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Abstract 18 
Path integration is a sensorimotor computation that can be used to infer latent dynamical states by 19 
integrating self-motion cues. We studied the influence of sensory observation (visual/vestibular) and latent 20 
control dynamics (velocity/acceleration) on human path integration using a novel motion-cueing 21 
algorithm. Sensory modality and control dynamics were both varied randomly across trials, as participants 22 
controlled a joystick to steer to a memorized target location in virtual reality. Visual and vestibular steering 23 
cues allowed comparable accuracies only when participants controlled their acceleration, suggesting that 24 
vestibular signals, on their own, fail to support accurate path integration in the absence of sustained 25 
acceleration. Nevertheless, performance in all conditions reflected a failure to fully adapt to changes in 26 
the underlying control dynamics, a result that was well explained by a bias in the dynamics estimation. 27 
This work demonstrates how an incorrect internal model of control dynamics affects navigation in volatile 28 
environments in spite of continuous sensory feedback. 29 

Introduction 30 
Imagine driving a car onto an icy road, where steering dynamics can change rapidly. To avoid crashing, 31 
one must rapidly infer the new dynamics and respond appropriately to keep the car on the desired path. 32 
Conversely, when you leave an ice patch, control dynamics change again, compelling you to re-adjust 33 
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your steering. The quality of sensory cues may also vary depending on environmental factors (e.g. reduced 34 
visibility in fog or twilight, sub-threshold vestibular stimulation under near-constant travel velocity). 35 
Humans are adept at using time-varying sensory cues to adapt quickly to a wide range of latent control 36 
dynamics in volatile environments. However, the relative contributions of different sensory modalities 37 
and the precise impact of latent control dynamics on goal-directed navigation remain poorly understood. 38 
Here we study this in the context of path integration. 39 

Path integration, a natural computation in which the brain uses dynamic sensory cues to infer the evolution 40 
of latent world states to continuously maintain a self-position estimate, has been studied in humans, but 41 
past experimental paradigms imposed several constraints. First, in many tasks, the motion was passive 42 
and/or restricted along predetermined, often one-dimensional, trajectories (Klatzky et al., 1998; Jürgens 43 
& Becker, 2006; Petzschner & Glasauer, 2011; Campos et al., 2012; Tramper & Medendorp, 2015). 44 
Second, unlike time-varying actions that characterize navigation under natural conditions, participants’ 45 
responses were often reduced to single, binary end-of-trial decisions (Horst et al., 2015; Chrastil et al., 46 
2016; Koppen et al., 2019). Third, even studies that explored contributions of different sensory modalities 47 
in naturalistic settings failed to properly disentangle vestibular from motor cues generated during active 48 
locomotion (Kearns et al., 2002; Campos et al., 2010; Bergmann et al., 2011; Chen et al., 2017, Arthur et 49 
al., 2012; Péruch et al., 1999, 2005). Furthermore, varying constraints have presumably resulted in 50 
inconsistent findings on the contribution of vestibular cues to path integration (Jürgens & Becker, 2006; 51 
Campos et al., 2010; Horst et al., 2015; Tramper & Medendorp, 2015; Koppen et al., 2019; Chrastil et al., 52 
2019; Glasauer et al., 1994; Seidman, 2008).  53 

There is a tight link between path integration and spatial navigation on the one hand, and internal models 54 
and control dynamics on the other. To accurately estimate self-motion, we rely not only on momentary 55 
sensory evidence but also on the knowledge of motion dynamics, i.e., an internal model of the world. 56 
Knowledge of the dynamics makes the sensory consequences of actions predictable, allowing for more 57 
dexterous steering. However, although there is a large body of research focused on dynamics and 58 
adaptation for motor control (Shadmehr & Mussa-Ivaldi, 1994; Lackner & Dizio, 1994; Krakauer et al., 59 
1999; Takahashi et al., 2001; Burdet et al., 2001; Kording et al., 2007; Berniker et al., 2010), studies of 60 
perceptual inference of latent dynamics during navigation have been limited. Some pioneering studies 61 
demonstrated participants’ ability to reproduce arbitrary one-dimensional velocity profiles (Grasso et al., 62 
1999; Israël et al., 1997), while more recent efforts showed that the history of linear (Petzschner & 63 
Glasauer, 2011) and angular (Prsa et al., 2015) displacements affects how participants process sensory 64 
input in the current trial. We previously observed that false expectations about the magnitude of self-65 
motion can have a drastic effect on path integration (Lakshminarasimhan et al., 2018). We wondered 66 
whether prior expectations about the temporal dynamics of self-motion, i.e. how velocities are temporally 67 
correlated, can also propagate over time to influence navigation. 68 

To explore how dynamics influence navigation across sensory modalities (visual, vestibular, or both), we 69 
have built upon a naturalistic paradigm of path integration in which participants navigate to a briefly-cued 70 
target location using a joystick to control their velocity in a virtual visual environment 71 
(Lakshminarasimhan et al., 2018; Alefantis et al., 2021). Here, we generalize this framework by varying 72 
both the control dynamics (joystick control varied along a continuum from velocity to acceleration) and 73 
the available sensory cues (vestibular, visual, or both). To achieve this, we designed a motion-cueing 74 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2020.09.21.307256doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307256
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

algorithm (MC) to render self-motion stimuli according to a joystick control input of maintained 75 
accelerations while maintaining correspondence between visual (optic flow) and inertial cues. Using a 76 
motion platform with six degrees of freedom to approximate the accelerations that an observer would feel 77 
under the imposed control dynamics, we ensured that the MC algorithm would generate matching visual 78 
and vestibular cues to closely approximate the desired self-motion (see Methods, Fig. 1 supplement 1 79 
and 2). The development of the MC algorithm represents a departure from classical paradigms of 80 
navigation research in humans (Chrastil et al., 2019; Israël et al., 1996; Koppen et al., 2019; Seemungal 81 
et al., 2007; Horst et al., 2015), as it helps eliminate artificial constraints while still allowing for the 82 
isolation of different sensory contributions, most notably vestibular/somatosensory cues, during active, 83 
volitional, steering.   84 

We found that participants’ steering responses were biased (undershooting), and the biases were more 85 
prominent in the vestibular condition. Furthermore, steering biases were strongly modulated by the 86 
underlying control dynamics. These findings suggest that inertial cues alone (as generated by motion 87 
cueing) lack the reliability to support accurate path integration in the absence of sustained acceleration, 88 
and that an accurate internal model of control dynamics is needed to make use of sensory observations 89 
when navigating in volatile environments.  90 

Results 91 

Task structure 92 
Human participants steered towards a briefly-cued target location on a virtual ground plane, with varying 93 
sensory conditions and control dynamics interleaved across trials. Participants sat on a motion platform in 94 
front of a screen displaying a virtual environment (Fig. 1A). Stereoscopic depth cues were provided using 95 
polarizing goggles. On each trial, a circular target appeared briefly at a random location (drawn from a 96 
uniform distribution within the field of view; Fig. 1B,C) and participants had to navigate to the 97 
remembered target location in the virtual world using a joystick to control linear and angular self-motion. 98 
The virtual ground plane was defined visually by a texture of many small triangles which independently 99 
appeared only transiently; they could therefore only provide optic-flow information and could not be used 100 
as landmarks. The self-motion process evolved according to Markov dynamics, such that the movement 101 
velocity at the next time step depended only on the current joystick input and the current velocity 102 
(Methods – Equation 1).  103 

A time constant for the control filter (control timescale) governed the control dynamics: in trials with a 104 
small time constant and a fast filter, joystick position essentially controlled velocity, providing participants 105 
with responsive control over their self-motion, resembling regular road-driving dynamics. However, when 106 
the time constant was large and the control filter was slow, joystick position mainly controlled 107 
acceleration, mimicking high inertia under viscous damping, as one would experience on an icy road 108 
where steering is sluggish (Fig. 1D right and 1E – top vs bottom). For these experiments, as the control 109 
timescale changed, the maximum velocity was adjusted so that the participant could reach the typical 110 
target in about the same amount of time on average. This design ensured that the effect of changing control 111 
dynamics would not be confused with the effect of integrating sensory signals over a longer or shorter 112 
time.  113 
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Concurrently, we manipulated the modality of sensory observations to generate three conditions: 1) a 114 
vestibular condition in which participants navigated in darkness, and sensed only the platform’s motion 115 
(note that this condition also engages somatosensory cues, see Methods), 2) a visual condition in which 116 
the motion platform was stationary and velocity was signaled by optic flow, and 3) a combined condition 117 
in which both cues were available (Fig. 1E – left to right). Across trials, sensory conditions were randomly 118 

 
Figure 1: (A) Experimental set up. Participants sit on a 6-degrees-of-freedom motion platform with a coupled rotator that 
allowed unlimited yaw displacements. Visual stimuli were back-projected on a screen (see Methods). The joystick participants 
used to navigate in the virtual world is mounted in front of the participants’ midline. (B) Schematic view of the experimental 
virtual environment. Participants use a joystick to navigate to a cued target (yellow disc) using optic flow cues generated by 
ground plane elements (brown triangles; Visual and Combined conditions only). The ground plane elements appeared transiently 
at random orientations to ensure they cannot serve as spatial or angular landmarks. (C) Left: Overhead view of the spatial 
distribution of target positions across trials. Red dot shows the starting position of the participant. Positions were uniformly 
distributed within the participant’s field of view. Right: Movement trajectories of one participant during a representative subset 
of trials. Starting location is denoted by the red dot. (D) Control dynamics. Inset: Linear joystick input from a subset of trials 
in the visual condition of an example participant. Left: Simulated maximum pulse joystick input (max joystick input = 1) (see 
also Fig. 1 supplement 3). This input is lowpass filtered to mimic the existence of inertia. The time constant of the filter varies 
across trials (time constant τ). In our framework, maximum velocity also varies according to the time constant τ of each trial to 
ensure comparable travel times across trials (see Methods – Control Dynamics). Right: the same joystick input (scaled by the 
corresponding maximum velocity for each τ) produces different velocity profiles for different time constants (𝜏𝜏 = 0.6𝑠𝑠 
corresponds to velocity control; 𝜏𝜏 = 3𝑠𝑠 corresponds to acceleration control; τ values varied randomly along a continuum across 
trials, see Methods). Also depicted is the brief cueing period of the target at the beginning of the trial (gray zone, 1 second 
long). (E) Markov decision process governing self-motion sensation (Methods – Equation 1). 𝑢𝑢, 𝑣𝑣, and 𝑜𝑜 denote joystick input, 
movement velocity, and sensory observations, respectively, and subscripts denote time indices. Note that due to the 2-D nature 
of the task, these variables are all vector-valued, but we depict them as scalars for the purpose of illustration. By varying the 
time constant, we manipulated the control dynamics (i.e., the degree to which the current velocity carried over to the future, 
indicated by the thickness of the horizontal lines) along a continuum such that the joystick position primarily determined either 
the participant’s velocity (top; thin lines) or acceleration (bottom; thick lines) (compare with (D) top and bottom, respectively). 
Sensory observations were available in the form of vestibular (left), optic flow (middle), or both (right). 
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interleaved while manipulation of the time constant followed a bounded random walk (Methods – 119 
Equation 2). Participants did not receive any performance-related feedback. 120 

Effect of sensory modality on performance 121 

We first compared the participants’ stopping locations on each trial to the corresponding target locations, 122 

separately for each sensory condition. We calculated the radial distance �̃�𝑟 and angular eccentricity 𝜃𝜃� of 123 

  
Figure 2: (A) Geometric definition of analysis variables. The gray solid line indicates an example trajectory. The target and 
response distance and angle relative to the starting position of the participant are given by 𝑟𝑟,𝜃𝜃  (thin lines) and �̃�𝑟, 𝜃𝜃� (thick 
lines), respectively. (B), (C) Example participant: Comparison of the radial distance �̃�𝑟 of an example participant’s response 
(final position) against the radial distance 𝑟𝑟 of the target (B), as well as the angular eccentricity of the participant’s response 
𝜃𝜃� versus target angle 𝜃𝜃 (C),  across all trials for one participant, colored according to the sensory condition (green: vestibular, 
cyan: visual, purple: combined visual and vestibular; Figure 2 source data 1). Radial and angular response gains were 
defined as the slope of the corresponding regressions. Black dashed lines show unity slope, and the solid lines represent 
slopes of the regression fits (intercept set to 0). (D) All participants: Radial and angular gains in each sensory condition 
plotted for each individual participant (Figure 2 source data 2). Ellipses show 68% confidence intervals of the distribution 
of data points for the corresponding sensory condition. Diamonds (centers of the ellipses) represent the mean radial and 
angular response gains across participants. Dashed lines indicate unbiased radial or angular position responses. Solid 
diagonal line has unit slope. (E) Magnitudes of radial and angular components of control inputs across sensory conditions 
for an example participant. Shaded regions represent ± 1 standard deviation across trials. The gray zone corresponds to the 
target presentation period. 
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the participants’ final position relative to the initial position (Fig. 2A), and compared them to the initial 124 
target distance 𝑟𝑟 and angle 𝜃𝜃, as shown for all trials (all time constants together) of a typical participant in 125 
Fig. 2B, C. This revealed biased performance with notable undershooting (participants stopped short of 126 
the true target location), in both distance and angle, which was well described by a linear model without 127 
intercept (Radial Distance 𝑅𝑅2 ± standard deviation – vestibular: 0.39±0.06, visual: 0.67±0.1, combined: 128 
0.64±0.11; Angular Eccentricity 𝑅𝑅2± standard deviation – vestibular: 0.85±0.06, visual: 0.95±0.05, 129 
combined: 0.96±0.04. Adding a non-zero intercept term offered negligible improvement; Radial Distance 130 
𝛥𝛥𝑅𝑅2 – vestibular: 0.02±0.02, visual: 0.03±0.03, combined: 0.03±0.02; Angular Eccentricity 𝛥𝛥𝑅𝑅2 – 131 
vestibular: 0.02±0.03, visual: 0.01±0.01, combined: 0.01±0.01). We refer to the slope of the linear 132 
regression as ‘response gain’: a response gain of unity indicates no bias, while gains larger (smaller) than 133 
unity indicate overshooting (undershooting). As shown with the example participant in Fig. 2B, C, there 134 
was substantial undershooting in the vestibular condition, whereas performance was relatively unbiased 135 
under the combined and visual conditions (see also Fig. 2 supplement 1A). These results were consistent 136 
across participants (Fig. 2D, mean radial gain ± standard deviation – vestibular: 0.76±0.25, visual: 137 
0.88±0.23, combined: 0.85±0.22, mean angular gain ± standard deviation – vestibular: 0.79±0.22, visual: 138 
0.98±0.14, combined: 0.95±0.12), and no significant sex differences were observed (see Fig. 2 139 
supplement 1B). The difference in response gain between modalities could be traced back to the control 140 
exerted by the subjects on the joystick. Both linear and angular components of control input had shorter 141 
duration in the vestibular condition (mean ± SEM of total area of joystick input across participants (a.u.): 142 
Radial – vestibular: 5.62±0.27, visual: 7.31±0.33, combined: 7.07±0.34; Angular – vestibular: 2.39±0.30, 143 
visual: 3.29±0.42, combined: 3.79±0.46), and produced smaller displacements, as summarized by the 144 
response gains (Fig. 2E, Fig. 2 supplement 2). 145 

Effect of control dynamics on performance 146 
To examine whether control dynamics affected the response gain, we performed three complementary 147 
analyses. First, we recomputed response gains by stratifying the trials into three groups of equal size based 148 
on the time constants. We found that smaller time constants (velocity control) were associated with smaller 149 
response gains (Fig. 3A; Table 1). This relationship was most pronounced in the vestibular condition, 150 
where larger time constants (acceleration control) resulted in better (closer to ideal) performance (Fig. 3A, 151 
green; see Discussion). Control dynamics had a smaller but considerable effect on steering responses in 152 
the visual and combined conditions, with participants exhibiting modest overshooting (undershooting) 153 
when the time constant was large (small) (Fig. 3A, cyan/purple).  154 

Second, we performed a fine-grained version of the above analysis by computing residual errors on each 155 
trial, i.e. the deviation of the response from the mean response predicted from target location alone 156 
(Methods – Equation 3). Since participants try to stop at their believed target location, ideally their mean 157 
responses should depend only on target location, and not on control dynamics. In other words, if 158 
participants adapted their control appropriately to the varying control dynamics, their responses should 159 
cluster around their mean response, and as a result, their residual errors should be centered around zero 160 
without any mean dependence on dynamics. However, we found a significant correlation between residual 161 
errors and the time constant across trials (Fig. 3B and C, Fig. 3 supplement 1, Table 2, see Methods; no 162 
significant sex differences were observed, and therefore are not investigated in subsequent analyses, see 163 
also Fig. 2 supplement 1C). This correlation, and the corresponding regression slopes, were substantially  164 
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higher in the vestibular condition (Mean Pearson’s r ± SEM: Radial component – vestibular: 0.52±0.02, 165 
visual: 0.36±0.03, combined: 0.37±0.03; Angular component – vestibular: 0.23±0.02, visual: 0.23±0.03, 166 
combined: 0.26±0.03; see also Table 2,3). Thus, for a given target distance, participants tended to travel 167 

 

Figure 3: Effect of control dynamics on 
participants’ responses. (A) Participant 
average of radial and angular response gains in 
each condition, with trials grouped into tertiles 
of increasing time constant τ. Error bars denote 
±1 SEM. (B) Effect of time constant 𝜏𝜏 on radial 
(left) and angular (right) residual error, for an 
example participant (Figure 3 source data 1). 
Solid lines represent linear regression fits and 
ellipses the 68% confidence interval of the 
distribution for each sensory condition. 
Dashed lines denote zero residual error (i.e. 
stopping location matches mean response). (C) 
Correlations of radial (𝜀𝜀𝑟𝑟) and angular (𝜀𝜀𝜃𝜃) 
residual errors with the time constant for all 
participants. Ellipses indicate the 68% 
confidence intervals of the distribution of data 
points for each sensory condition. Solid 
diagonal line has unit slope. Across 
participants, radial correlations, which were 
larger for the vestibular condition, were 
greater than angular correlations (See also 
Table 2). (D) Linear regression coefficients 
for the prediction of participants’ response 
location (final position: �̃�𝑟,𝜃𝜃�; left and right, 
respectively) from initial target location (𝑟𝑟,𝜃𝜃) 
and the interaction between initial target 
location and the time constant (𝑟𝑟𝜏𝜏,𝜃𝜃𝜏𝜏) (all 
variables were standardized before regressing, 
see Methods; Figure 3 source data 2). 
Asterisks denote statistical significance of the 
difference in coefficient values of the 
interaction terms across sensory conditions 
(paired t-test; *: p<0.05, **: p<0.01, ***: 
p<0.001; see main text). Error bars denote ±1 
SEM. Note a qualitative agreement between 
the terms that included target location only and 
the gains calculated with the simple linear 
regression model (Fig. 2B). (E) Comparison of 
actual and null-case (no adaptation) response 
gains, for radial (top) and angular (bottom) 
components, respectively (average across 
participants). Dashed lines represent unity 
lines, i.e. actual response gain corresponds to 
no adaptation. Inset: Regression slopes 
between actual and null-case response gains. A 
slope of 0 or 1 corresponds to perfect or no 
adaptation (gray dashed lines), respectively. 
Error bars denote ±1 SEM. 
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further when the time constant was larger (acceleration control), indicating they did not fully adapt their 168 
steering control to the underlying dynamics. 169 

Third, to quantify the contribution of the time constant in the participants’ responses, we expanded the 170 
linear model to accommodate a dependence of response (final stopping position) on target location, time 171 
constant, and their interaction. A partial correlation analyses revealed that the time constant contributed 172 
substantially to participants’ response gain, albeit only by modulating the radial and angular distance 173 
dependence (Table 4; Fig. 3 supplement 2; see Methods – Equation 4). Again, the contribution of the 174 
time constant-dependent term was much greater for the vestibular condition (Fig. 3D), especially for the 175 
radial distance (p-values of difference in coefficient values across modalities obtained by a paired t-test  ̶  176 
Radial: vestibular vs visual: 𝑝𝑝 < 10−4, vestibular vs combined: 𝑝𝑝 < 10−4; Angular: vestibular vs visual: 177 
𝑝𝑝 = 0.016, vestibular vs combined: 𝑝𝑝 = 0.013). While perfect adaptation should lead to response gain 178 
that is independent of control dynamics, all three independent analyses revealed that control dynamics did 179 
substantially influence the steering response gain, exposing participants’ failure to adapt their steering to 180 
the underlying dynamics. Adaptation was lowest for the vestibular condition; in contrast, for the visual 181 
and combined conditions, the response gain was less affected indicating greater compensation when visual 182 
information was available. 183 

We quantified the extent to which participants failed to adapt to the control dynamics, by simulating a null 184 
case for no adaptation. Specifically, we generated null-case trajectories by using the steering input from 185 
actual trials and re-integrating it with time constants from other trials. In this set of null-case trajectories, 186 
the steering control corresponds to different time constants; in other words, steering is not adapted to the 187 
underlying dynamics (see Methods). We then grouped these trajectories based on the simulation time 188 
constant (as in Fig. 3A) and computed the corresponding response gains. We found that the true response 189 
gains in the vestibular condition where much closer to the no-adaptation null case, compared to 190 
visual/combined conditions (Fig. 3E). Interestingly, this finding was more prominent in the radial 191 
component of the response gain (Fig. 3E insets), consistent with our earlier observations of a stronger 192 
influence of the dynamics on the radial component of the responses. 193 

We have shown how various measures of the participants’ final responses (stopping positions, response 194 
gain, residual errors) are influenced by the time constant of the dynamics. This large dependence of the 195 
final responses on the time constant exposes participants’ failure to fully adapt their steering to the 196 
underlying dynamics. In other words, the influence of the dynamics on steering control was relatively 197 
weak, especially in the vestibular condition. 198 

For best performance, however, control dynamics should influence the time course of steering behavior. 199 
We directly quantified the influence of the control dynamics on steering by comparing participants’ 200 
braking (negative control input) across time constants: when the time constant is large, we ideally expect 201 
to see more braking as a countermeasure for the sluggish control (Fig. 1D) to minimize travel duration 202 
(see Methods). Indeed, participants do tend to brake more for higher time constants, but this effect is 203 
weaker in the vestibular condition (Fig. 4 and 4 inset). Nevertheless, correlations between the time 204 
constant and cumulative braking (total area below zero linear control input) were significant in all sensory 205 
conditions (Mean Pearson’s r ± SEM – vestibular: 0.20±0.03, visual: 0.62±0.04, combined: 0.57±0.04; p-206 
values of Pearson’s r difference from zero – vestibular: p=10-5, visual: p<10-7, combined: p<10-7). Overall, 207 
it appears that behavior in the vestibular condition is minimally influenced by the dynamics (i.e. smaller 208 
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modulation of control input by the time constant, as shown by the cumulative braking). When optic flow 209 
is available, however, participants are more flexible in adjusting their control.  210 

We have shown previously that accumulating sensory noise over an extended time (~10s) would lead to 211 

a large uncertainty in the participant’s beliefs about their position, causing them to undershoot 212 
(Lakshminarasimhan et al. 2018). The exact amount of undershooting depends both on the reliability of 213 
self-motion cues, which determines the instantaneous uncertainty in the self-motion estimate, and on 214 
travel duration, which governs how much uncertainty is accumulated while navigating to the target. With 215 
recent findings ascribing uncertainty accumulation to noise in the velocity input (Stangl et al., 2020), the 216 
observed differences in navigation performance across sensory modalities can be readily attributed to 217 
greater measurement noise (lower reliability) in vestibular signals. On the other hand, we observed 218 
performance differences across control dynamics within each sensory modality, so those differences 219 
cannot be attributed to differences in the reliability of self-motion cues (instantaneous uncertainty). 220 
However, it might seem that this effect of control dynamics must be due to either differences in travel 221 
duration or velocity profiles, which would both affect the accumulated uncertainty. We adjusted stimulus 222 
parameters to ensure that the average travel time and average velocity were similar across different control 223 
dynamics (Methods – Equation 1.2-1.10), however, we found that travel duration and average velocity 224 
depend weakly on the time constant in some participants. Simulations suggest that both dependencies are 225 
a consequence of maladaptation to the dynamics rather than a cause of the observed effect of the dynamics 226 
on the responses. Interestingly, the dependence is stronger in the vestibular condition where there is less 227 
adaptation to the dynamics, agreeing with our simulations (Fig. 5 supplement 1A,B). Differences in 228 
velocity profiles is also an unlikely explanation since their expected effect on the participants’ responses 229 
(undershoot) is the opposite of the observed effect of the control dynamics (overshooting tendency; Fig. 230 
5 supplement 1C). Consequently, unlike the effect of sensory modality on response gain, neither 231 
instantaneous nor accumulated differences in the uncertainty can fully account for the influence of control 232 

 
Figure 4: Linear and angular control inputs for each condition grouped based on the time constant (see legend; bottom 
right), for an example participant. Shaded regions represent ±1 standard deviation across trials. Yellow zones denote target 
presentation period. Inset: Cumulative braking (i.e. absolute sum of negative linear input) for each condition across time 
constant groups. Braking was averaged across trials. Error bars denote ±1SEM across participants. 
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dynamics, i.e. the time constant. Instead, we will now show that the data are well explained by strong prior 233 
expectations about motion dynamics that cause a bias in estimating the time constant.  234 

Modelling the effect of control dynamics across sensory modalities 235 
From a normative standpoint, to optimally infer movement velocity, one must combine sensory 236 
observations with the knowledge of the time constant. Misestimating the time constant would produce 237 
errors in velocity estimates, which would then propagate to position estimates, leading control dynamics 238 
to influence response gain (Fig. 5A, middle-right). This is akin to misestimating the slipperiness of an ice 239 
patch on the road causing an inappropriate steering response, that would culminate in a displacement that 240 
differs from the intended one (Fig. 5 supplement 2). However, in the absence of performance-related 241 
feedback at the end of the trial, participants would be unaware of this discrepancy, wrongly believing that 242 
the actual trajectory was indeed the intended one. In other words, participants’ imperfect adaptation to 243 
changes in control dynamics could be a consequence of control dynamics misestimation.  244 

We tested the hypothesis that participants misestimated the time constant using a two-step model that 245 
reconstructs the participants’ believed trajectories according to their point estimate of the time constant τ, 246 
as follows. First, a Bayesian observer model infers the participant’s belief about τ on individual trials, i.e. 247 
the subjective posterior distribution over the time constant (τ inference step; Fig. 5A, left). Second, we 248 
used the median of that belief to reconstruct the believed trajectory by integrating the actual joystick input 249 
according to the estimated time constant on that trial (integration step), resulting in a believed stopping 250 
location (Fig. 5A, middle-right). In the absence of bias (response gain of one), the believed stopping 251 
locations should land on or near the target. However, various unmeasurable fluctuations in that belief 252 
across trials should lead to variability clustered around the target location. When the behavior is biased 253 
(response gain different from one, as was the case here – Fig. 2D), this cluster should instead be centered 254 
around the participants’ mean belief for that target location (determined from their biased responses and 255 
henceforth referred to as mean stopping location). Since the participants’ goal is to stop as close to their 256 
perceived target location as possible, the deviation of believed stopping locations from the mean stopping 257 
location for a given target should be small. We call this deviation the subjective residual error. Therefore, 258 
we inferred the parameters of the Bayesian model separately for each participant by minimizing the 259 
subjective residual errors induced by the control dynamics using the principle of least-squares (see 260 
Methods for further details). We next describe the parameters of the Bayesian model and then describe 261 
the results of fitting the model to our data.  262 

Because the time constant τ is always positive, we model both the prior distribution and the likelihood 263 
function over the variable 𝜑𝜑 = log 𝜏𝜏 as Gaussians in log-space. We parameterized both the prior and the 264 
likelihood with a mean (𝜇𝜇) and standard deviation (𝜎𝜎). The mean of the prior (𝜇𝜇) was allowed to freely 265 
vary across sensory conditions but assumed to remain fixed across trials. On each trial, the likelihood was 266 
assumed to be centered on the actual value of the log time-constant 𝜏𝜏∗ on that trial according to 𝜇𝜇 = 𝜑𝜑∗ =267 
log 𝜏𝜏∗ and was therefore not a free parameter. Finally, we set the ratio 𝜆𝜆 of prior over likelihood 𝜎𝜎, to 268 
freely vary across sensory conditions. Thus, for each sensory condition, we fit two parameters: the 𝜇𝜇 of 269 
the prior, and the ratio (𝜆𝜆) of prior 𝜎𝜎 to likelihood 𝜎𝜎. As mentioned above, we fit the model to minimize 270 
the difference between their believed stopping locations and their experimentally-measured mean stopping 271 
location (subjective residual errors), using a least-squares approach (Methods) and obtained one set of 272 
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parameters for each condition. Finally, the participant’s estimated time-constant �̂�𝜏 on each trial was taken 273 
to be the median of the best-fit model, which equals the median of the distribution over 𝜑𝜑 (Fig. 5A, left). 274 

  
Figure 5: (A) Left: Illustration of the Bayesian estimator model. We fit two parameters: the ratio λ of standard deviations of 
prior and likelihood (𝜆𝜆 = 𝜎𝜎𝑝𝑝/ 𝜎𝜎𝑙𝑙) and the mean of the prior (𝜇𝜇𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟) of the normally distributed variable 𝜑𝜑 = log 𝜏𝜏 (black 
dotted box).  Likelihood function is centered on the log-transformation of the actual τ, 𝜑𝜑∗ = log 𝜏𝜏∗ (Black dashed line). The 
time constant estimate �̂�𝜏 corresponded to the median of the posterior distribution over 𝜏𝜏, which corresponds to the median 
𝜑𝜑�  over 𝜑𝜑, �̂�𝜏 = exp (𝜑𝜑�), (red dotted box; red dashed line; see Methods).  Middle: Control dynamics implied by the actual 
time constant 𝜏𝜏 (top; gray shade) and the estimated time constant �̂�𝜏 (bottom; red shade). 𝑢𝑢, 𝑣𝑣, and 𝑜𝑜 denote joystick input, 
movement velocity, and sensory observations respectively, and subscripts denote time indices.  𝑣𝑣� denotes the inferred 
velocity implied by the model. Misestimation of the time constant leads to erroneous velocity estimates about self-motion 𝑣𝑣� 
which result in biased position beliefs. Right: Illustration of the actual (black) and believed (red) trajectories produced by 
integrating (box) the actual velocity 𝑣𝑣 and the estimated velocity 𝑣𝑣�, respectively. White and yellow dots denote the starting 
and target position, respectively. Inset: Illustration of correlated (black dots) and uncorrelated (red dots) residual errors with 
the time constant for actual and model-implied responses (simulated data). For simplicity, we depict residual errors as one-
dimensional and assume unbiased responses (response gain of 1). Blown-up dots with yellow halo correspond to the actual 
and model-implied trajectories of the right panel. Solid black horizontal line corresponds to zero residual error (i.e. stop on 
target location). (B) Comparison of correlations between real and subjective residual errors with τ (Figure 5 source data 1). 
On the right, participant averages of these correlations are shown. Colored bars: ‘Subjective’ correlations, Open bars: Actual 
correlations. Error bars denote ±1 SEM across participants. Asterisks denote the level of statistical significance of differences 
between real and subjective correlations (*: p<0.05, **: p<0.01, ***: p<0.001). 
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By integrating the subject’s joystick inputs on each trial using �̂�𝜏 rather than the actual time-constant 𝜏𝜏, we 275 
computed the believed stopping location and the subjective residual errors implied by the best-fit model. 276 

We then compared the correlations between the time constant and the residual errors for real responses 277 
(from data in Fig. 3B,C) or subjective responses (from model), separately for radial and angular 278 
components. Because participants try to stop at their believed target location, the believed stopping 279 
position should depend only on target location and not on the control dynamics. Any departure would 280 
suggest that participants knowingly failed to account for the effect of the control dynamics, which would 281 
manifest as a dependence of the subjective residual errors on the time constant τ. In other words, a good 282 
model of the participants’ beliefs would predict that the subjective residual errors should be uncorrelated 283 
with the time constant τ (Fig. 5A inset - red) even if the real residual errors are correlated with the time 284 
constant (Fig. 5A inset - black). In all cases, we observed that the correlation between residual error and 285 
time constant was indeed significantly smaller when these errors were computed using the subjective 286 
(believed) rather than real stopping location (Fig. 5B). In fact, subjective residual errors were completely 287 
uncorrelated with the time constant suggesting that the Bayesian model is a good model of participants’ 288 
beliefs, and that the apparent influence of control dynamics on behavioral performance was entirely 289 
because participants misestimated the time constant of the underlying dynamics.  290 

We next examined the model posterior estimates to assess how subjects’ internal estimate of the control 291 
dynamics departed from the true dynamics. The relationship between real and model-estimated time 292 
constants for all participants can be seen in Fig. 6A. In the vestibular condition, all participants 293 

  

Figure 6: Model parameters. (A) Relationship between the model-estimated and actual time constant across all participants 
in vestibular (green), visual (cyan) and combined (purple) conditions. Participant averages are superimposed (thick lines).  
Dashed line: unbiased estimation (Figure 6 source data 1). (B) Fitted model parameters: ratio 𝜆𝜆 of prior (𝜎𝜎𝑝𝑝) over likelihood 
(𝜎𝜎𝑙𝑙) standard deviation and mean (𝜇𝜇) of prior. Error bars denote ±1 SEM. Dashed lines represent the corresponding values of 
the sampling distribution of 𝜑𝜑 = log 𝜏𝜏, which is normal (see Methods; Figure 6 source data 2). The prior distribution’s 𝜇𝜇 was 
comparable in the vestibular condition to the 𝜇𝜇 of the actual sampling distribution (sampling distribution 𝜇𝜇: 0.58 log 𝑠𝑠 – p-value 
of prior 𝜇𝜇 difference obtained by bootstrapping – vestibular: 𝑝𝑝 = 0.014, visual: 𝑝𝑝 =<  10−7; combined: 𝑝𝑝 <  10−7). Asterisks 
denote the level of statistical significance of differences in the fitted parameters across conditions (*: p<0.05, **: p<0.01, ***: 
p<0.001).   
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consistently misestimated τ, exhibiting a substantial regression towards the mean (Fig. 6A, green). This 294 
effect was much weaker in the visual condition. Only a few participants showed relatively flat estimates, 295 
with the majority showing smaller departures from ideal estimates (dashed line). The data for the 296 
combined condition followed a similar trend, with properties between those in the visual and vestibular 297 
conditions (Fig. 6A, purple). These results suggest that the better control adaptation in the visual and 298 
combined conditions shown in Fig. 3 is due to participants’ improved estimates of the time constant when 299 
optic flow was available. 300 

The source of inaccuracies in the estimated time constant can be understood by examining the model 301 
parameters (Fig. 6B). The ratio 𝜆𝜆 of prior over likelihood standard deviations was significantly lower in 302 
the vestibular condition than other conditions, suggesting stronger relative weighting of the prior over the 303 
likelihood (Fig. 6B left, green bar; mean ratio 𝜆𝜆  ± standard SEM – vestibular: 0.30±0.09, visual: 304 
1.02±0.17, combined: 0.80±0.10; p-value of ratio 𝜆𝜆 paired differences obtained by bootstrapping - 305 
vestibular vs visual: 𝑝𝑝 = 0.0007, vestibular vs combined: 𝑝𝑝 = 0.0087; visual vs combined: 𝑝𝑝 =0.016). 306 
Notably, the ratio was close to 1 for the visual and combined conditions, suggesting equal weighting of 307 
prior and likelihood. Thus, participants’ estimate of the control dynamics in the vestibular condition was 308 
plagued by a combination of strong prior and weak likelihood, which explains the much stronger 309 
regression towards the mean in Fig. 6A.  310 

Alternative models 311 

To test whether our assumption of a static prior distribution over time constants was reasonable, we fit an 312 
alternative Bayesian model in which the prior distribution was updated iteratively on every trial, as a 313 
weighted average of the prior on the previous trial and the current likelihood over 𝜑𝜑 (Dynamic prior model; 314 
see Methods). For this version, the initial prior 𝜇𝜇 was taken to be the time constant on the first trial, and 315 
we once again modeled the likelihood and prior as normal distributions over the log- transformed variable, 316 
𝜑𝜑, where the likelihood was centered on the actual 𝜑𝜑 and was therefore not a free parameter. Thus, we fit 317 
one parameter: the ratio 𝜆𝜆 of prior 𝜎𝜎 over likelihood 𝜎𝜎. On each trial, the relative weighting of prior and 318 
likelihood responsible for the update of the prior depended solely on 𝜆𝜆; that is, the relationship between 319 
their corresponding 𝜎𝜎 (i.e. relative widths). The performance of the static and dynamic prior models was 320 
comparable in all conditions, for both distance and angle, suggesting that a static prior is adequate in 321 
explaining the participants’ behavior on this task (Fig. 7; light versus dark bars). In line with our 322 
expectations, when updating the prior in the dynamic model, the weighting of the previous-trial prior 323 
received significantly more weight in the vestibular condition (in the range of [0,1]; mean prior weights ± 324 
SEM – vestibular: 0.93±0.03, visual: 0.48±0.10, combined: 0.61±0.09; p-value of paired weight 325 
differences obtained by bootstrapping - vestibular vs visual: 𝑝𝑝 = 10−5, vestibular vs combined: 𝑝𝑝 = 4 ∙326 
10−4; visual vs combined: 𝑝𝑝 =0.08). The comparable goodness of models with static and dynamic priors 327 
suggest that sensory observations were not too reliable to cause rapid changes in prior expectations during 328 
the course of the experiment. 329 

At the other extreme, to test whether participants used sensory observations at all to estimate control 330 
dynamics, we compared the static prior Bayesian model to a parsimonious model that assumed a fixed 331 
time constant across all trials (i.e. completely ignoring changes in control dynamics). This latter model 332 
can be understood as a Bayesian model instantiated with a very strong static prior. In line with our 333 
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expectations (see Fig. 6A), this latter model performed comparably in the vestibular condition, but 334 
substantially worse in the visual and combined conditions (Fig. 7).  335 

Due to the correlated nature of the random walk process dictating the evolution of time constants, an 336 

alternative by which participants could get away without estimating the time constant in the vestibular 337 
condition would be to carry over their estimate from the previous combined/visual trial to the current 338 
vestibular trial. To test this, we considered two models: the time constant estimate in the current vestibular 339 
trial was taken to be either the real time constant, or the posterior estimate of the time constant from the 340 
previous visual/combined trial. Neither model, however, could account for the participants’ behavior, as 341 
they could not fully explain away the correlation between the residual errors and the time constant (Fig. 342 
7 supplement 1). Intuitively, although choosing actions with respect to the previous trial’s time constant 343 
should result in estimates that regress towards the mean, the predicted effect is weaker than that observed 344 
in the data.  345 

Finally, we tested a variation of previously suggested sensory feedback control models (Glasauer et al., 346 
2007; Grasso et al., 1999) where a controller relies solely on sensory inputs to adjust their control without 347 
explicitly estimating the latent variables governing the control dynamics. Specifically, the model assumes 348 
that participants implement a type of bang-bang control that switches at a certain distance from the target 349 

 

Figure 7: Comparison of the correlations between the actual τ and the subjective residual errors implied by three different τ-
estimation models (Bayesian estimation with a Static prior (S), Bayesian estimation with a Dynamic prior (D), Fixed estimate 
(F)). We tested the hypotheses that either the prior distribution should not be static or that the participants ignored changes in 
the control dynamics and navigated according to a fixed time constant across all trials (fixed τ-estimate model; see Methods). 
For this, we compared the correlations between the subjective residual error and the actual trial τ that each model produces. 
The Dynamic prior model performs similarly to the Static prior model in all conditions, indicating that a static prior is adequate 
in explaining our data (p-values of paired t-test between correlation coefficients of the two models: Distance – vestibular: p = 
0.96, visual: p = 0.19, combined: p = 0.91; Angle – vestibular: p = 0.87, visual: p = 0.09, combined: p = 0.59). For visual and 
combined conditions, the fixed τ model not only fails to minimize the correlations but, in fact, strongly reverses it, for both 
distance (left) and angle (right). Since these correlations arise from the believed trajectories that the fixed τ model produces, 
this suggests that participants knowingly stop before their believed target location for higher time constants. Model 
performance was only comparable in the vestibular condition, where the average correlation of the fixed τ model (F) was 
contained within the 95% confidence intervals (CI) of the static prior Bayesian model (S), for both distance and angle (Distance 
– F: mean Pearson’s correlation coefficient ρ = 0.03, S: 95% CI of Pearson’s correlation coefficient ρ = [-0.10 0.25]; Angle – 
F: mean Pearson’s correlation coefficient ρ = -0.01, S: 95% CI of Pearson’s correlation coefficient ρ = [-0.12 0.15]). Error bars 
denote ± 1 SEM. 
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(or more accurately, the mean response). However, this model predicts a much stronger dependence of 350 
the responses on the dynamics compared to our data, and characteristics of the predicted control input 351 
differ significantly from the actual control (Fig. 7 supplement 2). Overall, our results suggest that optic 352 
flow, but not vestibular signals, primarily contributes to inferring the latent velocity dynamics.   353 

Discussion 354 
We showed that human participants can navigate using different sensory cues and that changes in the 355 
control dynamics affect their performance. Specifically, we showed that participants can path integrate to 356 
steer towards a remembered target location quite accurately in the presence of optic flow. In contrast, 357 
inertial (vestibular/somatosensory) cues generated by motion cueing alone lacked the reliability to support 358 
accurate path integration, leading to substantially biased responses under velocity control. Performance 359 
was also influenced by the changing control dynamics in all sensory conditions. Because control dynamics 360 
were varied on a trial-by-trial basis, sensory cues were crucial for inferring those dynamics. We used 361 
probabilistic inference models to show that the observed responses are consistent with estimates of the 362 
control dynamics that were biased toward the center of the experimental distribution. This was particularly 363 
strong under the vestibular condition such that the response gain substantially increased as the motion 364 
dynamics tended towards acceleration control. Although control dynamics were correlated across trials, 365 
our models showed that participants did not take advantage of those correlations to improve their 366 
estimates. 367 

Relation to past work 368 
In the paradigm used here, participants actively controlled linear and angular motion, allowing us to study 369 
multisensory path integration in two dimensions with few constraints. This paradigm was made possible 370 
by the development of a motion-cueing (MC) algorithm to render visual and vestibular cues either 371 
synchronously or separately. In contrast, previous studies on human path integration used restricted 372 
paradigms in which motion was either one dimensional or passively rendered, and participants’ decisions 373 
where typically reduced to end-of-trial binary evaluations of relative displacement (Campos et al., 2012; 374 
Chrastil et al., 2016, 2019; Jürgens & Becker, 2006; Koppen et al., 2019; Horst et al., 2015; Tramper & 375 
Medendorp, 2015). As a result, findings from past studies that evaluate the contributions of different 376 
sensory modalities to self-motion perception  (Chrastil et al., 2019; Israël et al., 1996; Koppen et al., 2019; 377 
Seemungal et al., 2007; Horst et al., 2015) may be more limited in generalizing to real-world navigation.  378 

Our results show that, at least in humans, navigation is driven primarily by visual cues under conditions 379 
of near-constant travel velocity (velocity control). This dominance of vision suggests that the reliability 380 
of the visual cues is much higher than vestibular cues (as generated by our platform), as corroborated by 381 
the data from the combined condition in which performance resembles the visual condition. This makes 382 
sense because the vestibular system is mainly sensitive to acceleration, exhibiting higher sensitivity to 383 
higher-frequency motion compared to the visual system (Karmali et al., 2014). Consequently, it may only 384 
be reliable when motion is dominated by acceleration. This interpretation is further supported by the 385 
observation that participants’ vestibular performance was a lot less biased in the regime of acceleration 386 
joystick control, where accelerations are prolonged during navigation. 387 

Experimental constraints in past navigation studies have also precluded examining the influence of control 388 
dynamics. In fact, the importance of accurately inferring control dynamics, which are critical for 389 
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predicting the sensory consequences of actions, has largely been studied in the context of limb control and 390 
motor adaptation (Burdet et al., 2001; Kording et al., 2007; Krakauer et al., 1999; Lackner & Dizio, 1994; 391 
Shadmehr & Mussa-Ivaldi, 1994; Takahashi et al., 2001). Here, we provide evidence for the importance 392 
of accurately inferring control dynamics in the context of path integration and spatial navigation. Although 393 
participants were not instructed to expect changes in the latent dynamics and received no feedback, we 394 
showed that they nevertheless partly adapted to those dynamics while exhibiting a bias toward prior 395 
expectations about these dynamics. This biased estimation of control dynamics led to biased path 396 
integration performance. This result is analogous to findings about the effect of changing control dynamics 397 
in motor control: first, adaptation to the dynamics happens even in the absence of performance-related 398 
feedback (Batcho et al., 2016; Lackner & Dizio, 1994) and, second, this adaptation relies on prior 399 
experience (Arce et al., 2009) and leads to systematic errors when knowledge of the dynamics is inaccurate 400 
(Körding et al., 2004). Thus, participants try to exploit the additional information that the dynamics 401 
contain about their self-motion in order to achieve the desired displacement.  402 

A Bayesian estimator with a static prior over the dynamics sufficiently explained participants’ beliefs in 403 
our data, while results were comparable with a dynamic prior that was updated at every trial. This could 404 
be attributed to the structure of the random walk of the control dynamics across trials, as a static prior is 405 
not as computationally demanding and potentially more suitable for fast changes in the time constant. 406 
These Bayesian models attempt to explain behavior in an optimal way given the task structure. Meanwhile, 407 
alternative suboptimal models (fixed estimate, carry-over estimate, sensory feedback model) failed to 408 
explain behavior successfully, especially when optic flow was available. These results strongly favor 409 
underlying computations within the context of optimality in the presence of optic flow. 410 

Task performance was substantially worse in the vestibular condition, in a manner suggesting that 411 
vestibular inputs from motion cueing lack the reliability to precisely estimate control dynamics on 412 
individual trials. Nevertheless, the vestibular system could still facilitate inference by integrating trial 413 
history to build expectations about their statistics. Consistent with this, the mean of the prior distribution 414 
over the dynamics fit to data was very close to the mean of the true sampled distribution, suggesting that 415 
even if within-trial vestibular observations are not sufficient, participants possibly combine information 416 
about the dynamics across trials to construct their prior beliefs. This is consistent with the findings of Prsa 417 
et al., 2015, where vestibular cues were used to infer an underlying pattern of magnitude of motion across 418 
trials. However, the measurement of the dynamics in that study substantially differs from ours: here, 419 
motion dynamics are inferred using self-motion cues within each trial whereas in (Prsa et al., 2015), the 420 
dynamics were inferred by integrating observations about the magnitude of the displacement across trials. 421 
If vestibular cues can in fact support inference of dynamics – as recent findings suggest in eye-head gaze 422 
shifts (Saǧlam et al., 2014) – a common processing mechanism could be shared across sensory modalities. 423 
Overall, this finding highlights the importance of incorporating estimates of the control dynamics in 424 
models of self-motion perception and path integration. 425 

Limitations and future directions 426 
Note that restrictions of our motion platform limited the range of velocities that could be tested, allowing 427 
only for relatively small velocities (see Methods). Consequently, trial durations were long, but the motion 428 
platform also restricted total displacement, so we could not test larger target distances. We previously 429 
studied visual path integration with larger velocities and our results in the visual and combined conditions 430 
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are comparable for similar travel times (as trials exceeded durations of 10 seconds, undershooting became 431 
more prevalent; Lakshminarasimhan et al., 2018). However, it is unclear how larger velocities (and 432 
accelerations) would affect participants’ performance (especially under the vestibular condition) and 433 
whether the present conclusions are also representative of the regime of velocities not tested. 434 

The design of the Motion Cueing algorithm allowed us to circumvent the issues associated with the 435 
physical limitations of the platform to a large degree. This was achieved in part by exploiting the 436 
tilt/translation ambiguity and substituting linear translation with tilt (see Methods). However, high 437 
frequency accelerations, as those found at movement onset, generated tilts that briefly exceeded the tilt-438 
detection threshold of the semicircular canals (Fig. 1 Suppl. 2). Although the duration of suprathreshold 439 
stimulation was very small, we cannot exclude the possibility that the perceived tilt affected the 440 
interpretation of vestibular inputs. For example, participants may not attribute tilt to linear translation, 441 
hence underestimating their displacement. This, however, would lead to overshooting to compensate for 442 
the lack of perceived displacement, which is not what we observed in our experiment. Another potential 443 
explanation for the poor vestibular performance could be that participants perceive tilt as a conflicting cue 444 
with respect to their expected motion or visual cues. In that case, participants would only use the vestibular 445 
inputs to a small extent if at all. Manipulating vestibular inputs (e.g. gain, noise manipulations) in future 446 
experiments, either alone or in conjunction with visual cues, would offer valuable insights on two fronts: 447 
first, to help clarify the efficiency of our Motion Cueing algorithm and its implications on the design of 448 
driving simulators in the future, and second, to precisely quantify the contribution of vestibular cues to 449 
path integration in natural settings.  450 

For the sake of simplicity, we modeled each trial’s control dynamics as a single measurement per trial 451 
when, in reality, participants must infer the dynamics over the course of a trial using a dynamic process 452 
of evidence accumulation. Specifically, participants must measure their self-motion velocity over time 453 
and combine a series of measurements to extract information about the underlying dynamics. Although 454 
we were able to explain the experimental findings of the influence of control dynamics on steering 455 
responses with our model, this approach could be expanded into a more normative framework using 456 
hierarchical Bayesian models (Mathys et al., 2011) to infer subjective position estimates by marginalizing 457 
over possible control dynamics. 458 

One interesting question is whether providing feedback would eliminate the inference bias of the control 459 
dynamics estimation and future studies should explicitly test this hypothesis. Furthermore, it would be 460 
interesting to jointly introduce sensory conflict and manipulate sensory reliability to study dynamic 461 
multisensory integration such that sensory contributions during navigation can be better disentangled. 462 
Although it has been shown that cue combination takes place during path integration (Tcheang et al., 463 
2011), previous studies have had contradicting results regarding the manner in which body-based and 464 
visual cues are combined (Campos et al., 2010; Chrastil et al., 2019; Koppen et al., 2019; Petrini et al., 465 
2016; Horst et al., 2015). Since visual and vestibular signals differ in their sensitivity to different types of 466 
motion (Karmali et al., 2014), the outcomes of their integration may depend on the self-motion stimuli 467 
employed. Combined with hierarchical models of self-motion inference that considers the control 468 
dynamics, it is possible to develop an integrated, multi-level model of navigation, while constraining 469 
dramatically the hypothesized brain computations and their neurophysiological correlates.  470 
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Methods 471 
EQUIPMENT AND TASK 472 

15 participants (9 Male, 6 Female; all adults in the age group 18-32) participated in the experiments. Apart 473 
from two participants, all participants were unaware of the purpose of the study. Experiments were first 474 
performed in the above two participants before testing others. All experimental procedures were approved 475 
by the Institutional Review Board at Baylor College of Medicine and all participants signed an approved 476 
consent form. 477 

Experimental setup 478 

The participants sat comfortably on a chair mounted on an electric motor allowing unrestricted yaw 479 
rotation (Kollmorgen motor DH142M-13-1320, Kollmorgen, Radford, VA), itself mounted on a six-480 
degree-of-freedom motion platform (comprised of MOOG 6DOF2000E, Moog Inc., East Aurora, NY). 481 
Participants used an analog joystick (M20U9T-N82, CTI electronics, Stratford, CT) with two degrees of 482 
freedom and a circular displacement boundary to control their linear and angular speed in a virtual 483 
environment based on visual and/or vestibular feedback. The visual stimulus was projected (Canon LV-484 
8235 UST Multimedia Projector, Canon USA, Melville, NY) onto a large rectangular screen (width × 485 
height: 158 × 94 cm) positioned in front of the participant (77 cm from the rear of the head). Participants 486 
wore crosstalk free ferroelectric active-shutter 3D goggles (RealD CE4s, ColorLink Japan, Ltd., Tokyo, 487 
Japan) to view the stimulus. Participants wore headphones generating white noise to mask the auditory 488 
motion cues. The participants’ head was fixed on the chair using an adjustable CIVCO FirmFit 489 
Thermoplastic face mask (CIVCO, Coralville, IA).  490 

Spike2 software (Power 1401 MkII data acquisition system from Cambridge Electronic Design Ltd., 491 
Cambridge, United Kingdom) was used to record joystick and all event markers for offline analysis at a 492 

sampling rate of 833 1
3
 Hz. 493 

Visual stimulus 494 

Visual stimuli were generated and rendered using C++ Open Graphics Library (OpenGL) by continuously 495 
repositioning the camera based on joystick inputs to update the visual scene at 60 Hz. The camera was 496 
positioned at a height of 70cm above the ground plane, whose textural elements lifetimes were limited 497 
(~250ms) to avoid serving as landmarks. The ground plane was circular with a radius of 37.5m (near and 498 
far clipping planes at 5cm and 3750cm respectively), with the participant positioned at its center at the 499 
beginning of each trial. Each texture element was an isosceles triangle (base × height 5.95 × 12.95 cm) 500 
that was randomly repositioned and reoriented at the end of its lifetime. The floor density was held 501 
constant across trials at 𝜌𝜌 = 2.5 elements/m2. The target, a circle of radius 25cm whose luminance was 502 
matched to the texture elements, flickered at 5Hz and appeared at a random location between 𝜃𝜃 = ±38° 503 
of visual angle at a distance of 𝑟𝑟 = 2.5 − 5.5 m (average distance  �̅�𝑟  =  4 m) relative to where the 504 
participant was stationed at the beginning of the trial. The stereoscopic visual stimulus was rendered in an 505 
alternate frame sequencing format and participants wore active-shutter 3D goggles to view the stimulus. 506 

Behavioral task – Visual, Inertial and Multisensory motion cues 507 
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Participants were asked to navigate to a remembered target (‘firefly’) location on a horizontal virtual plane 508 
using a joystick, rendered in 3D from a forward-facing vantage point above the plane. Participants pressed 509 
a button on the joystick to initiate each trial and were tasked with steering to a randomly placed target that 510 
was cued briefly at the beginning of the trial. A short tone at every button push indicated the beginning of 511 
the trial and the appearance of the target. After one second, the target disappeared, which was a cue for 512 
the participant to start steering. During steering, visual and/or vestibular/somatosensory sensory feedback 513 
was provided (see below). Participants were instructed to stop at the remembered target location, and then 514 
push the button to register their final position and start the next trial. Participants did not receive any 515 
feedback about their performance. Prior to the first session, all participants performed about ten practice 516 
trials to familiarize themselves with joystick movements and the task structure. 517 

The three sensory conditions (visual, vestibular, combined) were randomly interleaved. In the visual 518 
condition, participants had to navigate towards the remembered target position given only visual 519 
information (optic flow). Visual feedback was stereoscopic, composed of flashing triangles to provide 520 
self-motion information but no landmark. In the vestibular condition, after the target disappeared, the 521 
entire visual stimulus was shut off too, leaving the participants to navigate in complete darkness using 522 
only vestibular/somatosensory cues generated by the motion platform. In the combined condition, 523 
participants were provided with both visual and vestibular information during their movement. 524 

Independently of the manipulation of the sensory information, the properties of the motion controller also 525 
varied from trial to trial. Participants experienced different time constants in each trial, which affected the 526 
type and amount of control that was required to complete the task. In trials with short time constants, 527 
joystick position mainly controlled velocity, whereas in trials with long time constants, joystick position 528 
approximately controlled the acceleration (explained in detail in Control Dynamics below). 529 

Each participant performed a total of about 1450 trials (mean ± standard deviation (SD): 1450 ± 224), 530 
split equally among the three sensory conditions (mean ± SD – vestibular: 476 ± 71, visual: 487 ± 77, 531 
combined: 487 ± 77). We aimed for at least 1200 total trials per participant, and collected extended data 532 
from participants whose availability was compatible with the long runtime of our experiment. 533 

Joystick control 534 

Participants navigated in the virtual environment using a joystick placed in front of the participant’s 535 
midline, in a holder mounted on the bottom of the screen. This ensured that the joystick was parallel to 536 
the participant’s vertical axis, and its horizontal orientation aligned to the forward movement axis. The 537 
joystick had two degrees of freedom that controlled linear and angular motion. Joystick displacements 538 
were physically bounded to lie within a disk, and digitally bounded to lie within a square. Displacement 539 
of the joystick over the anterior-posterior (AP) axis resulted in forward or backward translational motion, 540 
whereas displacement in the left-right (LR) axis resulted in rotational motion. The joystick was enabled 541 
after the disappearance of the target. To avoid skipping trials and abrupt stops, the button used to initiate 542 
trials was activated only when the participant’s velocity dropped below 1 cm/s. 543 

The joystick controlled both the visual and vestibular stimuli through an algorithm that involved two 544 
processes. The first varied the control dynamics (CD), producing velocities given by a lowpass filtering 545 
of the joystick input, mimicking an inertial body under viscous damping. The time constant for the control 546 
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filter (control timescale) was varied from trial to trial, according to a correlated random process as 547 
explained below. 548 

The second process was a motion cueing (MC) algorithm applied to the output of the CD process, which 549 
defined physical motion that approximated the accelerations an observer would feel under the desired 550 
control dynamics, while avoiding the hardwired constraints of the motion platform. This motion cueing 551 
algorithm trades translation for tilt, allowing extended acceleration without hitting the displacement limits 552 
(24 cm). 553 

These two processes are explained in detail below. 554 

Control Dynamics (CD) 555 

Inertia under viscous damping was introduced by applying a lowpass filter on the control input, following 556 
an exponential weighted moving average with a time constant that slowly varied across trials. On each 557 
trial, the system state evolved according to a first-order Markov process in discrete time, such that the 558 
movement velocity at the next time step depended only on the current joystick input and the current 559 
velocity. Specifically, the vertical and horizontal joystick positions 𝑢𝑢𝑡𝑡𝑣𝑣 and 𝑢𝑢𝑡𝑡𝜔𝜔 determined the linear and 560 
angular velocities 𝑣𝑣𝑡𝑡 and 𝜔𝜔𝑡𝑡 as 561 

𝑣𝑣𝑡𝑡+1  =  𝛼𝛼𝑣𝑣𝑡𝑡  +  𝛽𝛽𝑣𝑣𝑢𝑢𝑡𝑡𝑣𝑣         and 𝜔𝜔𝑡𝑡+1  =  𝛼𝛼𝜔𝜔𝑡𝑡  + 𝛽𝛽𝜔𝜔𝑢𝑢𝑡𝑡𝜔𝜔 (1.1) 

The time constant 𝜏𝜏 of the lowpass filter determined the coefficient 𝛼𝛼 (Figure 1 supplement 3A): 562 

𝛼𝛼 
=  𝑒𝑒−𝛥𝛥𝑡𝑡 𝜏𝜏�  

(
1
.
2
) 

         563 

Sustained maximal controller inputs of 𝑢𝑢𝑡𝑡𝑣𝑣 = 1 or 𝑢𝑢𝜔𝜔𝑣𝑣 = 1 produce velocities that saturate at 564 

𝑣𝑣max = 𝛽𝛽𝑣𝑣/(1 −  𝛼𝛼)   and   𝜔𝜔max = 𝛽𝛽𝜔𝜔/(1 −  𝛼𝛼) (1.3) 

We wanted to set 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 in such a way that would ensure that a target at an average linear or 565 
angular displacement 𝑥𝑥 is reachable in an average time 𝑇𝑇, regardless of 𝜏𝜏 (we set 𝑥𝑥 = 4 m and 𝑇𝑇 = 8.5 s). 566 
This constrains the input gains 𝛽𝛽𝑣𝑣 and 𝛽𝛽𝜔𝜔. We derived these desired gains based on a 1D bang-bang control 567 
model (i.e. purely forward movement, or pure turning) which assumes maximal positive control until time 568 
𝑠𝑠, followed by maximal negative control until time 𝑇𝑇 (Figure 1 supplement 3A). Although we 569 
implemented the leaky integration in discrete time with a frame rate of 60Hz, we derived the input gains 570 
using continuous time and translated them to discrete time. 571 

The velocity at any time 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 during the control is: 572 

𝑣𝑣𝑡𝑡
𝑣𝑣max

=  �
1 −  𝑒𝑒−𝑡𝑡 𝜏𝜏� 0 < 𝑡𝑡 ≤ 𝑠𝑠

−1 +  � 𝑣𝑣𝑠𝑠
𝑣𝑣max

+ 1� 𝑒𝑒−
𝑡𝑡−𝑠𝑠
𝜏𝜏 𝑠𝑠 < 𝑡𝑡 < 𝑇𝑇

   
 

(1.4) 
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where 𝑣𝑣𝑠𝑠 is the velocity at the switching time 𝑠𝑠 when control switched from positive to negative, given 573 
by: 574 

𝑣𝑣𝑠𝑠 =  𝑣𝑣max�1 −  𝑒𝑒−𝑠𝑠 𝜏𝜏⁄ � (1.5) 

By substituting 𝑣𝑣𝑠𝑠 into Eq. (1.4) and using the fact that at time 𝑇𝑇, the controlled velocity should return to 575 
0, we obtain an expression that we can use to solve for 𝑠𝑠: 576 

𝑣𝑣𝑇𝑇 = 0 =  −1 +  �
𝑣𝑣max�1− 𝑒𝑒−𝑠𝑠 𝜏𝜏⁄ �

𝑣𝑣max
 +  1� 𝑒𝑒−

𝑇𝑇−𝑠𝑠
𝜏𝜏   

(1.6) 

Observe that 𝑣𝑣max cancels in this equation, so the switching time 𝑠𝑠 is independent of 𝑣𝑣max and therefore 577 
also independent of the displacement 𝑥𝑥 (see also Figure 1 supplement 3A): 578 

𝑠𝑠 =  𝜏𝜏 ln�
1 +  𝑒𝑒𝑇𝑇 𝜏𝜏�

2
� 

(1.7) 

Integrating the velocity profile of Equation 1.4 to obtain the distance travelled by time 𝑇𝑇, substituting the 579 
switch time 𝑠𝑠 (Figure 1 supplement 3A), and simplifying, we obtain: 580 

𝑥𝑥 =  𝑥𝑥𝑇𝑇 = 2 𝜏𝜏 𝑣𝑣max ln �cosh 𝑇𝑇
2𝜏𝜏
�  (1.8) 

We can then solve for the desired maximum linear speed 𝑣𝑣max for any time constant τ, average 581 
displacement 𝑥𝑥 and trial duration 𝑇𝑇: 582 

𝑣𝑣max (𝜏𝜏) =  𝑚𝑚
2𝜏𝜏

 1
ln cosh(𝑇𝑇 2𝜏𝜏⁄ )  (1.9) 

Similarly, the maximum angular velocity was: 𝜔𝜔max(𝜏𝜏) =  𝜃𝜃
2𝜏𝜏

1
ln cosh(𝛵𝛵 𝑡𝑡⁄ ),  where 𝜃𝜃 is the average angle 583 

we want our participant to be able to turn within the average time T.  584 

These equations can also be re-written in terms of a dimensionless time 𝑧𝑧 =  𝜏𝜏 𝑇𝑇⁄  (duration of trial in units 585 
of the time constant) and average velocities �̅�𝑣 = 𝑥𝑥 𝑇𝑇⁄  and 𝜔𝜔� = 𝜃𝜃 𝑇𝑇⁄ : 586 

𝑣𝑣max = �̅�𝑣 1 2𝑧𝑧⁄
lncosh(1 2𝑧𝑧⁄ )  𝜔𝜔max = 𝜔𝜔� 1 2𝑧𝑧⁄

lncosh(1 2𝑧𝑧⁄ )  (1.10) 

where 𝜃𝜃 is the average angle we want the participants to be able to steer within time 𝑇𝑇. 587 

Setting control gains according to Equation 1.9 allows us to manipulate the control timescale 𝜏𝜏, while 588 
approximately maintaining the average trial duration for each target location (Figure 1 supplement 3B). 589 
Converting these maximal velocities into discrete-time control gains using Equations 1.1–1.3 gives us the 590 
desired inertial control dynamics. 591 

Slow changes in time constant 592 

The time constant τ was sampled according to a temporally correlated log-normal distribution. The log of 593 
the time constant, 𝜙𝜙 = log 𝜏𝜏, followed a bounded random walk across trials according to (Figure 1 594 
supplement 3C) 595 

𝜙𝜙𝑡𝑡+1  =  𝑐𝑐 𝜙𝜙𝑡𝑡  +  𝜂𝜂𝑡𝑡   (2) 
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The marginal distribution of  𝜙𝜙 was normal, 𝑁𝑁�𝜇𝜇𝜙𝜙,𝜎𝜎𝜙𝜙2�, with mean 𝜇𝜇𝜙𝜙  =  1
2

 (ln 𝜏𝜏− + ln 𝜏𝜏+)  and standard 596 

deviation 𝜎𝜎𝜙𝜙  =  1
4

 (ln 𝜏𝜏+  −  ln 𝜏𝜏−), which ensured that 95% of the velocity timescales lay between 𝜏𝜏− 597 

and 𝜏𝜏+. The velocity timescales changed across trials with their own timescale 𝜏𝜏𝜙𝜙, related to the update 598 

coefficient by 𝑐𝑐 =  𝑒𝑒
−𝛥𝛥𝑡𝑡 𝜏𝜏𝜙𝜙� , where we set Δ𝑡𝑡 to be one trial and 𝜏𝜏𝜙𝜙 to be two trials. To produce the desired 599 

equilibrium distribution of 𝜙𝜙 we set the scale of the random walk Gaussian noise 𝜂𝜂~𝑁𝑁�𝜇𝜇𝜂𝜂 ,𝜎𝜎2𝜂𝜂� with 600 

𝜇𝜇𝜂𝜂 = 𝜇𝜇𝜙𝜙(1 − 𝑐𝑐)  and 𝜎𝜎𝜂𝜂2 = 𝜎𝜎𝜙𝜙2(1 − 𝑐𝑐2). 601 

Motion Cueing algorithm (MC) 602 

Each motion trajectory consisted of a linear displacement in the 2D virtual space combined with a rotation 603 
in the horizontal plane. While the motion platform could reproduce the rotational movement using the 604 
yaw motor (which was unconstrained in movement range and powerful enough to render any angular 605 
acceleration or speed in this study), its ability to reproduce linear movement was limited by the platform’s 606 
maximum range of 25 𝑐𝑐𝑐𝑐 and maximum velocity of 50 𝑐𝑐𝑐𝑐/𝑠𝑠 (in practice, the platform was powerful 607 
enough to render any linear acceleration in this study). To circumvent this limitation, we designed a MC 608 
algorithm that takes advantage of the gravito-inertial ambiguity (Einstein, 1907) inherent to the vestibular 609 
organs (Angelaki & Dickman, 2000; Fernandez et al., 1972; Fernandez & Goldberg, 1976). 610 

Specifically, the otolith organs in the inner ear sense both linear acceleration (A) and gravity (G), i.e. they 611 
sense the gravito-inertial acceleration (GIA): 𝐹𝐹 = 𝐺𝐺 + 𝐴𝐴. Consequently, a forward acceleration of the 612 
head (𝑎𝑎𝑚𝑚, expressed in g, with 1g = 9.81 m/s2) and a backward pitch (by an angle 𝜃𝜃, in radians) will 613 
generate a total gravito-inertial acceleration 𝐹𝐹𝑥𝑥 =  𝜃𝜃 +  𝑎𝑎𝑚𝑚. The MC took advantage of this ambiguity to 614 
replace linear acceleration by tilt. Specifically, it controlled the motion platform to produce a total GIA 615 
(Fig. 1 supplement 1, ‘Desired Platform GIA’) that matched the linear acceleration of the simulated 616 
motion in the virtual environment. As long as the rotation that induced this simulated acceleration was 617 
slow enough, the motion felt subjectively was a linear acceleration. 618 

This control algorithm was based on a trade-off where the high-pass component of the simulated inertial 619 
acceleration (Fig. 1 supplement 1, ‘Desired Platform Linear Acceleration’) was produced by translating 620 
the platform, whereas the low-pass component was produced by tilting the platform (Fig. 1 supplement 621 
1, ‘Desired Platform Tilt’).  622 

Even though this method is generally sufficient to ensure that platform motion remains within its envelope, 623 
it does not guarantee it. Thus, the platform’s position, velocity and acceleration commands were fed 624 
though a sigmoid function 𝑓𝑓 (Fig. 1 supplement 1, ‘Platform Limits’). This function was equal to the 625 
identity function (𝑓𝑓(𝑥𝑥) = 𝑥𝑥) as long as motion commands were within 75% of the platform’s limits, so 626 
these motion commands were unaffected. When motion commands exceed this range, the function bends 627 
smoothly to saturate at a value set slightly below the limit, thus preventing the platform from reaching its 628 
mechanical range (in position, velocity or acceleration) while ensuring a smooth trajectory. Thus, if the 629 
desired motion exceeds 75% of the platform’s performance envelope, the actual motion of the platform is 630 
diminished, such that the total GIA actually experienced by the participant (‘Actual Platform GIA’) may 631 
not match the desired GIA. If left uncorrected, these GIA errors would result in a mismatch between 632 
inertial motion and the visual VR stimulus. To prevent these mismatches, we designed a loop that 633 
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estimates GIA error and updates the simulated motion in the visual environment. For instance, if the 634 
joystick input commands a large forward acceleration and the platform is unable to reproduce this 635 
acceleration, then the visual motion is updated to represent a slower acceleration that matches the 636 
platform’s motion. Altogether, the IC and MC algorithms are applied sequentially as follows: 1) The 637 
velocity signal produced by the IC process controls the participant’s attempted motion in the virtual 638 
environment. 2) The participant acceleration in the VR environment is calculated and inputted to the MC 639 
algorithm (‘Desired Platform GIA’). 3) The MC cueing computes the platform’s motion commands and 640 
the actual platform GIA is computed. 4) The difference between the Desired GIA motion actual GIA (GIA 641 
error) is computed and used to update the motion in the virtual environment. 5) The updated position is 642 
sent to the visual display.  643 

A summary of the performance and efficiency of the MC algorithm during the experiment can be seen in 644 
Fig. 1 supplement 2. For a detailed view of the implementation of the MC algorithm refer to the 645 
Appendix.  646 

QUANTIFICATION AND STATISTICAL ANALYSIS 647 

Customized MATLAB code was written to analyze data and to fit models. Depending on the quantity 648 
estimated, we report statistical dispersions either using 95% confidence interval, standard deviation, or 649 
standard error in the mean. The specific dispersion measure is identified in the portion of the text 650 
accompanying the estimates. For error bars in figures, we provide this information in the caption of the 651 
corresponding figure. We report and describe the outcome as significant if 𝑝𝑝 < 0.05. 652 

Estimation of response gain 653 

In each sensory condition, we first computed the τ-independent gain for each participant; we regressed 654 

(without an intercept term) each participant’s response positions (�̃�𝑟,𝜃𝜃�) against target positions (𝑟𝑟, 𝜃𝜃) 655 

separately for the radial (�̃�𝑟 vs 𝑟𝑟) and angular (𝜃𝜃� vs 𝜃𝜃) coordinates, and the radial and angular response 656 
gains (𝑔𝑔𝑟𝑟, 𝑔𝑔𝜃𝜃) were quantified as the slope of the respective regressions (Fig 2A). In addition, we followed 657 
the same process to calculate gain terms within three τ groups of equal size (Fig. 3A). 658 

Correlation between residual error and time constant τ 659 

To evaluate the influence of the time constant on the steering responses, we computed the correlation 660 
coefficient between the time constants and the residual errors from the mean response (estimated using 661 
the response gain) for distance and angle. Under each sensory condition, the radial residual error (𝜀𝜀𝑟𝑟) for 662 
each trial 𝑖𝑖 was given by: 663 

𝜀𝜀𝑟𝑟,𝑝𝑝 = �̃�𝑟𝑝𝑝 − 𝑔𝑔𝑟𝑟𝑟𝑟𝑝𝑝 (3.1) 

where �̃�𝑟𝑝𝑝 is the radial response, and the mean radial response is given by multiplying the target distance 𝑟𝑟𝑝𝑝 664 
by the radial gain 𝑔𝑔𝑟𝑟. Similarly, the angular residual error (𝜀𝜀𝜃𝜃) was calculated as: 665 

𝜀𝜀𝜃𝜃,𝑝𝑝 = 𝜃𝜃�𝑝𝑝 − 𝑔𝑔𝜃𝜃𝜃𝜃𝑝𝑝 (3.2) 

Regression model containing τ 666 

To assess the manner in which the time constant affected the steering responses, we augmented the simple 667 
linear regression models for response gain estimation mentioned above with τ-dependent terms (Fig. 3 668 
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supplement 2; 𝜏𝜏 and 𝜏𝜏 ∗ 𝑟𝑟 for radial response �̃�𝑟, 𝜏𝜏 and 𝜏𝜏 ∗ 𝜃𝜃 for angular response 𝜃𝜃�). Subsequently, we 669 
calculated the Pearson linear partial correlations between the response positions and each of the three 670 
predictors. 671 

Estimation of τ-dependent gain 672 

To quantify the extent to which the time constant modulates the response gain, we linearly regressed each 673 

participant’s response positions (�̃�𝑟,𝜃𝜃�) against target positions (𝑟𝑟,𝜃𝜃) and the interaction between target 674 
positions and the time constant 𝜏𝜏 according to:  675 

�̃�𝑟 = 𝑏𝑏𝑟𝑟𝑟𝑟 + 𝑎𝑎𝑟𝑟𝑟𝑟𝜏𝜏      and     𝜃𝜃� = 𝑏𝑏𝜃𝜃𝜃𝜃 + 𝑎𝑎𝜃𝜃𝜃𝜃𝜏𝜏 (4.1) 

Where 𝑏𝑏𝑟𝑟, 𝑏𝑏𝜃𝜃 and 𝑎𝑎𝑟𝑟, 𝑎𝑎𝜃𝜃 are the coefficients of the target locations and the interaction terms, respectively. 676 
All quantities were first standardized by dividing them with their respective standard deviation, to avoid 677 
size effects of the different predictors. This form allows for modulation of the response gain by the time 678 
constant, which is clear when the target location is factored out:  679 

�̃�𝑟 = 𝑟𝑟(𝑏𝑏𝑟𝑟 + 𝑎𝑎𝑟𝑟𝜏𝜏)      and     𝜃𝜃� = 𝜃𝜃(𝑏𝑏𝜃𝜃 + 𝑎𝑎𝜃𝜃𝜏𝜏) (4.2) 

 680 

Estimation of simulated no-adaptation response gains 681 

We quantified the extent to which participants failed to adapt to the underlying control dynamics, by 682 
generating a simulated null case for no adaptation. First, we selected trials in which the time constant was 683 
close to the mean of the sampling distribution (±0.2s). Then, we integrated the steering input of those trials 684 
with time constants from other trials (see equations 1.1, 1.2). This generated a set of trajectories for which 685 
the steering corresponded to a different time constant, providing us with a null case of no adaptation to 686 
the underlying dynamics. We then stratified the simulated trajectories into equal-sized groups based on 687 
the time constants (same as in Fig. 3A) and computed the corresponding radial and angular response gains. 688 
Note that the response gains were computed according to the target locations of the initial set of trials.   689 

Rationale behind modeling approach 690 

We tested the hypothesis that the τ-dependent errors in steering responses arise from participants 691 
misestimating control dynamics on individual trials. Specifically, if participants’ estimate of the time 692 
constant τ differs from the actual value, then their believed trajectories (computed using the estimated τ) 693 
would differ accordingly from the actual trajectories along which they travelled. believed stopping 694 
locations should land on or near the target. However, various unmeasurable fluctuations in that belief 695 
across trials should lead to variability clustered around the target location Because participants try to stop 696 
on their believed target location, the believed stopping locations, subject to unmeasurable fluctuations of 697 
the belief across trials, should be distributed evenly around the participant’s mean response (mean belief), 698 
after adjusting for the average response gain. This is so because, if the distribution of believed responses 699 
depended on the time constant, then that would imply that participants willingly misestimated the control 700 
dynamics. Mathematically, the subjective residual errors (deviation of the believed stopping location from 701 
the mean response for a given target; see Methods: Correlation between residual error and time constant 702 
τ) should be distributed evenly around zero and be uncorrelated with the time constant τ. Therefore, a good 703 
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model of the participants’ beliefs should predict that subjective residual errors are statistically independent 704 
of the time constant. 705 

Bayesian observer model for τ estimation 706 

To account for the effect of the time constant τ on steering performance, we considered a two-step observer 707 
model that uses a measurement 𝑐𝑐 of the real time constant 𝜏𝜏 and a prior distribution over hypothesized 708 
time constants in logarithmic scale to compute an estimate �̂�𝜏 on each trial (first step), and then integrates 709 
the actual joystick input using that estimate to reconstruct the participant’s believed trajectory (second 710 
step). We formulated our model in the logarithmic space of 𝜑𝜑 =  log 𝜏𝜏, therefore the prior distribution 711 
over the hypothesized time constants p(𝜑𝜑) was assumed to be normal in log-space with mean, μprior and 712 

standard deviation, σprior. The measurement distribution p(𝑐𝑐|𝜑𝜑) was also assumed to be normal in log-713 

space with mean 𝜑𝜑, and standard deviation σmeasure. Note that whereas the prior p(𝜑𝜑) remains fixed 714 
across trials of a particular sensory modality, the mean of measurement distribution is governed by 𝜑𝜑 and 715 
thus varies across trials. For each sensory modality, we fit two parameters, Θ ∋ {μprior, λ}, where 𝜆𝜆 was 716 

taken to be the ratio of σprior over σmeasure, (i.e. their relative weight).    717 

Model fitting 718 

When inferring the participant’s beliefs about the control dynamics, we computed the posterior 719 
distribution on trial 𝑖𝑖 as p(𝜑𝜑|𝑐𝑐𝑝𝑝) ∝ p(𝜑𝜑)p(𝑐𝑐𝑝𝑝|𝜑𝜑) (Fig. 5A, left) and then selected the median over 𝜑𝜑 720 
(equal to the maximum a posteriori estimate), and back-transformed it from log-space to obtain an estimate 721 
of the time constant �̂�𝜏𝑝𝑝 for that trial:  722 

�̂�𝜏𝑝𝑝 = exp �argmax
𝜑𝜑

  p(𝜑𝜑|𝑐𝑐𝑝𝑝)� 
(5) 

Subsequently, �̂�𝜏 is used to integrate the actual joystick input and produce the participant’s believed 723 
trajectory, according to (Equation 1.1-1.10) in the Control Dynamics (CD) section. 724 

The Bayesian model had 2 free parameters  Θ ∋ {μprior, λ}. We fit the model by assuming that participants 725 

stop as close to the target as possible given their understanding of the task. Specifically, we minimized 726 
the mean squared error (MSE) between the measured mean stopping position (computed using the 727 
response gains 𝑔𝑔𝑟𝑟 and 𝑔𝑔𝜃𝜃 from Equation 3) and our model of the participant’s believed stopping location 728 
𝐱𝐱�𝑝𝑝 given the inferred dynamics �̂�𝜏𝑝𝑝. For each sensory condition: 729 

Θ∗ = argmin
Θ

 
1
𝑛𝑛
�{𝐱𝐱�𝑝𝑝(�̂�𝜏𝑝𝑝,𝐮𝐮𝑝𝑝) − 𝐆𝐆 𝐱𝐱𝑝𝑝tar}2
𝑛𝑛

𝑝𝑝=1

  

 

 

(6) 

where, for each trial 𝑖𝑖, 𝐱𝐱�𝑖𝑖 is the believed participant’s position, 𝜏𝜏�𝑖𝑖 is the estimated time constant, 𝐮𝐮𝑝𝑝 is the 730 

time series of the joystick control input, 𝐱𝐱𝑝𝑝tar is the actual target position, 𝐆𝐆 is the response gain matrix 731 

determined from 𝑔𝑔𝑟𝑟 and 𝑔𝑔𝜃𝜃, and 𝑛𝑛 is the total number of trials. 732 

Model validation 733 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2020.09.21.307256doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307256
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

To evaluate the performance of our model, we examined the correlations between the subjective residual 734 
error and 𝜏𝜏 that are given by the model. The subjective residual error is defined as the difference between 735 
the believed (subjective) stopping location that a model produces and the mean response of the actual 736 
trajectories, adjusted for the response gain. The subjective residual errors are calculated for the radial and 737 

angular components of the response separately, according to Equation 3 (where actual responses �̃�𝑟,𝜃𝜃� are 738 

substituted by believed responses �̂̃�𝑟,𝜃𝜃��, respectively). Ideally, these correlations should not exist for the 739 
model predictions (explained in text; Fig. 5B). We determined the statistical significance of the model-740 
implied correlations by adjusting for multiple comparisons (required level of statistical significance: 741 
p=0.0085). To assess the performance of the Bayesian model, we compared the correlations between 742 
believed and actual stopping location with the time constant (Fig. 5B; Wilcoxon signed-rank test).  743 

Dynamic prior model 744 

Since the time constant changes randomly across trials, we tested whether the history of time constants 745 
influenced the estimate �̂�𝜏. If true, the Bayesian model would imply a prior distribution over 𝜑𝜑 = log 𝜏𝜏 that 746 
is dynamically changing according to the recent history of time constants, rather than being fixed. To 747 
explore this possibility, we repeated the two-step model outlined above, with the difference that the mean 748 
of the prior distribution is updated at every trial 𝑖𝑖 by a weighted average of the mean prior in the previous 749 
trial and the current measurement over 𝜑𝜑: 750 

𝜇𝜇prior,𝑝𝑝 = (1 − 𝑘𝑘) 𝜇𝜇prior,𝑝𝑝−1 + 𝑘𝑘 𝜑𝜑𝑝𝑝  where  𝑘𝑘 =
𝜆𝜆2

𝜆𝜆2 + 1
 

 

 

(7) 

and where 𝜆𝜆 is the ratio of prior standard deviation over likelihood standard deviation. As 𝑘𝑘 indicates, the 751 
relative weighting between prior and measurement on each trial depends solely on their relative widths. 752 
Finally, the initial prior was taken to be the time constant on the first trial. Thus, the only free parameter 753 
we fit was λ. 754 

Sensory-independent model 755 

As another alternative to the Bayesian model with a static prior, we also constructed a model where 756 
participants ignored changes in the time constants and navigated according to a fixed estimate �̂�𝜏 across all 757 
trials in each sensory condition.  This model had only one free parameter: the time constant estimate �̂�𝜏, 758 
which was integrated with the actual joystick input of each trial to reconstruct the believed trajectory of 759 
the participant. We fit �̂�𝜏 for each sensory condition by minimizing the MSE between the believed stopping 760 
location and the mean response (according to Equation 6).  761 

Model comparison 762 

To compare the static prior Bayesian model against the dynamic prior Bayesian and the sensory-763 
independent models, we compared the correlations between believed stopping locations and time 764 
constants that each model produces (Fig. 7; paired Student’s t-test). 765 

Sensory feedback control model 766 
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We tested a sensory feedback control model, in which the controller uses bang-bang control and switches 767 
from forward to backward input at a constant and predetermined distance from the target position 768 
(corrected for the bias, i.e. mean response). Specifically, we preserved the actual angular and only fitted 769 
the linear control input for each trial. Thus, as switch distance, we refer to a Euclidian distance from the 770 
bias-corrected target position. We fit the mean and standard deviation of the switch distance for each 771 
participant in each condition separately, by minimizing the distance of the actual from the model-predicted 772 
stopping locations. To evaluate how well this model describes our data, we compared the correlations and 773 
regression slopes between the time constant and residual errors from the stopping locations predicted by 774 
the model with those from our actual data (Fig. 7 supplement 2). 775 

 776 

DATA AND SOFTWARE AVAILABILITY 777 

MATLAB code implementing all quantitative analyses in this study is available online 778 
(https://github.com/ AkisStavropoulos/matlab_code). Datasets generated by this study are available online 779 
(https://gin.g-node.org/akis_stavropoulos/humans_control_dynamics_sensory_modality_steering). 780 
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Supplemental Material  788 

 
Figure 1 supplement 1: (A) Flow diagram of Motion Cueing algorithm (MC). The participant pilots themselves in a simulated 
environment using a joystick. The motion cueing algorithm aims at controlling a platform such that the sum of inertial and 
gravitational acceleration experienced when sitting on the platform (desired platform GIA, blue; the curve illustrates an example 
profile consisting of a single rectangular waveform) matches the linear acceleration experienced in the simulated virtual 
environment. “Desired” refers to the fact that the motion platform may not be able to match this acceleration exactly. The desired 
GIA is fed through a step impulse function to compute the desired linear acceleration of the platform. The difference between the 
desired linear acceleration and GIA is used to compute the desired platform tilt. The desired platform motion (linear and tilt motion) 
are passed through a controller that restricts its motion to the actuator’s limits (in term of linear and angular acceleration, velocity, 
and position). The two actuator output commands are sent to the platform and are also used to compute the actuator GIA which is 
actually rendered by the platform. To ensure that the inertial motion produced by the platform matches the motion in the simulated 
environment, the actuator GIA is compared to the desired linear acceleration to compute an actuator GIA error feedback 
signal, which updates the simulated motion. (B) Acceleration profile of an actual trial. The first panel shows the desired GIA of the 
participant for that trial. The second and third panels show the desired linear acceleration (red) and desired tilt acceleration (green), 
respectively. The fourth panel shows the final GIA achieved (blue) and the GIA error (magenta). (C) Correspondence between 
visual acceleration and platform GIA (blue), measured independently from the motion cueing algorithm using an inertial 
measurement unit mounted next to the participant’s head. There is an almost perfect match between the two. The gray histogram 
indicates the range of acceleration experienced by the participant.  
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Figure 1 supplement 2: (A) Net Gravito-Inertial Acceleration (GIA; thick lines) and net GIA error (thin lines) aligned to 
start and end of trial, for the vestibular and combined conditions across participants (average across trials over all time 
constants). The dashed line represents a conservative choice of the vestibular motion detection threshold according to the 
relevant literature (8 cm/s2; Kingma, 2005; MacNeilage et al., 2010; Zupan & Merfeld, 2008). Gray region represents the 
target presentation period. Shaded regions denote ± 1 SEM. (B) Net tilt velocity aligned to start and end of trial, for the 
vestibular and combined conditions across participants. Dashed line represents the estimated tilt/translation discrimination 
threshold of 1 deg/s: although tilt/translation discrimination thresholds have not been explicitly studied, we can use the 
rotation sensation thresholds of the semicircular canals to estimate what that threshold would be. Since it is the rotation 
velocity that tells a participant that they are tilting and not translating, we propose that the tilt/translation discrimination 
threshold is at least the same as the rotation sensation threshold (if not larger; Lim et al., 2017; MacNeilage et al., 2010). 
Shaded regions represent ± 1 SEM across participants. Inset shows the probability distribution of displacements during the 
supra-threshold tilt period after trial onset (~0.6s). Although the tilt can be perceived by the participants during trial onset, 
the displacement during that period does not exceed 10cm and could potentially not contribute significantly to steering errors, 
for three reasons: a) the displacement during that period is negligible, b) tilt velocity is kept below the perceptual threshold 
for the remainder of the trajectory, c) GIA is always above the motion detection threshold of the vestibular system. However, 
since the initial tilt could be perceived (as it briefly exceeded the canal detection threshold), this might alter the perceived 
orientation of the participants. In turn, this could influence the extent to which vestibular cues would be used as input to the 
path integration system (see Discussion “Limitations and future directions” for further discussion). 

Thus, perceived tilt might be used as an indicator of trial onset, but it cannot contribute to path integration for 3 
reasons: a) the displacement during that period is negligible, b) tilt velocity is kept below the perceptual threshold for 
the remainder of the trajectory, c) GIA is always above the motion detection threshold of the vestibular system. 
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Figure 1 supplement 3: (A) Example dynamics for bang-bang control. Position, velocity, and controls are shown. 
Control switches at time s and ends at time T. (B) Maximal velocity (blue) needed for bang-bang control to produce 
a desired average velocity 𝑢𝑢� = 𝑥𝑥 𝑇𝑇⁄ , as a function of the fraction of trial duration given by the time constant, 𝜏𝜏 𝑇𝑇⁄ . 
When the time constant is a small fraction of the trial (velocity control), the max velocity equals the average velocity 
(orange line). When the time constant is much longer than a trial (acceleration control), the maximum velocity 
grows as 4𝜏𝜏 𝑇𝑇⁄  (green), although this speed is never approached since braking begins before the velocity approaches 
equilibrium. (C) Example dynamics for control behavior. Left: log-normal distribution of control time constants 𝜏𝜏 
(see also Fig. 3 supplement 1A). Right: example random walk in log 𝜏𝜏 space. 
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Figure 2 supplement 1: (A) Random subset of trajectories of an example participant under each sensory condition. 
The corresponding radial and angular response gains are indicated for each condition (green: vestibular, cyan: visual, 
purple: combined). Gray region represents the target range. (B) Sex differences in participants’ performance: radial 
and angular gains (see Fig. 2D) grouped based on sex (F: female, M: male; see legend; p-values of differences in 
response gains between male and female participants: Radial gain – vestibular: 𝑝𝑝 = 0.17, visual: 𝑝𝑝 = 0.09, combined: 
𝑝𝑝 = 0.09; Angular gain – vestibular: 𝑝𝑝 = 0.58, visual: 𝑝𝑝 = 0.38, combined: 𝑝𝑝 = 0.21; two-sample t-test). (C) Sex 
differences in participants’ performance: correlation coefficients between the time constant and the residual errors 
(radial and angular components; see Fig.3C) grouped based on sex. Specifically, the x and y axes represent the 
correlation values between the time constant and the radial and angular residual errors, respectively (p-values of 
differences in correlation coefficients between male and female participants: Radial – vestibular: 𝑝𝑝 = 0.5, visual: 𝑝𝑝 =
0.66, combined: 𝑝𝑝 = 0.71; Angular – vestibular: 𝑝𝑝 = 0.51, visual: 𝑝𝑝 = 0.97, combined: 𝑝𝑝 = 0.82; two-sample t-test). 
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Figure 2 supplement 2: (A-G) Linear (left) and angular (right) joystick input over time, for a subset of participants in all 
conditions (see legend; bottom right). The joystick control had shorter duration in the vestibular condition, reflecting our 
findings of the smaller response gains. Shaded regions represent ±1 standard deviation across trials.  
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Figure 3 supplement 1: (A) Sampling distributions of the time constant for all three sensory conditions across 
participants. The sampling distribution both across participants and across conditions are almost identical. 
Transparent lines and thick lines represent the individual sampling distributions of participants and their mean, 
respectively. (B-J) Effect of the time constant on radial (left) and angular (right) residual error, for a large subset of 
participants. Solid lines represent linear regression fits (see Table 3 for individual regression coefficient values). 
Dashed lines denote zero residual error (i.e. stopping location matches mean response). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2020.09.21.307256doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.307256
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

794 

 

Figure 3 supplement 2: (A) Partial correlation coefficients for prediction of stopping distance �̃�𝑟 (relative to starting 
position) from initial target distance (𝑟𝑟), τ, and the interaction of the two (𝑟𝑟𝜏𝜏), for all participants across sensory 
conditions. Values at each bar group represent the average coefficient value across participants ±1 standard 
deviation. The contribution of the τ-only term was considered insignificant across all conditions. The simplified 
version of this model would be: �̃�𝑟 = 𝑟𝑟(𝛼𝛼 + 𝛾𝛾𝜏𝜏), which implies that the radial gain is τ-dependent. (B) Partial 
correlation coefficients for prediction of stopping angle 𝜃𝜃� (relative to starting position) from initial target angle (𝜃𝜃), 
τ, and the interaction of the two (𝜃𝜃𝜏𝜏), for all participants across sensory conditions. Values at each bar group 
represent the average coefficient value across participants ±1 standard deviation. In agreement with the findings for 
the response distance, the contribution of the τ-only term was considered insignificant across all conditions. The 
simplified version of this model would be: 𝜃𝜃� = 𝜃𝜃(𝛼𝛼 + 𝛾𝛾𝜏𝜏), which implies that the angular gain is also τ-dependent. 
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Figure 5 supplement 1: (A) Correlation coefficients between the time constant and travel duration (left) or average 
travel velocity (right) across trials for all participants. Colors of circles indicate the sensory condition (green: vestibular, 
cyan: visual, purple: combined). Open and filled circles denote statistical significance according to the legend. (B) 
Dependence of travel duration (top right) and average velocity (bottom right) on the time constant for perfect or no 
estimation/adaptation to the dynamics (left), for a simulated bang-bang controller. Correlation coefficients and statistical 
significance are indicated in the legends of the corresponding panels. Solid lines represent linear regression fits. (C) Left: 
Uncertainty (variance) of instantaneous self-motion velocity estimation. Illustration of a linear (blue) and a quadratic 
(orange) model of velocity estimation uncertainty as a function of the instantaneous velocity magnitude. We wanted to 
test whether the effect of the time constant on performance could be attributed to differences in the accumulated 
uncertainty of the different velocity profiles. Right: Correlation between time constant and accumulated uncertainty for 
the linear and quadratic models. We found that the accumulated uncertainty is positively correlated with the time constant 
for both models (adding an intercept term to the models did not qualitatively change the results). This means that higher 
time constants yield larger uncertainty and, therefore, participants should undershoot more. However, this is the opposite 
of the observed effect of the time constant on the responses. Error bars denote ± 1 SEM. 
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Figure 5 supplement 2: Changes in travel distance for a given control input under different control dynamics. 
Whether in the domain of velocity (top) or acceleration control (bottom), a control input that is appropriate to reach 
a certain target distance (horizontal black dashed line) under only a certain time constant (red vertical line) will 
produce erroneous displacements under any other time constant (blue line). For smaller time constants, the intended 
distance will be undershot, whereas larger time constants will lead to overshooting. In other words, assuming that 
the red vertical line denotes the believed dynamics of a controller, a larger actual time constant (underestimation) 
will lead to overshooting (relative to the intended displacement; horizontal black dashed line). Inversely, 
overestimation of the time constant would lead to undershooting. Note that, for acceleration control we chose a bang-
bang controller such that we can demonstrate that this holds true whether there is braking at the end of the trial or 
not. 
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Figure 7 supplement 1: Correlation coefficients in the vestibular condition between the actual time constant and the 
subjective radial (left) and angular (right) residual errors, if participants carried over their τ estimate from the previous trial. 
With sensory conditions interleaved and a common random walk of τ (see Methods, Figure 1 supplement 3C), we searched 
for a trial-type history effect in the vestibular condition, due to participants’ poor τ estimation performance. Specifically, 
we asked whether participants in the vestibular condition would leverage from the correlation structure between recent time 
constants by carrying over their estimates from the previous visual or combined trials. We first compared the correlations 
from the actual data (open bars; same as Fig. 3C, 5B) with those obtained when using the actual (middle bar couple) or 
estimated (right bar couple; estimates from the static prior Bayesian model) time constant from the previous visual (cyan 
bars) or combined (purple bars) trial to generate believed trajectories. Although correlations were significantly smaller for 
the carry-over models relative to the actual data (p<0.01) they nevertheless remained significant (p<10-5), thus, failing to 
explain away the effect (compare with grey bars: correlations implied by estimation in the current vestibular trial with the 
static prior Bayesian model). The carry-over strategy does not seem likely since it fails to explain away a large part of the 
correlation between the radial component of the subjective residual errors and the time constant (compare rightmost 
cyan/purple bars with grey bars; p-values of paired t-test between radial correlation coefficients – current vestibular vs 
previous visual trial estimation: p=0.006, current vestibular vs previous combined trial estimation: p=0.02; p-values of 
paired t-test between angular correlation coefficients – current vestibular vs previous visual trial estimation: p=0.008, current 
vestibular vs previous combined trial estimation: p=0.71). Error bars denote ±1 SEM across participants. 
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Figure 7 supplement 2: (A) We tested a sensory feedback control model, in which the controller uses bang-bang control 
and switches from forward to backward input at a constant and predetermined distance from the target position (corrected 
for the bias). We fit the mean and standard deviation of the switch distance for each participant in each condition separately, 
by minimizing the distance of the actual from the model-predicted stopping locations (see Methods). The correlations (left) 
and the regression slopes (right) between the model-predicted residual errors and the time constant were significantly higher 
than those found in our data (p-values of difference in correlations between true data and model obtained by paired t-test – 
vestibular: p = 10-5, visual: p = 10-6, combined: p = 10-7; p-values of difference regression slopes between true data and 
model obtained by paired t-test – vestibular: p = 10-7, visual: p = 10-8, combined: p = 10-9). Error bars represent ±1 SEM 
across participants. (B) Probability distribution of bang-bang switch distance from target position (corrected for the bias). 
According to the sensory feedback control model, the probability distribution of switch distance should be very narrow since 
participants switch at a constant perceived distance from the target. If participants implemented this type of control (black 
lines), we would expect to see such a narrow distribution in the actual data. In all conditions, however, the switch distance 
distribution of the true data (colored lines) is wider and resembles what we expect to see if participants implemented optimal 
(ideal) bang-bang control (gray lines). Shaded regions represent ±1 SEM across participants. 
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Table 1: Average radial (top) and angular (bottom) behavioral response gains across 
participants, for groups of time constant τ magnitudes (mean ± SEM).   

  800 
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Table 2: Pearson’s correlation coefficient (r) and corresponding p-value (p) for radial (top) and angular (bottom) 
correlation between residual error and the time constant τ across participants. Mean Pearson’s r ± SEM: Radial 
component – vestibular: 0.52±0.02, visual: 0.36±0.03, combined: 0.37±0.03; Angular component – vestibular: 
0.23±0.02, visual: 0.23±0.03, combined: 0.26±0.03. 
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Table 3: Linear regression slope coefficients for radial (α, top) and angular (β, bottom) components of residual error 
against the time constant τ across participants. Mean regression slope ± SEM: Radial (m/s) – vestibular: 0.62±0.06, 
visual: 0.28±0.03, combined: 0.29±0.03; Angular (deg/s) – vestibular: 2.05±0.2, visual: 1.04±0.23, combined: 1.09±0.19. 
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Table 4: Partial correlation coefficients (mean ± standard deviation) for prediction of the radial (�̃�𝑟, top) and 
angular (𝜃𝜃�, bottom) components of the final stopping location (relative to starting position) from initial target 
distance (𝑟𝑟) and angle (𝜃𝜃), the time constant τ, and the interaction of the two (𝑟𝑟 × 𝜏𝜏 or 𝑟𝑟 × 𝜃𝜃), respectively.  
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Appendix: Implementation of MC algorithm 804 

STEP 1: 805 

In the first step, the participant’s velocity is being transformed into the VR (screen) coordinates. This 806 
transformation is necessary to deduce centrifugal components from the participants’ trajectory, and 807 
include them in the motor commands:  808 

𝑣𝑣𝑡𝑡+1
VR,𝑚𝑚 =  𝑣𝑣𝑡𝑡+1

JS ∙ cos �𝜑𝜑𝑡𝑡VR� 809 

𝑣𝑣𝑡𝑡+1
VR,𝑦𝑦 =  𝑣𝑣𝑡𝑡+1

JS ∙ sin �𝜑𝜑𝑡𝑡VR� 810 

𝜔𝜔𝑡𝑡+1
VR =  𝜔𝜔𝑡𝑡+1

JS  811 

Where 𝑣𝑣 
VR,𝑚𝑚 and 𝑣𝑣 

VR,𝑦𝑦 is the linear velocity of the participant in VR coordinates, 𝜔𝜔 
VR is the angular 812 

velocity of the VR system, and 𝜑𝜑 
VR is the direction of the platform in space. 813 

STEP 2: 814 

As mentioned before, the arena diameter is finite, and it is necessary to keep track of the participant’s 815 
position in the arena, to avoid “crashing” on the invisible walls. In this step, the participant’s velocity is 816 
slowed down when the participant approaches the boundaries of the arena, to account for a “smooth crash”. 817 

STEP 3: 818 

Here, the current acceleration is calculated in the VR coordinates (𝑎𝑎 
VR,𝑚𝑚,𝑎𝑎 

VR,𝑦𝑦). This is also where the 819 
GIA error feedback loop (see STEP 10) updates the VR acceleration.  820 

𝛼𝛼𝑡𝑡+1
VR,𝑚𝑚 =  

𝑣𝑣𝑡𝑡+1
VR,𝑚𝑚 −  𝑣𝑣𝑡𝑡

VR,𝑚𝑚 + 𝑑𝑑𝑡𝑡
𝜏𝜏MC

. (𝑣𝑣𝑡𝑡
VR,𝑚𝑚 −  𝑣𝑣�𝑡𝑡

VR,𝑚𝑚)

𝑑𝑑𝑡𝑡
 821 

𝛼𝛼𝑡𝑡+1
VR,𝑦𝑦 =  

𝑣𝑣𝑡𝑡+1
VR,𝑦𝑦 −  𝑣𝑣𝑡𝑡

VR,𝑦𝑦 + 𝑑𝑑𝑡𝑡
𝜏𝜏MC

. (𝑣𝑣𝑡𝑡
VR,𝑦𝑦 −  𝑣𝑣�𝑡𝑡

VR,𝑦𝑦)

𝑑𝑑𝑡𝑡
 822 

 823 

Where 𝑣𝑣�𝑡𝑡 is the updated velocity from the previous timestep (𝜏𝜏MC explained in STEP 10). After the 824 

acceleration is obtained, it is being transformed back to the participant’s coordinates �𝑎𝑎 
sub,𝑚𝑚,𝑎𝑎 

sub,𝑦𝑦�: 825 

𝛼𝛼𝑡𝑡+1
sub,𝑚𝑚 =  𝛼𝛼𝑡𝑡+1

VR,𝑚𝑚 ∙ cos�𝜑𝜑𝑡𝑡VR� +  𝛼𝛼𝑡𝑡+1
VR,𝑦𝑦 ∙ sin�𝜑𝜑𝑡𝑡VR� 826 

𝛼𝛼𝑡𝑡+1
sub,𝑦𝑦 =  −𝛼𝛼𝑡𝑡+1

VR,𝑚𝑚 ∙ sin�𝜑𝜑𝑡𝑡VR� +  𝛼𝛼𝑡𝑡+1
VR,𝑦𝑦 ∙ cos�𝜑𝜑𝑡𝑡VR� 827 

STEP 4: 828 

Now, the acceleration 𝑎𝑎sub in participant’s coordinates, is being transformed into Platform coordinates to 829 

take into account the orientation of the participant onto the motion platform (𝜑𝜑𝑡𝑡
moog), which is controlled 830 

by the yaw motor. For instance, if the participant faces towards the left of the platform and accelerates 831 
forward in egocentric coordinates, then the platform should move to the left:  832 
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𝛼𝛼𝑡𝑡+1
desired,𝑚𝑚 =  𝛼𝛼𝑡𝑡+1

sub,𝑚𝑚 ∙ cos�𝜑𝜑𝑡𝑡
moog� −  𝛼𝛼𝑡𝑡+1

sub,𝑦𝑦 ∙ sin�𝜑𝜑𝑡𝑡
moog� 833 

𝛼𝛼𝑡𝑡+1
desired,𝑦𝑦 =  𝛼𝛼𝑡𝑡+1

sub,𝑚𝑚 ∙ sin�𝜑𝜑𝑡𝑡
moog� + 𝛼𝛼𝑡𝑡+1

sub,𝑦𝑦 ∙ cos�𝜑𝜑𝑡𝑡
moog� 834 

Where 𝛼𝛼𝑡𝑡+1
desired,𝑚𝑚 is the desired platform acceleration. 835 

STEP 5: 836 

This is the Motion-Cueing (MC) step. Here, the amount of tilt and translation that will be commanded is 837 
computed, based on the tilt-translation trade-off we set. First, the platform’s desired acceleration is 838 
computed by applying a step response function 𝑓𝑓(𝑡𝑡) to the acceleration input: 839 

𝑎𝑎MC,𝑚𝑚(𝑡𝑡) =  � 𝑎𝑎desired,𝑚𝑚(𝑡𝑡) ∙ 𝑓𝑓(𝑡𝑡 − 𝑠𝑠) 𝑑𝑑𝑠𝑠
+∞

0

 840 

Where: 841 

𝑓𝑓(𝑡𝑡) =  𝑘𝑘1 ∙ 𝑒𝑒
−𝑡𝑡

𝑇𝑇1� +  𝑘𝑘2 ∙ 𝑒𝑒
−𝑡𝑡

𝑇𝑇2� +  𝑘𝑘3 ∙ 𝑒𝑒
−𝑡𝑡

𝑇𝑇3�  ,   842 

𝑇𝑇 =  [. 07 . 3 1] ,   𝐾𝐾 =  [−0.4254 1.9938 −0.5684] 843 

These coefficients were adjusted to respect the following constraints: 844 

-𝑓𝑓(0)  =  1, i.e. the output would correspond to the input at 𝑡𝑡 = 0. This was chosen to ensure that the 845 
high-frequency content of the motion would be rendered by translating the platform. 846 

-∫ 𝑓𝑓∞
0 = 0 : This was chosen to ensure that, if the input was an infinitely long acceleration, the motion of 847 

the platform would stabilize to a point where the linear velocity was 0. 848 

-𝑑𝑑𝑓𝑓/𝑑𝑑𝑡𝑡 =  0 at 𝑡𝑡 = 0. This was chosen because tilt velocity of the platform is equal to −𝑑𝑑𝑓𝑓/𝑑𝑑𝑡𝑡. Since 849 
the tilt velocity at t<0 is zero, this constraint ensures that tilt velocity is continuous and prevents excessive 850 
angular acceleration at t=0. 851 

The same process is repeated for the y component of the acceleration. 852 

Finally, the amount of tilt (𝜃𝜃, in degrees) is calculated based on the difference between the desired platform 853 
motion and the deliverable motion: 854 

𝜃𝜃𝑡𝑡+1
MC,𝑚𝑚 = sin−1 �

𝑎𝑎𝑡𝑡+1
moog,𝑚𝑚 −  𝑎𝑎𝑡𝑡+1

MC,𝑚𝑚

𝑔𝑔
� 855 

𝜃𝜃𝑡𝑡+1
MC,𝑦𝑦 = sin−1 �

𝑎𝑎𝑡𝑡+1
moog,𝑦𝑦 −  𝑎𝑎𝑡𝑡+1

MC,𝑦𝑦

𝑔𝑔
� 856 

Where 𝑔𝑔 = 9.81 𝑐𝑐 𝑠𝑠2� . 857 

STEP 6: 858 

Afterwards, the tilt velocity and acceleration are being calculated: 859 
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�̇�𝜃𝑡𝑡+1
MC,𝑚𝑚 =  𝜃𝜃𝑡𝑡+1

MC,𝑥𝑥− 𝜃𝜃𝑡𝑡
MC,𝑥𝑥

𝑑𝑑𝑡𝑡
,  �̇�𝜃𝑡𝑡+1

MC,𝑦𝑦 =  𝜃𝜃𝑡𝑡+1
MC,𝑦𝑦− 𝜃𝜃𝑡𝑡

MC,𝑦𝑦

𝑑𝑑𝑡𝑡
 860 

�̈�𝜃𝑡𝑡+1
MC,𝑚𝑚 =  �̇�𝜃𝑡𝑡+1

MC,𝑥𝑥− �̇�𝜃𝑡𝑡
MC,𝑥𝑥

𝑑𝑑𝑡𝑡
,  �̈�𝜃𝑡𝑡+1

MC,𝑦𝑦 =  �̇�𝜃𝑡𝑡+1
MC,𝑦𝑦 − �̇�𝜃𝑡𝑡

MC,𝑦𝑦

𝑑𝑑𝑡𝑡
 861 

 862 

In a next step, we compute the motion command that should be sent by the platform. Note that the platform 863 
is placed at a height ℎ below the head. Therefore, tilting the platform by an angle 𝜃𝜃 induces a linear 864 
displacement of the head corresponding to −ℎ ∙ 𝜃𝜃 ∙ 𝜋𝜋 180� . Therefore, a linear displacement is added to 865 

the platform’s motion to compensate for this. Next, we limit the platform’s acceleration, velocity and 866 
position commands to ensure that they remain within the limit of the actuators. For this purpose, we define 867 
the following function  𝑓𝑓𝜆𝜆,𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥):  868 

⎩
⎪
⎨

⎪
⎧ 𝑖𝑖𝑓𝑓 |𝑥𝑥| ≤ 𝜆𝜆 ∙ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  ,                     𝑓𝑓𝜆𝜆,𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥) =  𝑥𝑥                                                                    

𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒 𝑖𝑖𝑓𝑓 |𝑥𝑥| ≤ (2 − 𝜆𝜆) ∙ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  ,  𝑓𝑓𝜆𝜆,𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥) = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚. 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛(𝑥𝑥). [|𝑥𝑥/𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚| −
1

4. (1 − 𝜆𝜆) . (|𝑥𝑥/𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚| − 𝜆𝜆)2]

𝑖𝑖𝑓𝑓 |𝑥𝑥| > (2 − 𝜆𝜆) ∙ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ,          𝑓𝑓𝜆𝜆,𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥) =  𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛(𝑥𝑥). 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚                                           ⎭
⎪
⎬

⎪
⎫

 869 

 870 

This function is designed so that if the input 𝑥𝑥 increases continuously, e.g.  𝑥𝑥(𝑡𝑡) = 𝑡𝑡, then the output 871 
 𝑓𝑓𝜆𝜆,𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥(𝑡𝑡)) will be identical to 𝑥𝑥 until 𝑥𝑥 reaches a threshold 𝜆𝜆 ∙ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚. After this, the output will 872 

decelerate continuously (
𝑑𝑑 𝑓𝑓𝜆𝜆,𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥(𝑚𝑚(𝑡𝑡))

𝑑𝑑𝑡𝑡
= 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡) until it stops at a value 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚. We fed the platform’s 873 

acceleration, velocity and position command through this function, as follows:  874 

𝑎𝑎𝑡𝑡+1
moog,𝑚𝑚 =   𝑓𝑓𝜆𝜆,𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥(𝑎𝑎𝑡𝑡+1

MC,𝑚𝑚 + ℎ ∙ �̈�𝜃𝑡𝑡+1
MC,𝑚𝑚 ∙ 𝜋𝜋 180�  )  875 

𝑣𝑣𝑡𝑡+1
moog,𝑚𝑚 =   𝑓𝑓𝜆𝜆,𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥(𝑣𝑣𝑡𝑡

moog,𝑚𝑚 + 𝑑𝑑𝑡𝑡.𝑎𝑎𝑡𝑡+1
moog,𝑚𝑚)  876 

𝑥𝑥𝑡𝑡+1
moog,𝑚𝑚 =   𝑓𝑓𝜆𝜆,𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥𝑡𝑡

moog,𝑚𝑚 + 𝑑𝑑𝑡𝑡. 𝑥𝑥𝑡𝑡+1
moog,𝑚𝑚)  877 

 878 

The same operation takes place for the y component of the acceleration, as well as for the platform velocity 879 
and position. The process is repeated for the tilt command itself. 880 

We set 𝜆𝜆 = 0.75 and 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 4 𝑐𝑐/𝑠𝑠2, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0.4 𝑐𝑐/𝑠𝑠, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 0.23 𝑐𝑐, �̈�𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = 300 °/𝑠𝑠, �̇�𝜃𝑚𝑚𝑚𝑚𝑚𝑚 =881 
30 °/𝑠𝑠 and 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = 10°,  slightly below the platform’s and actuator physical limits. This ensured that the 882 
platform’s motion matched exactly the motion cueing algorithm’s output, as long as it stayed within 75% 883 
of the platform’s range. Otherwise, the function 𝑓𝑓 ensured a smooth trajectory and, as detailed in STEP 8 884 
to 10, a feedback mechanism was used to update the participant position in the VR environment, so as to 885 
guarantee that visual motion always matched inertial motion.  886 

STEP 7: 887 

The motor commands for tilt and translation are being sent to the platform:  888 

�𝑥𝑥𝑡𝑡+1
moog,𝑦𝑦𝑡𝑡+1

moog,𝜃𝜃𝑡𝑡+1
moog,𝑚𝑚,𝜃𝜃𝑡𝑡+1

moog,𝑦𝑦� 889 
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STEP 8: 890 

Because of STEP 6, the total Gravito-Inertial Acceleration (GIA) of the platform may differ from what is 891 
commanded by the motion cueing algorithm. To detect and discrepancy, we computed the GIA provided 892 
by the platform:  893 

𝑣𝑣𝑡𝑡+1
actual,𝑚𝑚 =

�𝑥𝑥𝑡𝑡+1
moog −  𝑥𝑥𝑡𝑡

moog�
𝑑𝑑𝑡𝑡

 , 𝑣𝑣𝑡𝑡+1
actual,𝑦𝑦 =

�𝑦𝑦𝑡𝑡+1
moog −  𝑦𝑦𝑡𝑡

moog�
𝑑𝑑𝑡𝑡

 894 

 895 

𝑎𝑎𝑡𝑡+1
actual,𝑚𝑚 =

�𝑣𝑣𝑡𝑡+1
actual,𝑚𝑚 −  𝑣𝑣𝑡𝑡

actual,𝑚𝑚�
𝑑𝑑𝑡𝑡

 , 𝑎𝑎𝑡𝑡+1
actual,𝑦𝑦 =

�𝑣𝑣𝑡𝑡+1
actual,𝑦𝑦 −  𝑦𝑦𝑣𝑣

actual,𝑦𝑦�
𝑑𝑑𝑡𝑡

 896 

𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡+1
actual,𝑚𝑚 = 𝑎𝑎𝑡𝑡+1

actual,𝑚𝑚 + g ∙ sin 𝜃𝜃𝑡𝑡+1
moog,𝑚𝑚 − ℎ ∙ �̈�𝜃𝑡𝑡+1

moog,𝑚𝑚 ∙ 𝜋𝜋 180�  897 

𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡+1
actual,𝑦𝑦 = 𝑎𝑎𝑡𝑡+1

actual,𝑦𝑦 + g ∙ sin 𝜃𝜃𝑡𝑡+1
moog,𝑦𝑦 − ℎ ∙ �̈�𝜃𝑡𝑡+1

moog,𝑦𝑦 ∙ 𝜋𝜋 180�  898 

 899 

STEP 9: 900 

We transform platform’s GIA, into participant’s reference frame: 901 

𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡+1
sub,𝑚𝑚 = 𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡+1

actual,𝑚𝑚 ∙ cos𝜑𝜑𝑡𝑡
moog +𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡+1

actual,𝑦𝑦 ∙ sin𝜑𝜑𝑡𝑡
moog 902 

𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡+1
sub,𝑦𝑦 = −𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡+1

actual,𝑚𝑚 ∙ sin𝜑𝜑𝑡𝑡
moog +𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡+1

actual,𝑦𝑦 ∙ cos𝜑𝜑𝑡𝑡
moog 903 

 904 

Also, the error 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 between the obtained GIA and desired GIA (from STEP 3) is calculated, and fed 905 
through the same sigmoid function (𝜆𝜆 =  .75 ,𝐺𝐺𝐺𝐺𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 = 1 𝑐𝑐 𝑠𝑠2� ) discussed previously, to avoid 906 

computational instability in the case of a big mismatch: 907 

𝑒𝑒𝑡𝑡+1𝑚𝑚 =  𝑓𝑓𝜆𝜆,𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥(𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡+1
sub,𝑚𝑚 −  𝑎𝑎𝑡𝑡+1

sub,𝑚𝑚) 908 

𝑒𝑒𝑡𝑡+1
𝑦𝑦 =  𝑓𝑓𝜆𝜆,𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥(𝐺𝐺𝐺𝐺𝐴𝐴𝑡𝑡+1

sub,𝑦𝑦 −  𝑎𝑎𝑡𝑡+1
sub,𝑦𝑦) 909 

STEP 10: 910 

The GIA error is now used to update the system in the case of a mismatch. First, it is transformed into VR 911 
coordinates. Then, the velocity and position in VR coordinates are recomputed based on the joystick input 912 
and on the error signal:  913 

𝑒𝑒𝑡𝑡+1
VR,𝑚𝑚 = 𝑒𝑒𝑡𝑡+1

sub,𝑚𝑚 ∙ cos𝜑𝜑𝑡𝑡VR −  𝑒𝑒𝑡𝑡+1
sub,𝑦𝑦 ∙ sin𝜑𝜑𝑡𝑡VR 914 

𝑒𝑒𝑡𝑡+1
VR,𝑦𝑦 = 𝑒𝑒𝑡𝑡+1

sub,𝑚𝑚 ∙ sin𝜑𝜑𝑡𝑡VR +  𝑒𝑒𝑡𝑡+1
sub,𝑦𝑦 ∙ cos𝜑𝜑𝑡𝑡VR 915 

𝑣𝑣�𝑡𝑡+1
VR,𝑚𝑚 = 𝑣𝑣�𝑡𝑡

VR,𝑚𝑚 + �𝑎𝑎𝑡𝑡+1
VR,𝑚𝑚 + 𝑒𝑒𝑡𝑡+1

VR,𝑚𝑚� ∙ 𝑑𝑑𝑡𝑡 916 

𝑣𝑣�𝑡𝑡+1
VR,𝑦𝑦 = 𝑣𝑣�𝑡𝑡

VR,𝑦𝑦 + �𝑎𝑎𝑡𝑡+1
VR,𝑦𝑦 + 𝑒𝑒𝑡𝑡+1

VR,𝑦𝑦� ∙ 𝑑𝑑𝑡𝑡 917 
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𝑥𝑥𝑡𝑡+1
VR,𝑚𝑚 = 𝑥𝑥𝑡𝑡

VR,𝑚𝑚 + 𝑣𝑣�𝑡𝑡+1
VR,𝑚𝑚 ∙ 𝑑𝑑𝑡𝑡 918 

𝑥𝑥𝑡𝑡+1
VR,𝑦𝑦 = 𝑥𝑥𝑡𝑡

VR,𝑦𝑦 + 𝑣𝑣�𝑡𝑡+1
VR,𝑦𝑦 ∙ 𝑑𝑑𝑡𝑡 919 

𝜑𝜑𝑡𝑡+1VR = 𝜑𝜑𝑡𝑡VR + 𝜔𝜔𝑡𝑡
VR ∙ 𝑑𝑑𝑡𝑡 920 

Note that the error signal is also fed into the acceleration in VR coordinates (see STEP 3). Ideally, linear 921 
acceleration should be computed based on the updated velocity value at time 𝑡𝑡 i.e.: 922 

 923 

𝛼𝛼𝑡𝑡+1
VR,𝑚𝑚 =  

𝑣𝑣𝑡𝑡+1
VR,𝑚𝑚 − 𝑣𝑣�𝑡𝑡

VR,𝑚𝑚

𝑑𝑑𝑡𝑡
 924 

However, we found that this led to numerical instability, and instead we introduced a time constant 𝜏𝜏MC =925 
1𝑠𝑠 in the computation, as shown in STEP 3. 926 

 927 

 928 
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