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Abstract 

How is semantic information stored in the human mind and brain? Some philosophers and 

cognitive scientists argue for vectorial representations of concepts, where the meaning of a 

word is represented as its position in a high-dimensional neural state space. At the 

intersection of natural language processing and artificial intelligence, a class of very 

successful distributional word vector models has developed that can account for classic EEG 

findings of language, i.e., the ease vs. difficulty of integrating a word with its sentence 

context. However, models of semantics have to account not only for context-based word 

processing, but should also describe how word meaning is represented. Here, we investigate 

whether distributional vector representations of word meaning can model brain activity 

induced by words presented without context. Using EEG activity (event-related brain 

potentials) collected while participants in two experiments (English, German) read isolated 

words, we encode and decode word vectors taken from the family of prediction-based 

word2vec algorithms. We find that, first, the position of a word in vector space allows the 

prediction of the pattern of corresponding neural activity over time, in particular during a 

time window of 300 to 500 ms after word onset. Second, distributional models perform 

better than a human-created taxonomic baseline model (WordNet), and this holds for 

several distinct vector-based models. Third, multiple latent semantic dimensions of word 

meaning can be decoded from brain activity. Combined, these results suggest that 

empiricist, prediction-based vectorial representations of meaning are a viable candidate for 

the representational architecture of human semantic knowledge. 
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1. Introduction 

How is the meaning of words represented in the human mind? A range of neurocognitive 

models discusses the neural underpinnings of semantic representation (see Borghesani & 

Piazza, 2018 for a recent review), focusing mostly on studying the neural localization of 

semantic processing (e.g., Patterson et al., 2007; Lambon-Ralph & Patterson, 2008) or its 

temporal organization (Lau et al., 2008; Kutas & Federmeier, 2000). Yet we have so far 

gained comparatively little insight into how semantic meaning is represented in our mind. 

From a psychological or linguistic perspective, the methods of cognitive neuroscience can 

however also be fruitfully used for investigating the nature of semantic representations. For 

example, functional mapping of brain activation (using methods such as functional MRI or 

event-related potentials/ERPs of the human electroencephalogram) has established that 

semantic features like the concreteness vs. abstractness of a word reflect in distinguishable 

neural signatures elicited during lexical processing (e.g., Fiebach & Friederici, 2004; Krause et 

al., 1999). Similarly, in some contexts, action-associated words have been shown to co-

activate brain regions associated with the corresponding motor representations (Hauk, 

Johnsrude, & Pulvermüller, 2004) while concrete and imageable words co-activate sensory 

brain regions (e.g., Aziz-Zadeh & Damasio, 2008; Aziz-Zadeh et al., 2008). And at the level of 

sentence semantics, it was for example demonstrated that abstract semantic and 

experiential world knowledge are processed similarly (e.g., Hagoort, Hald, Bastiaansen, & 

Petersson, 2004).  

 

However, rather than providing direct insights into the nature of semantic representations, 

these and many other neurolinguistics studies are restricted to testing indirect implications 

of particular aspects of theories of semantic meaning, often in specific processing contexts 

(e.g., during the comprehension of incongruent sentences). But theories of semantics have 

to account for both, the mental representation of semantic concepts and how they are 

processed. Our understanding of the nature of semantic representations is thus not 

sufficiently constrained by the mere fact that, e.g., concrete and abstract words are not 

processed identically in the human brain. Put differently, empirical work has managed to 

demonstrate that brains at the very least encode concreteness, but this insight does not 

further our understanding of how semantic information is represented. This argument 

extends beyond concreteness effects to all domains of semantic knowledge. Only recently 
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have theoretical and methodological developments as well as the availability of novel datasets made 

it possible to address more directly outstanding questions regarding fundamental aspect of 

semantics, including the nature of semantic representations. 

 

An empirical investigation of what aspects of semantic meaning are represented and how 

they are represented, requires that the to-be-tested models are quantitatively explicit. This 

is, however, typically not the case for psychological or neurolinguistic models of semantics 

like, e.g., classical symbolic theories of meaning (Fodor, 2004), prototype theories of 

meaning (Rosch, 1975), embodied cognition theories of language (Pulvermüller, 2013), or 

neuropsychological models like the hubs and spokes model of semantics (Lambon-Ralph & 

Patterson, 2008). This contrasts with the field of computerized natural language processing 

(e.g., Jurafsky & Martin, 2014), which has in the last years seen a very dynamic development 

of strongly empiricist feature-based machine learning models of semantics. Models like the 

so-called word2vec family (Mikolov et al., 2013; Pennington et al., 2013) have been 

successfully applied to most domains of language processing, like sentiment analysis (Felbo 

et al, 2017), machine translation (Mikolov et al., 2013b), or document retrieval (Ju et al., 

2015). Here, we propose that machine learning techniques (Hastie, Tibshirani, & Friedman, 

2009) can be leveraged to directly test the psychological plausibility of such quantitative 

theories of semantic representation by assessing their fit with neuroimaging results, and that 

this will advance our understanding of the nature of semantic representations. 

 

1.1 Prediction-based Distributional Models and Semantic Knowledge 

How do distributional models of the word2vec-family function? Mikolov, Chen, Corrado and 

Dean (2013) introduced a prediction-based word embedding model implemented as a 

simple single-layer neural network that learns to predict a withheld target word given a ten-

word context (i.e., the five word strings preceding and following the target in the training 

corpus, independent of any grammatical constraints). This corresponds to the Continuous 

Bag of Words version of the word2vec model. The inverse – i.e., predicting a context from a 

target word – is the Skip-Gram model. As Mikolov et al. (2013) describe, both perform 

approximately equivalently. The input and output spaces of such networks are large: if 

trained on sources such as the English Wikipedia, they contain > 100.000 entries (i.e., unique 
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words). Interestingly, their internal structure is however very simple – comprising only a few 

tens or hundreds of neurons (often 300; see, e.g., Fig. 1A for a schematic illustration of the 

model architecture). We hypothesized that this ‘many-to-few’ compression may resemble 

the manner in which the human brain learns and represents semantic knowledge. 

Accordingly, we here test the relationship between brain signals elicited during word 

processing and the vectorial representations of these words resulting from empiricist 

learning models like word2vec. 

	

	

Figure 1: Vectorial models of semantic word knowledge. Top: Architecture and example 

content of distributional models. A: Basic architecture of a so-called Continuous Bag 

of Words prediction model for word embeddings. An input layer (blue) receives a 

context, and aims to learn weights on the internal layer (orange), which in turn allow 

the prediction of the omitted target word (green); read from right to left, this 

corresponds to a Skip-Gram Model. B: Vectorial models can learn semantics-like 

relationships. For purposes of illustration, we looked up vectors V in a pre-trained 

vector model (Mikolov, Grave, Bojanowski, Puhrsch, & Joulin, 2017), for four animals 
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(cat, dog, cow, duck). We then added to them the vector for the word young, and 

retrieved the word closest to the resulting vector, resulting in kitten, puppy, goat, 

and duckling, respectively. Only for the word cow, this calculation of Vcow + Vyoung did 

not result in a young instance of the species cow (i.e., a calf). The model, accordingly, 

is capable of roughly representing semantic relationships such as ‘a young W1 is a 

W2’. For visualization purposes, these eight words plus the missing response ‘calf’ 

were embedded into two dimensions with Multidimensional Scaling as implemented 

in scikit-learn (Pedregosa et al., 2011). C,D: Demonstration of feature (C) and 

exemplar-based (D) representations of concepts. “+” indicates the presence of a 

feature (left). The number of “-”s represents the dissimilarity between two concepts 

(right). 

	

Artificial learning systems, under which distributional models of semantics can be subsumed, 

resemble human learners in that in the interest of generating abstract, generalizable 

inferences, they benefit from constraints on their capacity (Elman, 1991). This is also a 

crucial factor for word2vec-family models, which perform better when the internal network 

size is smaller (Landauer & Dumais, 1997; Mikolov et al., 2013). Under such situations of 

limited internal ‘representational capacity’, the prediction-based training regime forces the 

internal layer, which is unable to simply ‘memorize’ all mappings, to discover latent semantic 

dimensions (Landauer & Dumais 1997; Baroni et al., 2014). This ‘compression’ is essential to 

word embedding models. Consider, as an example, the relationship between the (African) 

lion and the (Asiatic) tiger, who rarely appear at physically identical places in their natural 

environments. An unconstrained representation (i.e., a manually annotated expert system 

like the WordNet of Miller, 1995) would represent isolated facts like “lions are mammals” (or 

+MAMMAL), “tigers are mammals”, “lions are quadrupeds”, etc. (see Fig. 1C for schematic). 

In contrast, a prediction-based and capacity-constrained distributional model would have to 

identify what is shared between lions and tigers (e.g., that they are large cats, occur in 

similar text contexts, etc.) and code this information in an abbreviated, synergistic fashion. 

This strategy of reducing a dataset, such as the co-occurrence statistics of words, to a limited 

number of latent, generalizable factors underlying its axes of variance, is particularly well 

suited for uncovering such implicit, underlying similarities. These distributed and 

distributional models are indeed capable of learning word meaning from distributional 
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information only (see also Landauer & Dumais, 1997). As Fig. 1B schematically demonstrates, 

they are even capable of tasks such as compositionality (see also Mikolov et al., 2013), which 

is generally considered a key aspects of any theory of semantics (Fodor & Lepore, 1999). 

 

1.2 Vectors in the brain 

After training a distributional network model, the weights between each word and the – e.g., 

300 – neurons in the hidden layer are understood as an embedding of the word, so that each 

word is described as a vector of 300 values (neural weights) corresponding to the axes of the 

vector space. This is equivalent to a position in a high-dimensional state space (Churchland, 

1993). The vectors are dense and real-valued. That is, unlike typical hand-designed feature 

space models in which only very few words carry a feature such as, e.g., +HUMAN or 

+QUADRUPED, in a typical word embedding every word ranks somewhere on every axis. 

These axes are generally not directly interpretable, and do not typically correspond to 

natural-language concepts (like animacy). Instead, semantic knowledge is coded in a 

distributed manner, so that many axes will each be partially correlated with any given 

semantic dimension (Landauer & Dumais, 1997). One way for making visible the semantic 

knowledge in these models is to project them into exemplar space, e.g., by computing the 

correlation between all items. The resulting item-by-item representation shows how similar 

each concept is to all other concepts (see 1D), which corresponds to a kernel-based 

representation of the semantic space (see below).  

 

Embedded distributional models are highly effective in accounting for human processing of 

words in contexts. More specifically, they can predict priming effects (Günther et al., 2016a, 

2016b), human behavioral performance in multiple other psycholinguistic tasks (Mandera, 

Keuleers, & Brysbaert, 2017), semantic association ratings (Rubinstein, Levi, Schwartz, & 

Rappoport, 2015), similarity ratings (Mandera et al., 2017), and ERP measures of the fit of a 

word with its context (Broderick, Anderson, Di Liberto, Crosse, & Lalor, 2018 Ettinger, 

Feldman, Resnik, & Phillips, 2016). But that is almost by design, as distributional models are 

trained by finding patterns in item-context pairs (Levy & Goldberg, 2014), and the 

observation above, i.e., that context effects provide only indirect insight into the nature of 

semantic representations, also applies to empirical tests of distributional models of word 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 22, 2019. ; https://doi.org/10.1101/603837doi: bioRxiv preprint 

https://doi.org/10.1101/603837
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 8	

semantics as long as they are based on item-context associations. In the present study, we 

go one step further and explore whether distributional models can directly account also for 

the neurocognitive representation of word meaning in the human brain. To this end, we 

postulate that understanding the meaning of a word is equivalent to transitioning the brain 

into a (more or less short-lived) unique state that systematically depends on the meaning of 

the perceived word. If this hypothesis is true, it should be possible to: First, predict not only 

behavior (see above), but also brain activity based on word vectors; second, predict not only 

item-context or item-item effects, but also neural correlates of context-free word 

processing; and third, conversely, partially recover a word’s position in vector space from 

brain activity elicited by the respective word. 

 

1.3 Relation to prior work 

A number of recent studies have used vectorial models to identify neural correlates of sets 

of semantic categories or features (e.g., Kemmerer, Castillo, Talavage, Patterson, & Wiley, 

2008; Mitchell et al., 2008; Sudre et al., 2012; Xu, Murphy, & Fyshe, 2016; Pereira et al., 

2018; Gauthier & Ivanova 2018; and Wehbe et al., 2014). Recently, Huth, de Heer, Griffiths, 

Theunissen, and Gallant (2016) have for example shown that it is possible to predict with 

high accuracy brain activity elicited during listening to narratives, by using as predictors the 

position of the corresponding words in an implicit state space based on taxonomic labels 

(Miller, 1995). This work has revealed a distributed ‘tiling’ of semantic features across the 

cortex, and a particular sensitivity to categories such as the social relevance of words. 

  

In contrast to this seminal work, we here aim at using the framework of distributional 

models to examine the neural representation of word meanings themselves – i.e., the neural 

signatures of words bereft of context, and the hypothesized systematic relationship to their 

position in semantic vector space as quantified with distributional models learned in an 

empiricist fashion from statistical patterns of co-occurrence alone. Specifically, we tested 

whether word-associated brain activity can be predicted – encoded – from word2vec-style 

distributional vector representations of these words. We found that different vector spaces 

could successfully be encoded in brain activity. Secondly, we explored as a proof of principle 
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what information about word vectors is contained in the electrophysiological activity of the 

brain elicited during word processing, by testing whether the word’s position in (for the sake 

of interpretability, dimensionality-reduced) vector space can be decoded from brain activity. 

Then, we established conceptual labels for the aspects of word vectors decodable from brain 

activity. This latter stage was conducted to ensure that brain activity was correlated with the 

semantic information in distributional models, not (or at least not exclusively) with other 

information about words that these models might contain (e.g., about word frequencies or 

similar lexical properties of words). We indeed observed that for components corresponding 

to semantic dimensions, vector-space factor scores of words could be read out from brain 

activity. Taken together, the work presented here is an initial demonstration that it is 

plausible that brain states elicited by words are approximately isomorphic to the position of 

these words in a distributional model of word meaning. 

	

2. Methods 

2.1 Datasets and Preprocessing 

We here report results from two datasets, acquired in two different languages and using two 

different tasks: The first dataset contains ERP data for 960 visually presented English nouns 

(n=75; 28 EEG channels; for details see Dufau, Grainger, Midgley, & Holcomb, 2015). Words 

were shown on a screen for 400 msec, followed by a 600 msec blank screen, and were mixed 

with 140 nonword probes requiring a manual response (discarded from analysis). The 

second dataset was acquired in our own lab and involves EEG signals elicited by 150 visually 

presented German nouns (presented for 1,000 msec following a 500 msec fixation cross; 

n=35; for details see [a link to a preprint for a manuscript which we here withhold for the 

sake of doubly-blind peer review]). In this experiment, for each word, participants were 

instructed to press a button if and only if it was synonymous with the previous word (the 10 

synonymous probes requiring a button press were ignored in this analysis). EEG was 

collected from 64 ActiCap active electrodes via a Brainamp amplifier (Brainproducts; 

Gilching, Germany). 

Data analysis was conducted in MNE-Python (Gramfort et al., 2013). The English dataset was 

obtained from the original authors in a preprocessed form, in the form of per-word average 

ERPs across subjects (-100 to 920 msec post word onset; see Dufau et al., 2015). For the 
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German dataset, eye movement artefacts were removed via ICA (Jung et al., 2000), and a .1-

30 Hz bandpass filter was applied. Both datasets were downsampled to 200 Hz. Then, 

analogous to the English dataset, average ERPs across subjects were calculated individually 

for each word for the German data. Compared to single-subject analysis and averaging, this 

approach leads to higher signal-to-noise ratios, but does not change the overall pattern of 

results. 

We note informally that we have applied the same analysis to a series of other datasets; the 

results we show here can be replicated on a number of other sufficiently large datasets of 

ERPs elicited during single-word presentation. 

	

2.2 Word Embeddings  

For all following analyses, for the vector semantics, we relied on FastText, i.e., a further 

development of the above-described word2vec algorithm (Bojanowski, Grave, Joulin, & 

Mikolov, 2016). We used the implementation from the natural language processing package 

GenSim (Řehŭřek & Sojka, 2011) and for both German and English, the publicly available, 

pre-trained, 300-dimensional embeddings provided by Mikolov et al. (2017). Note that 

FastText’s primary improvement upon word2vec is that by accounting for units below the 

word level, it naturally handles inflected forms. Due to this, it can better account for 

morphology-rich languages like German. Further machine learning (de-/encoding) was 

conducted via sklearn (Pedregosa et al., 2011) and visualization done with Seaborn (Waskom 

et al., 2018), both using the Python programming language. 

	

2.3 Encoding Semantic Vectors in Brain Activity 

We attempted to model the dependency of brain states on the position of the respective 

word in a semantic state space via an encoding model (King et al., 2019). Specifically, we 

predicted brain activity by assuming that the neural state after having processed one word 

resembles a sum of neural states after having processed other words, weighted by the 

similarity of these words to the target word (if viewed as a ’dual‘ problem; see below), or as 

a linear weighted sum of the features (vector-space axes). To provide a baseline model, we 

also conducted the same analysis based on a non-distributional model of word meaning. For 
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this, we chose WordNet (Miller, 1995), a well-established database of lexical/semantic 

relations which contains a manually constructed taxonomy of words (also used, for example, 

in recent neurocognitive work by Huth et al, 2016). 

For both languages, within a 10-fold cross-validation loop, a Ridge regression (i.e., a linear 

regression with !" norm regularization) was trained to predict the entire pattern of brain 

activity elicited by a word, across all measurement channels, using the respective word 

vectors as predictors. On each fold, the regression model used 90% of the dataset as training 

trials to learn one coefficient for each of the vector-space model’s 300 dimensions, for each 

combination of time point and sensor. Subsequently, EEG activity (i.e., the pattern of signal 

amplitudes across sensors) was predicted for words not seen during training (i.e., the 10% 

trials held-out in the respective fold), based on the dot product of the regression coefficients 

and the vector-embedding of the respective word. To account for the high temporal 

resolution of EEG, in each fold, independent regression models were fitted for each time 

point, and predictions on the test trials were also made per time point. The quality of these 

predictions were scored using the signed, squared correlation between predicted and 

observed EEG activity (i.e., ERPs), which provided an estimate of the systematic isomorphism 

between word vectors and  electrophysiological brain activity. 

These correlation coefficients were concatenated, resulting in one time series (from -100 to 

+920 msec time-locked to stimulus onset) per fold corresponding to how well brain activity 

at each time point in the trial can be explained as a linear weighting of the word vectors for 

the respective word. These time courses were then averaged across folds, and 95% 

bootstrapped confidence intervals across folds were calculated for each time point. For a 

visualization of this procedure, see Fig. 2. For statistical evaluation, first, the resulting 

prediction accuracy values were averaged in the N400 time window (300-500 msec; Lau et 

al., 2008), and a Wilcoxon signed-rank test against chance was conducted across folds. To 

control for potential biases, this was repeated for the average of the entire data epoch. 

As noted, to compare the distributional word embedding model against a reasonable 

baseline model, we repeated the same analysis with similarities based on the WordNet 

taxonomy (Miller, 1995) for the English dataset and, for the German dataset, using a German 

equivalent (GermaNet; Hamp & Feldweg, 1997). WordNet’s taxonomy corresponds to 

hyponymy/hyperonymy relations – i.e., “is-a” relationships like ‘a robin is a bird’. To predict 

EEG/ERP activity from this taxonomic model, we calculated path similarities for each pair of 
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words, i.e., the distance to the next shared hyperonym or hyponym. This lead to a 

960 × 960 matrix (English) and a 150 × 150 matrix (German), respectively, of semantic 

word/word distances which was then used to predict EEG/ERP patterns across time points 

and electrodes and for checking the fit with actual ERPs on unseen trials, analogous to the 

FastText-based encoding described above (i.e., 10-fold cross-validation). 

We calculated the difference, within each language, between prediction accuracy scores for 

the distributional/FastText-based predictions minus the score for WordNet- or GermaNet-

based predictions. This was calculated separately for each fold, and a Wilcoxon Rank-Sum 

test on the average of the differences within each fold was conducted to establish which 

model yielded better predictions of the ERP patterns: the explicit taxonomic (i.e., 

WordNet/GermaNet) model, or the distributional model. Because the feature space built 

from Wordnet is initially larger than that for FastText vectors for English (960 items × 960 

items vs. 960 items × 300 dimensions) and smaller for German (150 × 	150 vs. 150  × 300), 

to not bias the procedure in any direction, we computed this contrast also on a 

transformation of the FastText vector predictor array (**⊺), which has the same item × item 

dimensionality as the Wordnet-derived matrix of path similarities. This yielded the same 

results (for possible reasons, see below the discussion of the Representer Theorem). 

 

Next, to rule out that successful encoding is the result of lexical but not than semantic 

features being reflected in brain activity, we estimated if some of the encoding benefit for 

the superior model might reflect well-established psycholinguistic features like the 

frequency of occurrence of a word in a language, rather than the hypothesized greater 

similarity to the underlying neurocognitive correlates of semantics. To explore this 

alternative, we repeated the described analyses, but included in an exemplary manner word 

frequency (log counts per million as given by Dufau et al., 2015, for the English data; 

SUBTLEX log frequency, Brysbaert et al., 2011, for German) and concreteness (imaginability 

ratings from Dufau et al., 2015, for English and from Vo et al., 2009, for German) to the 

predictor arrays, and investigated if this influenced any of the observed effects. By doing so, 

we tested if any contrast between FastText-based and WordNet-based encoding 

performances was diminished as a result of adding explicit word frequency and concreteness 

values as predictors. We did not directly compare the predictive power of lexical variables 

like word frequency or concreteness to vector representations because this would entail 
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comparing a very large predictor matrix (e.g., 960 predictors in English) to a much smaller 

one (i.e., with 2 predictor variables), so that much of the resulting differences might reflect 

the capacity of the algorithm to handle large feature spaces. In contrast, adding these 

psycholinguistic predictors to the set of baseline and word vector predictors and evaluating 

performance differences at the level of alternative models, reflects a meaningful test of the 

value of the word vector model. 

	

 

Figure 2: De- and Encoding procedure, didactic example for simulated values.  

Top: Encoding procedure. (A) Brain activity source data. For each word, the y axis 

represents neural activity (i.e., microvolts in the case of EEG (ERP measurements). (B) 

Comparison of predicted (orange) to the observed (blue) data. Center: A predictive 

model B is fit by estimating the coefficients minimizing a least-squares equation, to 

predict the ERP pattern (S) from the words’ semantic vector embedding F. Bottom: 

Decoding procedure. (C) Interpretable semantic feature rankings of word vectors. 

Here, the y axis represents the ranking on each of four exemplary semantic 

dimensions. (D) Actual (blue) are compared to predicted (orange) semantic features, 

for each word. Center: In the decoding analysis, a predictive model B is fit by 
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estimating the coefficients minimizing a least-squares equation, to predict semantic 

features F from ERP signal S. 

	

Finally, to to assess how specific our results were for our specific choice of vector space, we 

repeated the encoding analysis for a set of other commonly used, pre-trained distributional 

vector spaces, based on different algorithms (i.e., not from the word2vec family), different 

training corpora, and different vector sizes. Specifically, we encoded the original Wikipedia-

based word2vec vectors released by Mikolov et al. (2013), the movie subtitle-based vectors 

by Mandera et al. (2017; Subtlex), and the full set of English vectors from Pennington et al. 

(2013) known as GloVe, including web and Twitter corpora. These embeddings encompassed 

multiple vector lengths (25-300).  

 

2.4 Decoding 

In addition to encoding, a correspondence between the structure of brain activity and 

semantic spaces can also be established by decoding – i.e., by reading out properties of the 

stimulus based on brain activity. In our case, we tested if we could predict a word’s position 

in word2vec space based on brain activity (see Fig.2, bottom). 

As the signal to noise ratio of both the ERPs and the word vectors is low, predicting the 

absolute position of a word in high-dimensional vector space would lead to low fits and 

would accordingly be hard to interpret. We therefore first conducted dimensionality 

reduction on word vectors. For this, the vector space was transformed via Kernel PCA with a 

cosine kernel (cosine similarity is the preferred distance measure for vector spaces, cf. 

Mikolov et al. 2013; see below for a discussion of kernels in vector semantics). We arbitrarily 

decided to investigate the first eight components (as all further components explain less 

variance and are more noisy and harder to interpret or read out of brain activity). I.e., to 

investigate to which degree brain activity contains information about word semantics, we 

predicted each word’s loading on eight factors, resulting from Kernel PCA reduction of word 

vectors, from brain activity. 

More specifically, we attempted to read out from brain activity elicited by words presented 

in isolation (same data as used for encoding analysis) the position of each word on each of 
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these eight factors, using as predictors ERP time courses between 300 and 500 msec 

(reflecting the typical N400 time window; see above). In a 10-fold cross-validation loop, 

Ridge regression was used to predict the position of each word in Kernel PCA-compressed 

vector space. Scoring was again accomplished via the signed, squared correlation (across 

items) between predicted and actually observed outcomes, resulting in 10 × 8	-" values – 

one per fold and factor – for each language (i.e., for each of the two datasets). For each 

factor, a 99.375% bootstrapped confidence interval was calculated – corresponding to a 

Bonferroni correction for the eight factors. In addition, a time-resolved multivariate 

decoding analysis (King & Dehaene, 2013) was conducted by repeating the same procedure 

as above, but now separately for each sample time point of the full EEG data (with only 

electrode as feature). This resulted in 10 × 8	-" values for each time point, for each 

language. 68% bootstrapped confidence intervals were calculated (not corrected) for 

visualization only. 

	

2.5 Interpreting Word Vector Scores 

As noted, the axes of distributional vector spaces do not a priori have interpretable labels, 

and are in fact hard or impossible to label. Doubtlessly, the vector space as a whole contains 

a lot of semantic information about conceptual characteristics (like +ANIMACY). But this 

information is latent and must be actively inferred (which is however often not easily 

possible). In addition, semantic information is encoded in a distributed fashion; any semantic 

feature, such as animacy or concreteness, correlates with multiple axes of the vector space, 

but the specific axes themselves are not in a one to one relationship with any semantic trait. 

Thus, the decoding procedure described above could not – regardless of the success of 

decoding –indicate that information about word meaning is contained in brain activity. Any 

factor score which could be read out from brain activity could correspond to a number of 

non-semantic aspects of word meaning also recoverable from vector spaces. 

To rule out that a success in decoding vector-space position from brain activity may depend 

upon nonsemantic aspects of word knowledge, we set out to label the eight factors used in 

the decoding analysis. Three trained linguists considered the seven words scoring most 

positively and most negatively on each of the eight components, separately for each 

language. Each linguist proposed one interpretation; then, each linguist ranked all three 
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proposals for each axis. The proposal with the highest mean ranking was selected as a 

tentative label for the factor. Note that the specific labels are not important per se; the label 

interpretations are subjective in nature, and no transformation of the data is guaranteed to 

reproduce the ‘true’ latent factor structure. Instead, this labelling was done simply to 

establish if brain activity allows decoding of semantic information at all – or if the 

correspondence between brain activity and distributional word vectors is due to 

nonsemantic information contained in word vectors. That is, if brain activity allowed reading 

out the position of words on factors corresponding to conceptual distinctions, then this 

would speak for the decoding procedure succeeding because semantic information is 

encoded in brain activity. 

	

2.6 Visualizing the spatial structure of encoding and decoding 

Lastly,	we	set	out	to	exploratorily	visualize	at	which	electrodes	the	signals	on	which	

encoder	and	decoder	models	operated	were	most	clear.	For	this,	we	focused	again	on	a	

time	window	of	300	to	500	msec	post	stimulus	onset.	We	excluded	the	English	dataset	

as	it	was	recorded	with	very	sparse	electrode	coverage,	and	focused	instead	on	the	high-

density	German	data.	First,	we	aggregated	the	encoding	performance	over	time	within	

each	electrode,	and	visualized	the	result	as	an	interpolated	scalp	map.	Conceptually,	this	

corresponds	to	a	map	of	where	the	encoder	procedure	works	best,	i.e.,	where	whatever	

it	is	encoding	is	most	directly	represented.	Next,	we	retrieved	normalized	regression	

coefficients	for	each	Kernel	PCA	component	from	the	decoding	analysis,	and	similarly	

visualized	them	as	scalp	maps.	Conceptually,	this	corresponds	to	sites	where	higher	

activity	predicts	a	higher	(or	lower,	depending	on	the	sign	of	the	coefficient)	component	

score,	i.e.,	where	EEG/ERP	activity	is	predictive	of	the	respective	component’s	score	per	

word.	

	

3. Results 

3.1 Encoding Semantics in Brain Activity 

All four models (for English: FastText and WordNet path similarities; for German: German 

FastText and GermaNet path similarities) succeeded in predicting EEG activity, in particular 
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around the N400 time window which is known to reflect semantic memory access (see Fig. 3, 

left; approx. 250 msec to 550 msec). The vector-space models predicted activity well in our 

a-priori predefined time window for statistical analyses (i.e., mean of 300-500 msec: English, 

-" = 0.05, SD = .025; German, -" = 0.07, SD = 0.045; 456ℎ	8 < 0.005), but also when 

aggregating over the entire ERP epoch (both p < 0.005). Importantly, vector-space models 

predicted brain activity significantly better than the taxonomic (WordNet) models (8 < 0.01; 

compare dashed vs. solid lines in Fig. 3). The right panel in Fig. 3 displays the time-resolved 

improvement of semantic encoding based on vector space as compared to taxonomic 

models. 

	

 

Figure 3: Encoding model fit for both languages. (A) Goodness-of-fit across time, displayed as 

the squared and signed correlation between predicted and observed EEG signals, 

aggregating across sensors, participants, and folds, for word vector embedding models (solid 

lines) and the WordNet (i.e., control) model (dashed lines) in English (blue) and the 

equivalent German models (orange). (B) The difference between word vector models and 

taxonomic models demonstrates the significantly better prediction of EEG/ERP activity from 

word vector models. Lines represent the mean (squared, signed) correlation between the 

predicted and the actual ERP. Shaded areas reflect 68% bootstrapped confidence intervals 

over folds. 

	

Results for the alternative vector spaces are qualitatively similar (see Fig. 4), indicating that 

distributional vectors in general allow prediction of brain activity. Interestingly, shorter 
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vectors appeared to allow superior encoding, potentially indicating overfitting for high-

dimensional vectors. 

	

 

Figure 4: Encoding model fits for alternative (English) word vectors. All details as in Fig. 3, 

but each plot shows the time series for encoding quality for multiple vector space models 

(see right legend). word2vec- and Subtlex-vectors reflect an older algorithm and a 

different training corpus (movie subtitles), respectively. GloVe vectors (of various lengths) 

correspond to a related, but distinct algorithm (Pennington et al., 2013). GloVe vectors 

trained on twitter data reflects yet another corpus. Note that while encoding accuracies 

vary across models, all models allow above-chance prediction of activity in the N400 time 

window.  

	

3.2 Decoding 

Observing that encoding – i.e., the prediction of brain activity during word reading based on 

the position of these words in vector space – is possible, we set out to more thoroughly test 

if this was due to the semantic content of word vectors. For this, we conducted a factor 

analysis (Kernel PCA) of word vectors (to support decoding and to render the results more 

interpretable), and then attempted to decode a word’s position in (factorized) vector space 

– i.e., its loading on the components – based on brain activity. We also, subsequently, aimed 

at inferring what these factors correspond to conceptually (see next section for details). 

Decoding was used to predict the ‘loading’ of each word on each of these eight factors, 

based on EEG activity. Results indicate that loadings on multiple factors could be read out 

from brain activity, with cross-validated (over 10 folds; see Methods) -" scores between 
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predicted and observed factor scores > .1 (p < .05, Bonferroni corrected; Fig. 5A,C). For 

example, the first component could be read out with significantly above-chance accuracy in 

both languages; see below for a more detailed discussion of which factors could be decoded. 

Note that confidence intervals were wider for German, which we attribute to the much 

smaller number of trials in the German experiment. Time-resolved decoding (Figure 5B,D) 

indicated that information about these factors was recoverable from brain activity beginning 

at ~250 msec and peaking around 350-400 msec, i.e., again in the time window of the N400, 

the best-established semantic ERP component. 

 

Figure 5: Decoding semantic dimensions from EEG data. A: Prediction accuracy 

(measured as the squared, signed correlations between predicted and actual values) for 

the prediction of eight vector-space factors from EEG activity between 300 - 500 msec, for 

English data. Labels on the ; axis reflect a subjective interpretation of the factor 

meanings (see Methods and Table 1). Error bars represent the 99.375% (95% corrected 

for multiple comparisons) bootstrapped confidence intervals; asterisks indicate decoding 

accuracies significantly different from chance. B: Time-resolved decoding scores for the 

same eight factors, when repeating the prediction at each sample time point of the EEG 

signal. Colors as on left plot. Shaded outlines reflect 68% bootstrapped confidence 
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intervals over folds (uncorrected). C/D: Same, but for the German dataset (note the 

different scaling of the y axis in D as compared to B). 

	

3.3 Kernel PCA Factor Structure 

The first eight factors identified via Kernel PCA decomposition in the distributional models 

for each language are shown in Table 1. The semantic interpretation of these factors 

(provided by trained linguists; see Methods for details) is ad-hoc, is not constrained by brain 

activity, and does not conclusively establish that these factors are intrinsic to the structure of 

the distributional models. Nevertheless, it is noteworthy that the first of these factors in 

both languages constituted one of the most fundamental dimensions of semantics discussed 

in the literature, i.e., Concreteness, and that at least two other factors (Place vs. Person; 

Order/Structure vs. Chaos) appear in both languages. Even more importantly, these clearly 

semantic components could be read out from brain activity: We found significantly above-

chance decoding scores for Concreteness (German and English Factor 1), Place vs. Person 

(English Factor 3, German Factor 4), and Ordered vs. Chaos (German Factor 2). In addition to 

these factors, decoding scores significantly (p < .05, Bonferroni corrected)	exceeded chance 

for Factors 4 and 6 (English); see Figure 5A, C. 

Again, we wish to emphasize here that the observed factor structure is in no way indicative 

of a true semantic feature space that we assume to be represented in the human brain, and 

choosing different analysis parameters could lead to very different factor structures. This 

analysis, thus, is merely a tool for verifying certain aspects of our methodology, intended to 

demonstrate that at least some of the predictive power of distributional models on ERP data 

stems from the genuinely semantic information they represent.	

	

3.4 Visualising	decoding	and	encoding	patterns 

By	visualizing	the	spatial	structure	of	these	effects	(see	Fig.	6),	we	find,	very	broadly	

speaking,	that	the	spatial	distribution	of	encoding	performance	as	well	as	the	

informativity	of	electrodes	for	the	decoding	procedure	partially,	but	not	fully,	overlap	

with	the	scalp	distribution	of	the	N400	effect	known	from	other	studies	of	semantic	

processing	(Kutas	&	Federmeier,	2011).	I.e.,	we	observe	that	encoding	performance	is	
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highest	at	central	electrodes	near	the	midline,	and	that	for	at	least	4	Kernel	PCA	

components	(1,	5,	7,	and	8),	the	most	important	predictors	in	the	decoding	analysis	are	

similarly	found	at	central	electrodes	near	the	midline.	However,	other	components	are	

better	predicted	by	other	electrodes,	perhaps	indicating	that	different	neural	generators	

are	involved	in	these	representations.	

	

Figure	6:	Visualization	of	the	scalp	distribution	of	encoding	and	decoding	models.	Left:	

Scalp	distribution	map	showing	the	r^2	of	the	encoding	model,	for	the	N400	time	

window	(300	–	500	msec),	per	electrode.	Right:	For	each	of	the	8	kernel	PCA	

components,	the	variance-normalized	coefficients	of	the	respective	decoder	(i.e.,	the	

forward	model)	are	shown	per	electrode.	I.e.,	more	red/blue	coloring	indicates	that	a	

more	positive/negative	going	ERP	leads	to	a	higher	prediction	on	the	respective	kernel	

PCA	score	(German	dataset;	compare	Figure	5).	These	values	are	dimensionless.	

	

4. Discussion 

In this study, we have demonstrated that brain activity measured with EEG (more 

specifically, the distribution of ERP timecourses over the scalp) encodes distributional vector 

representations of word meaning, as derived from nowadays well established prediction-

based distributional models. This result suggests that semantic vector spaces represent 

semantic relationships between words in a manner that is at least partly shared with how 

the brain represents word semantics. More specifically, words that occupy adjacent spaces 

in the high-dimensional vector space representations of these models also induce similar 

brain activation states. These correspondences were largely the same for two experiments 

conducted in different languages (i.e., English and German) and requiring two different 
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behavioral tasks. Also, our results did not change substantially when using a number of 

different implementations of distributional models. 

	

On the one hand, our results indicate that distributional vector embeddings of word 

meaning allow accurate simulations of brain states (i.e., the encoding of word vectors in 

brain activity), indicating that word semantics, as expressed in word vectors, entrain brain 

states into predictable patterns. On the other hand, our data also demonstrate that vector-

based word embeddings allow reading out (i.e., decoding) parts of the meaning of words 

from brain activity. This indicates that a semantic architecture at least partially similar to 

distributional word vector spaces is encoded in brain activity – even though these may not 

be directly interpretable semantic features. It is particularly noteworthy that the vector-

space components which could be read out (decoded) from brain activity were 

independently described by trained linguists as corresponding to axes of meaning (rather 

than nonsemantic aspects of word knowledge, such as a word’s length or frequency of 

occurrence). This is indeed expected if brain activity elicited during word processing contains 

representational information about word meaning and if the nature of this neural 

representation is at least partly related to the distributional nature of word vectors. 

	

In the following, we will discuss the implications of these results for the cognitive 

neuroscience of meaning, i.e., for understanding the how, what, and when of representing 

the semantics of words in the human mind and brain. First, we will discuss how the present 

results relate to various models of semantic representation. Then, we will argue that some 

distinctions between these models (e.g., between feature- and exemplar-based 

architectures) are irrelevant, so that the core difference between models is which feature 

space they (perhaps implicitly) operate in. We will also review in somewhat more detail Jerry 

Fodor’s argument that conceptual feature spaces – unlike the not directly interpretable 

distributional word vector models we studied here – are implausible because they are 

circular (Fodor & LePore, 1999). From these considerations, combined with our empirical 

results, we will elaborate that distributional models – like those whose fit to brain activity 

we tested here – are reasonable contenders for the architecture of the semantic system. 

Lastly, we connect our results to previous findings and theories from the cognitive 
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neurosciences, and argue that brain activity in the N400 time window reflects not only 

retrieval/integration-related processing, but also (context-independent) semantic 

representations. 

 

4.1 Models of semantics representation 

What options for models of semantic representations are there? Distributional models like 

word2vec have been proposed only recently, joining a long list of alternative proposals. 

Empiricist state-space theories (e.g., Churchland and Sejnowski, 1990) propose that word 

meaning can be understood as the ranking of a word on various experiential dimensions, i.e., 

categories derived from our senses. An important role of not only the sensory, but also the 

motor system for the representation of semantics is suggested by Embodiment theories (e.g., 

Gallese and Lakoff, 2005; Pulvermüller, 2013). These theories claim that we represent both 

concrete and abstract categories with reference to our sensory and motor systems. There 

are also nativist feature theories, which propose that our mental concepts can be 

decomposed, although these features are not understood as experiential in nature, but 

innate (e.g., Pinker, 2008). Finally, Exemplar or Prototype theories (e.g., Edelman, 1995; 

Rosch, 1999) postulate that concepts are represented as, or with respect to, exemplars. 

Although prototypes must not necessarily correspond to objects or persons we have seen in 

the real world with our own eyes, they are constructed based on such experiential 

phenomena. Assigning a specific token to a semantic concept then corresponds to checking 

how similar it is to the respective prototype. 

	

Under all these approaches, semantic representations can be conceptualized in matrix form, 

i.e., geometrically as vectors or as points in high-dimensional state spaces (e.g., Churchland, 

1993; Kriegeskorte & Kievit, 2013; Warglien & Gärdenfors, 2013). The disagreement 

between these models is about what the axes of the space or matrix correspond to: Nativist 

models assume they reflect innate, abstract protosemantic concepts (as those in Dowty, 

1994; see also Pinker, 2008). Empiricist (Churchland, 1993; Prinz, 2004) as well as 

embodiment models (Pulvermüller, 2013) suggest experiential features, whereas in 

prototype/exemplar models (Edelman, 1995) exemplars take the role of the features – i.e., a 

concept’s position is described with regards to its distance to other concepts. 
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Interestingly, it has turned out to be irrelevant if these features are categorical or continuous 

(+ANIMATE vs. DEGREE OF ANIMACY; cf. Tissier et al., 2018) in nature. Similarly, it turns out 

to be irrelevant if distances are represented with regards to other concepts (i.e., exemplars 

or prototypes) or to features. Conceptually, this can be seen by considering that a distance 

between two items corresponds to a consideration of feature overlap – in other words, the 

distance between two exemplars or prototypes implicitly refers to a feature space. If a 

different feature space is chosen, new distances result. Thus, exemplar models operate at 

least implicitly in a feature space, which has mathematically been formalized in the form of 

the so-called Representer Theorem (Schölkopf, Herbich & Smola, 2001; Schölkopf et al., 

2007; for a related development, see Nunez-Elizalde et al., 2019). This finding establishes 

that for a broad class of inference processes, the so-called primal and dual problems (in this 

case corresponding to feature- vs. exemplar-based encoding processes) are equivalent; 

conducting the inference in one space gives the same results as in the other (see also Fig. 1, 

bottom). Thus, any query of the semantic model yields the same results for a feature-based 

representation as compared to a representation in an exemplar space defined by the same 

features. Moving from feature- to exemplar space simply requires applying a kernel function 

(i.e., a similarity measure, yielding the distance between entities in feature space; this 

inspired our choice of Kernel PCA in the decoding section). This implies for a quantitative 

evaluation of alternative models of semantic representations, that the crucial question does 

not pertain to the general architecture of the model – i.e., a featural vs. exemplar-based 

architecture. Rather, it is critical to understand of what kind the features are that define the 

semantic state space. We hoped to elucidate on this question by testing how well various 

feature spaces can predict brain activity elicited during word perception. 

	

We found that distributional word vector models allow the prediction (encoding) of human 

brain activity, and that this prediction is significantly better than prediction based on a 

classical taxonomic baseline model. This superiority of distributional vector-based 

representations to taxonomic models suggests that logical relations such as “x is a y” 

(hyponymy/hyperonymy) are not sufficient to grasp the neural implementation of semantic 

coding. Richer associations – perhaps including dimensions that resist verbal descriptions – 
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are superior in explaining brain activity, and are in turn encoded in brain activity. In this 

sense, our work complements previous research on feature-based explanations of meaning 

representation (Fyshe, Sudre, Wehbe, Murphy, & Mitchell, 2012; Simmons, Hamann, 

Harenski, Hu, & Barsalou, 2008). In this sense, our work converges with the encoding of 

BOLD responses to continuous, naturalistic language stimulation reportedby Huth et al. 

(2016) but extends this work by demonstrating a systematic relationship between brain 

activation during isolated (i.e., context-free) word reading and distributional word vectors. 

 

On the other hand, our decoding results suggest that the neural activity explained by 

distributional word vector models is at least in part genuinely semantic in nature. Some of 

the features we can decode are unsurprising; for example, concreteness is known to be a 

major determinant of lexical representation and was shown to modulate brain activity 

(Dufau et al., 2015). Others can be interpreted as evolutionarily relevant signals – i.e., threat, 

food, or social aspects of meaning, which have been independently noted to affect word 

processing (Bentall & Kaney, 1989). However, the mere observation that a feature can be 

decoded from brain activity does not in itself mean that it is a major axis of the neural 

representation of meaning. The encoding process is bottlenecked on both sides, by the 

quality of the vectorial representations (i.e., it is possible that a highly important dimension 

simply cannot be learned on data, or by models as those we use here), and by the signal to 

noise ratio of the brain data. Our dimensionality reduction of the word vectors was entirely 

based on patterns of (co)variance within the word vectors themselves, not on what 

information is encoded in the neural signal. Put differently, the decoding procedure can only 

discover statistical relations between brain activity and semantic patterns identified 

independently of brain activity. Thus, while our results are suggestive of distributional 

semantics, they do not provide any finer insights into the specifics of human semantic 

representations. 

Interestingly, there are also indications that distributional, word2vec-class models can also 

yield inferior results compared to alternative models. For example, Huth et al. 2016 

performed a supplementary analysis comparing their primary analysis to a Word2Vec-based 

distributional model. Contrary to our results, these authors found that Word2Vec explained 

fMRI activity above chance, but significantly worse than their primary model. The most 
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obvious differences between these two studies are the recording modality (fMRI vs. EEG) 

and the stimulus coherence (narratives in Huth et al., 2016, as opposed to single words in 

our study). One important difference between EEG/ERP and fMRI is that fMRI recordings 

have superior signal-to-noise levels. This suggests that differences in SNR per se cannot 

explain why Word2Vec performed better in our EEG/ERP study. A major difference is 

furthermore the superior temporal resolution of EEG. We thus speculate that that the high 

temporal resolution of EEG/ERP may have allowed us to specifically identify the moment in 

time where processing of word meaning is performed. In contrast, fMRI conflates different 

cognitive processes into one datapoint, which may reduce its ability to capture the 

temporally circumscribed instantiation of meaning during word comprehension.  

	

Another difference between the materials in our study and this previous work concerns the 

ongoing integration of words into phrasal and sentence contexts – contexts which were 

available to participants with the materials employed by Huth et al., 2016, but not with our 

single-word materials. As many or even all words are polysemuous (Hagoort et al., 2004), 

many of our stimulus words were ambiguous between multiple meanings, and some even 

between word classes (e.g., fish, which can function both as noun or verb). In contrast, word 

processing with constraining contexts is a different task where only a narrow subset of the 

possible semantics associated with a word are evoked in order to possibly be integrated into 

the mental representation of the sentence. Moreover, continuous narratives consist of both 

content and function words, many of which carry their own semantics. This might lead to 

important differences in processing between continuous narratives vs. individual words. 

However, while this crucial difference may underlie differences between our findings and 

the results reported by Huth et al. (2016), the direction of the difference is surprising 

because intuitively, one might have expected to find the context-dependent Word2Vec 

analysis to perform superior for words presented in context. In the long run, theoretical 

work will have to develop a theory that can simultaneously accommodate both the 

integration of meaning in context, as well as the representation of meaning evoked by 

individual words presented in isolation. 
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We also note that we found vectors based on the original Word2Vec implementation (also 

used by Huth et al., 2016) substantially inferior to the improved FastText-based vectors we 

employed. It is thus possible that improved distributional or taxonomic models will both 

yield new results. Lastly, we would also like to point out that differences in task and material 

are highly likely to determine which feature spaces prove superior in different study 

contexts. For example, neural signatures of taxonomic judgement tasks are likely to favor 

taxonomic models. Future work will thus also have to explicitly explore the effect of such 

‘design’ variables on the encoding and decoding results. 

Lastly,	it	should	be	noted	that	the	specific	stimuli	employed	may	have	a	strong	impact	on	

our	results	(as	well	as	on	other	studies	using	similar	model-based	approaches):	The	

extent	to	which	results	can	be	generalized	beyond	the	given	study	is	limited	by	the	

specific	nature	of	the	stimuli	–	which	here	consisted	of	short	nouns	and,	for	the	German	

data,	of	clearly	abstract	or	concrete	words.	For	example,	as	an	inherent	limitation	of	

distributional	models,	they	capture	much	less	well	the	meaning	of	very	low-frequency	

words.	Due	to	the	length	restrictions	of	our	experiment,	we	did	not	employ	extremely	

long	and	rare	words	such	as	“heteroskedasticity”,	for	which	a	distributional	model	-	

based	fit	is	expected	to	be	worse.	Similarly,	little	can	be	said	about,	e.g.,	regular	

compounds.	

	

4.2 Circularity of conceptual features, and the appeal of distributional models 

In the literature on semantic architectures and representations, we have so far not found an 

example of a comprehensive list of semantic features – in the sense of a feature list that 

could clearly capture the semantics of any non-trivial set of word meanings. To the best of 

our knowledge, there is no such canonical list of semantic features with a claim to 

completeness. Put differently, theories of semantics (see above) are proposals regarding the 

kind of features that define the representation of semantic meaning, but none of these 

models has so far spelled out testable proposals for these features. We argue that this 

hinders the empirical evaluation of the proposed theoretical models, as these models cannot 

generate quantitative and thus testable predictions without a clear definition of the involved 

features (i.e., without an explicit enumeration of the labels of the axes of the feature space). 
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Fodor	and	LePore	(1999)	and	Fodor	(1970)	have	argued	that	any	enumeration	of	

specific	features	would	be	futile,	because	any	definition	of	concepts	with	features	that	

are	themselves	conceptual	in	nature	is	either	insufficient	or	trivial.	For	example,	it	would	

be	unsatisfactory	to	define	cat	as	having	a	feature	+CAT.	By	this	circular	definition,	the	

set	of	features	would	equal	or	exceed	the	number	of	word	meanings.	Instead,	feature	

semantics	strives	to	achieve	a	parsimonious	description	by	identifying	redundancies.	

Such	an	approach	seems	to	work	well	for	some	showcase	concepts	such	as	bachelor	

(+MALE,	+UNMARRIED).	On	a	closer	look,	however,	most	words	resist	a	decomposition	

into	any	convincing	bundle	of	features	as	long	as	they	do	not	become	tautological.	For	

example,	die	means	BECOME	DEAD,	dead	means	HAVE	DIED,	etc.	(Fodor,	1970).	

Similarly,	cat	cannot	be	defined	by	any	parsimonious	set	of	features	excluding	the	

feature	+CAT.	Thus,	a	model	of	semantic	representation	where	the	discriminating	

features	(also	called	axes	or	dimensions)	are	concept-like	is	–	on	virtue	of	circularity	–	

implausible.		

 

Already in 1997, Landauer and Dumais  proposed that a practical approach (called Latent 

Semantic Analysis, or LSA) for deriving vectorial representations of words is to enumerate 

what contexts (e.g., documents, sentences …) words occur in, and then identify latent 

variables underlying this massive contexts × words matrix. While LSA is surprisingly effective, 

it is unlikely that this is similar to how humans actually learn; toddlers probably do not have 

the capacity to verbatim store thousands of paragraphs. Models like word2vec make 

distributional vectors learnable by implicitly connecting them to predictive processing  – i.e., 

a process human brains are well known to be constantly engaged in (e.g., Clark, 2013). This 

offers a promising improvement on earlier models. The important aspect of word2vec and 

LSA-style models, relative to classical conceptual-feature space models, is that their axis 

labels are not conceptual, which allows them to evade the circularity critique. By this, we 

suggest, they become surprisingly plausible candidates for the representational 

architectures of the human mind. They also have the benefit of being already available in 

implemented form – unlike competing models, which are often only specified conceptually. 

This, in turn, opens up a framework for robust and quantitative tests of theories of semantic 

representation. The data we present in the present study provide a natural extension of such 
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conceptual considerations by empirically demonstrating the relationship between word 

vectors and brain states. 

Proponents	of	grounded	or	embodied	semantics	(for	a	recent	review,	see	Hauk	&	

Tschentscher,	2013)	would	argue	that	the	dimensions	of	representation	of	distributed	

models	lack	a	biological	grounding.	However,	these	two	approaches	may	in	fact	be	

surprisingly	complementary.	For	example,	Frome	et	al.	(2013)	have	presented	work	

indicating	that	combining	perceptual	and	(text-based)	distributional	information	may	be	

a	key	aspect	to	rapid	word	acquisition	(in	their	case	demonstrating	inference	of	

semantics	based	on	both	word	distributions	and	images).	This	suggests	that	combining	

statistical	information	about	word	context	with	the	rich	understanding	of	the	physical	

world	typical	of	human	learners	may	be	an	essential	aspect	for	improving	the	

performance	of	distributional	models	to	reach	human-equivalent	levels.	For	this	reason,	

we	prefer	to	see	current	empiricist	distributional	models	(like	investigated	in	the	

present	work)	not	as	an	alternative	to	grounded	theories	of	semantics.	Instead,	we	think	

that	they	supplement	each	other,	and	integrating	such	perspectives	could	be	a	key	step	

in	furthering	our	understanding	of	human	semantic	knowledge.	

	

4.3 Meaning	and	the	N400	time	window	

Our finding that semantic vector space information is encoded in brain activity measured 

between 300 and 500 ms after word onset has interesting implications for understanding the 

cognitive and neural processes underlying activity in the time window of the N400 

component of the event-related brain potential. The N400 has in a large body of empirical 

research been shown to covary with the difficulty of semantic processing of words. In 

particular, it has been linked to lexical access and the integration of a word into a sentence 

context (Kutas & Federmeier, 2000; Kutas & Federmeier, 2011). Here, we find that 

neurophysiological brain activity in the N400-time window contains information that is 

partially structured akin to distributional semantic models – in a situation without a context 

to integrate words into. This indicates that N400-time window activity reflects more than the 

difficulty of cognitive processes associated with retrieving word meaning and/or integrating 

it into the current context – which is the currently most widely accepted interpretation of 

this ERP effect (Lau et al., 2008; Kutas & Federmeier, 2011). Such a gradient of context-
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dependent processing difficulty is also mainly what previous attempts to encode word 

vectors in EEG activity have observed (Broderick et al., 2017; Ettinger et al., 2016). Instead, 

our findings indicate that EEG activity in the N400 time window also directly reflects a word’s 

meaning. This is not surprising; after all, one could even go so far as to say that the very 

purpose of words is to systematically shift the brain of the perceiver into certain states that 

represent their meaning. Thus, there should be a correspondence between the meaning of 

words perceived in isolation and the perceiver’s brain states. However, this was so far not 

directly accessible to typical empirical neurocognitive studies, as most previous research has 

focused on context-dependent processes rather than context-independent representations. 

	

The observed encoding of semantic vector spaces in brain activity opens up a novel set of 

questions for researchers investigating the brain bases of meaning and language. Ideally, 

cognitive semantics and research on the neurobiology of language can jointly address the 

question of how words, after they have been processed (accessed, retrieved, integrated, …), 

are represented in brain activity. On the other hand, our results also suggest novel ways of 

investigating the corresponding cognitive architecture. For example, the encoding approach 

chosen here allows transcending factorial condition-contrast experiments, instead making it 

possible to directly compare representational frameworks with each other (Kriegeskorte & 

Kievit, 2013). Integrating our data with the currently available body of evidence indicates 

that processing-dependent aspects of semantics play out in approximately the same time 

window as representation-dependent aspects (i.e., roughly the N400 time window), 

suggesting that there may not be a strict boundary between representing and processing – 

as suggested by, e.g., dynamicist models of semantic processing (Elman, 2009; Kutas & 

Federmeier, 2011; Lupyan & Lewis, 2017). 

 

4.4 Outlook 

Distributional word vectors (learned from statistical patterns in texts) provide a 

demonstration of how a representational space sufficient to afford human semantic 

cognition could work. An important implication of our finding that semantic representations 

are encoded in brain activity (i.e., the event-related brain potential), and thus can also be 

decoded from EEG activity, is that any theory of semantics can be tested against neural data, 
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to the extent that it can be quantified. I.e., any independently motivated list of features 

could easily be encoded and the result compared to a suitable benchmark (such as the 

models tested here). Our results constitute one such benchmark; a research strategy for 

competing models should be to aim at producing higher portions of explained variance than 

reported here, i.e., to beat the prediction accuracy obtained from distributional word 

vectors in the present work. 

	

But is it plausible to assume that the brain computes a Word2Vec-like analysis when learning 

words, or that it represents its semantic knowledge in abstract multidimensional vector 

form? Most certainly not. Existing methods, while powerful, are far from human-like in 

performance, even if they are trained on much larger corpora than children need for 

learning. And most models – including those tested here – are unimodal; i.e., they do not 

derive any support from sensory experiences, generalization from other domains, or any 

cognitive priors, which would be a highly inefficient strategy for brains to use. We do not 

wish to suggest that mental semantics literally equal the Word2Vec algorithm or similar 

distributional models. However, we agree with Landauer and Dumais (1997; see above) that 

distributional word vector models avoid certain key problems of alternative approaches, 

most importantly the circularity critique developed by Fodor (1996). Combined with the 

successes of distributional models in de- and encoding of brain activity, they establish a 

strong baseline for the modelling of word semantics-associated brain activity, which 

competing models must beat.  
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Table 1: Tentative labels for each component derived from the dimensionality reduction of word 

vector space, plus most high/low-scoring words. Note that words are shown as they were fed to the 

word vector model (i.e., all lower cased). The seven most strongly negatively and most strongly 

positively scoring words are shown as example. 

Factors	Names	 Negative	 Positive	

English	Dataset	 	 	

Concreteness	 walnut,	sprig,	magnolia,	pumpkin,	

lantern,	pine,	tumbler	

effort,	hope,	validity,	urgency,	

interest,	reason,	concern	

Control	 member,	officer,	attorney,	director,	

senator,	staff,	student	

breakage,	swirl,	deep,	excess,	wisp,	

rasp,	sheer	

Place	vs.	Person	 location,	area,	floor,	facility,	site,	

section,	design	

poet,	poesy,	aunt,	thug,	heretic,	

uncle,	buffoon	

Personal	interaction	vs.	
Global	state	

remember,	guess,	remark,	welcome,	

wish,	answer,	quibble	

disease,	impurity,	violence,	growth,	

economy,	culture,	health	

Structured	vs.	Chaos	 theorem,	piece,	phrase,	method,	

item,	abstract,	paper	

disarray,	trouble,	ruin,	despair,	

turmoil,	east,	midst	

Dynamic	event	vs.	Static	
property	

scene,	orgy,	poem,	disaster,	crisis,	

skit,	chaos	

average,	capacity,	staff,	weight,	

superior,	extra,	respect	

Consequences	 southern,	modern,	common,	middle,	

east,	original,	cove	

cash,	bait,	embargo,	pressure,	pump,	

subpoena,	whip	

Nutritive	vs.	Threatening	 dinner,	luncheon,	evening,	cuisine,	

gourmet,	honey,	beer	

tentacle,	enemy,	position,	dilemma,	

fracture,	shaft,	rift	

German	Dataset	 	 	

Concreteness	 hinweis,	zweifel,	fehler,	zeitpunkt,	

verdacht,	wunsch,	beweis	

mantel,	huhn,	ratte,	knarre,	pistole,	

decke,	jacke	

Ordered	vs.	Chaos	 hass,	mut,	schwert,	kampf,	sand,	

fluch,	hals	

fahrer,	agent,	bank,	wohnung,	klinik,	

woche,	firma	

Idea-ness	 idee,	antwort,	loesung,	theorie,	rede,	

guete,	waffe	

gast,	bus,	strand,	flughafen,	urlaub,	

onkel,	ehemann	

Person	vs.	Place	 soldat,	agent,	waffe,	onkel,	ehemann,	

krieger,	kumpel	

strand,	insel,	osten,	mitte,	tuer,	

muell,	naehe	

Seriousness	 jugend,	freiheit,	seele,	stadt,	rache,	

gnade,	krieg	

artikel,	scheck,	scherz,	laut,	knopf,	

hinweis,	sack	

Piety	 stress,	spass,	lust,	urlaub,	miete,	

geduld,	zucker	

laut,	himmel,	osten,	mitte,	kreuz,	

schwert,	legende	

Possessions	 guete,	naehe,	koma,	muell,	tuer,	

onkel,	antwort	

wert,	papier,	mantel,	uniform,	lauf,	

kleidung,	platz	
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Factors	Names	 Negative	 Positive	

Joint	ressources	 muell,	guete,	naehe,	talent,	besitz,	

firma,	stolz	

nase,	minute,	termin,	schlaf,	fahrt,	

Montag,	woche	

	

Table	1:	Tentative	labels	for	each	word	vector	factor	and	most	high/low-scoring	words.	

Note	that	words	are	shown	as	they	were	fed	to	the	word	vector	model;	i.e.,	all	words	are	

lower	cased.	The	seven	most	strongly	negatively	and	most	strongly	positively	scoring	

words	are	shown.	
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