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Abstract 

The paper describes a mathematical model of the molecular switch of cell survival, 

apoptosis, and necroptosis in cellular signaling pathways initiated by tumor necrosis factor 1. 

Based on experimental findings in the current literature, we constructed a Petri net model in 

terms of detailed molecular reactions for the molecular players, protein complexes, post-

translational modifications, and cross talk. The model comprises 118 biochemical entities, 

130 reactions, and 299 connecting edges. Applying Petri net analysis techniques, we found 

279 pathways describing complete signal flows from receptor activation to cellular response, 

representing the combinatorial diversity of functional pathways.120 pathways steered the cell 

to survival, whereas 58 and 35 pathways led to apoptosis and necroptosis, respectively. For 

65 pathways, the triggered response was not deterministic, leading to multiple possible 

outcomes. Based on the Petri net, we investigated the detailed in silico knockout behavior 

and identified important checkpoints of the TNFR1 signaling pathway in terms of 

ubiquitination within complex I and the gene expression dependent on NF-κB, which controls 

the caspase activity in complex II and apoptosis induction.  

Introduction 

The tumor necrosis factor receptor 1 (TNFR1) controls pivotal cellular processes involved in 

immunity and developmental processes (Walczak & Kantari, 2011). TNFR1 mediates 

signaling pathways, which induce opposing cellular responses from initiation of gene 

expression to two forms of cell death, apoptosis and necroptosis (Walczak, 2011; Pasparakis 

& Vandenabeele, 2015). Apoptosis has long been viewed as the only form of cell death, 

which is initiated by the cell itself. Whereas apoptosis is a well-known and well-studied 

pathway, the regulation and function of the necroptosis pathway has just recently been 

discovered and is still under study (Dhuriya & Sharma, 2018; Degterev, 2005). Necroptosis 

describes a cell death mode that exhibits the phenotype of necrosis, although it is ordered 

and controlled like apoptosis (Vandenabeele et al, 2010). Alike necrosis, necroptosis 

features a form of cellular explosion, releasing the cellular content into the cell surrounding 
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and initiating inflammation in the tissue (Vandenabeele et al, 2010). On the contrary, cells 

that undergo apoptosis recycle most of the cellular molecules to reserve the energy and 

slowly digest themselves without inducing an inflammatory response in the surrounding cells 

(Reed & Green, 2011). It has been reported that necroptosis seems to play a crucial role in 

nonalcoholic fatty liver disease, nonalcoholic steatohepatisis, and liver cancer (Schwabe & 

Luedde, 2018). 

Alternatively to cell death, the activation of nuclear factor κ-light-chain-enhancer of activated 

B cells (NF-κB) initiates the gene expression of mainly pro-inflammatory and anti-apoptotic 

operating genes (Pasparakis & Vandenabeele, 2015). Thus, the NF-κB pathway is often 

referred to as the survival pathway triggered by TNFR1 stimulation (Walczak & Kantari, 

2011). A permanent activation of NF-κB can result in chronical inflammation and promote the 

formation of tumors (DiDonato et al, 2012). In cancer cells, the gene expression is often 

permanently active, for example, by a disruption of the TNFR1 signaling pathway, such that 

the cells exhibit a resistance against cell death induction. Anticancer therapy aims to induce 

cell death in cancer cells often by triggering apoptosis pathways (Fulda et al, 2010; Fulda, 

2011; Fulda & Vukic, 2012, Fulda, 2013) and therapeutic exploitation of necroptosis (Fulda, 

2014).  

The regulation of the opposing signaling cascades is often considered as the molecular 

switch. Receptor-interacting protein 1 (RIP1) seems to have a pivotal function in modulating 

the controversial outcomes since it is an essential signaling node in all pathways, see Fig 1. 

The activity and function of RIP1 is sensitively controlled (Pelzer et al, 2006), for example, by 

post-translational modifications, such as phosphorylation and ubiquitination. During 

ubiquitination, ubiquitin (Ub) covalently attaches Ub molecules to substrate proteins, forming 

chains of different linkage types (Ikeda & Dikic, 2008) and assigning specific functions to the 

respective proteins (Grabbe et al, 2011). Linear Ub chains influence the modulation and 

control of activity in signal transduction (Walczak et al, 2012; Kensche et al, 2012, Declercq 

et al, 2009). The Ub system may have a promising therapeutic potential similar to the post-
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translational modification of phosphorylation mediated by kinases (Hoeller & Dikic, 2009; 

Fulda et al, 2012). 

Although high-throughput technologies have provided many experimental data, there is a 

lack regarding the quality, quantity, and completeness of the data. Applying computational 

systems biology can provide informationon on the system-wide behavior without knowing 

kinetic parameters. Computational models are powerful approaches to represent and 

understand the complexity of biological systems and systematically analyze them. These 

analyses gain new insights of regulation, reveal implications in diseases and pathologies, 

and give useful implications for potential targets for therapeutic treatment (Kitano, 2002, 

2004). The emerging experimental procedures, in coordination with improved computational 

methods, seem promising for the analysis of signaling pathways also with regard to 

therapeutic intervention and drug treatment (Saez-Rodriguez et al, 2015). The data available 

and the questions addressed determine the modeling approach to be applied. These 

approaches cover kinetic or stochastic quantitative models, for example, systems of ordinary 

differential equations (ODEs) (e.g., Heinrich & Rapoport, 1973), qualitative models as 

Boolean models (Aldridge et al, 2006; Wang et al, 2012), or semi-quantitative models, such 

as Petri nets (PNs) (Reisig, 1985; Murata, 1989). PNs allow for qualitative discrete modeling 

as well as for quantitative, continuous modeling. They have been widely applied to model 

biological pathways at different scales of abstraction (Koch et al, 2005; Formanowicz et al, 

2006; Sackmann et al, 2007; Koch et al, 2011; Minervini et al, 2014; Koch et al, 2017; 

Jacobsen et al, 2020). Additionally, PNs provide a simplified and clear user-friendly 

visualization of the model graph (e.g., Einloft et al, 2013; Balazki et al, 2015).  

The TNFR1 signaling pathway has often been a subject of mathematical modeling (Mitchell 

et al, 2016), thus, revealing dynamics, regulations, and crosstalk to other pathways of the 

NF-κB pathway (Basak et al, 2012; Cheng et al, 2012). On the one hand, the NF-κB 

regulation is well characterized and has often been a subject of quantitative modeling 

approaches, such as an ODE-based model of the NF-κB signaling module (Hoffmann et al, 
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2002). According to new measured values and estimated parameters, there exist various 

adaptations and further developments of this model (Lipniacki et al, 2004; Kearns et al, 2006; 

Rangamani & Sirovich, 2007; Tay et al, 2010; Sheppard et al, 2011; Mothes et al, 2015). On 

the other hand, new insights often supersede older views of the pathway regulation and 

initiate the development of, for example, a hybrid PN of NF-κB activation and regulation of 

gene expression (Peng et al, 2010). A Boolean model describes the interplay between NF-κB 

activation, apoptosis, and necroptosis, following the stimulation of TNFR1 and FAS receptor 

(Calzone et al, 2010). Schlatter et al. proposed a Boolean model of the processes of 

apoptosis, which considers several stimuli (Schlatter et al, 2009). Schliemann et al. have 

merged two existing models to an ODE-based model with pro- and anti-apoptotic responses 

of TNFR1 signaling (Schliemann et al, 2011). Melas et al. introduced a hybrid model, 

covering the stimulation of seven receptors and 22 cytokine stimuli in immunological 

pathways (Melas et al, 2011). All these models focus on specific processes or stimuli, not 

considering the entire molecular switch between cell survival, apoptosis, and necroptosis.   

In this paper, we are interested in an exhaustive modeling of the molecular switch behavior 

of the TFNR1-induced signaling pathway, covering the NF-κB pathway, apoptosis, and 

necroptotic processes. Here, we developed a semi-quantitative PN model and applied 

invariant-based methods and in silico knockout analysis to investigate and discuss the 

system’s behavior of the PN. This includes a detailed discussion of the molecular switch 

behavior.  

Results 

The Petri net model of signaling processes of cell survival, apoptosis, and necroptosis  

In the following, we refer to the PN terminology, which we explain in detail in Section 

“Materials and Methods”. Fig 1 schematically illustrates the molecular processes of TNFR1 

signal transduction commenced by the stimulation of the TNF receptor and followed by the 

formation of complex I and a diversity of consecutive and concurrent molecular processes. 

An example is the translocation of NF-κB into the nucleus, which facilitates gene expression 

activity and transcription of proteins like IκB, A20, cellular FLICE-inhibitory protein (cFLIPL), 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.02.466901doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.466901
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

B-cell lymphoma 2 (BCL-2), and X-linked inhibitor of apoptosis protein (XIAP). The 

transcription of these proteins affects, e.g., the regulation of the TNFR1 signaling pathway. 

The formation of complex IIa, complex IIb, and the necrosome may induce either apoptosis 

or necroptosis.  

 

Figure 1: The TNFR1 signal transduction pathway. Upon engagement of TNFR1, complex 

I is rapidly formed and mediates the signaling to NF-κB activation. The ubiquitination 

mediated by E3 ligases, like cellular inhibitor of apoptosis protein 1 (cIAP1) or cellular 

inhibitor of apoptosis protein 2 (cIAP2) and linear ubiquitin chain assembly complex 

(LUBAC), promotes the association of complex I. The Ub modification is required for full 

activation of the inhibitor of NF-κB (IκB) and subsequent NF-κB activation. Activated NF-κB 

in the nucleus initiates the expression of target genes like IκB, A20, cellular FLICE-inhibitory 

protein (cFLIPL), B-cell lymphoma 2 (BCL-2), and X-linked inhibitor of apoptosis protein 

(XIAP). A20 is a deubiquitinating enzyme (DUB), which is reported to cleave lysine 63 (K63) 

chains while protecting methionine 1 (M1) chains from cleavage. The deubiquitination by 

CYLD destabilizes the complex and promotes the formation of complex II in the cytosol. 

Complex IIa associates caspase 8 (CASP8), while complex IIb additionally binds RIP1. 

cFLIPL reduces, but does not fully inhibit, caspase activity, which leads to RIP1 and RIP3 

cleavage and inhibits apoptosis and necroptosis. cFLIPS fully inhibits caspase activity and 
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promotes the formation of the necrosome. Autophosphorylation of RIP3 allows the 

recruitment and phosphorylation of MLKL, which subsequently forms active oligomers and 

translocates to the plasma membrane to induce necroptosis. 

 

Based on the prcesses illustrated in Fig 1, we constructed a PN model to analyze the broad 

combinatorial spectra of signaling pathways. The model comprises stoichiometry relations for 

well-studied processes in combination with the abstraction of a simple transition for 

processes with unknown stoichiometry or controversial experimental findings. Fig 2 

represents the PN model with 118 places, 130 transitions, and 299 edges. For the list of 

transitions, places, and label abbreviations, we refer to Table S1, Table S2, and Table S3, 

respectively (Appendix). Signaling cascades towards NF-κB activation, apoptosis, and 

necroptosis are highlighted blue, green, and red, respectively. A dot in a circle indicated a 

place with one token in the initial marking. Gray circles represent a place that appears at 

several locations of the network layout. On left side, the layout separately shows the 

synthesis of 26 housekeeping proteins that are required for maintening the basic cellular 

function. The input and output transitions are labeled according to their biological meaning. 

All other transitions are consecutively numbered. All input transitions represent syntheses of 

proteins.The output transitions model the diverse cellular outcomes, like apoptosis, 

necroptosis, or survival as well as degradation and dissociation processes for proteins and 

protein complexes, respectively. The places were labeled according to the biological 

meaning, e.g., a protein, a modified protein, or a protein complex.  

To ensure correctness and completeness of the model to the greatest possible extent, we 

apply the invariant analysis. 
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Figure 2: The PN model of TNFR1 signal transduction. The PN consists of 118 places, 

130 transitions, and 299 edges. The essential processes of NF-κB activation, apoptosis, and 

necroptosis are highlighted blue, green, and red, respectively. Logical places are depicted in 

gray. The initial marking is represented by one token assigned to places IκB_g, A20_g, 

XIAP_g, cFLIP_g, and BCL-2_g (g stands for gene) for each PI. 

 

Place invariants reflect substance conservation 

The five place invariants (PIs) of the PN represent the conservation of the proteins IκB, A20, 

XIAP, cFLIPL, and BCL-2, all containing two places.  

Transition invariants reflect basic dynamic patterns 

The PN is covered by 48 transitions invariants (TIs). For the list of TIs and their biological 

interpretations, we refer to Table S4 (Appendix). Exemplarily, Fig 3 highlights TI2, which 

describes a signal flow from TNFR1 activation to apoptosis. It comprises the formation of 
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complex I, dissociation via CYLD, formation of complex IIb, and extrinsic activation of 

caspase 3. TIs are functional submodules but not each TI represents a complete signaling 

pathway, for example, TI15 and TI9, see Fig S1 and Fig S2, respectively (Appendix). 33 TIs of 

the total number of 48 TIs are such incomplete signaling pathways (see Table S4 in the 

Appendix, bold-faced TI numbers). The remaining 15 TIs are Manatee invariants (MIs), 

describing complete signaling pathways from the receptor activation to the cell response 

(Amstein et al, 2017), see Section “Materials and Methods”.  

 

Figure 3: The TI2-induced subnetwork. The TI2-induced subnetwork is highlighted green in 

den PN model of Fig 2. It covers the formation of complex IIb and induction of apoptosis via 

the activation of CASP3 in the extrinsic pathway. The start and end transition are indicated 

by green arrows. 

Manatee invariants describe complete signaling pathways from receptor activation to 

cell response  
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We found overall 279 MIs (Table S5 in the Appendix) by linear combination of TIs. Each of 

the 279 MIs represents a unique pathway of the molecular switch between cell survival, 

apoptosis, and necroptosis. Exemplarily, Fig 4 highlights MI7 that combines three TIs, TI9, 

TI15, and TI18. The red signal flow described by TI15 requires NF-κB, i.e., a token on place NF-

κB, as well as a token on place CI (complex I). NF-κB is provided by transition Syn_NF-κB of 

the green TI18. Complex I is provided by T13 of the blue TI9. Vice versa, the signal flow 

described by the blue TI9 cannot work without NF-κB in the nucleus, i.e., a token on place 

NF-κB_n. Translocation of NF-κB into the nucleus requires an active transition T25 of the red 

TI15. MI7 demonstrates typical mutual dependencies of TIs that make isolated TIs 

nonfunctional.  

 

Figure 4: The MI7-induced subnetwork of the PN model in Fig 2. The MI7-induced 

subnetwork consists of TI9, TI15, and TI18 highlighted blue, red, and green, repectively. 

TI9 (Fig S2, Appendix) represents the dissected pathway of the A20 feedback regulation in 

complex I. MI7 (Fig 4), including TI9, determines a complete signal flow, including the A20 
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feedback loop and covering the signal flow of complex I formation and activation of NF-κB 

with its translocation into the nucleus and gene expression of IκB and A20. The inhibitor, IκB, 

terminates gene expression and restores the inhibitory complex of NF-κB and IκB in the 

cytosol. A20 binds to complex I, leads to the dissociation of the complex, and prevents the 

formation of complex II. For additional MIs, containing TI9 too, see Fig S3 and Fig S4 

(Appendix). 

Classification of MI-defined signaling pathways 

Each of the 279 MIs denotes a complete and unique signaling pathway, see Table S5 

(Appendix). For space reasons, we abstain from a discussion of each individual pathway. We 

classified the MIs according to their biological outcome, considering the 166 MI-induced 

subnetworks with a clear classification into a survival, apoptosis, or necroptosis pathway. An 

ambiguous pathway covers, e.g., the inhibition of MOMP induction, which would result in cell 

survival and apoptosis induction via the extrinsic pathway. In this special case, MOMP 

induction is part of the intrinsic pathway, but extrinsic apoptosis induction is still possible. 

Thus, the MOMP induction would be classified as an apoptosis pathway. This held for 48 MIs 

of the 113 MIs, so they were all considered for the classification, overall 214 (48 + 166 MIs). 

A central property of a pathway is the induced cellular response. The largest fraction of 120 

pathways steered the cell to survival, whereas 58 and 35 pathways led to apoptosis and 

necroptosis, respectively. 65 pathways were neglected because they either could trigger both 

types of cell death, apoptosis and necroptosis, or represent housekeeping pathways without 

induction of a specific cellular response. A simple example of a housekeeping pathway is the 

synthesis and degradation of NF-κB described by TI18 highlighted green in Fig 4. Note that, 

TI18 also corresponds to MI18. For pathways that can trigger both types of cell death, accurate 

quantitative simulations would be required to determine the stochastic chance of the cell to 

end up either in apoptosis or necroptosis.  

In silico knockouts  

The knowledge of the combinatorial diversity of pathways enabled us to estimate the 

vulnerability of the system to pertubations, caused, for example, by knockouts of proteins. 

We applied in silico knockout analysis to get the number of blocked molecular species 

downstream of the pathways (Hannig et al. 2019). Fig 5 shows a bar plot of the percentage 
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of the network that becomes inoperable, if we would knockout the synthesis of a specific 

protein. We ranked the proteins according to the percentage of blocked species. TNF-α 

(called TNF in Fig 5) and TNFR were top-ranked as they are essential upstream in each 

pathway. Only housekeeping pathways remained unaffected. Components of complex I, e.g., 

TRADD and RIP, were among high-ranked proteins, too. Proteins of the intrinsic apoptotic 

branch, necroptosis, and proteins upregulated by NF-κB had more specific functions in the 

molecular switch and got a lower ranking.  

 

Figure 5: Ranking of the proteins of the TNFR1 signaling pathway. The influence on all 

other network components was determined based on the in silico knockout matrix in Fig S5 

(Appendix). The bar chart displays the relative abundance of affected species for the 

knockout of all proteins. 

The hierarchical cluster tree 

The cluster tree in Fig 6 outlines the hierarchical organization of function in the signaling 

pathway. Each leaf of the tree is a protein. To cluster the proteins, we represented a protein 

by the downstream effect of its knockout, i.e., the set of blocked species. For the detailed 

knockout matrix, we refer to Fig S5 (Appendix). Specific branch points were labeled by the 
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characteristic, regulative function of the group of proteins, e.g., ubiquitination in complex I, 

activation of CASP8, and activation of NF-κB. Three main groups emerged, one for each of 

the functions apoptosis (green branch), regulation of complex I (blue/purple branch), and 

necrosis (red branch). Due to crosstalk and feedback, the regulation of complex I was more 

strongly coupled to apoptosis than to necrosis, leading to a unification of the two branches 

Regulation of complex I and Apoptosis. The three proteins of the necroptosis branch, RIP3, 

MLKL, and cFLIPs, were grouped together very late. Large clusters for the activation of NF-

κB or the intrinsic pathway of apoptosis were already complete before RIP3 and MLKL 

clustered together. The necroptosis branch remained separated from all other functions until 

the very last clustering step. 

 

Figure 6: Hierarchical cluster tree. The corresponding places in the PN were clustered 

based on the matrix in Fig S5 in the Appendix. The hierarchical clustering was performed, 

using UPGMA (Unweighted Pair Group Method with Arithmetic mean) with Pearson 

correlation distance. Some vertices in the dendrogram were marked in blue, green, and red, 

referring to processes of NF-κB activation, apoptosis induction, and necroptosis induction, 

respectively. 

Knockout analysis of a selected submatrix 

We employed the in silico knockout for the additional verification of the PN model of TNFR1 

signal transduction in Fig 2 and for the discussion of the molecular switch behavior. Whereas 

some knockout effects were obvious, others can only be derived from network analysis. Fig 
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7 shows a section of the knockout matrix in Fig S5 (Appendix). We selected twenty proteins 

for the single knockout and determined the effects for 21 pathway entities. The last two rows 

are multiple knockouts that represent the effects for Smac mimetic and the impairment of 

translation by cycloheximide. The selection was driven by the biological interpretation of the 

knockout analysis and, therefore, contains important signaling vertices in the network 

regarding the molecular switch. For the results, see Table 1.  

 

Figure 7: In silico knockout submatrix of the PN in Fig 2. The rows list the proteins, which 

were knocked out, and the columns give the protein complexes in the network, which might 

be affected by the knockout. A red (green) entry indicate that the respective complex was 

(was not) affected by the knockout. We performed the single knockout analysis for twenty 
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proteins and displayed the effect for an excerpt of 21 pathway entities. The last two rows 

represent multiple knockouts that display the effect of Smac mimetic, i.e., the knockout of 

XIAP and cIAP, and the impairment of the translation of upregulated genes by 

cycloheximide, i.e., the knockout of IκB, A20, XIAP, cFLIPL, and BCL-2. 

Table 1: Results of in silico knockouts illustrated in the submatrix in Fig 7.  

Knocked out entity  
[row no.; # red entries] 

Negative effect on Other functional aspects 

BAX [1; 6] complex formation of BCL-2 
and BAX (BCL-2:BAX); 
activation of CASP9 in the 
apoptosome (CASP9, 
Apoptosome) 

Activation of CASP3 and 
CASP8 are not directly 
dependent on BAX (CASP3, 
CASP8). 

cFLIPS [2; 1] complex Formation of cFLIPS 
bound to complex IIb 
(CIIb:cFLIPs) 

cFLIPS can promote 
necroptosis induction in 
complex IIb, but as other 
pathways exist that can also 
induce necroptosis, the 
knockout of cFLIPS has no 
direct effect on necroptosis 
induction. 

cIAP1/2 and TRAF2 [3, 
20; 10] 

formation of complex I and the 
NF-κB-dependent gene 
expression as well as the 
feedback and crosstalk 
regulation of the target genes 

This emphasizes the direct 
regulation of both proteins 
since cIAP1/2 requires TRAF2 
for recruitment. 

CYLD [4; 1] complex formation of CYLD 
bound to the complex I 
(CI:CYLD) 

CYLD promotes the 
dissociation of complex I and 
the formation of complex II. As 
several pathways also cover 
the processes, no other effects 
are observed. 

FADD, procaspase 8 [5, 
12; 14] 

all places associated to 
apoptosis processes 

Only the survival pathways and 
necroptosis induction is still 
functional. This emphasizes the 
direct regulation of both 
proteins since procaspase 8 
requires FADD for recruitment. 

IKK, NEMO, TAK1, 
LUBAC [6, 7, 9, 16; 9] 

the downstream activation of 
NF-κB and the regulation of 
the target genes 

Complex II formation and cell 
death induction remain 
functional. This indicates the 
strong relation of the proteins in 
the Ub-dependent regulation in 
complex I. 

MLKL [8; 1]  activated MLKL located at the 
plasma membrane prior 
necroptosis induction 
(MLKL_PM) 

As activated MLKL refers to the 
last step in the necroptosis 
pathway, necroptosis induction 
is hampered. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2021. ; https://doi.org/10.1101/2021.11.02.466901doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.02.466901
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

NF-κB [10; 8] NF-κB regulation via IκB and 
the regulation of NF-κB-
dependent genes 

 

procaspase 3 [11; 2] CASP3 activation and CASP3 
inhibition by XIAP (CASP3, 
XIAP:CASP3) 

 

procaspase 9 [13; 4] processes of the regulation of 
procaspase 9 in the 
apoptosome via XIAP and 
SMAC 

 

RIP1 [14; 14] formation of complex I and the 
induction of necroptosis 

Only apoptosis processes are 
still functioning since RIP1 is a 
major player in the TNFR1 
signal transduction pathway. 

RIP3 [15; 2] formation of the necrosome 
and the activation of MLKL 
(RIP1:RIP3, MLKL_PM) 

 

TNF, TNFR1, TRADD 
[17, 18, 19; 20] 

all places except for the 
nuclear NF-κB (NF-kB_n). 
Since the three proteins 
initialize the pathway, all 
downstream pathway 
components are affected by 
the knockouts. 

This is due to the modeling of 
the turnover of NF-κB, which 
remains unaffected by the 
knockout. 

cIAP1/2 and XIAP (Smac 
mimetic) [20; 10] 

formation of complex I, NF-κB-
dependent gene expression, 
and XIAP regulation 

Only apoptosis and necroptosis 
induction remain functional. 

IκB, A20, XIAP, cFLIPL, 
and BCL-2 
(cycloheximide) [21; 7] 

the translation of upregulated 
genes 

Only the cell death pathways 
remain unaffected. 

 

Discussion 

The model covers signaling processes of cell survival, apoptosis, and necroptosis 

The study of TNFR1 signal transduction has a long tradition and revealed many theories, 

depending on the current focus in the field and the respective researcher, which leads to 

different views and theories (Wallach, 2016; Schwabe & Luedde, 2018). The contradictions 

of the pathway regulation in literature and the differences of signal transduction, occurring in 

different cell types, require a disentangled view of the processes (Wajant & Scheurich, 2011).  

The PN model compiles the current view of the TNFR1 signaling pathway, emphasizing the 

well-characterized processes and discussing less-known mechanisms. During the 
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development of the model, well-established molecular regulations have been superseded by 

other proposed regulatory mechanisms. An example is the regulation of A20, which operates 

as a deubiquitinating enzyme in the feedback regulation of NF-κB signaling. Originally, its 

suppressive role in NF-κB signaling was assigned to the proteasomal degradation of RIP1 by 

a K48-linked Ub tag (Wertz & Dixit 2008). This mechanism is now questioned even though it 

has long been viewed as an important feedback mechanism to terminate signal transduction. 

On the contrary, less-understood processes could not be integrated in the PN model as the 

exact mechanism of regulation is not entirely characterized. Important aspects that need 

further investigation are the effect of RIP1 phosphorylation and the regulation by 

ubiquitination within complex II. Further, the exact mechanism of necroptosis execution and 

the mode of action of MLKL remains to be identified. 

Model analysis reveals substance conservation, basic dynamics of the system, and all 

complete signaling pathways  

To investigate networks of pathways in systems biology profoundly, the determination of all 

possible signal flows is obligatory. The mathematical approach of PIs and TIs explains 

substance conservation and the basic system’s behavior, repectively. TI-induced 

subnetworks represent functional modules. MIs constructed by liear combination of TIs 

represent complete functional signal flows in a network that operate at steady state. The 

complexity of the computation of MIs is related to the number of TIs and the possible linear 

combinations. For the PN of TNFR1 signal transduction, the number of MIs highly increased 

with regard to the number of TIs, from 48 TIs to 279 MIs.  

Knockout analysis for classification of pathways, ranking of pathway’s entities, and 

clustering of processes 

The deduction of the regulation of signal transduction via knockout experiments is not an 

easy task since the pathway components are involved in several processes. Further, the 
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variation of results between cell types, type of experiment, and working group, has an 

essential influence on diversity of data. The in silico knockout analysis can reveal obvious 

relations, expected dependencies, and predictions of effects that were not yet experimentally 

proven.  

Pathway classification: The result is in accordance with the expected biological behavior 

because most cells exhibit a robust survival response and suppress the cell death induction 

(Ting & Bertand, 2016). The dissection of the hierarchy of a pathway is important for later 

use in therapeutic implication. A protein that is a player more upstream in the pathway may 

have also an impact on other downstream branches in an undesired form of crosstalk. 

Therefore, a later intervention of the pathway is often more favorable because it acts more 

specifically (Vandenabeele et al, 2010). Some proteins or complexes, which can be activated 

in different ways, are more robust to errors since alternative signal flows can still lead to their 

activation. 

The components of the pathway that are involved in the processes of receptor stimulation 

and complex I formation, are obviously more sensitive to perturbations as many downstream 

branching pathways are dependent on the initialization. Therefore, TNFR1, TNF-α and 

TRADD are the proteins with the highest influence on other network components. Hereafter, 

the proteins of complex I with RIP1 are leading the way. RIP1 is an important protein, as it 

plays key roles in NF-κB activation, apoptosis, and necroptosis. However, not all branches of 

the network are RIP1-dependent, like apoptosis mediated via complex IIa. The proteins of 

complex I have a higher impact, too, because they have an influence on the formation of 

complex II, the activation of NF-κB, and subsequent gene expression. The resulting crosstalk 

to the cell death pathways enhances the influence of the proteins of complex I. The proteins 

of the intrinsic apoptotic branch, necroptosis induction as well as the proteins, which are 

upregulated by NF-κB, are less essential and act more specifically. 
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Robustness describes an inherent quality of systems and aims to maintain and ensure the 

correct function of a system (Kitano, 2004). Alternative signal flows, which target the same 

cellular response, enhance the robustness of a system as the function is robust to 

perturbations. The more redundant signal flows activate one cellular outcome, the more 

robust is the system to potential failing modes. The various signal flows to the different 

outcomes determined by MIs reveal the robustness of the TNFR1 signaling system. We 

concluded that the system is robust to perturbations and that the survival response is most 

likely to occur followed by apoptosis and then necroptosis with regard to the amount of 

assigned pathways. 

The TNFR1 signaling pathway will always be a target of cytoprotective or cytotoxic therapies 

as it controls opposing responses and has a major function in immunity and development 

(Fulda 2011, Fulda 2014). The intertwined regulatory network makes it difficult to directly 

intervene cell death pathways in the desired way (Lockshin & Zekeri 2007). For cancer 

treatment, it is an important strategy to overcome the resistance to cell death by manipulation 

of signaling pathways. Such a strategy is based on Smac mimetic, which inhibits IAP 

proteins (Schmidt et al, 2018). Smac mimetic mocks the function of Smac / Diablo and 

inhibits cIAPs, thus, preventing RIP1 ubiquitination and phosphorylation (Ting & Bertrand 

2016). It intervenes the early checkpoint and leads to a decrease of Ub chains in complex I 

and promotes the formation of complex II, inducing RIP1 kinase-dependent cell death 

(Bertrand et al, 2008, Fulda & Vukic, 2012). The prediction of the in silico knockout is in 

accordance with the experimental settings of Smac-mimetic treatment. Upon TNF-α 

stimulation, most cells do not exert cell death because of rapid gene expression of cFLIPL, 

cIAP2, XIAP, and BCL-2, which inhibit cell death signaling (Ting & Bertrand, 2016). The 

treatment with cycloheximide, an inhibitor of translation, or actinomycin D, an inhibitor of 

transcription, results in enhanced cell death (Karin & Lin, 2002). 

The results of the knockout prediction may not match the experimental knockouts for every 

case owing to several reasons. On the one hand, the TI or MI analysis may not capture the 
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correct pathways dependencies due to modeling reasons of abstractly modeled processes, 

or the knockout behavior is dependent on other signal flows, which are not explicitly included 

in the PN model. On the other hand, the experiments may be obtained for a specific cell type 

and may not be applicable to all cells. For a more predictive model with regard to the 

knockout behavior, we suggest to adapt the PN model of TNFR1 signal transduction to a 

specific cell type.  

The molecular switch 

The determination of specific checkpoints of the system is important to intervene the 

signaling cascade in a desired manner. The survival response is very robust to perturbations 

as discussed above. Therefore, we needed to determine the factors that overcome this 

robust response and promote cell death pathways. We determined the important checkpoints 

in complex I in terms of the ubiquitination within complex I and the activation of NF-κB-

dependent gene expression. The impairment of ubiquitination, e.g., by Smac mimetic or the 

in silico knockout of TRAF2 and cIAP, favors the induction of apoptosis and necroptois. The 

upregulated genes by NF-κB negatively control cell death signaling. We showed that the 

impairment of NF-κB activation, e.g., by knockout of proteins of complex I like LUBAC, and 

the translation of upregulated genes, e.g., by simulating a cycloheximide treatment, promotes 

cell death induction. 

It is considered that ubiquitinated RIP1 has a scaffold function for the required kinases, TAK1 

and IKK, in complex I and promotes cell survival (Peltzer et al, 2016). Deubiquitinated RIP1 

can form the complex II and positively regulate cell death (Jaco et al, 2017; Oberst, 2017). 

cIAP proteins are important for TNFR1 signaling as the depletion abolishes the Ub 

decoration within the complex I (Tenev et al, 2011; Feokistova et al, 2011). The PN model 

supports this view since in absence of RIP1, only apoptosis induction can occur, and the 

impairment of RIP1 ubiquitination by cIAP and TRAF2 leads to the formation of complex II. 
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Phosphorylated RIP1 is reported to inhibit kinase-dependent induction of cell death, following 

TNFR1 ligation (Jaco et al, 2017). Several studies report either IKK or MAPKAP kinase 2 

(MK2), which are activated within and downstream of the complex I, to be potentially the 

kinases that phosphorylate RIP1 (Dondelinger et al, 2013; Dondelinger et al, 2015; Jaco et 

al, 2017; Dondelinger et al, 2017). It is suggested that the phosphorylation of RIP1 affects 

the interaction of RIP1 with FADD and CASP8 (Dondelinger et al, 2015; Jaco et al, 2017). 

For the association of the necrosome and the activation of RIP3, RIP1 kinase activity is 

required. The phosphorylation of RIP1 may function as a repressor of necroptosis besides of 

apoptosis (Ting & Bertrand, 2016). To integrate the exact mechanism of RIP1 

phosphorylation into the PN model, further experimental studies are required. 

Another checkpoint is the NF-κB-dependent gene expression, which enhances the 

resistance to cell death induction. Only full activation of IKK leads to NF-κB activation 

(Wajant & Scheurich 2011, Peltzer 2016). It was shown that the depletion or inhibition of IKK 

and NEMO affects the induction of apoptosis (Dondelinger et al, 2013; Linkermann & Green, 

2014). LUBAC and TAK1 inhibition also promote complex II formation (Gerlach et al, 2011; 

Weinlich et al, 2016, Dondelinger et al, 2013). This is in accordance with the in silico 

knockout predictions for IKK, NEMO, TAK1, and LUBAC because only apoptosis induction 

and necroptosis induction remain functional. 

The level of cFLIPL is regulated by NF-κB activation. cFLIPL, which is a CASP8 homolog, 

competes with CASP8 to form a heterodimer and prevents full activation of CASP8. If NF-κB 

activation is blocked, the level of cFLIPL decreases, leading to the induction of apoptosis 

(Tsuchiya et al, 2015). BCL-2 and XIAP are also target genes of NF-κB, which inhibit the 

intrinsic apoptosis pathway and apoptosis induction by caspase inhibition, respectively 

(Shore & Nguyen, 2008). Cycloheximide treatment impairs the translation of upregulated 

genes and the knockout, which represents the treatment, is in accordance with the expected 

behavior. 
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Whereas the checkpoints that mediate signal transduction in complex I and from complex I to 

complex II are quite well-characterized. The exact regulation within complex II is not entirely 

clarified. In complex II, the checkpoints mainly control caspase activity. TRADD needs to 

dissociate from complex I and binds to FADD to provide a platform for CASP8 recruitment 

and apoptosis induction (Micheau & Tschopp 2003). cFLIPL is usually upregulated by the 

time that complex II can form in the cytosol and inhibits caspase activation. The two isoforms 

of cFLIP differentially regulate the activity of complex II (Feokistova et al, 2011). While 

cFLIPL, binding to CASP8 and FADD has a survival function, blocking apoptosis and 

necroptosis, cFLIPS binding to CASP8 inhibits full activation of caspase activity (Oberst et al, 

2011; Dillon et al, 2012). There are evidences that the formation of complex IIa and complex 

IIb has also several checkpoints involving post-translational modifications. The influence of 

ubiquitination in complex II needs to be further studied (Onizawa et al, 2015). CYLD is a 

substrate of CASP8, which may be involved in the regulation of the switch of complex IIa to 

complex IIb (O’Donnell et al, 2011). Also A20 is reported to inhibit RIP3 activation by 

ubiquitination and prevents necroptosis induction, which would result in another crosstalk 

from the target gene of NF-κB (Onizawa et al, 2015). 

Materials and Methods 

Petri nets 

Petri nets (PNs) represent a graph theory-based mathematical formalism to model systems 

of concurrent processes (Reisig, 1985; Murata, 1989). PNs are widely used in technical 

applications (for a review, see Zhou & Azlan, 2016) and systems biology (for example, 

Reddy et al, 1993; Koch et al, 2005; Sackmann et al, 2007; Grunwald et al, 2008; Kielbassa 

et al, 2009; Koch et al, 2011; Koch et al, 2017). PNs are directed, bipartite, labeled graphs. 

There are two type of vertices, one type for the passive elements of the system called places 

and one for the active elements called transitions. For biochemical systems, the places 

model biological entities, for example, proteins, RNAs, ligands, protein complexes, genes, 

and other chemical compounds. The transitions stand for the reactions transforming one 
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place into another, for example, chemical reactions, phosphorylation, ubiquitination, complex 

formation, and other. The directed edges connect only vertices of different type. Places with 

outgoing edges are called pre-places and places with ingoing edges post-places, with 

respect to the transition the edges connect with the condidered place. Edges can be labeled, 

usually by integers.  

Formally, we define a PN as a quintuple N = (P, T, F, W, m0) with: 

P = {p1, p2,  … , pm} is the finite set of places. 

T = {t1, t2,  … , tn} is the finite set of transitions. 

F  (P  T)  (T  P) is the set of flow relations or edges. 

W : F → N defines the edge weights. 

m0 : P  → N0 is the initial marking. 

For classical PNs called P/T nets (Place/Transition nets), the dynamic is performed by 

movable objects named tokens that are located on the places. A token represents a discrete 

entity, for example, one mole of a chemical compound or one molecule. A certain token 

distribution defines a specific system state and is given by the marking, m, which is a vector 

of the size of P. The initial marking, m0, describes the initial state of the system before 

starting a simulation. The marking is illustrated by points on the corresponding places or by 

the numbers. 

Tokens move through a PN following specific friring rules. In P/T nets. These firing rules are 

timeless, meaning that the tokens on the pre-places are removed at the same time as the 

tokens are produced on the post-places, see Fig 8.  
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Figure 8: PN example 1. A) The PN consists of five places depicted by circles, two 

transitions depicted by rectangles, and six directed edges. The edge from p1 to t1 has a 

weight of two. For all other edges with a weight equals one, no label is drawn. p3 and t2 are 

connected via a read arc. Tokens are depicted as dots on the places p1, p2, and p4, defining 

the initial marking m0 = (2, 1, 0, 1, 0). B) The PN after the firing of t1. The marking has 

changed by removing tokens from the pre-places, p1 and p2, and producing a token on the 

post-place, p3. Then, the new marking is m‘ = (0, 0, 1, 1, 0). 

We modeled the PN as an open system, meaning that all proteins of the pathway are 

synthesized and degraded. The only exceptions are the genes that induce the synthesis of 

proteins in a controlled manner and, therefore, form specific patterns in the PN model. 

Invariants 

Among other properties, a PN is characterized by its invariants – a property that always 

holds at steady state independent of the system state and the initial marking. Invariants can 

relate the structure of the net to the behavior of the system and allow for an implication of the 

system’s dynamics.  

We define transition invariants (TIs) and place invariants (PIs). Both are based on the 

incidence matrix of the PN, C = P  T. An entry in C indicates the change in the number of 

tokens on the considered place (row), if the considered transition (column) fires. Based on 
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the incidence matrix, we can define two invariant properties, transition invariants and place 

invariants.   

Transition invariants 

A TI is a set of transitions, whose firing sequence reestablishes an arbitrary initial marking, 

∆m0 = 0, i.e., the system state is invariant. A TI is defined as a Parikh vector, x, that fulfills the 

equation ∆m = C x = 0. The exact number of firings per transition is given by the elements of 

x. An integer solution is a true invariant, x, if x has no negative components, i.e., x  0. The 

set of transitions, whose components in x are positive, defines the support of the TI, supp(x). 

A TI is minimal if no other solution, x‘, exists with supp(x‘)  supp(x), and the largest common 

divisor of all elements equals one. A PN is covered by TIs (CTI) if every transition is member 

of at least one TI.  

Place invariants 

Analogously to TIs, we define PIs of a PN as a vector, y, applying CT y = 0, where CT 

denotes the transposed incidence matrix. The definition of a minimal and true PI is 

analogous to the definition of a minimal and true TI. A PN is covered by PIs (CPI) if every 

place is member of at least one PI.  

Manatee invariants 

MIs are linear combinations of TIs to ensure that the TI covers a signaling pathway from 

receptor activation to cell response. For the detailed definition of MI, we refer to Amstein et 

al, 2017.   

Invariant-induced subnetworks 

Each invariant induces a subnetwork. A TI-induced or MI-induced subnetwork is formed by 

the transitions of the TI or MI, respectively, and the places and edges in between. 
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Analogously, a PI-induced subnetwork is defined by the places oft the PI and transitions and 

edges in between.  

In silico knockout analysis 

Knockout studies or perturbation studies are suitable methods to reveal the vulnerable parts 

of a model. The in silico knockout analysis supports a profound investigation of a 

comprehensive PN model of a signaling pathway (Scheidel et al, 2017). We define a 

knockout matrix, where each row represents the knockout of a protein, i.e., the deletion of an 

input transition. Each column indicates proteins or protein complexes of the PN, which might 

be affected by the considered knockouts. We visualize the knockout results by coloring the 

matrix entries either green (red) if the place is part (not part) of at least one MI-induced 

subnet. Biologically, the green entry indicates that the respective protein or protein complex 

remains unaffected by the knockout, while a red entry stands for an effect on protein or 

protein complex formation. 

We ranked the proteins of the TNFR1 pathway according to their influence on other pathway 

components based on the knockout analysis performed for the complete set of proteins and 

protein complexes. We selected all transitions, which represent protein syntheses, and all 

places of the PN model except for the places belonging to a PI. The knockout was performed 

applying isiKnock (Hannig et al, 2019) based on MIs using additional output transitions. 

Moreover, we performed a clustering of the knockout data of the complete knockout matrix in 

Fig S5 in the Appendix. For the hierarchical clustering of the matrix entries, we applied the 

software NOVA with the settings UPGMA with Pearson correlation distance (Giese et al, 

2015). 
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