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Abstract  

Adaptive threshold estimation procedures sample close to a subject’s perceptual 

threshold by dynamically adapting the stimulation based on the subject’s performance. 

Yet, perceptual thresholds not only depend on the observers’ sensory capabilities but 

also on any bias in terms of their expectations and response preferences, thus 

distorting the precision of the threshold estimates. Using the framework of signal 

detection theory (SDT), independent estimates of both, an observer’s sensitivity and 

internal processing bias can be delineated from threshold estimates. While this 

approach is commonly available for estimation procedures engaging the method of 

constant stimuli (MCS), correction procedures for adaptive methods (AM) are only 

scarcely applied. In this article, we introduce a new AM that takes individual biases into 

account, and that allows for a bias-corrected assessment of subjects’ sensitivity. This 

novel AM is validated with simulations and compared to a typical MCS-procedure, for 

which the implementation of bias correction has been previously demonstrated.  

Comparing AM and MCS demonstrates the viability of the presented AM. Besides its 

feasibility, the results of the simulation reveal both, advantages, and limitations of the 

proposed AM. The procedure has considerable practical implications, in particular for 

the design of shaping procedures in sensory training experiments, in which task 

difficulty has to be constantly adapted to an observer’s performance, to improve 

training efficiency. 

Keywords: 

Adaptive procedure, method of constant stimuli, perception, signal detection theory, 

threshold estimation.  
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Introduction   

Perceptual thresholds might vary due to different variables such as fatigue, fluctuations 

of attention, or sensory learning (Gorea & Sagi, 2000). Adaptive threshold estimation 

procedures are most effective by providing quasi-instantaneous estimates of an 

otherwise fluctuating sensory threshold. These estimates are much needed (Fechner, 

1860; Swets, 1961), for example, in experiments in which the sensory stimulation 

should be kept close to an individual’s threshold, like in sensory learning experiments. 

In this type of experiment the level of challenge should be maintained throughout the 

task to achieve optimal learning. A common problem related to all threshold estimation 

procedures is that the thresholds reflect not only the individual’s sensitivity but also 

their internal processing biases. ‘Bias’ suggests a systemic tendency of the observers 

to over- or under-estimate the stimulus parameters (Macmillan & Creelman, 1990, 

2004). There are several types of biases that can occur at different stages of perceptual 

processing: at the sensory level (e.g., due to sensory adaptation), at the decision-

making level (e.g., due to a preference of one stimulation condition over another), the 

response selection level (e.g., a general preference to rather respond with the right 

than with the left hand in bimanual response tasks). Accordingly, any of the 

aforementioned internal processing biases can significantly distort sensory threshold 

estimates. The observer’s bias might be reduced by an appropriate design of the 

threshold detection experiment or it can be corrected during subsequent data analysis 

(Lynn & Barrett, 2014; McNicol, 2005; Swets, 2014). Nevertheless, there are occasions 

where an online bias correction is mandatory. Signal detection theory (SDT) is well 

established as a tool to independently assess an individual’s sensitivity and bias by 

modeling perception as a decision-making process (Gorea & Sagi, 2000; Green & 

Birdsall, 1978; Harvey Jr, 1992; Klein, 2001; Macmillan & Creelman, 1990, 2004; 
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Macmillan, Rotello, & Miller, 2004; Swets, 1961; Wickens, 2002) [for details see 

supplementary material 1].  In SDT, a stimulus is thought to elicit a defined sensation 

which leads to the selection of one out of two responses with a certain probability. In 

this framework, two different stimuli, are represented by two probability density 

functions that are shifted depending on how differently they are perceived. In SDT, 𝑑′ 

(the distance between the peaks of the two probability density functions, describing 

response behavior for individual stimuli) is increasing with stimulus discriminability. 

Based on SDT, the criterion for the sensory decision is a function of the individual’s 

perceptual bias and defines the probabilities for either of the alternative responses for 

each stimulus (Gorea & Sagi, 2000)(Fig. 2).  

In fact, for some threshold estimation procedures, such as the method of constant 

stimuli (MCS), bias correction procedures provided by SDT are readily established 

(Maniscalco & Lau, 2014; Stanislaw & Todorov, 1999). However, this is not the case 

for the adaptive procedures, which – as compared to the mentioned procedures – have 

the advantage of providing quasi-instantaneous threshold estimates. Therefore, the 

present study introduces a new adaptive procedure that combines the advantages of 

adaptive threshold estimation procedures with the capability to correct the subject’s 

response bias (Kajal, 2018; Kajal et al., 2020).  

The rationale behind the proposed approach is explained and investigated through 

several simulations demonstrating the feasibility of the procedure. Furthermore, the 

prerequisites, advantages, and limitations of the approach are discussed. To validate 

the new method, it is compared to a standard non-adaptive procedure, the MCS. 

Amongst the variants of MCS application, the “classic” version – which is distinct from 

AM – was chosen, as it is not involving any adaptation based on subjects’ responses.  

To illustrate practical application of the proposed bias-corrected adaptive threshold 

estimation procedure, it is simulated and discussed in the context of a visual backward 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448359doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448359
http://creativecommons.org/licenses/by-nc-nd/4.0/


Estimation of perceptual thresholds: effects and corrections of observer bias 

 

5 
 

masking paradigm (Del Cul, Dehaene, & Leboyer, 2006); also see (Di Lollo, Enns, & 

Rensink, 2000; Enns & Di Lollo, 2000; Vorberg, Mattler, Heinecke, Schmidt, & 

Schwarzbach, 2003).  

Methods 

Testing reliability and validation of our new adaptive method for the estimation of the 

bias-corrected perceptual threshold were carried through various simulation 

procedures.  To have experimentally contrived sensory capabilities and perceptual 

biases, we specifically designated a virtual observer (VO) within the framework of 

signal detection theory (SDT) (Blake, Bülthoff, & Sheinberg, 1993; Crary, 1990). In a 

first step, the estimation of the VO’s perceptual threshold was simulated, using the 

MCS and the chosen AM procedure, with and without bias correction. Using MCS and 

AM effects of trial number and bias strength on the observer’s threshold and bias 

estimates are investigated. Moreover, results obtained for comparing AM and MCS by 

simulating time-varying sensitivities and linearly changing biases are presented. 

Perceptual threshold estimation procedures  

In the following paragraph, we briefly describe the method of constant stimuli and the 

adaptive method: 

a) Method of constant stimuli (MCS) 

MCS refers to a procedure in which a set of preselected stimuli are presented 

with stimulus parameters that could cover the whole perceptual range i.e. 0% 

to 100% correct responses (McKee, Klein, & Teller, 1985; Treutwein, 1995). 

Offline estimation of the perceptual thresholds is performed by fitting a 

psychometric function that relates to the observer’s response pattern as a 

function of stimulus parameters. The sensory threshold for a given performance, 
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i.e., 75 %, 70.7 % or 66.7 % is derived from the inverse of the psychometric 

function. 

b) Adaptive method (AM) 

AM approximates towards stimulus parameters that lead to a predefined 

performance level (e.g., 70.7%, or 66.7% of correct responses depending on 

the adaptation rule used for stimulus selection). This is achieved by varying 

stimulus parameters across trials, based on the observer’s responses in the 

preceding trials (Treutwein, 1995; Watson & Pelli, 1983). In AMs, stimulus 

parameters tends to sample more densely around the individual´s perceptual 

threshold value (Levitt, 1971). Furthermore, AMs are regarded as being more 

efficient in terms of time since a smaller number of trials are needed (Watson 

and Fitzhugh, 1990). Furthermore, AMs can also provide quasi-instantaneous 

threshold estimates.  

Virtual Experiment 

For the simulations of the threshold estimation procedures a virtual experiment was 

conducted in which a virtual observer judged the emotional valence face images. Each 

trial (Fig.1) of the virtual experiment started with the presentation of a prime stimulus 

for the time duration of 16.67 ms accommodating either an emotionally positive (happy) 

or negative (sad) face. After a given time delay, the prime stimulus was masked by an 

emotionally neutral face, of the same identity as of prime stimulus, for the time duration 

of 250 ms. In such a paradigm, the emotional content of the prime stimulus cannot be 

correctly identified for a time delay of zero between prime and mask stimuli, on the 

contrary the probability for correctly identifying the emotional content increases with 

the increase in the duration of the time delay. A black screen for the target time delay 

duration is displayed between the prime and the mask stimuli. The respective time 
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delay durations could correspond to one of ten different values Δ𝑡 (16.67 ms x k, 0  k 

 9). After the presentation of the mask, a black screen was displayed. To indicate the 

emotional valence of the prime (negative or positive), one of the two virtual response 

buttons were selected by the virtual observer.  

On request 

Fig. 1: Backward masking paradigm. In the original setup to which the simulation refers, 

the assignment of the response buttons was randomly altered on a trial-by-trial basis. 

The instruction “Neg + Pos” informed the subject that the left button should be pressed 

if the emotion of the prime was negative and the right button should be pressed if the 

emotion was positive. The “Pos + Neg” indicated the reverse assignment. 

During the simulation for the MCS approach, 10 different predefined delays were 

presented across trials in a randomized order (Leek, 2001). To estimate the perceptual 

threshold, a sigmoid psychometric function (logistic regression) was fitted to the 

probability of correct responses as a function of the predefined delays. The threshold 

delay was determined for a level of correct identification of the emotional expression 

of 66.7%. 

For the simulation of the AMs, the ‘two-down one-up rule’(Leek, 2001) was applied to 

select the time delay between prime and mask stimuli in the upcoming trial. In this 

procedure, the time delay between the prime and the mask decreases by one step 

(16.67 ms) after two correct responses and increases by one step with each incorrect 

response. Assuming a stationary threshold, the delay can be expected to 

asymptotically approach the threshold. In a two-down one-up rule, in which the number 

of correct responses does not require to be in a consecutive sequence, the stimulation 

will converge to the performance level of 66.7 % of correct responses. Differently, when 

correct responses are requested to appear consecutively to decrease the delay by one 

step, the performance level would converge to 70.7 % correct responses (Leek, 

2001)(see supplementary material [2]). 
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A new adaptive method with bias correction procedure 

Our newly proposed method for threshold estimation integrates the advantages of an 

adaptive method and SDT based bias-correction procedure. According to SDT, the 

response outcome of an observer depends on the position of the criterion 𝛾 in the 

probability density distribution that describes stimulus perception. In our method, the 

probability density functions are centered at ±
𝑑′(Δ𝑡)

2
.  Fixed criteria 𝛾 were applied for 

sad and happy faces for a single mask delay Δ𝑡 (Gorea & Sagi, 2000). Assuming a 

differential change of the detectability for sad and happy faces across mask delays as 

a result of sensory bias, individual criteria for each mask delay were estimated. In the 

framework of the SDT, bias correction corresponds to a shift of the criterion to the 

common center of both Gaussian distributions. In Fig. 2, the bias-free criterion 

corresponds to 𝛾𝑐 = 0 (solid vertical line) and the biased criterion is 𝛾 (dashed vertical 

line). Given an estimate of the bias at 𝛾, the bias correction procedure determines the 

observer’s response, if the criterion was at the center point of both probability density 

distributions. 

Likewise, in the standard AMs procedures, our approach estimates the threshold using 

the “two-down one-up” rule. The procedure starts without any bias correction. During 

the experiment, the bias for the adaptive procedure is updated for each trial and will 

be subsequently used to determine the bias-corrected observer’s response. The bias 

estimate for the current trial for the respective time-delay are based on all previous 

trials within the framework of SDT (explained in detail in the next paragraph). The delay 

to be chosen for the upcoming trial is based on two prerequisites: first, valuation of a 

bias-corrected response (Fig.2), and second, application of the two-down one-up rule. 

Based on the estimated location of the criterion, the bias-corrected observer’s 

response might either be accept or reversed, i.e., a “negative emotion” response could 
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be turned into a “positive emotion” response or vice versa. The algorithm determining 

the bias corrected response in a single trial is based on probabilistic considerations 

and is explained in detail in the following paragraph.  

The rules for selecting the stimulus parameters for the next trial in the AM are 

summarized in the flowchart (Fig. 3). To define the mask delay of the following trial, 

four different conditions need to be considered in the approach (Fig. 2) 

a) Assuming that in a certain trial a ‘happy face’ (HF) is presented and the 

observer’s criterion to classify the stimulus as ‘happy’ or ‘sad’ is at a level of 𝛾 <

0  (this situation describes the case of a bias towards happy faces) (Fig. 2a), 

the probability to choose ‘sad face’ as a response corresponds to the rate of 

𝑝𝐼𝑆(𝜏). In contrast, the probability to select HF as a response is referred to as 

𝑝𝐶𝐻(𝜏). The probability 𝑝𝐶𝐻(𝜏) can be thought of as being composed of 𝑝𝐶𝐻 =

𝑝𝐶𝐻𝑎 + 𝑝𝐶𝐻𝑏, where 𝑝𝐶𝐻𝑎 = ∫ 𝑃(𝑥)𝑑𝑥
𝑥=+∞

𝑥=𝛾𝑐
 is the cumulative probability for 𝑥 >

𝛾𝑐, 
and  𝑝𝐶𝐻𝑏 = ∫ 𝑃(𝑥)𝑑𝑥

𝑥=𝛾𝑐

𝑥=𝛾
 is the probability for 𝛾 < 𝑥 ≤ 𝛾𝑐 . 𝛾 < 0 represents 

an observer’s perception criterion and 𝛾𝑐 = 0  the bias-free perception criterion. 

In other words, 𝑝𝐶𝐻𝑎 refers to the cumulative probability to identify the happy 

face in case of no bias, and 𝑝𝐶𝐻𝑏 to the part of the probability that is due to the 

bias. 𝑃(𝑥) is assumed to be normally distributed. In the proposed method, the 

selection of the next stimulus is based on an observer’s bias-corrected 

response. If the virtual observer responded with a ‘sad face’ (SF), the response 

was wrong, regardless of any potential bias (Fig. 2). However, given the 

response bias towards HF, whenever the virtual observer answers HF, only a 

proportion  
𝑝𝐶𝐻𝑎

𝑝𝐶𝐻𝑎+𝑝𝐶𝐻𝑏
 of these responses can be accepted as HF. For the 

remaining responses, bias-correction will be converting the decision to SF. In 
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an individual trial, depending on the estimated proportion, the response will be 

kept or changed. In detail, a number  will be drawn from a uniform distribution 

between 0 and 1. If 𝑟 <
𝑝𝐶𝐻𝑏

𝑝𝐶𝐻𝑎+𝑝𝐶𝐻𝑏
, the observer’s response will be changed from 

HF to SF, i.e., from correct to incorrect.   

b) Likewise, for HF stimuli, an HF response will remain unchanged when the 

criterion is set at a level of 𝛾 > 0 (this situation describes the case of a bias 

towards sad faces) (Fig. 2b). The probability of incorrectly perceiving a happy 

face 𝑝𝐼𝐻(𝜏), i.e. responding with SF to the HF stimulus, can be split into a 

proportion depending on the bias-free criterion 𝑝𝐼𝐻𝑎  and a proportion that 

corresponds to the observer’s bias 𝑝𝐼𝐻𝑏. If it holds for the selection variable 𝑟 >

𝑝𝐼𝐻𝑎

𝑝𝐼𝐻𝑎+𝑝𝐼𝐻𝑏
 , the SF response will be changed to HF.  

c) For SF stimuli, an SF response will remain unchanged when the criterion is set 

at a level of 𝛾 < 0 (this situation describes the case of a bias towards happy 

faces in the presence of an SF stimulus) (Fig. 2c). The probability of 𝑝𝐼𝑆 

(responding with HF to the SF stimulus), can be split into a proportion depending 

on the bias-free criterion 𝑝𝐼𝑆𝑎 
 
and a proportion corresponding to the observer’s 

bias 𝑝𝐼𝑆𝑏. In the case of 𝑟 <
𝑝𝐼𝑆𝑏

𝑝𝐼𝑆𝑎+𝑝𝐼𝑆𝑏
  the HF response will be changed to SF.  

d) Finally, for SF stimuli a HF response will remain unchanged if the criterion is set 

at a level of 𝛾 > 0  (describing a bias towards sad faces) (Fig. 2d).  

The probability of correctly perceiving a sad face 𝑝𝐶𝑆, i.e., responding with SF 

to the SF stimulus, can be split into a component depending on the bias-free 

criterion 𝑝𝐶𝑆𝑎  and a proportion that corresponds to the observer’s bias 𝑝𝐶𝑆𝑏 .  

If it holds for the variable 𝑟 drawn from a uniform distribution between 0 and 1, 

r
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𝑟 >
𝑝𝐶𝑆𝑎

𝑝𝐶𝑆𝑎+𝐶𝑆𝑏
 , the SF response will be changed to HF. In all four cases the bias-

corrected response is used for the selection of the next stimulus according to 

the two-down one-up rule in the subsequent step of the algorithm.  

In the presented simulation, corrections of the responses were carried out only after 

acquiring a first estimate of the bias for each delay. A minimum of 25 trials and a 

minimum of at least 3 trials in each of the signal detection theory response categories 

(𝑝𝐶𝐻(𝜏), 𝑝𝐶𝑆(𝜏), 𝑝𝐼𝐻(𝜏), and 𝑝𝐼𝑆(𝜏)) for the current delay 𝜏, was required before the 

application of the correction procedure. 

 

Fig. 2: In the adaptive method with bias correction, the observer’s bias 𝛾 is estimated, 

and the observer’s response is corrected by eliminating any bias (𝛾𝑐 = 0). Based on 

the corrected response, the stimulus for the next trial is chosen according to the two-

down one-up procedure. Since in a single trial it is unknown how much the decision 
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reflects the bias, a probabilistic correction needs to be applied. For this purpose, 

probabilities for correctly identified happy faces (𝑝𝐶𝐻(𝜏)), for correctly identified sad 

faces ( 𝑝𝐶𝑆(𝜏) ), for incorrectly identified happy faces ( 𝑝𝐼𝐻(𝜏) ), and for incorrectly 

identified sad faces (𝑝𝐼𝑆(𝜏)) will be split into a part that describes the probability for the 

unbiased criterion 𝛾𝑐 = 0  (solid vertical line) and the proportion due to the bias-

dependent criterion 𝛾  (dashed vertical line). The unbiased proportion of the 

probabilities refers to 𝑝•𝑎 and the component that is due to the response bias to 𝑝•𝑏. 

Depending on the stimulation and the response, the ‘•‘symbol represents correctly or 

incorrectly identified happy faces or sad faces (CH, IH, CS, IS), in a) and b) HF stimuli 

and in c) and d) SF stimuli are presented. In a) and c) the correction needs to be 

considered for the response HF, and in b) and d) for the response SF.  

The flowchart (Fig 3) displays rules for the selection of a delay for the next trial, 

implemented through an algorithm that is based on corrected responses. After 

reaching a valid bias estimate, it is possible to correct an observer’s response by taking 

the initial bias value into account and using a new bias-free decision criterion set to 

𝛾 = 0. 
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Fig 3: Flowchart explaining the procedure for bias correction in AM. A bias towards sad 

faces corresponds to a criterion 𝛾 > 0 , vice versa a bias towards happy faces is 

characterized by 𝛾 < 0. Probabilities 𝑝𝑋𝑌𝑎 and 𝑝𝑋𝑌𝑏 are defined in Fig 2. 

In the AM, the average mask-delay of the last 50 trials was used as a threshold 

estimate after the preset number of trials had been reached. If, however, no predefined 

number of trials is defined after which the threshold procedure is stopped, a reasonable 

criterion for terminating the threshold estimation procedure is the reach of an 

asymptotic and stable threshold estimate within the last 50 trials. Using the two-down 

one-up rule, the probability of erroneously obtaining a stable threshold by chance is 
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only 0.01 % for 30 trials and 0.0025 % for 50 trials and thus low enough to serve as an 

acceptable termination criterion for the AM threshold estimation procedure.  

Simulation Studies 

Simulation of the virtual observer 

To assess the comparative performance of the AM and MCS in the simulations, 

responses for the decision of a virtual observer for the presented stimuli are needed, 

respectively. The decision for a stimulus to be perceived by the virtual observer was 

simulated within the framework of SDT. The virtual observer’s detection competence 

was defined for ten delays ∆𝑡 (16.7 ms * k, with k ranging from 0 to 9). In order to cover 

the whole range of stimulus discriminability, spanning from most challenging to easy, 

d-prime for each delay was defined according to 𝑑′
∆𝑡 = 12∆𝑡. 

The probabilistic decisions of how HF and SF were perceived, were based on 

Gaussian normal distributions centered at ±
𝑑′

2
 and with standard deviations 𝜎 of 1. 

Since the percentage of correct responses of 66.7%, i.e., correctly identified faces, 

corresponds to a 𝑑′ of 0.861 the virtual observer’s detection threshold resulted in a 

mask delay of ∆𝑡 =  
𝑑′

∆𝑡

12
= 72 ms. For the simulations, different observer’s biases (𝛾) 

were considered (0.0, 0.2, 0.5 standard deviations (𝜎) of the Gaussian distribution. 

Once the virtual observer’s detection competence, i.e., perceptual parameters, were 

defined, their performances for four different numbers of trials (100, 200, 500, and 1000 

trials) were evaluated by simulations. To simulate the virtual observer’s decision, a z-

score 𝑟𝑠 was chosen from the normal distribution with a standard deviation of 1 and 

𝜇 =
𝑑′

2
 for HF and −𝜇 =

𝑑′

2
 for SF. Depending on whether 𝑟𝑠 exceeded the predefined 

decision criterion 𝛾: 𝑟𝑠 ≥ 𝛾, the virtual observer’s response was HF. Conversely, in 

case of 𝑟𝑠 < 𝛾, the response was SF.  
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To evaluate the new method, a virtual observer’s performance for different numbers of 

trials and several levels of biases was simulated based on SDT and its threshold 

detection capabilities were estimated with and without bias correction, for both, the AM 

and MCS methods.  

Simulation of AM for bias correction 

For the simulation studies for the AM threshold estimation procedure, the virtual 

observer’s responses were fed into the AM and the stimulus for the next trial was 

selected accordingly. The sequence of stimulation was assumed to converge towards 

the preset threshold of 72 ms asymptotically. The results of the simulation for each set 

of parameters (level of biases and number of trials) were iterated for 1000 times and 

the corresponding thresholds were inferred (Fig. 4) 

 

Fig. 4: Simulation for the AM with an introduced bias of 0.0 (black) and 0.5 (grey); a: 

bias un-corrected threshold estimation, and b: bias-corrected threshold estimation. 
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Threshold estimates were based on the average of mask delays for the last 50 trials. 

Averages are represented as horizontal dashed lines extending from trial 151 to 200. 

Simulation of MCS 

To contrast, the performance of the AM to a method for which bias correction had been 

already established, threshold estimates for AM, and MCS were compared using 

simulation studies. In the MCS approach, parameter settings for the virtual observer 

were identical to those used in the AM (see above). In the MCS, a psychometric 

function was fitted to the percentage of correct responses as a function of the ten 

different delays. Considering Fechner’s law (Fechner, 1860) of logarithmic relation 

between perceived and physical magnitudes of sensory input (Dehaene, 2003), the 

logarithms of all delays were calculated. To avoid the problem of obtaining a value of 

minus infinity for zero delays, 1 ms was added to all delays before the transformation. 

Afterward, a Weibull psychometric function was fitted to the percentage of correctly 

identified emotional face expressions:  

  𝑓(𝑥) = 1 − (1 − 𝑔)𝑒−(
𝑘𝑥

𝑡
)

𝑏

 

 𝑘 = −𝑙𝑜𝑔 (
1−𝑎

1−𝑔
)

1

𝑏
 

 x  = logarithmic transformation of delays 

𝑔 = performance at the chance level: in our example set to 0.5 

t = threshold 

𝑎 = performance level defined as the threshold (0.667) 

𝑏 = slope index of the psychometric function 

The Weibull function asymptotically converges towards 50% for a delay of <1.0 ms and 

towards 100% for increasing delays (Weibull, 1938). The Weibull function fitted to the 

psychophysical data resulted in a threshold estimate for each observer, i.e., a delay 

for which a performance level of 66.7% was reached. The MCS threshold of 66.7% 
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correct responses was chosen to comply with the two-down one-up procedure 

dependent threshold level of the AM.  

Simulation of AM for time-varying sensitivities 

Two possible scenarios were simulated to study the efficiency of the proposed adaptive 

procedure to track-changes/takes-into-account the adaptation of a virtual observer’s 

sensitivity across trials.  

A) In first scenario, a successful perceptual training was simulated, assuming 

that the virtual observer’s sensitivity for detecting the emotion of the face stimuli 

improves linearly across 1000 trials. The apriori-sensitivity threshold was initialized at 

100.0 ms and decreased by 0.033 ms/trial. After 500 trials, a sudden decline in the 

sensitivity is simulated by adding a threshold of 16.7 ms to explore the behavior of the 

algorithm for sudden changes. Thereafter, the threshold decreased at the same rate 

as at the beginning until it reached a value of 50.0 ms after 1000 trials.  

B) In second scenario, which was inspired by slow variations in participants’ 

attention for threshold experiments, the performance of the virtual observer was 

simulated for randomly varying sensitivity. The random changes of the observer’s 

sensitivity were simulated by lowpass filtering white noise sampled at 1/trial such that 

fluctuations of threshold changes in the last 100 trials were suppressed. The virtual 

observers’ responses to the presented delays across trials were computed based on 

SDT (see paragraph ‘Simulation of the virtual observer’ above). For both the scenarios, 

the simulated observer’s perceptual biases were 0.0, 0.2, and 0.5, with and without 

bias correction.  

Simulation of AM for a linearly changing bias 

To investigate the performance of the algorithm for a linearly changing bias across 

trials, a linear change of the bias from 0.0 to -1.0 and from 0.0 to +1.0 across 1000 
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trials with steps of 0.001, was simulated. The threshold estimation used a two-down 

one-up procedure resulted in 66.7 %. The results were presented for runs with and 

without bias correction.   

Results 

The simulation results suggest that when the number of trials is less than 200, the MCS 

method to estimate threshold fails to reliably fit a Weibull function, both, for corrected 

and uncorrected bias thresholds. On the other hand, AM is not constrained by this 

situation. As expected, in the bias uncorrected AM procedure, the estimated thresholds 

are independent of the number of trials. Moreover, the bias-corrected AM managed to 

approach the threshold that was preset in the simulation. Since the threshold of a single 

individual obtained with one method (corrected or uncorrected AM), falls within the 95 

% confidence interval (2 standard deviations) of the other method (uncorrected and 

corrected AM), individual threshold values do not differ significantly between corrected 

AM and uncorrected AM. However, comparing the mean of a group of 𝑁 subjects 

would reduce the confidence interval by a factor of √
1

𝑁
 of the standard deviation. 

Threshold estimates are comparatively lower in MCS than in the AM across the number 

of trials and for different preset biases. Furthermore, threshold estimates using the AM 

method are independent of the number of trials required for the reliable estimate as 

indicated by the constant standard deviation across the number of trials for a different 

level of simulated perceptual bias. In contrast, threshold estimates for the MCS method 

rely variably on the number of the trials as suggested by the decreasing trend in the 

standard deviation across trials and levels of preset bias. (Fig. 5). This finding further 

suggests that the threshold estimates using AM method do not require criteria for a 

minimum number of trials whereas the MCS method does have a requirement of 
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minimum trials as it failed to fit the Weibull function reliably for the condition with less 

than 200 trials.  To quantitatively assess the performance of the algorithm, we studied 

the threshold estimated with or without bias correction for both AM and MCS methods 

against the predefined threshold for different trial numbers and at different simulated 

bias levels against the predefined inputs in the simulations. The accuracy of the bias 

estimate, i.e., its deviation from the simulated preset bias value, and its precision, 

reflected by the standard deviation (the lower the standard deviation, the higher the 

precision), grew with increasing trial numbers for both methods. The assessment of 

performance suggests that the number of trials required to achieve the preset bias for 

both methods is comparable, whereas the precision of the estimate is comparatively 

better for the AM as suggested by the small standard deviation across trial numbers 

and across different levels of introduced bias (Fig. 6). 

 

Fig. 5: Threshold estimates of the AM and MCS with and without bias correction for a 

bias of 0.0, 0.2, and 0.5 (left, middle and right part) and trial numbers of 100, 200, 500, 

1000 (abscissa). For each condition, mean and standard deviations across 1000 

simulations are presented (to improve visibility error bars are plotted only in one 

direction). Missing results for 100 and 200 trials are due to the failure of reliably fitting 
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a sigmoid Weibull function and thus being unable to estimate a threshold value. Bias 

correction is based on the bias estimate, derived from the observer’s previous 

responses. The bias values are related to the width of the normal distribution, 

describing the variability of the stimulus perception.  
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Fig. 6: Estimated biases values determined by the AM and the MCS with bias 

correction. Mean bias estimates 𝛾̃ and standard deviations 𝜎𝛾 across 1000 simulations 

are presented for simulated decision criteria 𝛾 of 0.0, 0.2, and 0.5 and for trial numbers 

of 100, 200, 500, and 1000 (abscissa).  

To study the performance of the algorithm considering the change of the perceptual 

sensitivity across trials, we simulated a linear change in the sensitivity profile. Our 

results as shown in figure 7 demonstrate that our algorithm for AM is capable of 

tracking the participant’s threshold continuously with changing the sensitivity, yet with 

a lag of about 50 trials for both the AM method. Also, the AM estimated threshold 

follows the preset threshold of the virtual observer in a smoothened way, due to the 

hysteresis of the AM procedure. Due to the steady change of the virtual observer’s 

sensitivity and the delay of the estimation procedure, it is clear that the threshold 

estimate cannot fully converge to the virtual observer’s current threshold. For a 

randomly varying sensitivity, the AM threshold procedure tracks the fluctuation of the 

preset sensitivity as long as their time constants are well above the time interval across 

which the threshold parameters are averaged. Interestingly, for the variable sensitivity 

of the virtual observer the latter approach yielded also more precise threshold 
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estimates than the two-down one-up approach. In the simulations without any bias 

correction, the accuracy of the threshold estimate was best for zero bias and worst for 

a bias of 0.5. The bias correction showed a good outcome especially for the virtual 

observer’s randomly varying sensitivity. Also, the bias correction mechanism is 

switched on relatively early for intensities around the threshold (step-like lines for the 

different biases in figure 7 panel b) and d), it requires a large number of trials for the 

procedure to become effective for mask delays further away from the threshold.  
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Fig 7: Simulation of the performance of the AM for a virtual observer’s changing 

sensitivity across trials. In scenario 1 (panel a) and b)) the virtual observer’s sensitivity, 

i.e., threshold, improves linearly from 100.0 ms to 83.3 ms from trial 1 to trial 500. At 

trial 501 a sudden change of the improvement (16.7 ms) was simulated to demonstrate 

the behavior of the AM to fast changes. From trial 501 onwards to trial 1000 the virtual 

observer’s threshold further decreased again linearly resulting in a final threshold of 

50.0 ms in trial 1000. In scenario 2 (panel c) and d)) a randomly changing virtual 

observer’s threshold was simulated. In both scenarios’ biases of 0.0 (dashed lines), 

0.2 (dashed-dotted lines), and 0.5 (dotted lines) were simulated. The AM procedure 

was run with a two-down one-up procedure resulting in a threshold performance of 

66.7 % correct responses. The threshold estimation was done without (a) and c)) and 

with bias correction (b) and d)). The standard deviation of the threshold estimates for 

1000 repetitions for the zero-bias simulation is shown as a grey area. The step-like 

grey lines indicate the average trial number at which the bias correction was switched 

on. The trial at which the correction becomes active varies for the different mask delays 

of the stimuli and for the virtual observer’s bias (0.0: solid lines, 0.2: dashed-dotted 

lines, and 0.5: dotted lines). Since the estimated threshold follows the simulated 

threshold only after a delay, the estimated threshold is shifted by around 50 trials to 

the right. Grey dashed lines for the increasing bias and grey dotted lines of the 

decreasing bias. In case of no bias correction there is a constant offset of the estimated 

threshold with respect to the preset threshold of the virtual observer. The bias 

correction works well for randomly varying thresholds of the virtual observer yet fails 

for the steady improvement of the virtual observer’s sensitivity. 

 

Fig. 8. Simulation of a linearly changing bias across trials. The solid grey horizontal 

line represents the preset performance of the virtual observer (VO) without any bias. 

Thresholds estimates for a steady bias increase from 0.0 to 1.0 and a decrease from 

0.0 to -1.0 are depicted in dashed and dotted lines, yet they are indistinguishable. Grey 

areas indicate the standard deviation of the threshold. Step like lines indicate the trials 

at which the bias correction became active (grey dashed lines for the increasing bias 

and grey dotted lines of the decreasing bias). In contrast to panel a) bias correction 
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was activated in panel b). Applying the two-down one-up rule resulted in a threshold 

performance of 66.7 %. 

To investigate how the bias correction procedure deals with systematically changing 

biases over trials, linearly changing biases were simulated for a preset threshold delay 

of 72 ms. While in condition one the bias was increasing linearly from 0 to 1 across 

trials 0 to 1000, it was decreasing from 0 to -1 in condition two. The effects of 

decreasing and increasing biases on the virtual observer’s threshold did not differ (Fig 

7). Comparing the estimated thresholds with and without bias correction, the threshold 

deviated less from the preset threshold of 72 ms if the correction was activated. 

However, the bias correction was unable to fully eliminate the simulated linear bias 

(Fig. 8).  
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Discussion 

In the current piece of work, we proposed a novel approach for assessing and 

correcting the observer’s bias in an adaptive threshold procedure (AM) for estimating 

the perceptual threshold. We performed various simulations studies with a virtual 

experiment in which the virtual observer’s threshold in a backward masking task was 

estimated using the two-down one-up rule. Simulations of the virtual observer’s 

sensory performance investigated various factors affecting the perceptual threshold, 

such as a bias for a specific stimulus class, and linearly changing perceptual biases 

across trials. Moreover, effects of various levels of time-dependent sensitivity profiles 

were studied with scenarios such as linearly and randomly changing sensitivities 

across trials using the novel AM procedure. Using simulation studies, we have 

explored the performance of the algorithm and compared the obtained results against 

the standard procedure of the threshold estimation using MCS.  

Previously suggested threshold estimation procedures that considered sensitivity and 

bias, have used Bayes’ theory – with an apriori distribution of probabilities for threshold 

parameters, including sensitivity and bias, and estimates their posterior probabilities 

based on the sampled data (Lesmes et al., 2015). In the method proposed by van Dam 

and Ernst et. al, the observer’s bias is assessed through a set of Kalman Filters 

(Rohde, van Dam, & Ernst, 2016). In contrast to these class of methods, the here 

proposed procedure does not rely on any prior assumption and any apriori knowledge. 

Using simulations, the performance of the bias-corrected threshold estimation by an 

adaptive method is compared to the threshold estimates of the method of constant 

stimuli. To show whether the limitations we encounter are specific to the proposed 

procedure or are a general issue of threshold estimation procedures, employing bias 
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correction, we used a standard MCS method as a reference that excluded any 

response-dependent sampling near the threshold.  

Results indicate that both, AM and MCS, were able to estimate sensitivity and bias 

correctly, in case of a sufficiently large number of trials (>200 or > 500). In case of a 

trial number ranging between 100 and 200, the MCS method however fails to reliably 

estimate the threshold even without any bias correction. On the contrary, the AM 

procedure is capable of estimation the perceptual threshold with and without bias 

correction independently from the number of trials (Leek, 2001; Lesmes et al., 2015; 

McKee et al., 1985; Treutwein, 1995; Watson & Fitzhugh, 1990).  

In the MCS method, a psychometric function is fitted to the percentage of correct 

responses as a function of the delay. If responses for single delays are too noisy as in 

the case of few trials, then the fitting of the psychometric function might be corrupted 

and will eventually fail. The failure of the MCS for low trial numbers, in the chosen 

example of the backward masking paradigm, results from the necessity of this 

approach to equate the total number of trials for different mask delays (Leek, 2001; 

Treutwein, 1995; Watson & Fitzhugh, 1990), leaving only a fraction of trials for a single 

delay. In contrast, in AMs, the delays in individual trials are mostly concentrated around 

the threshold delays, and thus a larger number of trials is available for calculating the 

threshold estimates. MCS versions that sample the observer’s responses close to the 

threshold with higher numbers of trials are certainly less affected by this problem, yet 

involve the response-dependent selection of the sampling region – a characteristic 

feature of AM.  

Results of the bias-uncorrected AM reveal that the threshold estimate does not vary 

much with the number of trials, at least as long as the threshold remains constant. 

Assuming that the delays used for simulations in the AM converge towards the 
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threshold quickly, and using the averaged delay of the last 50 trials in each run, the 

threshold delays should be independent of the number of trials. This is especially true 

for trial numbers larger than 200 (Fig. 5). Since in the presented example there were 

only 10 steps of delays, the lowest delay (0.0 ms) could be reached within 20 trials 

using the two-down one-up rule, even if the procedure starts at the maximum delay 

(150 ms).  

With increasing numbers of trials, the bias-corrected AM yielded threshold estimates 

approaching the value preset in the simulation. In the AM method, bias-corrected 

estimates of the threshold rely on the bias-corrected responses of the observer, that 

determine the stimulus delay for the next trial according to an m-down n-up rule 

requiring “m” correct response trials and “n” incorrect response trials before decreasing 

or increasing the delay in the upcoming trial, respectively. A first, estimate of the bias 

is generated during the initial trials. Afterward, when the bias estimate is available, the 

algorithm for bias correction comes into play. Assuming a constant bias across the 

experiment, the bias estimate is constantly updated and thus becomes increasingly 

more reliable. However, this strategy implies that a sufficiently high number of trials 

had been sampled to get a good estimate of the bias. The simulations show that it 

takes around 200-500 trials in the MCS and the AM, respectively. 

The convergence to the bias-corrected threshold becomes slower with increasing 

biases. The reason for this relation is the fact that the tails of the probability density 

function, defined in the SDT, become smaller with more extreme bias values and thus 

increasingly difficult to estimate. For instance, in case of a decision criterion shifted 

towards ‘sad’ favoring more ‘happy face’ responses (see Fig. 2), the slow convergence 

is due to the low probability of obtaining an incorrect response when presenting a 

happy face (Fig. 2a). Similarly, in case of a shift of the decision criterion towards 
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‘happy’, the probability for obtaining an incorrect judgment when presenting a sad face 

will be low (Fig. 2d). With the low probabilities of responses, the time that is needed to 

reach a sufficiently high number of trials to reliably estimate the bias, increases 

drastically. However – as shown in the simulations of time-varying thresholds of the 

virtual observer for stimulus parameters close to the threshold – more trials are 

available and thus the procedure for bias correction is switched on earlier than for 

stimuli further away from the threshold. 

In summary, for both the AM and the MCS, bias correction improves the threshold 

estimation accuracy, especially in case of strong biases. However, an effective bias 

correction algorithm requires a relatively large number of trials (see: S1a-b). Since for 

stronger biases, the required number of trials to obtain a stable estimate is large for 

both methods, and therefore certain advantages of the AM over the MCS (fewer trials 

needed to estimate the threshold) might get lost.  

If the mean threshold of a larger group of individuals is studied, differences between 

methods will become more evident. Since the standard error of the mean will decrease 

by the square root of N, with N being the number of individuals, the minimum group 

size, for which the application of bias correction is beneficial, can be inferred.  

With a sufficient number of subjects or repetitions, threshold estimates could be 

consistently higher for the AM as compared to the MCS in settings similar to our virtual 

experiment: The systematic higher threshold for the AM might be a result of the lower 

limit of ∆𝑡 = 0 the mask delay. In the case of two correctly perceived emotional face 

expressions presented with a mask delay of 0 ms, the delay should be further 

decreased according to the two-down one-up rule. However, reducing the delay below 

0 ms is not feasible in our experiment, and thus, delays for low thresholds in the AM 

will be slightly overestimated. The reliability of threshold estimates that are indexed by 
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the standard deviation across simulation repetitions, is constant for the AM, 

independently of the number of trials and bias levels. In contrast to MCS, the standard 

deviations of different threshold levels are rather high, rendering the AM less reliable. 

With the two-down one-up rule applied here, only a few of the most recent trials 

determine the variation of the stimulus delay in the upcoming trials, making the 

approach very sensitive to noise. An alternative rule that considers responses of a 

higher number of “most recent” trials, reduces the effects of noise and, as has been 

shown in our simulation, will enable the estimation of threshold levels for performance 

levels higher than 66.7%. 

Results for the simulation of a linear changing bias showed similar effects on the virtual 

observer’s threshold for decreasing and increasing biases (Fig. 8). This result is to be 

expected because flipping the sign of the decision criterion does not affect the overall 

correct responses, which is the sum of the numbers for hits and correct rejections.  The 

bias-corrected threshold estimate deviated less from the preset threshold of 72 ms 

compared with the uncorrected one. However, the correction procedure was unable to 

fully correct the simulated bias changing across trials. This finding can be explained by 

the fact that the bias estimate used for the correction of the bias in a current trial is 

based on the observer’s responses in all previous trials and therefore most likely not 

fitting the situation in the current trial. In case of a constantly increasing bias across 

trials, the bias in a certain trial is always underestimated and thus the correction is 

incomplete. 

In general, a better threshold and bias estimate are expected from the adaptive method 

because there are more trials near the threshold. However, assuming a systematic 

relation between mask delay and discrimination performance in the psychometric 
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function, like we did in our simulations, fitting a steady psychometric function to all data 

points in the MCS, might compensate for the higher error near the threshold.  

While in this article, bias was regarded as a nuisance parameter that masks subjects’ 

sensory capacities (Witte, Kober, Ninaus, Neuper, & Wood, 2013), it is important to 

underline that in other studies, changes in bias are the parameters of interest. For 

instance, studying the perception of emotional stimuli in psychiatric diseases, such as 

depression (Bourne & Vladeanu, 2013), schizophrenia (Gooding & Tallent, 2002) or 

autism (Ashwin, Wheelwright, & Baron-Cohen, 2005; Taylor, Workman, & Yeomans, 

2012) or in healthy subjects (Kajal, 2018; Kajal et al., 2017; Kajal et al., 2018), the 

observed higher or lower thresholds might result from a shift in the sensory bias rather 

than from altered sensitivity. Since the proposed method differentiates sensitivity and 

bias, deriving estimates for both, the method might have a wide range of applications 

in psychotherapy, in which would be interesting to modulate these parameters 

independently.  
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Conclusion 

In this study, a new adaptive threshold estimation procedure was introduced, which 

can correct an observer’s bias reliably. The performance of the new procedure was 

simulated and compared to other approaches. Furthermore, the study provides insight 

into the performance of classical threshold estimation procedures with and without bias 

correction and discloses limitations of the procedures in this context.  

Comparable number of trials are required for both AM and MCS procedure for a reliable 

threshold estimate. To minimize the effects of observers’ bias, either time-consuming 

correction procedures can be applied, or experiments should be designed more 

carefully minimizing effects of biases. In general, MCS indicates better reliability than 

AM, yet, at the cost of a large number of trials. In contrast, AM with bias correction is 

especially beneficial in case of low bias values as it requires less numbers of trials for 

reliable threshold estimates. The AM with bias correction are the method of choice in 

experiments where the observer’s threshold is dynamically fluctuating. Experiments in 

which sensory performance is sought to change, the continuous adaptation of sensory 

stimulus parameters to the current perceptual threshold allows maintaining tasks 

demands constant across the whole experiment. Although the methodological 

framework presented in this study leaves space for further improvements, the new 

approach reveals a promising potential with a relevant impact on psychophysics, 

behavioral learning, and neurofeedback training.  
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