensions. from the
Fermi gas model. Later, Knaak, Stissmann, Hilf and Biittner **) succeeded in repro~ -
ducing the experimental value of the surface tension by shell-modeal calculations with
a velocity-dependeat potential.

In 1953, Hill and Wheeler *?) deduced from Fermi gas model that there should
exist a curvature-dependent term which is proportional to A as will be seen below,
but they obtained an unphysical negative sign for the curvature tension. Recently,
Schade and Hilf **) have refined this calculation using Swiatecki’s “renormalization
of the surface position” and arrived at a reasonable positive value, Other approaches
to the curvature energy are those of Strutinski and Tyapin '**%) and of Myers and
Swiatecki 2%-17). Furthermore, their droplet model **!") (a Thomas-Fermi type
model) allows as well to calculate the mean values of other physical guantities of the
heavy nuclei such as details of the proton- and neutron-distributions, the compre;sv.- .
bility and the reduced binding due to the neutron excess.

All the authors established that the curvature energy is linear in the mean total
curvature L. This geometrical quantity is an integral over the nuclear surface ‘

L:'-'*J.d_S(Rl +R2 ) | ~ R '(2)-

where R, and R, are the principal radii of curvatare of the surface-sheet element dS.
This mean total curvature is a quantity of external differential geometry and thus
shape dependent. Let us e.g. compare different convex nuclear shapes of equal volume; -
then L has a minimum for the sphere, just as the quantity surface area has, whereas
for arbitrary shapes the shape dependence is different. In contrast to L, ihere exists an-
other quantity, the well-known Gaussian total curvature K := § dS(R, R,)™ %, which
is a quantity of intrinsic differential geometry; but dX is invariant against bending of
the surface sheet. For simple connected closed surfaces, there holds just K = 4z
according to a statement of Gauss-Bonnet. Thus Xis a constant throughout the fission
process and this property, as suggested by Ford #®) can be successfully used for test-
ing the accuracy of numerica! calculations involving R; and R,.
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Within a family of nuclear shapes with equal volume and surface area, the curva-
ture L canstill bzenlarged as ia the case of shapes with long, very thin tubes (e.g. the
dumb-bells with rather thin, long necks which has been suggested some time ago as
scission-point shapes) or with long thin needies. Therefore, physically, a curvature
tension with positive sign would prevent such absurdiies by encouraging the nucleus
to scission and probibiting porcupine-like shapes., ' .

Geometrically, the quantities volume, surface and curvature are closely connected.
They are all three defined as integrals over the sutiace, Vi= 4 JdSV-r, $:= [dS
and eq. (2). Furtheanore, let us considar a one-parameter family %(s) of simple
connected, closed, smooth, so-called Steiner sheets, which are parallel; i.e the ortho-
gonal distances of any two sheets &(s,) and F(s,) are universally equal to |5, —s,|

over all the sheets. Not only does ¥ (s+ds)— V' (s) = S(s)ds hold, but also as Steiner
has proved

L(s) = S = V(). B

Thus one can evaluate ¥ and S in terms of a Taylor series, e.g. zzut..‘f/".= 1= F(0)
V() = Vot sS.+1'Lot ., S(5) = S.bsLot .. .. @

Therefore the mean total curvaturz L should be considered as the natural third-order
geometrical quantity dzsscribing the total shape of a nucleus.

The hydrostatical ensrgy of the liquid-drop part of the nuclear mass formuia is
usually described in terms of the geometrical quantities of the “nuclear surface sheet™
.. Since the slope of the particle-density distribution n(r) of the actual nuclei is
rather smooth, we must carefully elaborate the shape arnd location of ..

In the case of spherical nucle, the location of %, is simply defined by its radius.
Elton '') proposed the nuclear radius to be defined by the expectation value
{r®) 1= (4xfZe) [ drrip(r) = 3R?, where p(r) is the charge-deosity distribution. In
an analysis of the electron-scattering experiments of the Stanford group 2), he
established that the maximum particle density, more precisely the proton density, is a
constant, which is independent of A, namely n = 0.168 fm~2 and obtained
Ry = reAY+2.352473 4+ O(4™1) with r, 1= ($zn)"* = 1.123 fm. With this defini-
tion, the density of a homogeneous, spherical liquid drop of mass 4 and radius R,
is significantly smaller (in third order) than n.. However, since 7, may be regarded as
a material constant of nuclear matter, we rather define the nuclear radius as the radius
R, of a sphere of mass 4 and density n,, N e

A=:nV., . ' o ®)
thus
R, =r A%,

This definition can be generalized for arbitrary nuclear shapes and density distribu-
tions assuming the conservation of the nuclear volume.
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Analogously to n(r), the encrgy density inside the nuclei is also taken to be a con-
stant 1., which is independent of 4. Furthermors, for the remainder of this section,
we assume that in the nuclear surface layer the slopes of the particle density n(r) and
of the energy density 7(r) do not depead on the local curvature. This resembles the .
fact given by.Elton ) that the (90 % —10 %) thickness of the surface layer of spheri-
. cal nuclei seems to be independent of 4. Then tha equidznsity sheets are Steiner shzets,
The particie- and energy-density distributions can be described by tha sinzle param—
eter sin eq. (3), therefore n(s), n(s). We choose the parameter s so that ¥ s=0)=
thus 5 = 0 denotes ihe nuclear surface sheet.

Now the hydr ostat:cal energy Ey of the nucleus is

B o710 - stsrsmsj- e

Adding zero to the integrand, namely. S(s){n.0(—s)—n.0(—s)} and C'{pandmv S(s)
according to eq. (4}, the hydrostatical energy proves to be a sur of a2 volume, a sur-
face and a curvature term

E, = m,Vc-f-aSc+ch+ - _ (D
where .

o = [astu-n0-9) 2= [assiutd-no(-s. ®

These two morents are just the surface and curvature tension, respectively. Here they

only depznd ou the universal energy-density function 5(s} and do not on the shape of.
the nucleus. Therefore £, isin fact linear in V7, S, and L_ as given ia eq. (7), if one

adopts the assumption that the particle- and energy-density slope is independent of the
curvature of the surface. However, this may not be realized in real nuclei: in the more

realistic droplet modal of Myers ), the slopes are dependent on the loca! cunature
dL/dS of the nuclear surface. Thus for the curvaturc tension, he gets '

A= f ds (s+dS-—-—(q(s)—q,,ﬂ(-—s))) ;-

The method used in this work to calculate the hydro;tat:c cnervy wnh the Stemcr-
sheet assumption is due to Siissmann 19), .
Generally usmg eq. (5), one can expand eq. (7) in a power series in A% , namely

Ey = ~a A+B.g(Q)A + 3 (&) A + ... o ®
with -the volume, surface, and curvature parameters

@ 1= — L= —dndn,  foi=dwlp,  per=Sard,  (10)

and with the shape-dependent functions

9(%) := 5./S,, W%E) := L./L,, o ' (11)
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where S and L, denote the surface area and the curvature, rcsp'ectively, of the sphare
of volume V.. : :
Thus, by eqgs. (7) and (9), itis shown in a simple model that the dependence of the-
hydrostatical energy on 4 aud on the deformation of the nucleus is to third order
given by the suiface area and the mean total curvature of the nuclear density surface,
or, more peecisely, that there exist two terms of eq. ( 1), which are just dependent
on these geometrical quantities. This agrees with the results obtained by Hill and
Wheeler *?), by Hilf and Stissmann 2°) and by Schade and Hilf 13.21) 1t is possible,
however, that in eq. (1) there exist other terms which are proportional to 4%, but to
first order they will not be curvature dependent butinstead are compressibility, diffuse-
ness, and asymmetry terms, which are not included in this simple shell model. These
additional terms can be studied in the Thomas-Fermi type droplet model by Myers 16y
and Swiatecki 17), )

3. Three methods of fitting the curvature tension

The condensation heat —~uo, and the specific surface tension B. have often been -
determined. The approximate values are ¢, = 15to 16 MeV and . = 17 to 19 MaV.
The main purpose of this paper is to fit the specific curvature tension Ye to experimen-
tal data. There seem to be three possibilities.

(i) Fiteq. (2) to the experimentally known ground-state masses. Although the first
two terms of eq. (2) are much more predominant than the A* term, it is possible by
means of a least-squares fit to determine a parameter value for 7:hA4%, which will
slightly reduce the r.m.s. deviation. But unfortunately the ground-state deformations
of most nuclei are very small. Therefore one can determine an A% proportionality but

not the shape dependence of y.k in this way. It seems to be more sensible to use ex~

perimental investigations of the deformations of a given nucleus. Thus A remains
constant, whereas the shape of the nucleus changes, therefore the leading first term of
eq. (2) does not enter the fit. _ o .

(ii) Schade ') determined y, from calculations at the scission point of a fissioning
nucleus by fitting the Coulomb-interaction energy to the experimental mean kinetic
energies of the fragments by minimizing the potential energy of the nucleus at the
scission point and neglecting the kinetic part of the total energy. The kinetic energy
at the scission point, however, assumed to be an irrotational non-viscous incompres-
sible flow yields about 20 % of the final kinetic energy of the fragments as has beeq -
calculated by Hasse *®), who after adding the Coulomb-interaction energy obtains
the experimental data almost exactly. Futhermore, near the scission point there will
be a considerable amount of energy occupied by internal degrees of freedom, which
may be in their gross effect described by a finite viscosity. On the other hand, the
Coulomb polarization of the fragments cannot be neglected. This is studied by
Ryce*7). Perhaps to some extent, these two effects may cancel each other with regard to
the kinetic enzrgies of the fragments, But at least their variances will be erlarged.
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(iif) The threshold energy (fission barrier) A3 of a fissionable nucleus is defined
as the difference tetween tha saddie-point mass and that of the ground staie, As the
- saddle-point shapes are much more deformed (sausage to durb-bell like) than the al-
most spherical ground states, the experimentally known fission barriers should be
useful to determine the shape dependence of E, . With the Coutomb energy added
eq. (7) gives :

AE., = o(Si—5H+L5 - 19) 4+ (B3, — c,,,,'), | (12)

where the upper indices S and G refer to the saddle point and the ground state, respec-
 tively. The predominant volume term of the mass formula does rot enter eq. {12) be-
cause ¥, and 5, are constant throughout the fission process. Unfortunatzaly, however,
the shell-correction term of the mass formula does fully eater into 404, since ES et 0,
and thus AE,,u & — E.oy- Therefore, one must calculate the total AM and not only
its charged liquid-drop part. :

- We chose the latter method combined with a fit to the ground state masses to deter-

mine the specific curvature tension y, as described in sects. 6 and 8. The result of our
calculations will be that y_ is in the rangc 6-8 MeV.

4. The mass formuln

We adopt the mass formula suggssted by Myers and Swiatecki, which is based on
their formula of ref, *) with the improved sheli-correction term of ref. *), but we
make the following two alterations: .

(i) We add a curvature term as discussed above with a free parameter y..

(i) We use the value r, = 1.123 fm, which Elton '*) calculated from the charge
distributions measured by the Stanford group ""'), whereas Myers and Swiatecki used
r. as a free parameter which they then fitted to the fission barrier of 2°*T1, and simul-
taneously fitted the other parameters to the ground-state masses of the bsta-stable
nuclei. Thus with Elton’s value, we seem to get more realistic Coulomb easrgies.

Because of these alterations, it is necessary to refit all free paramsters of the mass
formula, especially those of the liquid-drop part. In this work, however, we adopt the
values given by Myers and Swiatecki for the parametars of the shcll-correctxon term
and the parameter x. Thus we obtain :

M(A, B,¥) = M N +MyZ - .
+{—a A+ﬂcg((g)‘4}+‘}’ch(€f)‘4*} {1"K(B!A)z}+ECuul+E:hell+EP=if’ (13)

with the neutron and hydrogen masses M, = 8.07144 MeV, My = 7.28899 MeV and
x == 1.7826. The special calculations of Eg,,, Eg. i 2nd E, ;. are explained in appendix
1. As free parameters, there remain z,, f., and y,, which will be determined below. _
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5. Parametrization

Instead of the deformation parameters used by Myers and Swiatecki, we describe

the nuclear surface by means of cylinder coordinates {p, ) with p:= F (C) and, as
suggested by Hasse *3)

F(0) := &G -UNGHE-0P), (14)

where Q guarantees the conservation of the unity volume %= and Q = {{3(3(2+3
+{3)}~*. Thus { is a dimensionless coordinate, the dimensioned coordinate is
z:=r . AY and thus F(z) = r.A*F({). The length of the drop is then given by
2r A*{,; the asymmetry is described by {,, and {, is a measure for the constriction of
the drop; for{, — co, one gets spheroidal shapes, whereas for C-, = 0, one gets scission
at the poiat { = {,. We note the centre of mass at {5 = £0(, (. Following a suggzs-
tion by Siissmann %), it appears that some of the disadvantageb of this otherwise
rather useful and simple Hasse parameter set can be removed if one would transform

them to Z := (¢,, &3, &,) namely the constriction parameter

£y 1= M2+ 83(L—1),

the asymmetry parameter

63 = %‘:1552’

and the elongation parameter
o= 33({o— 1)

This new set 2 has the desired properties (i) to be equal to (0, 0, 0) for the sphere,
(if) for small deviations from the sphere and under the condition of velume conserva-
tion, it is just equal to the usual coefficients &f = (a,, a3, o) of the Legendre poly-
nomials of P,, P;, P, at least uear the central point { = 0, therefore £ = &, if {j¢[, {)
< 1, where now asyminetry and coastriction are no, longer correlated, (iii) the scission
line is in fact the border (&;, &) = ® of the &, £; fission process plane.

In this paper, however, we use the Hasse parameters mentioned above and restrict
ourselves to reflection-symmetdc shapes, i.e. {; = 0. The shape-dep=ndent func-
tions g(¥), M%), Fcou 208 E,y .y are listed in appendix 2.

The ground-state shape of the nucleus is assumed to be a spheroid, {7 * = 0, Thus
in order to obtain the ground-state mass M, we merely have to minimize M (4, B, )
with respect to {,. The saddle-point deformation, which we take to be symmetrical,
was determined according to a method suggested by Lawrence 7). All numerical cal-
culations were performed on the IBM 7094 computer of the Deutsches Rechenzen-~
trum Darmstadt.

Fig. 1 shows the energy surface of 23°U plotted versus {, and £,. In add;txon, we
have marked the location of the saddle point for different values of the parameters
B. and 7., which are thus chosen that the correct fission barrier of 5.75 MeV is always
reproduced.
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6. Yitting the parameters o the fission harciers

As stated in sect. 2, L, has 2 minimum for constant volume ¥ if the principal radii
f curvature R, and R, are equal, i.e. if the drop is a sphere. If the saddle-point de-
formation is sphervidal, the curvature term tends to deform the nucleus towards a
sphere, i.c. it runs proportional to the surface term. On the other hand, for already
constricted shapes, the curvature term favours constriction. The neacked-in arca
almost does not contribute to L bzcause of the opposite signs of the two curvature
radii. Therefore, the curvature tension then acts oppositely to the surface tension.
Hence the fit of 7, will be best for nuclei with constricted saddle-point deformations.

The theoretical fission barrier AM is defined as

AM® = {B(g°— gV A} +y (K~ E°) AT} {1_" ('E)z}

F(ES = EGu) +(Eduen — EGen).  (15)

For any 7, in the reasonable range —5 < y. < 16 MeV, one can reproduce the ex-
perimental fission barriers AM*® of a given nucleus, ie. '

AM™ = AM®, : (16)
if only B, is adjusted propetly. Solving egs. (15) and (16} with respect to B. leads to

hs—hﬂ — ’ X ' -
Bc = —%¥c 7 7° A7¢ g {am p"(Ets:oul”Egoul)—(Essheu—Egen)} :

RIS R

. By plotting f, versus y, as fitted to the experimental fission barriers yuoted by'
_ Myers and Swiatecki %), we hope to find a confined area where all the lines intersect.
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Fig. 3. Saddie-point shapes of various nuclei £OT1...3CE).
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This iatersection area would then furnish an sstimate of the (8., 7.} pair, which ia-
serted into eq. (15), would reproduce the experimental fission barriers. Fig. 2 is the

plot of the fitted B (7.) versus y.. They a

o -

re almost parallel straight lines except for

C 23k Socdiepoint coordinates §,and § , with
————Tm T TN g Pe 1930 M2V, Y. = 0.0 MeV: wimivnn,
,’ B 21785 MeV, v, = 5.8MeV: % -
2.2
! . 21553 MV, Y, 2.5 MaVe ——
21
20
) 22
™,
19
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17
16+
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15+
1
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13 ] 1 L 1 3 L [ . ) 1 o
R T T i U PR et gt e
1 fel L T ST S R SR T T U L33
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Fig. 4. Saddle-point coordinates {, and {, for various values of p, and f,. For abscissa, the fissility
parameter x has been calculated with 8, = 17.85 MeV and p, = 6.8 MeV. The sections (A-B) of the
coordinate lines determined with 8, = 16.53 MeV and y, = 13.5 MeV describe the coordinates of
the minimum between the two saddle points. This topological fact has been brought to our attention
by Swiatecki 43).

29171 and ?°°Bi. They run in 2 rather narrow strip. With an uncertainty of the ex-
perimental values ranging from 1.5 MeV (2%4T1) to say 0.3 MeV for the heavier nuclei,
B. is uncertain to 48, = 0.3 MeV, which would result in an overlap of nearly all lines.
We also plotted the ground-state fit, which is explained in sect. 8.
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7. Discussion

Unfortunately, the saddle-point deformations of most of the rcki vader con-
sideration (A4 = 210) are rathar sausage like (see fig. 3), thus thé curvature term doses
not yet become effective in the sense that the saddle-point deformations do not chan e
very much with increasing y, (sce figs. 1 and 4). Therzfore, the ratio q = (=K%Y
(5°—g°) of eq. (17) remains nearly constant with increasing Ye (see fig. 5), thus giving
a straight line for each nucleus: ' . S

ﬂc = mN.Z}'-:'!"bN.Z! ] X - ]
(H=1%)(g°—-g%)A~F = g4~ B ()
) bN, z= {A MEP— (E(SInuI - Egoul) - (theii - Egcll)} —

)]

I

My z

rL9p

184
ll”’
P e
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m
UJ!!
Pu:u _____ -
[ = L,

15 ¢

n5E

8-

Rr

e S - o e o o P o T
- e -

iy - ! 1 : ) 1 N X i
] y— i 1 I N N - I ' 1 I el " 2 1

| ——iare
X MoV

Fig. 5. The matio g :=(}S—/G)/(¢5—»G) versus the curvature tension Fe- The sm'face tension has
been chosen in a way to reproduce the fission barciers of the various noclei correctly.

Furthermore, for deformations in the saddle-poiat region of all nuclei with 4 = 230;
k(¥) is still proportional to g(¥). Thus ¢ ranzss only from 1.2 to 1.28 for all nucle:
regardless of their saddle-point deformations (see fig. 5). Dividing ¢ by A%, we obtain
the gradient n1y , which thus ranges from 0.19 to 0.208, i.e. the straight lines in fig. 2
are almost paraliel. S '
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Only the saddiz-point shapes of the lighter nuclei (4 < 220) arc constricted and
therefore changs cousiderably with y.. There can even occur a jump in the saddie-
point elongation {§ and constriction {3, which can be observed in the following ways.
If y. is constant and sufficiently large (. z 10 MeV), {5 decreases and {3 increases
rapidly with increasing fissility parameter ¥ x, as=shown in figs. 4 and 6, some nuclei
having even a double-hump fission barrier showing two saddle pomts The same
happens when x is kept constant and y, increases. :

The possible occurrence of double-hump fission barriers in a small fissility param-
eter area about Ra is strongly correlated to the well-known change in deformation
froma constricted saddle-point shapes for light nuclei to sausage-like oncs for heavy
nuclei at that x-area. It proves that this change is emphasized by the curvature
tension, and simultaneously the saddle-point area seems to become very flat, Then -
for sufficientiy large values of y, even a small second minimum occurs. This is a con-
sequence of the differrent ways in which surface and curvature tensions act on con-
stricted nuclei. Thus the formation of a Strutinski-minimum *473°) in this x-area is
fostered in the same dsgree as the value of the curvature tension is increased. It will
depend on detailed extra-polations of the Stiutinski shell term ?%) to the strongly
constricted and deformed saddle-point shapes in question and on the actual value of
7. if there will be any nucleus near Ra showing shape isomers.

For the lighter nuclei (e.g. 2%*T! and 2°°Bi), the ratio g changes considerably {(see
fig. 5), the lines in fig. 2 are slightly bent. Furthermore, the line of 2°*T} intecsects
neacly all other lines within the small range 2-8.5 MeV. Bismuth does not seem to be
a good example, because its fission barrier was measured 3*) with a mixture of two
isotopes 2°%Bi and ?°7Bi, thus its value for b, 5 of eq. (18} is not very reliable.

Tantk 1 -
The three areas of maximal intersection density

"y, area B arca Peak value

(MeV) {MeV) {arbitracy unit)
-20...—05 19.4 ...19.7 7
+0.5... 420 189 ...192 8
+4.4... 460 18.05...18.35 8

The by, » of eq. (18) ranges from 18.8 to 19.5 MeV and does not show significant
dependence on N, Z or 4. This scattering is due to the uncertainty of the experimental
values AM*® and also of the shell-correction term. This term is fitted to the ground-
state masses, but its shape dependence is somewhat hypothetical for the major defor-
mations at the saddle point. Furthermore, we did not yet refit its parameters. It would
be a major improvement however, to have at our disposal a shell-correction term,

t As thé Bohr-Wheeler *) fissility parameter does not take the curvature energy into accouat, we
have to modify it as follows [see also Hasse *%)]

= -’}(ECWII(E!N’! T Ecurv))sphou .
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which holds even for large deformations, constrictions and asymmetries of the nuclear
shape. This has been performed by a thorough study of Nix 3%:33) using a Nilsson-
Strutinski type model. : ]

The vecy small variations of my , as well as scattering of the by » prevent the lines
in fig. 2 from intersecting within a small area. For this reason, we first tried to apply
statistical methods and counted the number of lines passing through small sections
of equidistant lines at right angles to a mean straight line, The density map is plotted
versus 7, and B, in fig. 7. There are three maxima listed in.tabie 1. These areas yield
the most probable values for the pair (8., y.). The third set seems to be the beast, for
it includes the fit to *%*T1 and the ground-state fit discussed below.

8. Fitting the parameters to the ground-state masses

The method of fitting B, and v, to the experimental fission barriers has produced
onty a somewhat vague determination for these parameters. The lines in fiz. 2 do not
have a definite single intersection point or intersection density maximum because of
the lack of experimental threshold energies of lighter nuclei. We therefore here com-
bine this fit with the natural postulation that our mass formula should also reproduce
~the experimental ground-state masses °*® with the same B. and y, values.

We roughly evaluated the constants «, and 8, for given 7. by means of thke least-
squares fit to the 6C0 ground-state= masses quoted in ref, *). Here we always chose
B. and 7, so that it was on the maximum intersection-density line of the fission barder
fit. Starting with estimated values for#_ and §_, we sought the minimum of 3/ (4,B,%)
for each nucleus with regard to deformation (vacying ¢, with £, = 00), i.e. the theo-
retical ground-state mass M'™; leaving the specific shape of each nucleus fixed for
the minimum of 3 y(M™—M?)* with respect to «, and f,. With these values,
we began a new iteration until the process converged. Thus we found the following
dependence of the parameters f_ and «, on y,:

Blr) = 20632 MeV —0.4093y,, .
a(70) = 16277 MeV ~0.0409y, . )

Figs. 2 and 7 show the line B_(y.) denoted as the ground state fit. Both the ground
state and fission-barrier fits of the heavy nuclei and 2°*T1 yield 2 curvature tension of
approximately 6 to 8 MeV, the most probable value being y, = 6.8 MeV, then
- P = 17.849 MeV and ¢, = 15.999 MeV. - B

Starting with eqs. (9) and (19), one gets for superheavy nuclei, being almost
spherical,

E = Ey+4E, (o)

- where Ej is the nuclear mass without taking a curvature tension into account and A5
is the lack of binding due to a curvature tension y,,

-

AE:=y.F(4),  F(4):=(0.04094-0.40934% + 4%). T2
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Due to eq. (19), volurae and surface tensions are adjusted to every m'lueqat'y.= to fit best

the knowa ground-state masses. For all superheavy nuclei, the lack-function F(4)is
positive, .

lh(A ~ I‘EZA 104 | - ' (2:"‘)

in that area, i.e. the binding of all superheavy nuclei is reduced when taking curvaturs

tension into account. As an example, forA 278 weget F(4) = 0. 49 and with y,_ = 6. 8
MeV, finally AE =.3.34 MeV,

A
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Fig. 8. The fission barriers calculated with §, = 17.849 MeV and y, = 6.8 MeV versus the fissility
parameter x. For comparison, the experimental values 4) are shown. :

With the values of «, §,, and y, mentioned above, we calculated the fission bar-
riets; the results shown in fig. 8 demonstrate a very good agreement between the theo-
retical and experimental values. In the region of the magic numbers Z = 82 and
N = 126, i.e. Bi and Po, the effzct of the shell-correction term seems to be too large.
For more detailed investigations, however, further exparimentally determined fission
barriers are needed. Also, in the region of Pu and Cm, the theoretical line in fig. 8
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seems to be too steep. We interpret these two effects as being due to the shell-correc-
tion term, since near the magic numbers the bulges of the Myears-Swiatacki term of
ref *) seem to be still too steep. .

The agreement between the theoretical and the experimental ground state masses,
however, is not striking, the r.m.s. deviation being 2.8 MeV. A fit of «,, j, and y, only
to the experimental ground-state masses gives «, = 16,723 MeV, B, = 2509 M=V and
Yo = —10.9 MeV with a r.m.s. deviation of 1.45 MeV. If the parameter & is fitted as
well, then a, = 16.739 MeV, B, = 23.34 MeV, y. = —10.7 M2V and x = 1.§33
with a 1.3 MeV r.m.s. deviation. Even with these values, there remain devintions
from the experimental ground state masses which show significant shell effects. This
indicates the necessity of refitting the shell-correction pacameters as well. |

Furthermore, the r, determination of Elton should be recalculated and would prob- )
ably lead to a somewhat larger value. Seeger **) thoroughly fitted all experimentalty
available data on nuclear masses and obtained a r, value of about 1.175 fm. This
agrees fairly well with the mean nuclear elementary radius r, calculated by Myers 33)
from his droplet model. He proved as well that the proton-radius 7, should be about
47, smaller than rg; therefore r is in the range of the 7, of Elton, butin the hquid drop
terms mentioned in this paper one should use the elementary radius ry of Myers.
We hope that this will reduce very much the r.m.s. deviation meationed above.

Our result of 6-8 MeV for y, agress fairly accurately with other calculations, e.g.
Schade and Hilf **) obtained from simple Fermi gas model calculations the range
1.9 5 v, § 13 MeV. In a preliminary calculation using the above mentionsd geo-
metrical assumption on the nuclear density surfaces, Siissmann %) obtained 7, & 3
MeV from the shell model. From scission-point calculations by fitting the Coulomb-
interaction energy to the experimental mean kinetic energies of the fragments
Schade.?!) obtained 16 MeV, which seems a little high, but he did not refit the surface
parameter B, and uses r, = 1.2249 fm as quoted by Myers and Swiatecki 3). Myers -
and Swiatecki 17) started with 2 two-nucleon potential and obtained y, & 9.34 MeV
from their dropiet model. '

9. Conclusion

Although thére may be several terms proportional to 4% in the mass formula, e.g.
curvature energy, compressibility and part of the shell term, they can be distinguished
by studying adjusted physical processes. For the curvature term, they are the fission
bacriers. For this reason, threshold energies of lighter nuclei such as Bi with more
* constricted saddle-point s!_mpés should be measured. This has bezn performed 37)in

the meantime, _ o '

We have used the fixed value r, = 1.123 fm instead of fitting it as a free parameter,
which would Iead to somewhat larger values of about 1.15-1.2 fm. This of course has
strengthened the Coulomb energy which forces the nucleus to become more deformed.
With regard to deformations, this effect is mainly compensated by a positive curva- -
ture tension, whereas the surface tension remains about the same, as we obtained by
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fitting these parameters to the experimental fission bacriers. With regard to the over-
all trend of the ground-state masses, however, the larger Coulomb energies are com-
pensated in the binding energy first by a larger value of «, which is obvious and
secondly by a negative value of y, and a larger value of B.. The Iatter we believe to be
due to the shell-correction term of Myers and Swiatecki and the method by which
they determined its parameters; they fitted them to the diffzrence between the experi-
meatally known ground-state masses and the calculated liquid-drop masses. Thus the
exprassion —cA” of the shell-correction term (see appendix 1) fixes this term to the
overall trend of the theoretical liquid-drop part. As we altered r., this trend changed,
therefore ¢ should have been refitted. By preliminarily using the original c-value, the
A* dependence of the shell-correction term was partly transferred to that of the liquid-
drop term, therefore the “curvature tension” of y, = —11 MeV obtained by our
ground-state fit does not only result from curvature effects but includes shell effects.
as well. We hope that by a new thorough fitting both, the liquid-drop and the shell-
correction-term parameters, the discrepancy between the values determined by the
tting to the fission barriers and those of the ground-state fit will be diminished.

Furthermore, the functional dependence of the shell-correction tarm on N and 7
and the d=formation of the nuclei should be the subject of further investi sations. Hilf
and Siissmann *?) obtained from Fermi gas model calculations that the sheil-correc-
tion part may not contain an 4% term. Siissmann et al. 3%) recently proposed another
formula where the shell energy is based on the magic numbers and the local curvature
of the nuclear surface. With this term, shell effects of even extremely deformad nuclei
can be defined, '

H.v.G.’s contribution to this paper was carried out under the direction of Professor
G. Siissmann f. We-are both much indebted to him for stimulating and critical sup-
port. We thaok Dr. R. W. Hasse for his cooperation and many helpful remarks and Dr,
R. Schade for encouragement in the initial stages and for the Coulomb-term program.
One of us (E.H.) is very grateful for enlightening conservations with Professor W. J.
Swiatecki, Drs. W. D. Myers, J. R. Nix, P. A. Seeger, and E. Migneco. We also thank
Professor R. Ebert for generous hospitality and encouragement and L. Dempsay for
revising the English manuscript. We are very grateful to the Deutsche Forschungs-
gemeinschaft for sponsoring this work and the Deutsches Rechenzentrum Darmstadt _
for permission to use their computing facilities. - S

Appendix 1
CALCULATIONS OF E¢ou, Epent AND Eyure

According to Myers and Swiatecki *'3), we calculated the Coulomb energy Eq .,
the shell-correction term E,, ., and the pairing energy E,.ir as follows:

3 Z%* d\2 2%e*
ot = 3 28 f(®) -4 (—) ,
red

5rAf r.
 Then at the Institut fiir Theorctische Physik, Universitit Frankfuzt/M., Germany.

@)
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with 7. = 1.123 fm {incontrast to the r, = 1.2249 fm of Myers and Swiatecki} and
d = 0.5461 fm the surface thickness parameter in a Fermi-type density distribution,
and

%) = % ‘gi ifdil j drzf}\R- F)O(R.—ro)ilr, —ral. 24
" The s‘.ieil—cofréction”te.rr'h is ) , .
Epgn = C{GV) +G@))(34)~* —ca}(1—28%) exp (~67), (25)
with € = 5.8 MeV, ¢ = 0.325 and ' o
L G(X) := i{(MLM:‘_ X =M )= M)~ (3~ M)} (26)'

for M;_; < X £ M;, and the magic numbers M; = 2, 8, 14, 28, 50, 82, 124, 134
The factor 82 is the Myers-Swiatecki measuce for the deformation of the nucleus.
With its surface described by the radius R(3, ) aad the radius of the sph..re of equal
volume by R_, then .

i (xa?)” [ 40RO, )-R, . 2 = 04 27)

e

The pairing energy is defined as usual for spherical nuclei:

{ 114~% MeV for doubly odd nuclei
E .oa=

pair

0 eV for odd-mass nuclei (28)
—1147% MeV for even nuc‘cl

in this paper we have used this simpie palrmo terrn. But one should be aware, that
the pairing term is somewhat shape dependent. At least for nuclei lighter than Ra,
the pairing energy of the saddle point should be about the sum of the pairing terms of
the two fragments. A first-ordec correction to this equation can be calculated {rora
the molecular fission model of Keanedy 3?) and Norenberg *°). Experimentally, the
shape dependence of the pairing energy has been determined by Konecny et al. * H,
Moretto, Thompson, Khodai-Joopari et al. 37#2), These replacements of eq. (28)
will certainly improve the mass formula. -

Appendix 2
THE SHAPE-DEPENDENT FUNCTIONS

With the parameter set € = ({q. 1, £2) which describes the nuclear surface, the
shape-dependent functions of sect. 5 are as follows (the prime denoting di ferentiation
with respect to {):

The surface function g(¥) is

o(0):= S = j LFQOU+HFAO). - (9)
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With L := [dS(R{*+R;?) and R, = ~(1 +F'-’-)*/F" and R, = F(1+4F'?)%, the
curvature function Iz(‘*‘) is obtamed

) = 1o j aL(1+FH0) - FOF )1 +F'=(c))- L (0)
or integrating by parts I"')
{o R -
h(@) = % d{F arctan F', . (1)
=% .

without the need of calculating F”’.
The Coulomb-energy function according to Lawrence ) is

oo (" IFiFisin
(%) =12 di ] d Jd — - 102
R R R e e e e ey opeer S
with { :={+{, and F,({):=F({{—{o) and F({):= F{y—{,). Finally, since
R, = r.A} and R = R{F*({)+{*)* and cos 8 = {(F*({)+¢*)"%, one gets
o = L [y FOUQ-CFONFEQ+E)' -1y
2 a* (FHO+0)

Ail intzgrations were performed numerically by means of a 24-point Gouss-Legendre
technique 1*) with one division of the integration interval.

(33)
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