Cross-disorder genetic analyses implicate dopaminergic signaling as a biological link between

Attention-Deficit/Hyperactivity Disorder and obesity measures

SUPPLEMENTARY MATERIAL

Supportive information - Methods

GWAS summary statistics

The ADHD GWAS summary summary statistics used in our analyses are deriverd from iPSYCH-PGC samples, as described in details by Demontis et al. (1), and can be obtained from the PGC website (https://www.med.unc.edu/pgc/results-and-downloads). Data was filtered to include only SNPs with minor allele frequency $(\mathrm{MAF})>0.01$ and an imputation quality (INFO) >0.8, totalizing $8,094,094$ variants.

The BMI GWAS summary statistics were provided by the GIANT consortium and downloaded from https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files. Detailed description of samples, data and analysis procedures can be found in Yengo et al. (2). After downloading, the data was subsequently filtered in order to include only SNPs with MAF>0.01 in our analyses, which yielded a total of $2,336,056$ SNPs.

We also used the obsesity (class I) GWAS from the GIANT consortium, which has been described in details by Berndt et al. (3). Data was downloaded from https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files and subsequently filtered to include only SNPs with MAF>0.01, resulting in 2,353,324 SNPs.

From the ENIGMA consortium GWAS, detailed description of samples and GWAS data can be found in the original publication by Hibar et al. (4) and summary statistics are available upon request via the ENIGMA website (http://enigma.ini.usc.edu/download-enigma-gwas-results/). The GWASs of subcortical brain volumes were conducted adjusting for intracranial volume. The NeuroIMAGE cohort ($N=154$), which includes ADHD patients, was removed from the ENIGMA data prior to analyses of the current study. Only SNPs with imputation score of RSQ>0.5 are included in the ENIGMA summary statistics and we further filtered SNPs to include only those with MAF>0.01. The final number of SNPs ranged from 8,404,06 to $8,445,488$ for the different brain volumes analysed (i.e. putamen, nucleus accumbens, caudate, pallidum, amygdale, hippocampus and intracranial volume).

GWAS results from brain volumes from the UK Biobank cohort were used as replication data for any significant association found with the ENIGMA data. Detail information of these summary statistics, which include only SNPs with INFO>0.3, are provided by Elliot et al (5). Analyses were restricted to SNPS with MAF>0.01, totalizing 7,723,976 SNPs.

Candidate gene-set association analyses

Gene-set assembly

For our candidate gene-set analyses, we assembled dopaminergic neurotransmission (DOPA) and circadian rhythm (CIRCA) gene-sets based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) databases, queried in September 2016.

DOPA gene set: From the KEGG database, we included genes covered by the Dopaminergic synapse (hsa04728) and/or Tyrosine metabolism (hsa00350) pathways and from the GO database we included genes present in (at least) one of the following terms (GO: accession number): dopamine transport (GO:0015872), dopamine receptor signaling pathway (GO:0007212), dopamine receptor binding (GO:0050780), synaptic transmission, dopaminergic (GO:0001963), dopaminergic neuron axon guidance (GO:0036514), dopaminergic neuron differentiation (GO:0071542), response to dopamine (GO:1903350), and dopamine metabolic process (GO:0042417).

This resulted in 155 genes from KEGG database and 144 genes from GO, of which 24 were in common, totalizing 275 genes. From these, we found 273 genes in the MAGMA gene template ("KIF5C" and "PPP2R3B" were not present), including 9 genes located on chromosome X , which was not covered by our analyses.

CIRCA gene set: From the KEGG database, we included genes comprised by the Circadian rhythm (hsa04710) and/or Circadian entrainment (hsa04713) pathways and, from the GO database we included genes present in the circadian rhythm (GO:0007623) GO term.

This resulted in 123 genes from the KEGG database and 197 genes from GO, of which 27 were in common, totalizing 293 genes. From these, we found 290 genes in the MAGMA software gene reference template ("H0Y8X5", "LOC400927-CSNK1E", and "Q59FM5" were not present), including 6 genes located on chromosome X, which was not covered by our analyses.

Gene-set association analyses

The gene-set association analyses were performed using MAGMA software (version 1.05b; (6)). For such, SNPs were annotated to protein-coding genes, according to the location of their transcribed regions in the

Human Genome Build 37, using the NCBI 37.3 gene reference template definitions provided by MAGMA (https://ctg.cncr.nl/software/magma). Genes were considered as present in the GWAS summary statistics being analyzed if they contained at least one SNP located within their transcribed region. Gene-based Pvalues were then calculated using the SNP-wise mean model (default for summary statistics analysis), which combines the effects of SNPs within a gene and uses the sum of $-\log (S N P P$-value) as test statistic. In order to account for linkage disequilibrium (LD) between the SNPs, we used the European dataset of the 1000 Genomes Phase 3 as reference, provided at MAGMA's website (https://ctg.cncr.nl/software/MAGMA/ref data/g1000 eur.zip).

We then performed competitive gene-set analyses, which tests whether each gene-set is differently associated with the phenotype compared to the remaining genes on the genome, while taking into account gene size, gene density and LD between genes.

Canonical pathway enrichment analysis

The sets of ADHD-BMI and ADHD-obesity overlapping genes, derived from the gene-based crossdisorder(/trait) meta-analyses, were tested for enrichment of canonical pathways using Ingenuity Pathway Analysis (http://www.ingenuity.com; QIAGEN Bioinformatics, Redwood City, California, USA). The Ingenuity Knowledge Base, which incorporates experimental data from published literature as well as data from many other sources, including gene expression and gene annotation databases, currently comprises 692 curated canonical pathways of functionally related and interacting genes/proteins (http://qiagen.force.com/KnowledgeBase/articles/Basic Technical Q A/Available-Canonical-Pathways). For each of these pathways, Ingenuity calculates enrichment P-values using the right-tailed Fisher's exact test and taking into consideration both the total number of genes from the analyzed data set (i.e. the 211 ADHD-BMI or the 9 ADHD-obesity overlapping genes) and the total number of genes that is in the pathway in question according to the Ingenuity Knowledge Base. To account for multiple testing, the enrichment Pvalue of each pathway is adjusted using Benjamini-Hochberg correction, and only significantly enriched canonical pathways were reported.

Supportive information - Results

Secondary ADHD-BMI gene-based meta-analysis: no sample overlap

Since Welcome Trust participants had been included both in the iPSYCH-PGC (1) and GIANT $(2,3)$ studies, we performed a secondary analysis to make sure that our results were not driven by this overlap. As described by Demontis et al. (1), the ADHD PGC sample from Cardiff is composed of 721 ADHD cases and 5081 Welcome Trust controls. Therefore, we performed a secondary ADHD-BMI gene-based meta-analysis
using the leave-one-out summary statistics from the European ancestry iPSYCH-PGC ADHD GWAS without the Cardiff sample ($\sim 11 \%$ reduction in sample size). Unfortunately, it was not feasible to remove these overlapping samples from the GIANT-UK Biobank BMI GWAS. The canonical pathway enrichment findings from this secondary meta-analysis were reassuring since the Dopamine-DARPP32 Feedback in cAMP Signaling pathway remained significantly associated, with seven genes in the pathway and surviving B-H correction $\left(P=8.90 \times 10^{-4}, \mathrm{P}_{\mathrm{B}-\mathrm{H}}=4.57 \times 10^{-2}\right.$). Since our secondary results do not show a substantial bias due to sample overlap, we opted for presenting the analysis with the largest sample size as the main analysis.

Detailed description of Figure 1

In Figure 1, we show a schematic representation of the Dopamine-DARPP32 Feedback in cAMP Signaling pathway. In the description below, we contextualize and highlight in bold the proteins encoded by the eight genes derived from our ADHD-BMI gene-based meta-analysis results that are present in this pathway (highlighted in red in Figure 1).

Signaling in the Dopamine-DARPP32 Feedback in cAMP Signaling pathway starts at the postsynaptic membrane where dopamine released by midbrain neurons binds and activates two types of dopamine receptors, i.e. the D1 class (DRD1 and DRD5) and D2 class (DRD2, DRD3, and DRD4) of receptors (D1 class and D2 class in Figure 1) (7). Subsequently, the D1 and D2 receptors work through different G protein alpha subunits to activate and inhibit the enzyme adenylate cyclase, which results in more and less cyclic AMP (cAMP) being synthesized, respectively (7). cAMP in turn activates protein kinase A (PKA), which is inhibited by the kinase AMPK $(8,9)$ of which the AMPKg subunit is encoded by the PRKAG1 gene (10). Activated PKA has a large number of downstream effects, including regulating the activity of L-type calcium channels (11) - of which CACNA1D is a subunit (10) - that are voltage-sensitive and stimulate the entry of calcium ions into neurons (12). Dopamine binding to D2 receptors also leads to a signaling cascade that results in an increased intraneuronal concentration of calcium (13). In addition, activated PKA is involved in activating transcription factors of the cAMP-dependent CREB complex $(14,15)$ such as CREB3L3 (10). The CREB complex transcription factors are inhibited by the phosphatase PP1 (16) - which contains the regulatory subunit PPP1R3A - leading to a disruption of dopamine-induced and cAMP/PKA-dependent gene transcription, which may ultimately result in various neuropsychiatric disorders - including ADHD (17) - and somatic disorders such as obesity $(18,19)$. Dopamine binding and activating D1 receptors also leads to the activation of phospholipase C (PLC) enzymes $(11,20)$ such as PLCL1 that binds and functionally interacts with PP1 (interaction not shown in Figure 1) (21). The above described dopamine-induced gene transcription is partially controlled by the protein 'Dopamine and cAMP Regulated Phosphoprotein-32' or DARPP-32, through a feedback loop on the cAMP/PKA cascade. Activated PKA stimulates the phosphatase PP2A - of which PPP2R3A is a regulatory subunit (10) - that phosphorylates DARPP-32 at Threonine(Thr)34,
which makes DARPP-32 a potent inhibitor of PP1 (16). Conversely, an increase of intracellular calcium through being pumped into the neuron by L-type calcium channels such as CACNA1D, downstream of dopamine binding to D2 receptors (see above) and/or trough being released from the endoplasmic reticulum (ER), a process that is mediated by the ER membrane-receptor ITPR3 (22) - leads to a dephosphorylation of DARPP-32 at Thr34 (23), rendering the protein inactive again. Interestingly, DARPP-32 can also be phosphorylated at Thr75 by CDK5 (16)- a kinase that itself is activated by CK1 (24), of which CSNK1G2 is an isoform (10) - which converts DARPP-32 into an inhibitor of PKA (16). In this way, DARPP-32 is a dual-function protein that, depending on where it is phosphorylated, can act either as an inhibitor of PP1 or of PKA, which makes DARPP-32 a critical regulator of dopamine/cAMP/PKA signaling.

Supplementary Table S1. Summary of gene-based association results of the ADHD, BMI, and obesity individual GWASs, as well as of the ADHD-BMI and ADHD-obesity gene-based meta-analyses, displaying the number of genome-wide significant (GWsig) genes and if they are included in the candidate DOPA and/or CIRCA gene sets:

	GWsig genes	Presence of GWsig genes in gene sets:		
		DOPA	CIRCA	DOPA and CIRCA
ADHD ${ }^{\text {a }}$	20	.	.	.
$B M{ }^{\text {b }}$	1747	41 (ADCY5, ADCY6, AKT3, ARNTL, CACNA1C, CACNA1D, CALML6, COMT, CREB1, CREB3L1, CREB3L3, CTNNB1, DDC, DNM1, DNM2, DRD2, GNAI3, GNAQ, GNAS, GNB1, GNG7, GRIA1, GRIN2A, GSK3B, ITPR3, KLF16, LMX1B, OPRK1, OPRM1, PARK2, PLCB1, PLCB4, PPP1CB, PPP2R3A, PPP2R5C, PPP3CA, PTGS2, RAC1, SCN1A, SLC22A3, SLC6A4)	49 (ADCY3, ADCY5, ADCY6, ADCY9, ADK, AHR, ARNTL, BTBD9, BTRC, CACNA1C, CACNA1D, CALML6, CREB1, CRTC1, DDC, DRD2, EP300, GNAI3, GNAQ, GNAS, GNB1, GNG7, GRIA1, GRIN2A, GSK3B, GUCY1A2, HCRTR1, HCRTR2, ITPR3, LGR4, NCOR1, NFIL3, NLGN1, NOS1AP, NR1H3, NTRK2, OPRL1, PLCB1, PLCB4, PPARG, PPARGC1A, PPP1CB, PRKG1, RORA, RPS6KA5, SLC6A4, SYNCRIP, TP53, ZFHX3)	22 (ADCY5, ADCY6, ARNTL, CACNA1C, CACNA1D, CALML6, CREB1, DDC, DRD2, GNAI3, GNAQ, GNAS, GNB1, GNG7, GRIA1, GRIN2A, GSK3B, ITPR3, PLCB1, PLCB4, PPP1CB, SLC6A4)
Obesity ${ }^{\text {c }}$	26	.	$\begin{gathered} 1 \\ (A D C Y 3) \end{gathered}$.
ADHD-BMI ${ }^{\text {d }}$ meta-analysis	211	8 (CACNA1D, CREB3L1, CREB3L3, CTNNB1, DNM1, GRIA1, ITPR3, PPP2R3A)	7 (CACNA1D, GRIA1, ITPR3, PRKAG1, RPS6KA5, SYNCRIP, ZFHX3)	$\begin{gathered} 3 \\ \text { (CACNA1D, GRIA1, ITPR3) } \end{gathered}$
ADHD-Obesity ${ }^{\text {e }}$ meta-analysis	9	$\begin{gathered} 2 \\ \text { (CACNA1D, DNM1) } \end{gathered}$	$\begin{gathered} 1 \\ \text { (CACNA1D) } \end{gathered}$	$\begin{gathered} 1 \\ \text { (CACNA1D) } \end{gathered}$

a. European ancestry iPSYCH-PGC ADHD GWAS (1).
${ }^{\text {b }}$. GIANT-UK Biobank BMI GWAS (2).
${ }^{\mathrm{c}}$ GIANT Obesity (class I) GWAS (3).
d,e Meta-analysis of ${ }^{\text {d.ADHD-BMI }}$ and ${ }^{\text {e.ADHD-obesity gene-based results. Only genome-wide significant }}$ genes are shown with association P-values lower by at least one order of magnitude in the meta-analysis compared to both the ADHD and the ${ }^{\text {d.BMI }}$ or ${ }^{\text {e.obesity results individually. }}$

Supplementary Table S2. Results of the ADHD-BMI gene-based meta-analysis showing the 211 genome-wide significant genes that increased significance in the meta-analysis by at least one order of magnitude compared to both individual GWASs.

GENE	CHR	START	STOP	ADHD gene-based results	BMI gene-based results	ADHD-BMI gene-based meta-analysis
SEMA3F	3	50192562	50226508	$1.83 \times 10-04$	2.27×10-24	1.70×10-26
FBXL17	5	107194734	107718080	$4.08 \times 10-05$	$3.17 \times 10-23$	$2.52 \times 10-26$
XKR6	8	10753654	11058875	$1.06 \times 10-02$	$2.61 \times 10-21$	$1.84 \times 10-22$
GNAT1	3	50229043	50235129	$1.90 \times 10-03$	$1.40 \times 10-20$	$2.14 \times 10-22$
MAML3	4	140637545	141075233	$4.81 \times 10-04$	7.33×10-20	$4.04 \times 10-22$
CCDC171	9	15552872	15971897	$3.88 \times 10-03$	$4.14 \times 10-20$	$1.16 \times 10-21$
SOX5	12	23682438	24715383	$9.20 \times 10-04$	1.06×10-18	$9.86 \times 10-21$
PCDH7	4	30721951	31148423	$1.10 \times 10-03$	$7.55 \times 10-18$	$8.31 \times 10-20$
GATA4	8	11534433	11617510	$7.44 \times 10-03$	$4.70 \times 10-18$	$2.34 \times 10-19$
SEMA6D	15	47476403	48066420	$3.11 \times 10-10$	$2.34 \times 10-14$	$2.42 \times 10-19$
TENM2	5	166406083	167691162	$1.13 \times 10-02$	$1.36 \times 10-17$	$9.78 \times 10-19$
CALN1	7	71244476	71912136	$4.48 \times 10-05$	$3.51 \times 10-15$	$6.42 \times 10-18$
CACNA1D	3	53529076	53847179	$3.60 \times 10-04$	6.19×10-15	$3.96 \times 10-17$
TRAF3	14	103243816	103377837	$3.15 \times 10-03$	$1.53 \times 10-15$	$4.01 \times 10-17$
NLRC3	16	3589033	3627392	$1.02 \times 10-02$	$9.63 \times 10-16$	$6.38 \times 10-17$
STAG1	3	136055077	136471245	$3.30 \times 10-03$	$3.02 \times 10-15$	$8.34 \times 10-17$
CSMD2	1	33979609	34631443	$9.04 \times 10-03$	$3.41 \times 10-15$	$2.04 \times 10-16$
ADARB1	21	46494493	46646478	$2.00 \times 10-03$	$1.86 \times 10-14$	$3.67 \times 10-16$
RSRC1	3	157823690	158262624	$4.44 \times 10-04$	$5.13 \times 10-14$	$3.94 \times 10-16$
PCCB	3	135969167	136056737	$2.48 \times 10-03$	$3.94 \times 10-14$	$9.39 \times 10-16$
MSL2	3	135867760	135915522	$2.22 \times 10-04$	$1.73 \times 10-13$	$9.87 \times 10-16$
MSI2	17	55333931	55762050	$1.30 \times 10-03$	$9.43 \times 10-14$	$1.48 \times 10-15$
TRAIP	3	49866028	49893992	$1.14 \times 10-04$	$4.02 \times 10-13$	$1.61 \times 10-15$
IP6K1	3	49761728	49823973	$1.54 \times 10-04$	$3.68 \times 10-13$	$1.71 \times 10-15$
CAMKMT	2	44589043	44999731	$1.63 \times 10-04$	$3.86 \times 10-13$	1.86×10-15
IGF1R	15	99192272	99507759	$9.53 \times 10-04$	$1.46 \times 10-13$	$1.94 \times 10-15$
PPL	16	4932508	4987136	$8.00 \times 10-03$	$3.58 \times 10-14$	$2.00 \times 10-15$
PDE1C	7	31791666	32339016	$3.63 \times 10-03$	7.83×10-14	$2.44 \times 10-15$
TEX29	13	111973015	111996594	$9.50 \times 10-03$	$4.32 \times 10-14$	$2.73 \times 10-15$
DNASE1	16	3661772	3712689	$6.14 \times 10-03$	$6.74 \times 10-14$	$3.08 \times 10-15$
ABHD17C	15	80987635	81047962	$9.52 \times 10-05$	$8.36 \times 10-13$	$3.14 \times 10-15$
PTBP2	1	97187161	97280605	$2.52 \times 10-03$	$1.45 \times 10-13$	$3.62 \times 10-15$
MST1	3	49721380	49726196	$3.96 \times 10-04$	$6.71 \times 10-13$	$5.45 \times 10-15$
BSN	3	49591922	49708982	$1.12 \times 10-05$	$3.85 \times 10-12$	$5.61 \times 10-15$
RNF123	3	49726950	49758962	$1.03 \times 10-03$	$4.93 \times 10-13$	$7.21 \times 10-15$
ARHGEF7	13	111767624	111958081	$1.87 \times 10-04$	$1.30 \times 10-12$	$7.22 \times 10-15$
PCDH9	13	66876966	67804468	$1.74 \times 10-03$	$3.79 \times 10-13$	$7.48 \times 10-15$
MEF2C	5	88014058	88199922	$3.27 \times 10-08$	$4.66 \times 10-11$	7.80×10-15
TSHZ2	20	51588946	52111869	$1.36 \times 10-02$	$1.61 \times 10-13$	$1.37 \times 10-14$
DNM1	9	130965634	131017528	$2.46 \times 10-04$	$2.48 \times 10-12$	1.76X10-14

TNKS	8	9412756	9639856	$1.58 \times 10-02$	$1.99 \times 10-13$	$1.91 \times 10-14$
UBN1	16	4896666	4932363	$4.90 \times 10-03$	$4.93 \times 10-13$	$1.99 \times 10-14$
CLUAP1	16	3550945	3589048	$3.93 \times 10-03$	6.06×10-13	$2.10 \times 10-14$
UBA7	3	49842638	49851391	$9.40 \times 10-05$	$5.60 \times 10-12$	$2.32 \times 10-14$
PURG	8	30853320	30891231	$3.14 \times 10-03$	$8.72 \times 10-13$	$2.68 \times 10-14$
RPS6KA5	14	91335086	91526993	6.66×10-05	7.41×10-12	$2.74 \times 10-14$
MON1A	3	49946302	49967445	$1.54 \times 10-02$	$3.07 \times 10-13$	$2.92 \times 10-14$
ZFPM2	8	106330917	106816767	$2.09 \times 10-03$	$1.30 \times 10-12$	$3.04 \times 10-14$
HIVEP2	6	143072604	143267495	$1.10 \times 10-03$	$2.74 \times 10-12$	$4.49 \times 10-14$
SLC38A3	3	50242692	50258406	$2.18 \times 10-04$	8.20×10-12	$6.19 \times 10-14$
TMEM161B	5	87485450	87564665	$1.93 \times 10-05$	$3.17 \times 10-11$	6.86×10-14
RPLP2	11	808841	827592	$3.19 \times 10-06$	5.33×10-11	7.01×10-14
TCTA	3	49449639	49453909	$5.22 \times 10-04$	$9.34 \times 10-12$	$9.80 \times 10-14$
NKAIN2	6	124124991	125146786	$1.29 \times 10-02$	$1.24 \times 10-12$	$1.03 \times 10-13$
LONRF2	2	100889753	100939195	$1.59 \times 10-02$	$1.60 \times 10-12$	$1.56 \times 10-13$
C14orf159	14	91526677	91691976	6.61×10-03	$3.18 \times 10-12$	$1.66 \times 10-13$
DUSP6	12	89741837	89746296	$2.24 \times 10-09$	$2.34 \times 10-09$	$2.46 \times 10-13$
BACE2	21	42539728	42654461	$1.26 \times 10-03$	$1.40 \times 10-11$	$2.63 \times 10-13$
PPP1R3A	7	113516882	113559082	$1.40 \times 10-02$	$4.29 \times 10-12$	$3.82 \times 10-13$
APEH	3	49711427	49720936	$7.59 \times 10-03$	6.86×10-12	$3.92 \times 10-13$
C3orf38	3	88198875	88207115	$7.37 \times 10-03$	7.05×10-12	$4.02 \times 10-13$
MLIP	6	53883714	54131078	$5.43 \times 10-03$	$1.18 \times 10-11$	$5.42 \times 10-13$
BTBD2	19	1985437	2015702	$3.79 \times 10-04$	6.66×10-11	7.05×10-13
ZNF131	5	43120985	43176351	$1.12 \times 10-02$	$9.46 \times 10-12$	$7.18 \times 10-13$
NIM1K	5	43192170	43280952	$5.14 \times 10-03$	$1.59 \times 10-11$	$7.31 \times 10-13$
GRIA1	5	152870084	153193429	$4.87 \times 10-03$	$1.88 \times 10-11$	$8.11 \times 10-13$
SWI5	9	131037663	131051268	$1.60 \times 10-03$	$3.82 \times 10-11$	$8.94 \times 10-13$
DIABLO	12	122692209	122712081	$1.45 \times 10-02$	$1.01 \times 10-11$	$9.36 \times 10-13$
PPP2R3A	3	135684515	135866752	$1.04 \times 10-02$	$1.46 \times 10-11$	$1.07 \times 10-12$
CGGBP1	3	88101100	88199016	$7.91 \times 10-03$	$2.32 \times 10-11$	$1.40 \times 10-12$
TEAD3	6	35441374	35464884	$1.14 \times 10-02$	$1.84 \times 10-11$	$1.46 \times 10-12$
PPARD	6	35310335	35395968	$1.38 \times 10-02$	$1.68 \times 10-11$	$1.52 \times 10-12$
ATP5G1	17	46970148	46973233	$4.69 \times 10-03$	$3.78 \times 10-11$	$1.58 \times 10-12$
ARHGAP1	11	46698625	46722215	$8.00 \times 10-03$	$2.72 \times 10-11$	$1.71 \times 10-12$
CADPS2	7	121958478	122526813	$1.16 \times 10-02$	$2.28 \times 10-11$	$1.81 \times 10-12$
TRIM38	6	25962917	25987557	$1.38 \times 10-02$	$1.97 \times 10-11$	$1.87 \times 10-12$
JADE2	5	133860003	133918918	$9.86 \times 10-03$	$2.71 \times 10-11$	$1.94 \times 10-12$
LOC101929490	8	11537185	11555493	$4.12 \times 10-03$	5.50×10-11	$2.26 \times 10-12$
IQSEC1	3	12938542	13114652	$1.12 \times 10-03$	$1.25 \times 10-10$	$2.47 \times 10-12$
HYAL1	3	50337320	50349812	7.66×10-05	$4.50 \times 10-10$	$3.27 \times 10-12$
ZNF654	3	88108394	88193814	$8.17 \times 10-03$	$5.48 \times 10-11$	$3.46 \times 10-12$
GTF2I	7	74071991	74175022	$7.30 \times 10-03$	6.04×10-11	$3.59 \times 10-12$
PIDD1	11	799179	809872	$5.30 \times 10-07$	4.17×10-09	$4.17 \times 10-12$
ULK4	3	41288090	42056080	$1.06 \times 10-02$	6.46×10-11	$4.88 \times 10-12$
HIST1H2BD	6	26157419	26171577	$7.23 \times 10-03$	$9.75 \times 10-11$	$5.98 \times 10-12$
MAP4	3	47892180	48130769	$2.32 \times 10-03$	$1.98 \times 10-10$	$6.04 \times 10-12$

$B B X$	3	107241783	107530176	$2.35 \times 10-04$	7.90×10-10	7.34×10-12
BAK1	6	33540323	33548072	$3.21 \times 10-03$	$2.01 \times 10-10$	$7.71 \times 10-12$
PNPLA2	11	818901	825573	$1.18 \times 10-04$	$1.19 \times 10-09$	9.37X10-12
ZFHX3	16	72816784	73092534	$5.39 \times 10-03$	$2.29 \times 10-10$	$1.16 \times 10-11$
SLX4	16	3631182	3661585	$9.87 \times 10-03$	$1.65 \times 10-10$	$1.22 \times 10-11$
DAG1	3	49506136	49573051	$1.61 \times 10-03$	$8.15 \times 10-10$	$2.09 \times 10-11$
RHOA	3	49396569	49449526	$5.92 \times 10-04$	$1.80 \times 10-09$	2.87X10-11
PLCL1	2	198669426	199014608	$3.18 \times 10-03$	7.85×10-10	$2.99 \times 10-11$
TM6SF2	19	19374841	19384074	$1.15 \times 10-03$	$1.26 \times 10-09$	3.26×10-11
DHX30	3	47844399	47891686	5.26×10-04	$2.22 \times 10-09$	$3.35 \times 10-11$
SUGP1	19	19387320	19431321	$3.20 \times 10-04$	$2.53 \times 10-09$	$3.54 \times 10-11$
ANTXR2	4	80822771	80994626	$5.62 \times 10-05$	6.63×10-09	3.82×10-11
SMARCC1	3	47627378	47823405	5.56×10-04	2.47×10-09	$4.11 \times 10-11$
KMT2D	12	49412758	49453935	$7.34 \times 10-04$	$2.30 \times 10-09$	$4.33 \times 10-11$
CTNNB1	3	41236401	41281939	$2.24 \times 10-04$	5.32×10-09	$5.75 \times 10-11$
ICA1L	2	203637873	203736708	$2.28 \times 10-04$	$5.37 \times 10-09$	6.40×10-11
SCN2A	2	165986659	166248820	$2.87 \times 10-03$	$2.00 \times 10-09$	$7.44 \times 10-11$
CSNK1G2	19	1941148	1981337	$6.30 \times 10-05$	$1.13 \times 10-08$	$8.74 \times 10-11$
CSE1L	20	47662783	47713497	$9.32 \times 10-03$	1.20×10-09	8.92×10-11
CSRNP3	2	166326157	166545917	$3.81 \times 10-03$	$2.08 \times 10-09$	9.06×10-11
WDPCP	2	63348518	63815867	$1.28 \times 10-03$	$4.86 \times 10-09$	$1.21 \times 10-10$
ANKRD28	3	15708743	15901053	$2.79 \times 10-03$	$3.24 \times 10-09$	1.29×10-10
SLC9B2	4	103946647	103998480	$1.59 \times 10-04$	$1.29 \times 10-08$	1.37X10-10
SLC25A22	11	790475	798269	$6.11 \times 10-03$	$2.30 \times 10-09$	$1.39 \times 10-10$
STK32C	10	133996038	134145377	$5.33 \times 10-03$	$2.52 \times 10-09$	$1.42 \times 10-10$
ITPR3	6	33587951	33664351	$1.81 \times 10-04$	$1.40 \times 10-08$	1.45×10-10
CSPG5	3	47603728	47621730	$1.55 \times 10-03$	$5.91 \times 10-09$	$1.68 \times 10-10$
IP6K3	6	33689415	33714762	$8.75 \times 10-04$	$9.63 \times 10-09$	$2.05 \times 10-10$
ATP13A2	1	17312453	17338467	$4.97 \times 10-03$	$3.97 \times 10-09$	$2.12 \times 10-10$
CDHR4	3	49828165	49837254	$1.51 \times 10-04$	$2.53 \times 10-08$	2.52×10-10
UQCC2	6	33664538	33679528	$5.88 \times 10-04$	$1.50 \times 10-08$	2.67X10-10
TOX3	16	52471682	52581714	$7.43 \times 10-03$	4.10×10-09	$2.73 \times 10-10$
AMBRA1	11	46417962	46615619	$1.03 \times 10-03$	$1.14 \times 10-08$	2.80×10-10
MANBA	4	103552643	103682151	$5.99 \times 10-08$	$4.25 \times 10-07$	$3.70 \times 10-10$
RASGRF1	15	79252289	79383215	$1.15 \times 10-03$	$1.48 \times 10-08$	$3.79 \times 10-10$
MFAP2	1	17300997	17308081	7.74×10-03	$5.55 \times 10-09$	$3.87 \times 10-10$
FOXP2	7	113726365	114333827	$1.10 \times 10-06$	$2.01 \times 10-07$	$4.03 \times 10-10$
GLYR1	16	4853204	4897383	$8.79 \times 10-03$	$5.42 \times 10-09$	$4.15 \times 10-10$
HIST1H4A	6	26021907	26022278	7.55×10-04	$2.10 \times 10-08$	$5.22 \times 10-10$
WDR12	2	203745323	203776949	$2.44 \times 10-04$	$4.18 \times 10-08$	$5.73 \times 10-10$
BTD	3	15642864	15689147	$4.72 \times 10-03$	$1.07 \times 10-08$	$6.11 \times 10-10$
GRIK5	19	42502468	42574278	$7.58 \times 10-03$	$9.27 \times 10-09$	$6.48 \times 10-10$
DAGLA	11	61447905	61514474	$1.99 \times 10-05$	$1.30 \times 10-07$	$7.09 \times 10-10$
LEMD2	6	33738990	33756906	$1.33 \times 10-03$	2.56×10-08	$7.21 \times 10-10$
NBEAL1	2	203879597	204091101	$1.15 \times 10-03$	$2.51 \times 10-08$	7.56X10-10
CHST10	2	101008322	101034130	$1.36 \times 10-02$	$8.33 \times 10-09$	$8.25 \times 10-10$

RMDN1	8	87479627	87526567	5.00x10-03	$1.54 \times 10-08$	$8.43 \times 10-10$
CALB2	16	71392616	71424341	3.91×10-03	$1.99 \times 10-08$	$9.69 \times 10-10$
CRIM1	2	36583370	36778278	7.34×10-03	$1.47 \times 10-08$	$1.01 \times 10-9$
SLC3A1	2	44502597	44547963	6.16x10-03	$1.70 \times 10-08$	1.07×10-9
FOXP1	3	71003865	71633140	$2.58 \times 10-03$	$2.94 \times 10-08$	$1.19 \times 10-9$
HMGB4	1	34326076	34330392	1.09×10-02	$1.51 \times 10-08$	$1.33 \times 10-9$
DGKZ	11	46354455	46402104	$2.49 \times 10-04$	$9.41 \times 10-08$	1.37×10-9
ATG13	11	46638826	46697569	$3.07 \times 10-03$	$3.09 \times 10-08$	1.39×10-9
ZKSCAN4	6	28212404	28227030	$1.15 \times 10-02$	$1.79 \times 10-08$	$1.66 \times 10-9$
MAD1L1	7	1855428	2272583	$1.58 \times 10-03$	$5.93 \times 10-08$	$1.93 \times 10-9$
MAU2	19	19431496	19469563	5.47X10-04	$9.22 \times 10-08$	$2.09 \times 10-9$
MMP24	20	33814539	33864804	$1.45 \times 10-05$	$4.13 \times 10-07$	$2.38 \times 10-9$
PREPL	2	44544746	44589001	$3.91 \times 10-03$	$5.05 \times 10-08$	$2.59 \times 10-9$
DDN	12	49388933	49393088	2.58×10-04	$2.18 \times 10-07$	$3.47 \times 10-9$
UBE2D3	4	103715540	103790050	$4.22 \times 10-05$	$4.19 \times 10-07$	$3.52 \times 10-9$
SLC9B1	4	103806205	103947552	1.06×10-04	$3.28 \times 10-07$	3.70×10-9
PDDC1	11	767222	777501	$1.39 \times 10-05$	$6.10 \times 10-07$	$3.80 \times 10-9$
OR4C13	11	49973943	49974971	5.47×10-04	$1.70 \times 10-07$	$3.98 \times 10-9$
BCL2L13	22	18111621	18213621	$4.67 \times 10-03$	$7.22 \times 10-08$	4.14×10-9
LOC101927844	1	87678352	87717014	$2.10 \times 10-03$	$1.27 \times 10-07$	4.94×10-9
SIDT2	11	117049626	117068161	$8.41 \times 10-03$	$8.04 \times 10-08$	$6.49 \times 10-9$
GATAD2A	19	19496642	19619741	$4.09 \times 10-03$	$1.07 \times 10-07$	6.56×10-9
RPS10	6	34385231	34393902	$5.96 \times 10-03$	$1.10 \times 10-07$	$7.21 \times 10-9$
NICN1	3	49459766	49466777	$8.41 \times 10-05$	$6.79 \times 10-07$	$7.21 \times 10-9$
CISD2	4	103749224	103813964	$3.93 \times 10-05$	$1.02 \times 10-06$	$9.11 \times 10-9$
SNX14	6	86215214	86303850	$8.47 \times 10-03$	$1.11 \times 10-07$	$9.14 \times 10-9$
PHF2	9	96338909	96441869	6.68×10-03	$1.37 \times 10-07$	$9.72 \times 10-9$
GRK4	4	2965232	3042474	$1.41 \times 10-03$	$3.46 \times 10-07$	$1.19 \times 10-8$
STYX	14	53196883	53241707	$4.02 \times 10-03$	$2.18 \times 10-07$	$1.23 \times 10-8$
RASSF1	3	50367217	50378367	$1.54 \times 10-03$	$3.94 \times 10-07$	$1.40 \times 10-8$
GRM4	6	33989623	34123399	$1.17 \times 10-03$	$4.30 \times 10-07$	$1.44 \times 10-8$
HYAL3	3	50330259	50336899	$6.44 \times 10-06$	$2.98 \times 10-06$	$1.69 \times 10-8$
HPS5	11	18300217	18343751	$3.27 \times 10-03$	$3.38 \times 10-07$	$1.74 \times 10-8$
PMFBP1	16	72152996	72206349	$1.07 \times 10-02$	$1.94 \times 10-07$	$1.86 \times 10-8$
PKP4	2	159313476	159537941	$8.49 \times 10-04$	$6.64 \times 10-07$	$1.95 \times 10-8$
TMEM184B	22	38612415	38669040	$1.11 \times 10-02$	$1.99 \times 10-07$	$1.96 \times 10-8$
DIS3L	15	66585633	66626236	$1.15 \times 10-02$	$2.14 \times 10-07$	$2.12 \times 10-8$
FAM13A	4	89647105	90032549	$1.32 \times 10-04$	$1.52 \times 10-06$	$2.25 \times 10-8$
SYNCRIP	6	86317502	86353568	5.14×10-03	$4.02 \times 10-07$	$2.62 \times 10-8$
MDH1	2	63815743	63834331	$2.87 \times 10-03$	$5.83 \times 10-07$	$2.93 \times 10-8$
BANK1	4	102711764	102995969	$2.20 \times 10-03$	$6.59 \times 10-07$	$2.99 \times 10-8$
SDK1	7	3341080	4308632	7.22×10-03	$4.50 \times 10-07$	$3.60 \times 10-8$
NOP14	4	2939663	2965233	$1.62 \times 10-03$	$9.18 \times 10-07$	$3.74 \times 10-8$
OLFM4	13	53602876	53626196	1.81×10-04	$2.41 \times 10-06$	$4.30 \times 10-8$
KAT2B	3	20081524	20195896	7.35 $\times 10-04$	$1.63 \times 10-06$	$4.75 \times 10-8$
GRID2	4	93225453	94695707	$2.62 \times 10-03$	$1.04 \times 10-06$	$5.31 \times 10-8$

PEAK1	15	77400498	77712446	5.80×10-03	$1.11 \times 10-06$	$8.30 \times 10-8$
PKD1L3	16	71963441	72033877	$4.85 \times 10-03$	$1.23 \times 10-06$	$8.97 \times 10-8$
CREB3L1	11	46299189	46342972	$4.77 \times 10-03$	$1.47 \times 10-06$	$1.09 \times 10-7$
CREB3L3	19	4153598	4173051	8.36×10-03	$1.22 \times 10-06$	$1.12 \times 10-7$
MALRD1	10	19337700	20023407	$2.99 \times 10-03$	$2.18 \times 10-06$	$1.23 \times 10-7$
THUMPD3	3	9404660	9428475	5.96×10-03	$1.64 \times 10-06$	1.26×10-7
ADGRB2	1	32192718	32230494	$2.96 \times 10-03$	$2.20 \times 10-06$	1.27X10-7
PBXIP1	1	154916553	154928624	$5.91 \times 10-03$	$1.74 \times 10-06$	$1.40 \times 10-7$
CD247	1	167399877	167487847	$3.08 \times 10-04$	$6.06 \times 10-06$	$1.43 \times 10-7$
OR4C12	11	50003009	50004071	5.36×10-04	$5.00 \times 10-06$	$1.44 \times 10-7$
ZAK	2	173940440	174132737	9.96×10-04	$4.09 \times 10-06$	$1.51 \times 10-7$
PRKAG1	12	49396055	49413012	$8.05 \times 10-04$	$4.59 \times 10-06$	1.56×10-7
CELF4	18	34823003	35146000	$1.93 \times 10-03$	$4.00 \times 10-06$	1.97×10-7
TALDO1	11	747417	765024	$5.64 \times 10-05$	$1.45 \times 10-05$	2.07×10-7
MRPL21	11	68658744	68671303	$6.73 \times 10-03$	$3.08 \times 10-06$	$2.73 \times 10-7$
DCC	18	49866542	51062273	$5.51 \times 10-04$	$9.61 \times 10-06$	$3.02 \times 10-7$
ZNF521	18	22641888	22932214	$1.16 \times 10-04$	$1.91 \times 10-05$	$3.88 \times 10-7$
CEND1	11	787110	790126	$2.35 \times 10-04$	$1.51 \times 10-05$	$3.92 \times 10-7$
MARCH5	10	94050920	94113721	8.80×10-04	$1.02 \times 10-05$	$3.93 \times 10-7$
FOXO1	13	41129801	41240734	4.16×10-03	$6.10 \times 10-06$	$4.38 \times 10-7$
GALNT13	2	154728426	155310489	$3.93 \times 10-03$	$6.45 \times 10-06$	$4.50 \times 10-7$
CARF	2	203776978	203851060	$3.37 \times 10-04$	$1.73 \times 10-05$	$5.51 \times 10-7$
RNF115	1	145610990	145689005	$4.22 \times 10-04$	$2.26 \times 10-05$	7.08×10-7
PCSK7	11	117075788	117102811	$2.23 \times 10-03$	$1.40 \times 10-05$	$8.45 \times 10-7$
ZNF564	19	12636184	12691789	$2.08 \times 10-04$	$3.38 \times 10-05$	$9.83 \times 10-7$
ANO10	3	43407818	43663560	$4.58 \times 10-05$	7.98×10-05	1.42×10-6
LIN28B	6	105384874	105531207	$2.87 \times 10-03$	$2.20 \times 10-05$	$1.50 \times 10-6$
CYP20A1	2	204103164	204170563	$2.23 \times 10-03$	$2.50 \times 10-05$	1.72×10-6
ETF1	5	137841782	137878989	$4.74 \times 10-03$	$2.38 \times 10-05$	$2.01 \times 10-6$
CPEB3	10	93806452	94050875	6.55×10-03	$2.16 \times 10-05$	2.09×10-6
DPYSL5	2	27070969	27173219	$4.56 \times 10-03$	$2.57 \times 10-05$	$2.16 \times 10-6$
KLHDC8B	3	49208987	49213919	$2.76 \times 10-03$	$4.02 \times 10-05$	2.87×10-6
UBE2J1	6	90036344	90062619	1.88×10-03	$4.71 \times 10-05$	2.94×10-6

Gene locations are given as chromosome (CHR) and transcribed region (START and STOP sites) in the Human Genome Build 37, according to the NCBI 37.3 gene definitions.

Supplementary Table S3. Results of the ADHD-obesity gene-based cross-disorder metaanalysis showing the 9 genome-wide significant genes that increased significance in the meta-analysis by at least one order of magnitude compared to both individual GWASs.

GENE	CHR	START	STOP	ADHD gene-based results	BMI gene-based results	ADHD-obesity gene-based meta-analysis
BDNF	11	27676440	27743605	$1.13 \times 10-03$	5.28×10-11	$1.23 \times 10-12$
TFAP2B	6	50786439	50815326	$1.37 \times 10-04$	$1.20 \times 10-08$	$1.48 \times 10-11$
DNM1	9	130965634	131017528	$2.46 \times 10-04$	$2.40 \times 10-05$	$4.60 \times 10-8$
CACNA1D	3	53529076	53847179	$3.60 \times 10-04$	3.64×10-05	$9.89 \times 10-8$
BTBD2	19	1985437	2015702	$3.79 \times 10-04$	4.47×10-05	$1.22 \times 10-7$
FBXL17	5	107194734	107718080	$4.08 \times 10-05$	$2.61 \times 10-04$	$1.43 \times 10-7$
SWI5	9	131037663	131051268	$1.60 \times 10-03$	$2.00 \times 10-05$	$2.18 \times 10-7$
CSNK1G2	19	1941148	1981337	6.30×10-05	9.00×10-04	$8.60 \times 10-7$
CAMKMT	2	44589043	44999731	$1.63 \times 10-04$	6.61×10-04	$1.17 \times 10-6$

Gene locations are given as chromosome (CHR) and transcribed region (START and STOP sites) in the Human Genome Build 37, according to the NCBI 37.3 gene definitions.

SUPPLEMENTARY REFERENCES

1. Demontis D, Walters RK, Martin J, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51(1):63-75.
2. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641-9.
3. Berndt SI, Gustafsson S, Magi R, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45(5):501-12.
4. Hibar DP, Stein JL, Renteria ME, et al. Common genetic variants influence human subcortical brain structures. Nat New Biol. 2015;520(7546):224-9.
5. Elliott LT, Sharp K, Alfaro-Almagro F, et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat New Biol. 2018;562(7726):210-6.
6. de Leeuw CA, Mooij JM, Heskes T, et al. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11(4):e1004219.
7. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182-217.
8. Hallows KR, Alzamora R, Li H, et al. AMP-activated protein kinase inhibits alkaline pH - and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells. Am J Physiol Cell Physiol. 2009;296(4):C672-81.
9. Ceddia RB. The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. Mol Cell Endocrinol. 2013;366(2):194-203.
10. UniProt: the universal protein knowledgebase: Hearing before the Nucleic Acids Res, 2016/12/03 Sess. (Jan 4, 2017).
11. Liu YF, Civelli O, Zhou QY, et al. Cholera toxin-sensitive 3',5'-cyclic adenosine monophosphate and calcium signals of the human dopamine-D1 receptor: selective potentiation by protein kinase A. Mol Endocrinol. 1992;6(11):1815-24.
12. Kabir ZD, Martinez-Rivera A, Rajadhyaksha AM. From Gene to Behavior: L-Type Calcium Channel Mechanisms Underlying Neuropsychiatric Symptoms. Neurotherapeutics. 2017;14(3):588-613.
13. Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron. 1999;23(3):435-47.
14. Aguado F, Diaz-Ruiz C, Parlato R, et al. The CREB/CREM transcription factors negatively regulate early synaptogenesis and spontaneous network activity. J Neurosci. 2009;29(2):328-33.
15. Wang L, Hu XH, Huang ZX, et al. Regulation of CREB Functions by Phosphorylation and Sumoylation in Nervous and Visual Systems. Curr Mol Med. 2017;16(10):885-92.
16. Svenningsson P, Nishi A, Fisone G, et al. DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol. 2004;44:269-96.
17. D'Andrea I, Fardella V, Fardella S, et al. Lack of kinase-independent activity of PI3Kgamma in locus coeruleus induces ADHD symptoms through increased CREB signaling. EMBO Mol Med. 2015;7(7):904-17. 18. Chiappini F, Cunha LL, Harris JC, et al. Lack of cAMP-response element-binding protein 1 in the hypothalamus causes obesity. J Biol Chem. 2011;286(10):8094-105.
18. Lin L, Hales CM, Garber K, et al. Fat mass and obesity-associated (FTO) protein interacts with CaMKII and modulates the activity of CREB signaling pathway. Hum Mol Genet. 2014;23(12):3299-306.
19. Lee SM, Kant A, Blake D, et al. SKF-83959 is not a highly-biased functionally selective D1 dopamine receptor ligand with activity at phospholipase C. Neuropharmacology. 2014;86:145-54.
20. Gao J, Takeuchi H, Zhang Z, et al. Phospholipase C-related but catalytically inactive protein (PRIP) modulates synaptosomal-associated protein 25 (SNAP-25) phosphorylation and exocytosis. J Biol Chem. 2012;287(13):10565-78.
21. Thillaiappan NB, Chakraborty P, Hasan G, et al. IP3 receptors and $\mathrm{Ca}(2+)$ entry. Biochimica et biophysica acta Molecular cell research. 2018.
22. Nishi A, Snyder GL, Greengard P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci. 1997;17(21):8147-55.
23. Sharma P, Sharma M, Amin ND, et al. Regulation of cyclin-dependent kinase 5 catalytic activity by phosphorylation. Proc Natl Acad Sci U S A. 1999;96(20):11156-60.
