1 Pseudozyma saprotrophic yeasts have retained a large

2 effector arsenal, including functional Pep1 orthologs

- 3
- 4 Rahul Sharma^{1,2}, Bilal Ökmen³, Gunther Doehlemann³, Marco Thines^{1,2,4}*
- 5
- ¹Senckenberg BiK-F, Frankfurt am Main, Germany
- ²Goethe University, Biosciences, Institute of Ecology, Evolution and Diversity, Frankfurt am
- 8 Main, Germany
- ³Botanical Institute and CEPLAS, University of Cologne, BioCenter, Cologne, Germany.
- ⁴Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany.
- 11
- 12
- 13 * m.thines@thines-lab.eu

14 Summary

15 The basidiomycete smut fungi are predominantly plant parasitic, causing severe losses in 16 some crops. Most species feature a saprotrophic haploid yeast stage, and several smut fungi 17 are only known from this stage, with some isolated from habitats without suitable hosts, e.g. 18 from Antarctica. Thus, these species are generally believed to be apathogenic, but recent 19 findings that some of these might have a plant pathogenic sexual counterpart, casts doubts on 20 the validity of this hypothesis. Here, four *Pseudozyma* genomes were re-annotated and 21 compared to published smut pathogens and the well-characterised effector gene Pep1 from 22 these species was checked for its ability to complement a *Pep1* deletion strain of *Ustilago* 23 maydis. It was found that 113 high-confidence putative effector proteins were conserved 24 among smut and *Pseudozyma* genomes. Among these were several validated effector proteins, 25 including Pep1. By genetic complementation we show that *Pep1* homologs from the 26 supposedly apathogenic yeasts restore virulence in *Pep1*-deficient mutants *Ustilago maydis*. 27 Thus, it is concluded that *Pseudozyma* species have retained a suite of effectors. This hints at 28 the possibility that *Pseudozyma* species have kept an unknown plant pathogenic stage for 29 sexual recombination or that these effectors have positive effects when colonising plant 30 surfaces.

31

32 Key words: core effectors; effector complementation; plant pathogens; *Pseudozyma*;
33 Ustilago; yeast

35 Introduction

36 Smut fungi in a broad sense are one of the three major lineages of Basidiomycota. 37 Some species threaten crop plants, e.g. Ustilago maydis (maize) and Ustilago scitaminea 38 (sugarcane). Smut fungi are dimorphic, with a filamentous and a yeast-like morph in different 39 life stages. The yeast stage is haploid and saprotrophic, the hyphal stage is dicaryotic and 40 obligate plant parasitic. Yeasts of matching sex form fusing conjugation hyphae, producing an 41 infective dikaryon penetrating the host or colonisation. However, some smuts are known only 42 from their yeast stage. Since the ending of dual naming for anamorphic and teleomorphic 43 fungi (Hawksworth et al., 2011), the yeast genus Pseudozyma became obsolete, being 44 scattered throughout the smut phylogeny (Wang et al., 2015). It was recently established that 45 Pseudozyma prolifica is conspecific with U. maydis (Wang et al., 2015), but it is believed that 46 other *Pseudozyma* species have lost pathogenicity and exist only as yeasts (Lefebvre *et al.*, 47 2013; Morita et al., 2013; Morita et al., 2014). A well-known species of these is the biocontrol 48 agent Pseudozyma aphidis (Gafni et al., 2015), closely related or probably conspecific with 49 Moesziomyces bullatus (Kruse et al., 2017).

50 A key to investigating the apathogenic or pathogenic nature of *Pseudozyma*-like 51 yeasts are putative secreted effector proteins (PSEPs). For successful colonization of hosts, 52 pathogens secrete hundreds of effector proteins (Latijnhouwers et al., 2003). Effectors often 53 have limited sequence conservation (Schirawski et al., 2010; Kemen et al., 2011; Sharma et 54 al., 2014), but some are conserved in genomes of related pathogens (Sharma et al. 2014, 55 2015; Quinn et al. 2013; Hemetsberger et al. 2015; Lanver et al. (2017). Previous definitions 56 of putative effector proteins were often associated with several restrictions, such as size cut-57 off (e.g. below 300aa), certain amino acid composition (e.g. Cys-rich), or the absence of 58 sequence motifs predicting an enzymatic function. However, such formal restrictions 59 artificially exclude a large fraction of proteins that contribute to virulence and interfere with 60 the plant immune system. Effectors with enzymatic functions have actually been identified in

61	various filamentous plant pathogens (Franceschetti et al., 2017). Recently, the U. maydis
62	metalloprotease Fly1 was found to contribute to virulence by targeting maize chitinase. Here,
63	we investigated conservation of PSEPs, including effectors with predicted functional
64	domains, among Pseudozyma genomes (Morita et al., 2013; Konishi et al., 2013; Oliveira et
65	al., 2013; Lorenz et al., 2014) to evaluate the potential pathogenicity of Pseudozyma-like
66	yeasts. We were focusing on well-studied effectors, in particular the core-effector Pep1,
67	which previously was identified as an essential virulence factor of U. maydis which is
68	functionally conserved amongst pathogenic smuts (Hemetsberger et al., 2012, 2015).

69

70 **Results**

Of 211 core PSEPs, a total of 178, 199, 182 and 171 candidates were conserved in the non-pathogenic yeasts *P. antarctica, P. hubeiensis, P. brasiliensis*, and *P. aphidis*, respectively (Tables 1, 2). Of these, 158, 182, 166, and 151, respectively, were predicted to have a secretion signal (Table 2). In total, 113 PSEPs were found to be conserved among all eight genomes. Functional annotation revealed features associated with pathogenicity, such as glycoside hydrolase and aspartic peptidase domains (Supplementary Table 2).

77 Almost all of the well-studied Ustilago maydis virulence factors conserved among 78 Ustilaginales were found conserved in the four *Pseudozyma* genomes (Table 1). The 79 conservation of the Pit cluster (Doehlemann et al., 2011) Cmu1 (Djamei et al., 2011), Cwh41 80 (Martínez-Soto et al., 2013), and Hum3 (Muller et al., 2008) was found in all four 81 Pseudozyma genomes (Table 1). Tin2 (Tanaka et al., 2014) was also found conserved, but the 82 P. hubeiensis ortholog was lacking a strong secretion signal (Table 1). The Pep1 effector was 83 found to be conserved among the eight genomes, with all structural features intact (Figure 1). 84 Besides these effectors with already known virulence function, also the membrane proteins 85 Msb2 (Lanver et al., 2010) and Pit1 (Doehlemann et al., 2011), which hold crucial virulence

86 functions, but are also known from non-pathogenic species were conserved amongst the yeast

87 genomes.

88 To test the functionality as virulence factors on the example of the well-studied 89 effector Pep1, coding regions of the *Pseudozyma Pep1* orthologs were fused to the *U. maydis* 90 *pep1* promoter and stably integrated in the *ip*-locus of U. maydis strain SG200 Δ pep1, which is 91 unable to infect maize plants due to the deletion of *Pep1* (Doehlemann *et al.*, 2009). The 92 resulting U. maydis strains were verified by Southern Blot (Supplementary Figure 1) and 93 subsequently inoculated to maize seedlings. Strikingly, scoring of U. maydis tumour 94 formation revealed that all strains expressing Pep1 homologs from Pseudozyma species were 95 fully virulent, i.e. produced plant tumours were indistinguishable from the progenitor strain 96 SG200 (Figure 2). This result demonstrates that Pseudozyma species encode functional 97 orthologs of the Pep1 effector, which restore virulence of *U. maydis* in maize.

98

99 **Discussion**

100 To avoid recognition by R-proteins, many secreted effectors adapt quickly and show 101 limited conservation (Schirawski et al., 2010; Laurie et al., 2012). However, conservation of 102 putative secreted effector protein (PSEP)-encoding genes among related pathogens has been 103 reported (Hemetsberger et al., 2015; Sharma et al., 2015). These effectors have been termed 104 "core" effectors (Sharma et al. 2014). The well-studied Pep1 effector, required for successful 105 host colonisation (Doehlemann et al., 2009), is an archetypal core effector, functionally 106 conserved among monocot and dicot infecting smut pathogens (Hemetsberger et al., 2015). 107 Our finding that also Cmu1, Tin2, and Hum3 remained conserved with secretion signal 108 peptides in the genomes of smuts fungi only known from the yeast stage suggests that they 109 either feature an unknown pathogenic stage, or that effectors also have a positive effect when 110 settling on plant surfaces. Also in *P. antarctica* isolated from sediments in Antarctica, these

111 effectors remained conserved, with secretion signal peptides intact. If these effectors were not 112 needed anymore, it can be expected that they would either get lost quickly, as in U. 113 pennsylvanica after a host jump from monocots to dicots (Sharma et al., 2014), or acquire 114 new functions (Sharma et al., 2015). For Pep1, the finding that orthologs from all yeast-only 115 species were able to fully restore pathogenicity in U. maydis, demonstrates that its virulence 116 function remained conserved amongst species. Moreover, our finding highlights that more 117 research is needed to investigate, if fully saprotrophic species of the Ustilaginales exist (Kruse 118 et al., 2017) and if so, how different lifestyles of smut yeasts evolved. Regarding the 119 functional conservation of Pep1 one could speculate that its function to suppress PAMP-120 triggered ROS generation also benefits epiphytic yeasts on plant surfaces. However, in U. 121 maydis transcription of Pep1, as well as that of other known effectors, is only activated upon 122 mating when compatible heterodimers of the b-transcription factor are present in the cell. 123 Therefore, a putative role of effectors in non-biotrophic stages would imply a fundamental 124 change in the transcriptional regulatory cascade of anamorphic smut yeasts. Even though the 125 alternative explanation that all the conserved proteins would also benefit a saprotrophic yeasts 126 seems highly unlikely, as several are known to interact only with targets inside the plant 127 cytoplasm. Given the conservation of more than 100 PSEPs and almost all core effectors with 128 known virulence activity, it seems more likely that Pseudozyma species have a plant 129 pathogenic stage, rather than that they have lost it only recently, simultaneously in four 130 species. It is conceivable that those few species frequently encountered as yeasts, are 131 competitive saprotrophs and that the plant pathogenic stage is only maintained to allow for 132 infrequent sexual recombination.

133

134 Materials and Methods

135 **Bioinformatics**

136	Out of 248 PSEPs conserved among the four smut genomes i.e. Ustilago maydis
137	(Kämper et al., 2006), U. hordei (Laurie et al., 2012), U. reiliana (Schirawski et al., 2010),
138	and U. pennsylvanica (Sharma et al., 2014), a high-confidence (secretion strongly supported)
139	core set of 211 PSEPs was inferred (Sharma et al., 2015). The genomes of four Pseudozyma
140	species, P. antarctica, P. hubeiensis, P. brasiliensis, and P. aphidis, were scanned for the
141	presence of the 211 PSEPs, with U. maydis proteins as query. To investigate the conservation,
142	also ab initio prediction was done using GeneMark (Ter-Hovhannisyan et al., 2008), trained
143	on the other Ustilaginales. The resulting protein sequences were aligned to the 211 PSEPs of
144	U. maydis using Blastp. A PSEP was considered present if exceeding 45% identity, an e-value
145	of e-5, and alignment coverage of 60%. Candidate orthologs were scanned for secretion
146	signals as described before (Sharma et al., 2015). Start-codon positions of candidate orthologs
147	were manually checked and corrected, if necessary, using the well-annotated U. maydis
148	proteins as reference.

The PSEPs conserved among smuts and yeasts were annotated based on *U. maydis* proteins (ftp://ftpmips.gsf.de/fungi/Ustilaginaceae/Ustilago_maydis_521/) and InterProScan (Quevillon *et al.*, 2005) using Blast2GO (Conesa *et al.*, 2005). Particular attention was paid to validated effector proteins of *U. maydis*.

153

154 *∆umpep1* complementation and disease assay

In order to show functional conservation between the *Pep1* orthologs, those from *P. antarctica, P. hubeiensis, P. brasiliensis,* and *P. aphidis* were amplified by PCR with the primers given in Supplementary Table 1 and subsequently expressed in the *U. maydis* SG200 Δ pep1 strain, which is deleted for *pep1* (Doehlemann *et al.*, 2009). For proper expression, *pep1* orthologs were expressed controlled by the endogenous *U. maydis pep1*promoter, integrated in single copy (checked by Southern blots) into the *ip*-locus of *U. maydis*, as described previously (Hemetsberger *et al.*, 2015).

162	The U. maydis disease assays were performed according to Hemetsberger et al.
163	(2015). Briefly, the cell culture control and complementation strains were inoculated onto
164	maize seedlings (variety Early Golden Bantam) with a syringe and needle into the leaf whirl.
165	All assays were performed in biological triplicates (≥30 plants each). The quantification of
166	disease symptoms was performed at 12 dpi as described previously (Kämper et al., 2006).
167	

169

170 Acknowledgements

171	RS carried out bioinformatics work and participated in data analysis; BO carried out
172	the molecular lab work, participated in data analysis, and edited the manuscript; GD designed
173	the study, participated in data analysis and drafted the manuscript; MT conceived of the study,
174	designed the study, participated in data analysis, coordinated the study and drafted the
175	manuscript. This study was funded by the LOEWE initiative of the government of Hessen, in
176	the framework of the cluster for Integrative Fungal Research (IPF) and the Center of
177	Excellence on Plant Science (CEPLAS). We thank Melanie Kastl and Raphael Wemhöner for
178	assistance in generation of U. maydis strains and plant infection assays.

180 References

181 C	Conesa A,	Götz S,	García-Gómez JN	I, Terol J	, Talón M	, Robles M.	2005.	Blast2GO: A
-------	-----------	---------	-----------------	------------	-----------	-------------	-------	-------------

- 182 universal tool for annotation, visualization and analysis in functional genomics
- 183 research. Bioinformatics. 21: 3674-3676.
- 184 Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, et al. 2011. Metabolic priming
- 185 by a secreted fungal effector. Nature 478: 395-398.
- 186 Doehlemann G, Van Der Linde K, Aßmann D, Schwammbach D, Hof A, Mohanty A, et al.
- 187 2009. Pep1, a secreted effector protein of Ustilago maydis, is required for successful 188
- invasion of plant cells. PLoS Pathogens 5: e1000290.
- 189 Doehlemann G, Reissmann S, Aßmann D, Fleckenstein M, Kahmann R. 2011. Two linked
- 190 genes encoding a secreted effector and a membrane protein are essential for Ustilago

191 maydis-induced tumour formation. Molecular Microbiology 81: 751-66.

- 192 Franceschetti M, Magbool A, Jiménez-Dalmaroni M J, Pennington HG, Kamoun S, Banfield,
- 193 MJ. 2017. Effectors of filamentous plant pathogens: commonalities amid diversity.
- 194 Microbiology and Molecular Biology Reviews 81: e00066-16.
- 195 Gafni A, Claudia C, Raviv H, Buxdorf K, Avis D, Berger ML. 2015. Biological control of the
- 196 cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic

197 fungus Pseudozyma aphidis. Fronttiers in Plant Sciences 6: 1-11.

198 Hawksworth DL, Crous PW, Redhead S, Reynolds DR, Samson R, Seifert K, et al. 2011. The

199 Amsterdam declaration on fungal nomenclature. IMA Fungus 2: 105-112.

- 200 Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G, Kumlehn J, et al. 2015. The
- 201 fungal core effector Pep1 is conserved across smuts of dicots and monocots. New
- 202 Phytologist 206: 1116-1126.
- 203 Kämper J, Kahmann R, Bölker M, Ma L-J, Brefort T, Saville BJ, et al. 2006. Insights from the
- 204 genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: 97-101.

- 205 Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, et
- al. 2011. Gene gain and loss during evolution of obligate parasitism in the white rust
- 207 pathogen of Arabidopsis thaliana. PLoS Biology 9: e1001094.
- 208 Konishi M, Hatada Y, Horiuchi J. 2013. Draft Genome Sequence of the Basidiomycetous
- 209 Yeast-Like Fungus *Pseudozyma hubeiensis SY62*, Which Produces an Abundant
- 210 Amount of the Biosurfactant Mannosylerythritol Lipids. *Genome Announcements* 1:
- 211 13-14.
- 212 Kruse J, Doehlemann G, Kemen E, Thines M. 2017. Asexual and sexual morphs of
- 213 *Moesziomyces* revisited. *IMA Fungus* 8: 117-129.
- Latijnhouwers M, De Wit PJGM, Govers F. 2003. Oomycetes and fungi: Similar weaponry to
 attack plants. *Trends in Microbiology* 11: 462-469.
- 216 Lanver D, Mendoza-Mendoza A, Brachmann A, Kahmann R. 2010. Sho1 and Msb2-Related

Proteins Regulate Appressorium Development in the Smut Fungus *Ustilago maydis*. *Plant Cell* 22: 2085-2101.

- Lanver D, Tollot M, Schweizer G, Presti LL, Reissmann S, Ma LS, et al. 2017. Ustilago
- 220 *maydis* effectors and their impact on virulence. *Nature Reviews Microbiology* 15: 409.
- Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P, Guldener U, et al. 2012. Genome

222 Comparison of Barley and Maize Smut Fungi Reveals Targeted Loss of RNA

- 223 Silencing Components and Species-Specific Presence of Transposable Elements. Plant
- 224 *Cell* 24: 1733-1745.
- 225 Lefebvre F, Joly DL, Labbé C, Teichmann B, Linning R, Belzile F, et al. 2013. The transition
- from a phytopathogenic smut ancestor to an anamorphic biocontrol agent deciphered
- by comparative whole-genome analysis. *Plant Cell* 25: 1946-1959.

228	Lorenz S, Guenther M, Grumaz C, Rupp S, Zibek S, Sohn K. 2014. Genome Sequence of the
229	Basidiomycetous Fungus Pseudozyma aphidis DSM70725, an Efficient Producer of
230	Biosurfactant Mannosylerythritol Lipids. Genome Announcements 2: e00053
231	Martínez-Soto D, Robledo-Briones AM, Estrada-Luna A a, Ruiz-Herrera J. 2013.
232	Transcriptomic analysis of Ustilago maydis infecting Arabidopsis reveals important
233	aspects of the fungus pathogenic mechanisms. Plant Signalling and Behaviour 8: 1-13.
234	Morita T, Koike H, Koyama Y, Hagiwara H, Ito E, Fukuoka T, et al. 2013. Genome Sequence
235	of the Basidiomycetous Yeast Pseudozyma antarctica T-34, a Producer of the
236	Glycolipid Biosurfactants Mannosylerythritol Lipids. Genome Announcements 1:
237	e00064-13.
238	Morita T, Koike H, Hagiwara H, Ito E, Machida M, Sato S, et al. 2014. Genome and
239	transcriptome analysis of the basidiomycetous yeast Pseudozyma antarctica producing
240	extracellular glycolipids, mannosylerythritol lipids. PLoS One 9: e86490.
241	Muller O, Schreier PH, Uhrig JF. 2008. Identification and characterization of secreted and
242	pathogenesis-related proteins in Ustilago maydis. Molecular Genetics and Genomics
243	279: 27–39.
244	Oliveira JV de C, Dos Santos RAC, Borges TA, Riaño-Pachón DM, Goldman GH. 2013.
245	Draft Genome Sequence of Pseudozyma brasiliensis sp. nov. Strain GHG001, a High
246	Producer of Endo-1,4-Xylanase Isolated from an Insect Pest of Sugarcane. Genome
247	Announcements 1: e00920-13.
248	Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. 2005.
249	InterProScan: Protein domains identifier. Nucleic Acids Research 33: XY.
250	Quinn L, O'Neill PA, Harrison J, Paskiewicz KH, Mccracken AR, Cooke LR, et al. 2013.
251	Genome-wide sequencing of Phytophthora lateralis reveals genetic variation among
252	isolates from Lawson cypress (Chamaecyparis lawsoniana) in Northern Ireland.
253	FEMS Microbiology Letters 344: 179-185.

254	Redkar A, Villajuana-Bonequi M, Doehlemann G. 2015. Conservation of the Ustilago maydis
255	effector See1 in related smuts. Plant Signalling and Behaviour 10: e1086855.
256	Schirawski J, Mannhaupt G, Munch K, Brefort T, Schipper K, Doehlemann G, et al. 2010.
257	Pathogenicity determinants in smut fungi revealed by genome comparison. Science
258	330: 1546-1548.
259	Sharma R, Mishra B, Runge F, Thines M. 2014. Gene loss rather than gene gain is associated
260	with a host jump from monocots to dicots in the smut fungus Melanopsichium
261	pennsylvanicum. Genome Biology and Evolution 6: 2034-2049.
262	Sharma R, Xia X, Riess K, Bauer R, Thines M. 2015. Comparative genomics including the
263	early-diverging smut fungus Ceraceosorus bombacis reveals signatures of parallel
264	evolution within plant and animal pathogens of fungi and oomycetes. Genome Biology
265	and Evolution 7: 2781-2798.
266	Tanaka S, Brefort T, Neidig N, Djamei A, Kahnt J, Vermerris W, et al. 2014. A secreted
267	Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in
268	maize. <i>Elife</i> 3: e01355.
269	Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. 2008. Gene prediction in
270	novel fungal genomes using an ab initio algorithm with unsupervised training.
271	Genome Research 18: 1979-1990.
272	Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B, Bai FY, et al. 2015. Multigene
273	phylogeny and taxonomic revision of yeasts and related fungi in the
274	Ustilaginomycotina. Studies in Mycology 81: 55-83.
275	
276	
277	
278	

279 Tables

Table 1. Conservation of functionally characterized pathogenicity related proteins of U.

281 *maydis* among four *Pseudozyma* genomes.

U. maydis gene	Gene name	P. antarctica	P. aphidis	P. brasiliensis	P. hubeiensis
UMAG_04433	Hum3	Pant_3371_t	Paph_3632_t.1*	Pbra_985_t	Phub_3033_t
UMAG_01987	Pep1	Pant_5912_t	Paph_3137_t	Pbra_3010_t	Phub_108_t
UMAG_01375	Pit2	Pant_3484_t***	Paph_3237_t***	Pbra_3853_t***	Phub_3768_t
UMAG_05302	Tin2	Pant_4343_t.2***	Paph_1304_t.2***	Pbra_3373_t	Phub_4666_t.1**
UMAG_05731	Cmu1	Pant_6209_t	Paph_4714_t	Pbra_2221_t	Phub_1879_t

282 * Sequence contains a stretch of Ns, could be resolved by experimental methods. ** No signal peptide predicted by

using SignalP4.1, but by TargetP1 and Protcomp9. Genes with secretion signal and some conservation of some

284 domains, but not matching the strict orthology criteria over the entire length.

285

286 Table 2. Number of orthologs of putative effectors found among the four *Pseudozyma*

287 genomes.

All Orthologs	Orthologs with SP in all species
178	158
199	182
182	166
171	151
	178 199 182

289 Figure captions

290

291	Figure 1.	Multiple	sequence	alignment	of eight	candidate	Pep1	proteins	from	pathogens

- 292 and Pseudozyma yeasts. Multiple sequence alignment (MSA) shows high sequence
- 293 conservation of the candidate *Pep1* effector proteins. The conserved four cysteine residues
- 294 needed for the function of *Pep1* are highlighted in yellow.

295

296	Figure 2. Disease assay on EGB maize lines. For testing biological conservation, Pep1
297	orthologs from Pseudozyma yeasts were expressed in a Pep1 deletion background
298	(SG200\u00e5umpep1). The restoration of pathogenicity in the complemented lines is indicative of
299	functional conservation.

300

302 Supporting information figure caption

303

304	Figure S1. Southern blot analysis to confirm single integration events. All
305	complementation events were performed in the ip locus in SG200 Δ umpep1 background.
306	Restriction enzyme, DNA probe that were used and the expected fragments sizes for each
307	southern blot analysis are indicated below each picture. Red arrows indicate single integration
308	event in the correct genomic locus.
309	
310	

312 Tables

- 313
- **Table S1.** Primers for delta-umpep1 complementation with *Pep1* homologs

Primer name	Primer sequence	Description
Pant_Pep1_fr	CTCTCGTCTAGAATGAGGTTCATGCTTGCCACTG	XbaI site
Pant_Pep1_rw	GCAGCGCCCGGGTTAAAAGCCAAGCAGATTAC	XmaI site
Paph_Pep1_fr	CTCTCGTCTAGAATGAGGTTCATGCTTGCCACTG	XbaI site
Paph_Pep1_rw	GCAGCGCCCGGGTTAAAAGCCAAGCAGATTAC	XmaI site
Pbra_Pep1_fr	CTCTCGTCTAGAATGAAGACGACACTCCTCAC	XbaI site
Pbra_Pep1_rw	GCAGCGCCCGGGCTACATCCCGAACATGCTTC	XmaI site
Phub_Pep1_fr	CTCTCGTCTAGAATGAAGACGACTCCTTCTC	XbaI site
Phub_Pep1_rw	GCAGCGCCCGGGTCACATGCCGAACATGCTG	XmaI site

315

316

Ortholog	U. maydis ids			
1	UMAG_00013	hypothetical protein	noIPR	
2	UMAG_00054	hypothetical protein	noIPR	
3	UMAG_00064	related to pepsin precursor (aspartate protease)	IPR001461; IPR021109	Aspartic peptidase; Aspartic peptidase domain
4	UMAG_00102	hypothetical protein	IPR017853	Glycoside hydrolase, superfamily
5	UMAG_00144	hypothetical protein	IPR000782	FAS1 domain
6	UMAG_00159	hypothetical protein	noIPR	
7	UMAG_00235	probable EXG1 - exo-beta-1,3-glucanase (I/II), major isoform	IPR017853	Glycoside hydrolase, superfamily
8	UMAG_00309	hypothetical protein	noIPR	
9	UMAG_00330	related to UTR2 - cell wall protein	IPR008985	Concanavalin A-like lectin/glucanases superfamily
10	UMAG_00598	hypothetical protein	noIPR	
11	UMAG_00655	probable Family 9 glycosyl hydrolase	IPR001701; IPR008928	Glycoside hydrolase, family 9; Six-hairpin glycosidase- like
12	UMAG_00688	related to bacterial leucyl aminopeptidase precursor	IPR007484	Peptidase M28
13	UMAG_00692	hypothetical protein	IPR018466	Ser-Thr-rich glycosyl- phosphatidyl-inositol-

Table S2. Annotation of putative secreted effector proteins conserved in all eight genomes.

anchored membrane family

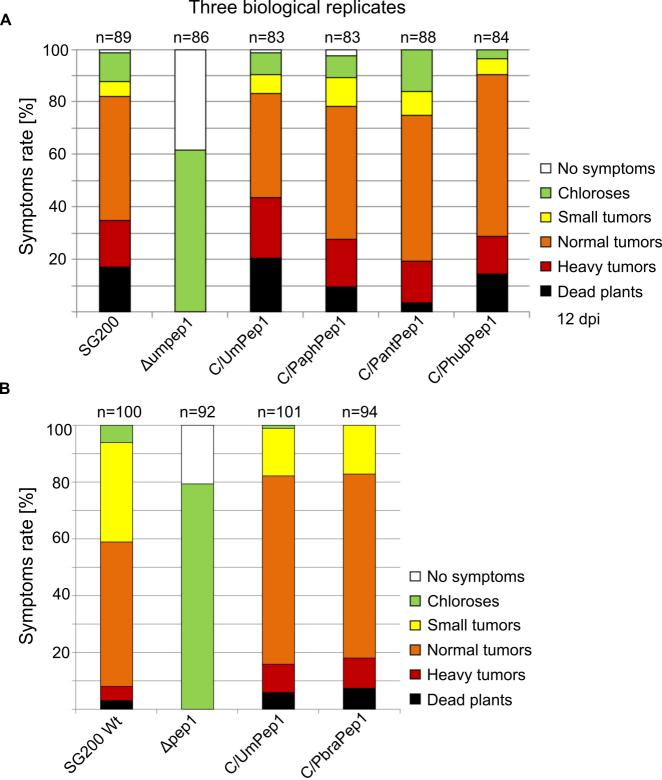
14	UMAG_00695	putative exochitinase	IPR017853; IPR025705	Glycoside hydrolase, superfamily; Beta- hexosaminidase subunit alpha/beta
15	UMAG_00715	hypothetical protein	noIPR	
16	UMAG_00723	related to stress response protein rds1p	IPR009078	Ferritin-like superfamily
17	UMAG_00882	related to PPN1 - vacuolar endopolyphosphatase	IPR004843	Phosphoesterase domain
18	UMAG_00961	hypothetical protein	noIPR	
19	UMAG_01022	hypothetical protein	IPR009009	RlpA-like double-psi beta- barrel domain
20	UMAG_01082	hypothetical protein	noIPR	
21	UMAG_01512	related to UDP-glucose:glycoprotein glucosyltransferase precursor	IPR002495; IPR009448	Glycosyl transferase, family 8; UDP- glucose:Glycoprotein Glucosyltransferase
22	UMAG_01705	hypothetical protein	IPR027706	Mitochondrial PGP phosphatase
23	UMAG_01772	related to Aldose 1-epimerase precursor	IPR008183; IPR011013; IPR015443	Aldose 1-/Glucose-6- phosphate 1-epimerase; Galactose mutarotase-like domain; Aldose 1-epimerase
24	UMAG_01774	hypothetical protein	IPR005887; IPR008928	Alpha-1,2-mannosidase, putative; Six-hairpin glycosidase-like

25	UMAG_01788	related to deacetylase	IPR011330	Glycoside hydrolase/deacetylase,
				beta/alpha-barrel
26	UMAG_01802	probable protein disulfide-isomerase precursor	IPR005746;	Thioredoxin; Endoplasmic
			IPR011679;	reticulum, protein ERp29,
			IPR012336	C-terminal; Thioredoxin-
				like fold
27	UMAG_01820	hypothetical protein	noIPR	
28	UMAG_01851	hypothetical protein	IPR018466	Ser-Thr-rich glycosyl-
				phosphatidyl-inositol-
				anchored membrane family
29	UMAG_01855	hypothetical protein	IPR027372	Phytase-like domain
30	UMAG_01886	related to carboxypeptidase	IPR001563	Peptidase S10, serine
				carboxypeptidase
31	UMAG_01888	probable serine-type carboxypeptidase f	IPR001563	Peptidase S10, serine
		precursor		carboxypeptidase
32	UMAG_01937	related to acid sphingomyelinase	IPR004843	Phosphoesterase domain
33	UMAG_01940	hypothetical protein	IPR003892	Ubiquitin system component
				Cue
34	UMAG_01945	probable SUC2 - invertase (sucrose	IPR001362;	Glycoside hydrolase, family
		hydrolyzing enzyme)	IPR008985;	32; Concanavalin A-like
			IPR023296	lectin/glucanases
				superfamily; Glycosyl
				hydrolase, five-bladed beta-
				propellor domain
35	UMAG_01957	related to Mannosyl-oligosaccharide alpha-	IPR001382	Glycoside hydrolase, family
		1,2-mannosidase precursor		47

36	UMAG_01977	hypothetical protein	noIPR	
37	UMAG_01987	fungal core effector Pep1	noIPR	
38	UMAG_02006	hypothetical protein	IPR009003	Trypsin-like cysteine/serine peptidase domain
39	UMAG_02019	probable Chitin deacetylase	IPR011330	Glycoside hydrolase/deacetylase, beta/alpha-barrel
40	UMAG_02035	related to yellowish-green 1 (ayg1)	IPR010520	Protein of unknown function DUF1100, hydrolase-like
41	UMAG_02111	related to triacylglycerol lipase precursor	IPR002921	Lipase, class 3
42	UMAG_02178	related to aspartic protease	IPR001461; IPR021109	Aspartic peptidase; Aspartic peptidase domain
43	UMAG_02204	related to beta-galactosidase	IPR017853	Glycoside hydrolase, superfamily
44	UMAG_02381	hypothetical protein	IPR011330	Glycoside hydrolase/deacetylase, beta/alpha-barrel
45	UMAG_02465	related to Calcium influx promoting protein ehs1	IPR024338	Stretch-activated cation channel Mid1
46	UMAG_02523	related to Endoglucanase 1 precursor	IPR009009	RlpA-like double-psi beta- barrel domain
47	UMAG_02611	related to ribonuclease M	IPR001568	Ribonuclease T2-like
48	UMAG_02620	hypothetical protein	noIPR	
49	UMAG_02865	hypothetical protein	IPR000782	FAS1 domain

50	UMAG_03024	related to subtilisin-like serine protease	IPR000209; IPR015500	Peptidase S8/S53 domain; Peptidase S8, subtilisin- related
51	UMAG_03551	related to Glucose oxidase	IPR012132	Glucose-methanol-choline oxidoreductase
52	UMAG_03614	hypothetical protein	noIPR	
53	UMAG_03615	related to Glucose oxidase	IPR012132	Glucose-methanol-choline oxidoreductase
54	UMAG_03807	hypothetical protein	IPR001938	Thaumatin
55	UMAG_03880	hypothetical protein	IPR017946	PLC-like phosphodiesterase, TIM beta/alpha-barrel domain
56	UMAG_03947	probable carboxypeptidase 2	IPR001563	Peptidase S10, serine carboxypeptidase
57	UMAG_04044	related to Glucose oxidase	IPR012132	Glucose-methanol-choline oxidoreductase
58	UMAG_04145	hypothetical protein	noIPR	
59	UMAG_04171	related to ROT1 - molecular chaperone in the endoplasmic reticulum	IPR019623	Chaperone, endoplasmic reticulum protein-folding, fungi
60	UMAG_04282	related to 3-phytase A precursor	IPR000560	Histidine phosphatase superfamily, clade-2
61	UMAG_04318	related to Prenylcysteine oxidase precursor	IPR010795	Prenylcysteine lyase
62	UMAG_04355	related to Sel-1 homolog precursor	noIPR	
63	UMAG_04364;	probable EXG1 - Exo-1,3-beta-glucanase	IPR017853	Glycoside hydrolase,

	UMAG_05550	precursor		superfamily
64	UMAG_04400	probable PRB1 - protease B, vacuolar	IPR000209;	Peptidase S8/S53 domain;
			IPR009020;	Proteinase inhibitor,
			IPR015500	propeptide; Peptidase S8,
				subtilisin-related
65	UMAG_04405	alpha-glucosidase II precursor	IPR000322;	Glycoside hydrolase, family
	_		IPR011013;	31; Galactose mutarotase-
			IPR017853	like domain; Glycoside
				hydrolase, superfamily
				ngaronaoo, sapernannig
66	UMAG_04531	hypothetical protein	IPR009011	Mannose-6-phosphate
				receptor binding domain
67		related to MUS81 - endonuclease involved in	IPR010996;	DNA nalamanaa hata liha
07	UMAG_04630			DNA polymerase beta-like,
		DNA repair and replication fork stability	IPR011335	N-terminal domain;
				Restriction endonuclease
				type II-like
68	UMAG_04641.2	related to PRC1 - carboxypeptidase y, serine-	IPR001563	Peptidase S10, serine
		type protease		carboxypeptidase
69	UMAG_04733	related to	IPR014756	Immunoglobulin E-set
		phosphatidylglycerol/phosphatidylinositol		
		transfer protein		
70	UMAG_04926	probable PEP4 - aspartyl protease	IPR001461;	Aspartic peptidase; Aspartic
			IPR021109	peptidase domain
71	UMAG_05036	related to endo-1,3(4)-beta-glucanase	IPR008985	Concanavalin A-like
				lectin/glucanases
				superfamily
72	UMAG_05109	related to ECM14 - involved in cell wall	IPR000834	Peptidase M14,
		biogenesis and architecture		carboxypeptidase A


73	UMAG_05222	hypothetical protein	noIPR	
74	UMAG_05227	hypothetical protein	noIPR	
75	UMAG_05352	related to MPD1 - Disulfide isomerase related protein	IPR005746; IPR012336	Thioredoxin; Thioredoxin- like fold
76	UMAG_05366	hypothetical protein	noIPR	
77	UMAG_05528	hypothetical protein	IPR017853	Glycoside hydrolase, superfamily
78	UMAG_05604	hypothetical protein	noIPR	
79	UMAG_05704	hypothetical protein	IPR017853	Glycoside hydrolase, superfamily
80	UMAG_05731	secreted chorismate mutase	IPR008238; IPR020822	Chorismate mutase, AroQ class, eukaryotic type; Chorismate mutase, type II
81	UMAG_05774; UMAG_03630	related to metalloprotease MEP1	IPR008754	Peptidase M43, pregnancy- associated plasma-A
82	UMAG_05988	hypothetical protein	IPR015889	Intradiol ring-cleavage dioxygenase, core
83	UMAG_06071	related to Para-nitrobenzyl esterase	IPR000997	Cholinesterase
84	UMAG_06075	related to beta-glucosidase	IPR002772; IPR017853; IPR026892	Glycoside hydrolase family 3 C-terminal domain; Glycoside hydrolase, superfamily; Glycoside hydrolase family 3
85	UMAG_06118	related to Tripeptidyl-peptidase I precursor	IPR000209; IPR009020	Peptidase S8/S53 domain; Proteinase inhibitor, propeptide

86	UMAG_06120	hypothetical protein	noIPR	
87	UMAG_06162	hypothetical protein	noIPR	
88	UMAG_06190	related to Chitinase	IPR017853	Glycoside hydrolase, superfamily
89	UMAG_06218	hypothetical protein	IPR023346	Lysozyme-like domain
90	UMAG_06332	endoglucanase 1 precursor (egl1)	IPR009009	RlpA-like double-psi beta- barrel domain
91	UMAG_10024	hypothetical protein	noIPR	
92	UMAG_10067	hypothetical protein	noIPR	
93	UMAG_10091	hypothetical protein	IPR008758	Peptidase S28
94	UMAG_10186	hypothetical protein	noIPR	
95	UMAG_10474.2	hypothetical protein	noIPR	
96	UMAG_10536	related to FPR2 - FK506/rapamycin-binding protein of the ER	IPR023566	Peptidyl-prolyl cis-trans isomerase, FKBP-type
97	UMAG_10640	hypothetical protein	IPR009009	RlpA-like double-psi beta- barrel domain
98	UMAG_10676	hypothetical protein	IPR000782	FAS1 domain
99	UMAG_10975.2	hypothetical protein	IPR017853	Glycoside hydrolase, superfamily
100	UMAG_11062	hypothetical protein	noIPR	
101	UMAG_11083	related to p24 protein, involved in membrane trafficking	IPR009038	GOLD DOMAIN
102	UMAG_11187	related to ROT1 - molecular chaperone in the	IPR019623	Chaperone, endoplasmic reticulum protein-folding,

		endoplasmic reticulum		fungi
103	UMAG_11266	probable lysophospholipase (lpl)	IPR016035	Acyl transferase/acyl hydrolase/lysophospholipase
104	UMAG_11403	hypothetical protein	IPR018803	Stress-responsive protein Ish1
105	UMAG_11554	related to Glucose oxidase	IPR012132	Glucose-methanol-choline oxidoreductase
106	UMAG_11562	hydrophobin 2	IPR001338	Hydrophobin
107	UMAG_11886	hypothetical protein	IPR009009	RlpA-like double-psi beta- barrel domain
108	UMAG_11908	related to cathepsin d (lysosomal aspartyl protease)	IPR001461; IPR021109	Aspartic peptidase; Aspartic peptidase domain
109	UMAG_11922	related to Chitin deacetylase precursor	IPR011330	Glycoside hydrolase/deacetylase, beta/alpha-barrel
110	UMAG_11927	related to ROT1 - molecular chaperone in the endoplasmic reticulum	IPR019623	Chaperone, endoplasmic reticulum protein-folding, fungi
111	UMAG_12007	related to cellulase	IPR017853	Glycoside hydrolase, superfamily
112	UMAG_12205	hypothetical protein	noIPR	
113	UMAG_15089	hypothetical protein	IPR017853	Glycoside hydrolase, superfamily

319

0 70 80
YSPVARVAGİKGAIH <mark>C</mark> THQĠNY
<mark>C</mark> YSPVARVAGIKGAIH <mark>C</mark> THQGNY
<mark>C</mark> YSPAARLGSIKGTIH <mark>C</mark> THQEKY
YAPQARVASIKGAIH <mark>C</mark> THQENY
YSPKARVGSIKGALH <mark>C</mark> THQENY
YN PQARVGSIKGALH <mark>C</mark> THQENY
YSPTARVASIPGALH <mark>C</mark> THQEKY
CYN PQARIGSIAGALH <mark>C</mark> THQEK Y
150 160
I G A G A G A G G D A G A D P S S D G S A P D
NG A G A G A G G D A G A D P S S D G S A P D
S-GGAGAGAGAGADDSGDT
GAGGAGG ADADSAPDSNDQ
<pre>{GADGA ASDPGSC (G - G TGGTGTGT - DDDTSAF GGPGGGGGAGAGGGDGASTD)DGGGAGAGAGS - GDGDSAF</pre>

