Guidelines for Optimizing Type S Non-Ribosomal Peptide Synthetases

Nadya Abbood^{1,2}, Juliana Effert¹, Kenan A. J. Bozhueyuek^{1,2,3*}, Helge B. Bode^{1,2,4,5,6*}

- 1 Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany.
- 2 Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- 3 Myria Biosciences AG, Mattenstrasse 26, 4058 Basel, Switzerland
- 4 Chemical Biology, Department of Chemistry, Philipps-University Marburg, 35043, Marburg, Germany
- 5 Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt am Main, Germany
- 6 Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043 Marburg, Germany
- * Corresponding author

1.	Material and Methods3
1.1	Cultivation of Strains
1.2	Plasmid assembly
1.3	B Heterologous expression of NRPS templates and HPLC-MS analysis4
1.4	Peptide quantification4
1.5	5 Chemical synthesis4
2.	Supplementary tables5
Та	ble S1. ESI-MS data of all produced peptides5
Та	ble S2. Strains used in this work6
Та	ble S3. Plasmids used in this work6
Та	ble S4. Oligonucleotides used in this work8
3.	Supplementary Figures11
Fig	jure S1. Advantages of Type S NRPS12
Fig	Jure S2. Other splicing positions
Fig	gure S3. HPLC/MS data (Figure 2) of compound 1 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
Fig	pure S4. HPLC/MS data (Figure 3) of compounds 1 produced in <i>E. coli</i> DH10B:: <i>taA</i> 16
Fig	gure S5. HPLC/MS data (Figure 4) of compound 1 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
Fig	gure S6. HPLC/MS data (Figure 5) of compound 1 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
Fig	gure S7. HPLC/MS data (Figure 5) of compound 2 produced in E. coli DH10B::mtaA
Fig	gure S8. HPLC/MS data (Figure 5) of compound 2 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
Fig	gure S9. HPLC/MS data (Figure 5) of compound 3 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
Fig	gure S10. HPLC/MS data (Figure 5) of compounds 4 and 5 produced in <i>E. coli</i> DH10B:: <i>mtaA</i> 20
Fig	gure S11. HPLC/MS data (Figure 5) of compound 4 produced in <i>E. coli</i> DH10B:: <i>mtaA</i> 20
Fig	gure S12. HPLC/MS data (Figure 5) of compounds 1 and 6 produced in E. coli DH10B::mtaA20
Fig	gure S13. HPLC/MS data (Figure 5) of compounds 2, 7 and 8 produced in <i>E. coli</i> DH10B:: <i>mtaA</i> 21
Fig	gure S14. HPLC/MS data (Figure 5) of compounds 2, 8, 9 and 10 produced in <i>E. coli</i> DH10B:: <i>mtaA</i> .
 Eid	ure S15, HDI C/MS data (Eigure 5) of compounde 2 and 11 produced in E. coli DH10P::mto A. 22
Fig	Jure S15. HPLC/MS data (Figure 5) of compounds 4, 12, 5 and 13 produced in E. coli DH10B.:mtaA
	25
Fig	gure S17. HPLC/MS data (Figure 5) of compounds 4 and 12 produced in <i>E. coli</i> DH10B:: <i>mtaA</i> 25
Fig	gure S18. HPLC/MS data (Figure 6) of compound 14 produced in <i>E. coli</i> DH10B:: <i>mtaA</i> 25
Fig DH	gure S19. HPLC/MS data (Figure 5) of compounds 14, 15, 16, 17 and 18 produced in <i>E. coli</i>
Fic	gure S20. HPLC/MS data (Figure S25) of compound 1 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
Fic	gure S21. HPLC/MS data (Figure S26) of compound 1 produced in E. coli DH10B::mtaA
Fig	gure S22. HPLC/MS data (Figure S27) of compound 1 produced in <i>E. coli</i> DH10B:: <i>mtaA</i> 31

F	Figure S23. HPLC/MS data (Figure S28) of compound 1 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>	34
F	Figure S24. HPLC/MS data (Figure S29) of compound 1 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>	35
F	Figure S25. More GS-optimized chimeric tri-partite XtpS NRPSs split at the A-T position	37
F	Figure S26. SZ1:2 truncation of chimeric di-partite XtpS NRPSs split at the A-T position	37
F	Figure S27. SZ2:19 truncation of chimeric di-partite XtpS NRPSs split at the A-T position	39
F	Figure S28. SZ17:17 truncation of chimeric di-partite XtpS NRPSs split at the C-A position	41
F	Figure S29. SZ4:21 truncation of chimeric di-partite XtpS NRPSs split at the A-T position	42
F	Figure S30. Overview of truncated SZs	44
4.	References	44

1. Material and Methods

1.1 Cultivation of Strains

Cultivation was done as described before: All *E. coli*, *Photorhabdus* and *Xenorhabdus* strains were cultivated in LB (10 g/L Trypton, 5 g/L yeast extract, 10 g/L NaCl, pH 7,5) or TB liquid medium (12 g/L Tryton, 24 g/L yeast extract, 0.4% (v/v) Glycerin, 10% (v/v), 17 mM KH₂PO₄, 72 mM K₂HPO₄, pH 6.5) at 37°C (*E. coli*) or 30°C (*Photorhabdus*, *Xenorhabdus*) for 16-18 h at 160-200 rpm. 1% (w/v) agar was added for growth on solid LB. If necessary, medium was supplemented 1:1000 with kanamycin- (50 µg/mL in sterile ddH₂O), chloramphenicol (34 µg/mL in ethanol) and/or spectinomycin stock solution (50 mg/mL in sterile ddH₂O). For short-time storage LB agar plates were stored either at 4°C (*E. coli*) or 18°C (*Photorhabdus*, *Xenorhabdus*). For permanent storage, liquid cultures were supplemented with 20% (v/v) glycerol and frozen at -80°C.¹

1.2 Plasmid assembly

Genomic DNA from *Xenorhabdus* and *Photorhabdus* were isolated using the Gentra Puregene Yeast/Bact Kit (Qiagen) accordingly to the manufacturers' instruction for Gram negative bacteria. Plasmid DNA was isolated using PureYield Plasmid Miniprep System (Promega). PCRs were performed with oligonucleotides obtained from Eurofins Genomics (Table S4) containing homology arms of ~20 bp in a one or two step PCR program. Phusion Hot Start Flex (New England Biolabs) was applied as High Fidelity DNA Polymerase and used accordingly to the manufacturers' instruction. PCR fragments were digested with DpnI (Thermo Fisher Scientific). Purification of all fragments was performed with Monarch PCR & DNA Cleanup Kit or from 1% TAE agarose gel using Monarch Gel Extraction Kit. Plasmid assembly was done by HiFi (New

England Biolabs) or Hot Fusion cloning and DNA mix was transformed into *E. coli* DH10B via electroporation. Cells were regenerated in LB for 1 h at 37°C and plated on LB agar plates containing appropriate antibiotics. Plasmids were isolated an verified by plasmid digest and DNA sequencing using sanger sequencing (Eurofins Genomics).¹

1.3 Heterologous expression of NRPS templates and HPLC-MS analysis

Constructed plasmids were transformed into *E. coli DH10B*::mtaA, and cells from one colony were grown overnight in LB medium containing all necessary antibiotics (50 µg/ml kanamycin, 34 µg/ml chloramphenicol, 50 µg/ml spectinomycin). 100 µl of the overnight culture were used to inoculate 10 ml LB medium containing antibiotics, 0.002 mg/mL L-arabinose and 2 % (v/v) XAD-16. After 72 h at 22 °C, XAD-16 beads were harvested and incubated with one culture volume methanol. for 60 min at 180 rpm. The organic phase was filtrated and extracts were evaporated to dryness. With 1 mL MeOH, extracts were re-solved, centrifuged for 20 min and diluted 1:10 for HPLC-MS analysis. Liquid chromatography was performed on an UltiMate 3000 LC system (Dionex) with an installed C18 column (ACQUITY UPLCTM BEH, 130 Å, 2.1 mm x 100 mm, Waters). Separation was conducted at a flow rate of 0.4 mL/min using acetonitrile (ANC) and water containing 0.1% formic acid (v/v) in a 5-95% gradient over 16 min. Mass spectrometric analyses were performed using an ESI ion-trap mass spectrometer (AmaZon X, Bruker) or ESI. ESI-MS spectra were recorded in positive-ion-mode with the mass range from 100-1200 *m/z* and ultraviolet (UV) at 200-600 nm. Evaluation was performed using DataAnalysis 4.3 software (Bruker).¹

1.4 Peptide quantification

Absolute production titers were calculated as previously described.² Synthetic standard 1 (for the quantification of 1, 2, 6, 7 and 8), 3 (for the quantification of 4, 5, 9, 10 and 11) and 12 (for the quantification of 12) were obtained from Synpeptide. Synthetic standard 15, 16, 17 and 18 were synthesized as described below.

1.5 Chemical synthesis

Peptide synthesis was done automatically with the Syro Wave[™] peptide synthesizer (Biotage, Sweden) using standard Fmoc/t-Bu chemistry on a 25 or 50 µM scale. Fmoc amine-protected AAs in dimethylformamide (DMF) was added to preloaded H-AAn-2-CT resin and the coupling reaction was performed by adding HCTU (O-(6-chlorobenzotriazol-1-yl)-N,N,N',N'-

tetramethyluronium hexafluorophosphate) in DMF (25 μ mol: 250 μ L, 0.54 mol/L, 5.4 eq.; 50 μ mol: 500 μ L, 0.27 mol/L, 2.7 eq.) and DIPEA (N,N-diisopropylethylamine) in NMP for 50 min alternating between shaking (15 s) and pausing (2 min). Washing the resin with 800 μ L NMP was followed by adding the capping solution (0.45 mL DIPEA, 0.95 mL Ac₂O, 40 mg HOBt auf 20 mL NMP; 25 μ mol: 500 μ L; 50 μ mol: 1000 μ L) and incubating for 5 min (15 s shaking, 1 min pausing). Fmoc protecting group was cleaved off by incubation with 40% piperidine in NMP (25 μ mol: 300 μ L; 50 μ mol: 600 μ L) for 3 min (shaking 10 s and pausing 1 min) and 20% piperidine in NMP for 10-min (shaking 10 s and pausing 2 min). Between each reaction step, resin was washed with 800 μ L NMP. After synthesis, the resin was washed 5 times each with NMP, DMF and DCM and dried.

The peptide was cleaved off from the solid phase by adding the cleavage cocktail (1:4 HFIP (hexafluoroisopropanol)/DCM) for one hour and rinsed twice with the cleavage cocktail afterwards. The resin was removed by filtration and the cleavage cocktail was evaporated. For intramolecular cyclization, the peptide was dissolved in DMF/DCM (25 μ mol, 25 mL, 1 mM) and mixed with HATU (38 mg, 100 μ mol, 4 eq.) and DIPEA (13 mg, 17 μ L, 100 μ mol, 4 eq.) followed by incubating for 20 min at 60 °C. The cyclized or linear peptide was dissolved in DMSO, DMF and MeOH and purified by preparative HPLC (Pure chromatography system, Büchi). The purity was determined by HPLC-MS.

2. Supplementary tables

mass-to-charge	Molecular	AA sequence	Reference
ratio (<i>m/z</i>)	formula		
411.29	$C_{21}H_{38}O_4N_4$	cyclo(vLvV)	3
459,30	$C_{25}H_{38}N_4O_4$	cylco(<i>v</i> LfV)	1
778,45	$C_{41}H_{59}N_7O_8$	<i>v</i> L <i>vv</i> YW	1
826.45	C45H59N7O8	vLfvYW	1
792.47	$C_{42}H_{61}N_7O_8$	<i>v</i> L <i>lv</i> YW	1
425.31	$C_{22}H_{40}N_4O_4$	cyclo(<i>I</i> L <i>v</i> V)	1
425,31	$C_{22}H_{40}N_4O_4$	cyclo(<i>v</i> L/V)	1
472.31	$C_{26}H_{40}N_4O_4$	cyclo(<i>I</i> LfV)	1
476.62	$C_{25}H_{40}N_4O_5$	vLfV	1
490.65	$C_{26}H_{42}N_4O_5$	ILf∨	1
792.47	$C_{42}H_{61}N_7O_8$	<i>ILvv</i> YW	1
840.47	$C_{46}H_{61}N_7O_8$	<i>ILfv</i> YW	1
806.48	C43H63N7O8	<i>ILIV</i> YW	1
538.40	$C_{28}H_{51}O_5N_5$	cyclo(<i>v</i> L <i>v/</i> L)	1
470.35	$C_{24}H_{46}O_5N_4$	v//L	this study
655.47	C33H62O7N6	<i>v</i> LV <i>v/</i> L	this study
	mass-to-charge ratio (<i>m/z</i>) 411.29 459,30 778,45 826.45 792.47 425.31 425,31 472.31 476.62 490.65 792.47 840.47 806.48 538.40 470.35 655.47	mass-to-charge ratio (m/z) Molecular formula411.29 $C_{21}H_{38}O_4N_4$ 459,30 $C_{25}H_{38}N_4O_4$ 778,45 $C_{41}H_{59}N_7O_8$ 826.45 $C_{45}H_{59}N_7O_8$ 792.47 $C_{42}H_{61}N_7O_8$ 425.31 $C_{22}H_{40}N_4O_4$ 425,31 $C_{22}H_{40}N_4O_4$ 472.31 $C_{26}H_{40}N_4O_4$ 476.62 $C_{25}H_{40}N_4O_5$ 490.65 $C_{26}H_{42}N_4O_5$ 792.47 $C_{42}H_{61}N_7O_8$ 840.47 $C_{46}H_{61}N_7O_8$ 806.48 $C_{43}H_{63}N_7O_8$ 538.40 $C_{28}H_{51}O_5N_5$ 470.35 $C_{24}H_{46}O_5N_4$ 655.47 $C_{33}H_{62}O_7N_6$	$\begin{array}{l c c c c c c c c c c c c c c c c c c c$

Table S1. ESI-MS data of all produced peptides.

17	637.46	C33H60O6N6	cyclo(<i>v</i> LV <i>v/</i> L)	this study
18	754.54	C ₃₈ H ₇₁ O ₈ N ₇	<i>v</i> LVV <i>vI</i> L	this study

Table S2. Strains used in this work.

Strain	Genotype/ NRPS	Reference
E. coli DH10B	F_mcrA (<i>mrr-hsd</i> RMS- <i>mcr</i> BC),	4
	80 <i>lac</i> ZΔ, M15, Δ <i>la</i> cX74 <i>rec</i> A1	
	<i>end</i> A1 araD 139∆(ara, leu)7697	
	galU galK λ rpsL (Strr) nupG / -	
E. coli DH10B::mtaA	DH10B with <i>mtaA</i> from	5
	pCK_ <i>mtaA∆entD</i> / -	
P. luminescens TTO1	- / gxpS	DSMZ
X. nematophila ATCC 19061	- / xtpS	ATCC
X. szentirmaii DSM 16338	- / szeS	DSMZ
	1	

Table S3. Plasmids used in this work.

Plasmids	Genotype	Reference
pCOLA_ara/tacl	ori ColA, kan ^R , <i>araC-P_{BAD}</i> and <i>tac</i> l	unpublished
pCK_0402	ori p15A, cm ^R , <i>araC-P_{BAD}</i> and <i>tac</i> l- <i>araE</i>	6
pCOLA_ara_xtpS_tacl_JW	ori ColA, kan ^R , <i>araC-P_{BAD} xtpS</i> and <i>tac</i> I	6
pCOLA_ara_gxpS_tacl_JW	ori ColA, kan ^R , <i>araC-P_{BAD} gxpS</i> and <i>tac</i> l	6
pNA2	ori p15A, cm ^R , araC-P _{BAD} xtpS_ A ₁ T ₁ C/E ₂ A ₂ T ₂ -SYNZIP17 und tacl-araE	1
pNA3	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> I	1
pNA4	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ -SYNZIP17 und <i>tacl-araE</i>	1
pNA5	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _T ₂ C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und	1
	tacl	
pNA8	ori p15A, cm ^R , araC-P _{BAD} xtpS_A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -(GS) ₅ -SYNZIP17 and tacl-araE	this study
pNA9	ori p15A, cm ^R , <i>araC-P_{BAD} xtp</i> S_A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -(GS) ₄ -SYNZIP17 and <i>tacl-araE</i>	this study
pNA10	ori p15A, cm ^R , <i>araC-P_{BAD} xtp</i> S_A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -(GS) ₂ -SYNZIP17 and <i>tacl-araE</i>	this study
pNA15	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _T ₂ C ₃ A ₃ -SYNZIP1 and <i>tac</i> I	1
pNA16	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> SYNZIP2- <i>xtpS</i> _T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	1
pNA17	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _C ₃ A ₃ T ₄ -SYNZIP1 and <i>tac</i> I	1
pNA18	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> SYNZIP2- <i>xtpS</i> _C/E₄A₄T₄TE and <i>tac</i> I	1
	l	I

pNA26	ori p15A, cm ^R , <i>araC-P_{BAD} gxpS</i> _A ₁ T ₁ C/E ₂ A ₂ -SYNZIP17 and <i>tacl-araE</i>	1
pNA27	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>gxpS</i> _T ₂ C ₃ A ₃ -SYNZIP1 and <i>tac</i> I	1
pNA30	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>sze</i> S_T ₂ C ₃ A ₃ -SYNZIP1 and <i>tac</i> I	1
pNA31	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> SYNZIP2-szeS_T₃C/E₄A₄T₄ C/E₅A₅T₅C₀A₀T₀TE and <i>tac</i> I	1
pNA40	ori p15A, cm ^R , <i>araC-P_{BAD} xtp</i> S_A ₁ T ₁ C/E ₂ A ₂ -SYNZIP2 und <i>tacl-araE</i>	this study
pNA41	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP19- <i>xtp</i> S_T ₂ C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> l	this study
pNA42	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ -SYNZIP21 und <i>tacl-araE</i>	this study
pNA43	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP4- <i>xtpS</i> _T ₂ C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> I	this study
pNA72	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ -N-terminally truncated SYNZIP2 (-9 AA) und <i>tacI-araE</i>	this study
pNA73	ori ColA, kan ^R , <i>araC-P_{BAD}</i> N-terminally truncated SYNZIP19 (-2 AA)- <i>xtpS</i> _ T ₂ C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> I	this study
pNA145	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -N-terminally truncated SYNZIP17 (-7 AA) and <i>tacl-araE</i>	this study
pNA146	ori ColA, kan ^R , <i>araC-P_{BAD}</i> N-terminally truncated SYNZIP18 (-7 AA)- <i>xtpS_</i> A ₃ T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	this study
pNA147	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ - N-terminally truncated SYNZIP17 (-14 AA) and <i>tacl-araE</i>	this study
pNA148	ori ColA, kan ^R , <i>araC-P_{BAD}</i> N-terminally truncated SYNZIP18 (-14 AA)- <i>xtpS_</i> A ₃ T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	this study
pNA149	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _T ₂ C ₃ A ₃ - N-terminally truncated SYNZIP1 (-14 AA) and <i>tac</i> I	this study
pNA150	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> N-terminally truncated SYNZIP2 (-14 AA)- <i>xtp</i> S_T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	this study
pNA151	ori ColA, kan ^R , <i>araC-P_{BAD}</i> N-terminally truncated SYNZIP4 (-14 AA)- <i>xtpS_</i> T ₂ C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> I	this study
pNA152	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _T ₂ C ₃ A ₃ -SYNZIP17 and <i>tac</i> l	this study
pNA153	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	this study
pNA154	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18-(GS)₅- <i>xtpS</i> _A₃T₃C/E₄A₄T₄TE and <i>tac</i> I	this study
pNA155	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18-(GS) ₂ - <i>xtpS</i> _A ₃ T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	this study
pNA156	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -SYNZIP17- (NATETVYPES) and <i>tacl-araE</i>	this study
pNA157	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _T ₂ C ₃ A ₃ -(GS) ₅ -SYNZIP1 and <i>tac</i> l	this study
pNA158	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtp</i> S_T ₂ C ₃ A ₃ -(GS) ₂ -SYNZIP1 and <i>tac</i> l	this study
pNA159	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> SYNZIP2-(GS) ₅ - <i>xtpS</i> _T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	this study
	1	

pNA160	ori CloDF13, spec ^R , $araC-P_{BAD}$ SYNZIP2-(GS) ₂ - $xtpS_T_3C/E_4A_4T_4TE$ and	this study
	tacl	
pNA161	ori p15A, cm ^R , araC-P _{BAD} xtpS_A ₁ T ₁ C/E ₂ A ₂ -N-terminally truncated	this study
	SYNZIP2 (-14 AA) und tacl-araE	-
pNA162	ori ColA, kan ^R , araC-P _{BAD} N-terminally truncated SYNZIP19 (-7 AA)-	this study
	<i>xtpS</i> _T ₂ C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> I	
pNA163	ori p15A, cm ^R , araC-P _{BAD} xtpS_A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ - C-terminally truncated	this study
	SYNZIP17 (-7 AA) and tacl-araE	
pNA164	ori ColA, kan ^R , araC-P _{BAD} C-terminally truncated SYNZIP18 (-7 AA)-	this study
	<i>xtpS_</i> A ₃ T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	
pNA165	ori ColA, kan ^R , araC-P _{BAD} SYNZIP18-xtpS_T ₂ C ₃ A ₃ -N-terminally truncated	this study
	SYNZIP1(-28 AA) and tacl	
pNA166	ori CloDF13, spec ^R , $araC-P_{BAD}$ N-terminally truncated SYNZIP2 (-28 AA)-	this study
	<i>xtp</i> S_T₃C/E₄A₄T₄TE and <i>tac</i> I	
pNA167	ori ColA, kan ^R , araC-P _{BAD} SYNZIP18-gxpS_T ₂ C ₃ A ₃ -N-terminally	this study
	truncated SYNZIP1 (-14 AA) and tacl	
pNA168	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>szeS</i> _T ₂ C ₃ A ₃ -N-terminally	this study
	truncated SYNZIP1 (-14 AA) and tacl	
pNA169	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> N-terminally truncated SYNZIP2 (-14 AA)-	this study
	szeS_T ₃ C/E ₄ A ₄ T ₄ C/E ₅ A ₅ T ₅ C ₆ A ₆ T ₆ TE and <i>tac</i> l	
pNA170	ori pUC19, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _T ₂ C ₃ A ₃ -SYNZIP17 and <i>tac</i> I	this study
pJW61	ori p15A, cm ^R , araC-P _{BAD} xtpS_A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -SYNZIP17 and tacl-araE	6
p		2
pJW62	ori ColA, kan ⁻ , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _A ₃ T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> l	6
	1	

 Table S4. Oligonucleotides used in this work.

Plasmids	Oligo- nucleotides	Sequence (5' \rightarrow 3'; <u>overlapping ends</u>)	Template
pNA8	KB-pACYC-II- FW	AACGAGAAGGAGGAATTAAAATCG	pJW61
μιλο	na17_RV	CGATTTTAATTCCTCCTTCTCGTT CAGACCCCCAGGTTTTTAACAACAATGTGC	pJW61
	KB-pACYC-II- FW	AACGAGAAGGAGGAATTAAAATCG	pJW61
ρινάθ	na19_RV	CGATTTTAATTCCTCCTTCTCGTTCGAACCTGAGCCGGATCCAGACC CCCAGGTTTTTAACAACAATGTGC	pJW61
	KB-pACYC-II- FW	AACGAGAAGGAGGAATTAAAATCG	pJW61
ρΝΑΊΟ	na20_RV	CGATTTTAATTCCTCCTTCTCGTT GGATCCAGACCCCCAGGTTTTTA ACAACAATGTG	pJW61
	na3	TGGGCTAACAGGAGGAATTCCATG <u>AAAGATAGCATGGCTAAAAAGG</u> G	X. nematophila ATCC 19061
	na87	CTTACGCAGATACGCGTTACGCCC <u>ATAAATCTGGCGGGCGAA</u>	X. nematophila ATCC 19061
pNA40	na85	GCTGGAACGTGATGAACAGAACCTGGAAAAAATCATCGCGAACCTG CGTGACGAAATCGCGCGTCTCGAAAACGAAGTTGCGTCTCACGAAC AG <u>TGACAATTAATCATCGGCTCG</u>	pCK_0402

	na43	CATGGAATTCCTCCTGTTAGCC	pCK_0402
	na86	GCGCGTAACGCGTATCTGCGTAAGAAAATCGCACGTCTGAAAAAAG ACAACCTGCAGCTGGAACGTGATGAACAGAAC	pNA40_BB1_SZ2 half
	na43	CATGGAATTCCTCCTGTTAGCC	pNA40_BB1_SZ2 half
	na90	GACGCGTACAAAAACCGTCTG <u>GTTGCGCCACAAGGAGAA</u>	X. nematophila
	na7	CGAGCCGATGATTAATTGTCA <u>CAGCGCCTCCACTTCG</u>	ATCC 19061 X. nematophila ATCC 19061
nNΔ41	jw61	TGACAATTAATCATCGGCTCG	pCOLA_ara/tacl
prover	na88	GTTTCTGTTTCAGCTGTTCACGTTTCTGCTTCAGCTCTTCGTTACGG TTCTTCAGTTCTTCTTTTTTTTTGTTCTCCAGAGATTCCAGTTCGTT <u>CATG</u>	pCOLA_ara/tacl
	jw61	TGACAATTAATCATCGGCTCG	pNA41_BB1_SZ1
	na89	CAGACGGTTTTTGTACGCGTCCAGTTTGTTACGCAGAGCCGCCA <u>GT</u> TTCTGTTTCAGCTGTTCACG	pNA41_BB1_SZ1 9half
	na3	TGGGCTAACAGGAGGAATTCCATG <u>AAAGATAGCATGGCTAAAAAGG</u>	X. nematophila
	na93	ТТССАĞCTĞCĞCAACTTCĞTT <u>ATAAATCTĞĞCĞĞĞCĞAA</u>	X. nematophila
pNA42	na91	GCGTACCTGGAGAAGGAGATCGCGCGTCTGCGTAAAGAAATTGCG GCGCTGCGTGACCGTCTGGCGCACAAAAAA <u>TGACAATTAATCATCG</u>	pCK_0402
pin A 42	na43	CATGGAATTCCTCCTGTTAGCC	pCK_0402
	na92	AACGAAGTTGCGCAGCTGGAAAACGACGTTGCGGTTATCGAAAATG	pNA42_BB1_
	na43	CATGGAATTCCTCCTGTTAGCC	pNA42_BB1_ SZ21half
	na96	TGGAAAACGACGTTGCAGAAGTTGCGCCACAAGGAGAA	X. nematophila
	na7	CGAGCCGATGATTAATTGTCACAGCGCCTCCACTTCG	X. nematophila
	jw61	TGACAATTAATCATCGGCTCG	pCOLA_ara/tacl
pNA43	na102	CGTTACGATTCAGTTTAACCGCAACACGGTTTTTGAGTTCCGCAACT TTCTGCATGGAATTCCTCCTGTTAGCC	pCOLA_ara/tacl
	jw61	TGACAATTAATCATCGGCTCG	pNA41_BB1_SZ4 balf
	na103	GCGTTACGGTTCTTCAGCTCTTCAACTTTGTTTTTCAGCTGTT <u>CGTTA</u> CGATTCAGTTTAACCGC	pNA41_BB1_SZ4 half
	jw61	TGACAATTAATCATCGGCTCG	pNA41_BB2_SZ4 balf
	na95	TTCTGCAACGTCGTTTTCCAGACGCGCAACCTCGTTCTCCAGGGTC GCCAGTTCGTTCTTGAGGTAA <u>GCGTTACGGTTCTTCAGCTC</u>	pNA41_BB2_SZ4 half
nNΔ72	na141	ATCGCACGTCTGAAAAAAGAC	pNA40
p10172	na144	GTCTTTTTCAGACGTGCGAT <u>ATAAATCTGGCGGGCGAA</u>	pNA40
nNA73	na143	CTGGAATCTCTGGAGAACAAAAAG	pNA41
ρικτσ	Na145	CTTTTTTGTTCTCCAGAGATTCCAG <u>CATGGAATTCCTCCTGTTAGCC</u>	pNA41
	na304	CATTGTTGTTAAAAACCTGG <u>TCGAAAAAGGCTGAATTGC</u>	pJW61
pNA 145	jw62	CCAGGTTTTTAACAACAATGTGC	pJW61
nNA146	na305	CTAACAGGAGGAATTCCATG <u>CTGAAAGCCTTGGACCGC</u>	pJW62
pNA 140	jw64	CATGGAATTCCTCCTGTTAGCC	pJW62
nNA147	na306	CATTGTTGTTAAAAACCTGG <u>AATCGCATCGAACAGTTAAAACAG</u>	pJW61
μι ι Α147	jw62	CCAGGTTTTTAACAACAATGTGC	pJW61
	na307	CTAACAGGAGGAATTCCATG <u>TTAAATGCCATTGACAAAGAGCTG</u>	pJW62

pNA148	jw64	CATGGAATTCCTCCTGTTAGCC	pJW62
	na308	GTTTGCCCGGCAGGTCTAT <u>AATGAGAACGAAACCCTGAAGAAAAAG</u>	pNA125
pNA149	na286	ATAGACCTGCCGGGCAAAC	pNA125
	na309	CTAACAGGAGGAATTCCATG <u>AAAGACAACCTGCAGCTGGAAC</u>	pNA126
pNA150	na43	CATGGAATTCCTCCTGTTAGCC	pNA126
	na310	CTAACAGGAGGAATTCCATG <u>AATCGTAACGAACAGCTGAAAAAC</u>	pNA43
pNA151	jw64	CATGGAATTCCTCCTGTTAGCC	pNA43
	jw61	TGACAATTAATCATCGGCTCG	pNA15
	na286	ATAGACCTGCCGGGCAAAC	pNA15
pinA 152	na311	GTTTGCCCGGCAGGTCTAT <u>AACGAGAAGGAGGAATTAAAATCG</u>	pJW61
	na312	CGAGCCGATGATTAATTGTCA <u>CTTGTAGGCTTCGATCTCCTTACG</u>	pJW61
	na315	CAAGCGCCACAAGGGGA	pNA28
	na43	CATGGAATTCCTCCTGTTAGCC	pNA28
pina 153	na313	GGCTAACAGGAGGAATTCCATG <u>TTCTATGCTGAAGAGCGTGAACTG</u>	pJW62
	na314	TTCCCCTTGTGGCGCTTG <u>TGAGATAGCTGCAGTCAGCTCG</u>	pJW62
	na316	AACGAGCTGACTGCAGCTATCTCAGGGTCTGGATCCGGCTCAGGTT	pJW62
pinA 154	na317	TGAGATAGCTGCAGTCAGCTC	pJW62
	na318	AACGAGCTGACTGCAGCTATCTCAGGTTCGGGATCATTATGTATTCA	pJW62
pNA155	na317	TCAACTTTTTGAACAGC TGAGATAGCTGCAGTCAGCTC	pJW62
	KB-pACYC-II-	AACGAGAAGGAGGAATTAAAATCG	pJW61
pNA156	FW na319	CGATTTTAATTCCTCCTTCTCGTTCGATTCAGGATACACGGTTTCAG TGGCATTCCAGGTTTTTAACAACAATGTGC	pJW61
	na320	GTTTGCCCGGCAGGTCTATGGGTCTGGATCCGGCTCAGGTTCGGG	pNA15
pNA157	na286	ATAGACCTGCCGGGCAAAC	pNA15
	na321	GTTTGCCCGGCAGGTCTATGGTTCGGGATCA <u>AACCTGGTTGCGCAG</u>	pNA15
pNA158	na286	<u>CTC</u> ATAGACCTGCCGGGCAAAC	pNA15
- 114450	na322	GAAGTTGCGTCTCACGAACAGGGGTCTGGATCCGGCTCAGGTTCG	pNA16
pina 159	na290	CTGTTCGTGAGACGCAACTTC	pNA16
	na323	GAAGTTGCGTCTCACGAACAGGGTTCGGGATCA <u>GCGGCTCCGCAG</u>	pNA16
pina rou	na290	CTGTTCGTGAGACGCAACTTC	pNA16
	na324	TTCGCCCGCCAGATTTAT <u>AAAGACAACCTGCAGCTGGAAC</u>	pNA44
pNA161	na142	ATAAATCTGGCGGGCGAA	pNA44
nNIA162	na325	GGCTAACAGGAGGAATTCCATG <u>AACAAAAAAGAAGAACTGAAGAAC</u>	pNA45
μινκι ι σΖ	na43		pNA45
	jw61	TGACAATTAATCATCGGCTCG	pJW61
pNA163	na326	CGAGCCGATGATTAATTGTCA <u>ACGCAGATTGGCGATCTTTTG</u>	pJW61

-NIA164	jw63	TTATGTATTCATCAACTTTTTGAACAGC	pJW62
plux 104	na327	GCTGTTCAAAAAGTTGATGAATACATAA <u>GTTATCAAGGGCGCGAAGT</u> <u>T</u>	pJW62
-NIA165	na329	GTTTGCCCGGCAGGTCTAT <u>GACCTGATCGCGTACCTGG</u>	pNA15
pina 105	na286	ATAGACCTGCCGGGCAAAC	pNA15
nNA166	na330	GGCTAACAGGAGGAATTCCATG <u>AAAATCATCGCGAACCTGC</u>	pNA16
piùA 100	na43	CATGGAATTCCTCCTGTTAGCC	pNA16
pNA167	na331	AATGAGAACGAAACCCTGAAGAAAAAG	pNA27
placion	na333	CTTTTTCTTCAGGGTTTCGTTCTCATT <u>GTAAGCTTGGCGAGCAAAGG</u>	pNA27
pNIA168	na331	AATGAGAACGAAACCCTGAAGAAAAAG	pNA30
pinA 100	na332	CTTTTTCTTCAGGGTTTCGTTCTCATT <u>ATAATGCTGACGGGCAAACG</u>	pNA30
nNA160	na309	CTAACAGGAGGAATTCCATG <u>AAAGACAACCTGCAGCTGGAAC</u>	pNA31
previoa	na43	CATGGAATTCCTCCTGTTAGCC	pNA31

3. Supplementary Figures

Figure S1. Advantages of Type S NRPS. 1) Simplified bioengineering: Splitting NRPS into two or three independently expressed SZ linked subunits enables easier and faster cloning. Traditional NRPS engineering often requires elaborated cloning strategies (yeast cloning,⁷ LLHR⁸ or ExoCET⁹) which are frequently accompanied with technical problems and limitation. By breaking NRPSs into smaller subunits, cloning can be simplified, making standard strategies such as Gibson¹⁰, HiFi and Hot Fusion¹¹ assembly sufficient. **2) Increased bio-combinatorial potential:** With SZs, type S NRPSs can be created faster and to a greater extent than before, as the number of artificial NRPSs increases exponentially with the number of subunits. Once generated, subunits can be reused at any time and for any experimental approaches without any additional cloning efforts.

Figure S2. Other splicing positions. SZ17:18 Introduction at three different positions within the C-A, T-C and A-T linker region to create two protein type S XtpS variants. AS sequences and exact SZ17:18 introduction sites are highlighted with a vertical dashed line. Initially, for the introduction of SZs into the C-A position, 10 AAs were deleted (highlighted in red) to meet the distance between the C- and A-domain. Re-insertion of the 10 AAs (highlighted in green) and shifted fusion site restored peptide production. Production of 1 (cyclo (vLvV)) relative to WT level are indicated on the right hand site.

Figure S3. HPLC/MS data (Figure 2) of compound 1 produced in *E. coli* DH10B::*mtaA.* EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-1 to -12.

Figure S4. HPLC/MS data (Figure 3) of compounds 1 produced in *E. coli* DH10B::*taA.* EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-13 to -15.

Figure S5. HPLC/MS data (Figure 4) of compound 1 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-16 to -24.

Figure S6. HPLC/MS data (Figure 5) of compound 1 produced in *E. coli* DH10B::*mtaA*. EIC/MS2 of 1 (m/z [M+H]+ = 411.29) produced by NRPS-24. EIC of 1 produced by NRPS-16.

Figure S8. HPLC/MS data (Figure 5) of compound 2 produced in *E. coli* **DH10B**::*mtaA*. EIC/MS² of 2 (m/z [M+H]⁺ = 459.30) produced by NRPS-37. EIC of 1 produced by NRPS-26.

Figure S9. HPLC/MS data (Figure 5) of compound 3 produced in *E. coli* **DH10B**::*mtaA.* EIC/MS² of 3 (m/z [M+H]⁺ = 778,45) produced by NRPS-38. EIC of 3 produced by NRPS-27.

Figure S10. HPLC/MS data (Figure 5) of compounds 4 and 5 produced in *E. coli* DH10B::*mtaA.* EIC/MS² of 4 (m/z [M+H]⁺ = 826.45) and 5 (m/z [M+H]⁺ = 792.47) produced by NRPS-38. EIC of 4 and 5 produced by NRPS-28.

Figure S11. HPLC/MS data (Figure 5) of compound 4 produced in *E. coli* **DH10B**::*mtaA.* EIC/MS² of 4 (m/z [M+H]⁺ = 826.45) produced by NRPS-38. EIC of 4 produced by NRPS-28.

Figure S12. HPLC/MS data (Figure 5) of compounds 1 and 6 produced in E. coli DH10B::mtaA. EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) and 6 (m/z [M+H]⁺ = 425.31) produced by NRPS-41. EIC of 1 and 6 produced by NRPS-30.

Figure S13. HPLC/MS data (Figure 5) of compounds 2, 7 and 8 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 2 (m/z $[M+H]^+$ = 459.30), 7 (m/z $[M+H]^+$ = 425.31) and 8 m/z $[M+H]^+$ = 472.31) produced by NRPS-42. EIC of 2, 7 and 8 produced by NRPS-31.

Figure S15. HPLC/MS data (Figure 5) of compounds 3 and 11 produced in E. coli DH10B::mtaA. EIC/MS² of 3 (m/z $[M+H]^+$ = 778.45) and 11 (m/z $[M+H]^+$ = 792.47) produced by NRPS-44. EIC of 3 and 11 produced by NRPS-33.

Figure S16. HPLC/MS data (Figure 5) of compounds 4, 12, 5 and 13 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 4 (m/z [M+H]⁺ = 826.45), 12 (m/z [M+H]⁺ = 840.47), 5 (m/z [M+H]⁺ = 792.47) and 13 m/z [M+H]⁺ = 806.48) produced by NRPS-45. EIC of 2, 12, 5 and 13 produced by NRPS-34.

Figure S17. HPLC/MS data (Figure 5) of compounds 4 and 12 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 4 (m/z $[M+H]^+$ = 826.45) and 12 (m/z $[M+H]^+$ = 840.47) produced by NRPS-46. EIC of 4 and 12 produced by NRPS-35.

Figure S18. HPLC/MS data (Figure 6) of compound 14 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 14 (m/z [M+H]⁺ = 538.40) produced by NRPS-47.

Figure S19. HPLC/MS data (Figure 5) of compounds 14, 15, 16, 17 and 18 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 14 (m/z [M+H]⁺ = 538.40) produced by NRPS-47 and -48a. EIC/MS² of 15 (m/z [M+H]⁺ = 470.35) produced by NRPS-47. EIC/MS² of 16 (m/z [M+H]⁺ = 655.47) produced by NRPS-48c. EIC/MS² of 17 (m/z [M+7]⁺ = 637.46) produced by NRPS-48c. EIC/MS² of 18 m/z [M+H]⁺ = 754.54) produced by NRPS-48d.

Figure S20. HPLC/MS data (Figure S25) of compound 1 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-16 and NRPS-49 to -56.

Figure S21. HPLC/MS data (Figure S26) of compound 1 produced in E. coli DH10B::mtaA. EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-16 and NRPS-57.

Figure S22. HPLC/MS data (Figure S27) of compound 1 produced in *E. coli* DH10B::*mtaA.* EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-14 and NRPS-58 to NRPS-65.

Figure S23. HPLC/MS data (Figure S28) of compound 1 produced in *E. coli* DH10B::*mtaA.* EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-1 and NRPS-66 to NRPS-80.

Figure S24. HPLC/MS data (Figure S29) of compound 1 produced in *E. coli* **DH10B**::*mtaA*. EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-15 and NRPS-81.

Figure S25. More GS-optimized chimeric tri-partite XtpS NRPSs split at the A-T position. (a) Between each experimental approach, the production of non-optimized NRPS-16 varies, but is on average at ~30% of WT level. A set of modified subunit B and C variants were constructed by inserting GS stretches of varying length (4 AAs or 10 AAs) between subunit 2 and SZ1 and subunit 3 and SZ2. (b) Generated modified subunits were re-combined with non-modified subunits and transformed into *E. coli* DH10B::*MtaA* to obtain NRPS-49 to -56. Production titres of NRPS-49 to -56 were compared with each other and rated with from -, -, - - to 0, +, ++, +++. Corresponding peptide yields (mg/L) and standard deviations are obtained from biological triplicate experiments. For domain assignment, the following symbols are used: (A, large circles), (T, rectangle), (C, triangle), (C/E, diamond), (TE, small circle); substrate specificities are assigned for all A domains and indicated by capital letters.

Figure S26. SZ1:2 truncation of chimeric di-partite XtpS NRPSs split at the A-T position. (a) Between each experimental approach, the production of non-optimized NRPS-16 varies, but is on average at ~30% of WT level. Subunit B and C variants were N-terminally truncated by 28 AA, respectively. (b) Generated modified subunits were re-combined with non-modified subunits and transformed into *E. coli* DH10B::*MtaA* to obtain NRPS-16 and -57.Corresponding peptide yields (mg/L) and standard deviations are obtained from biological triplicate experiments. Rating of production titres and domain assignment is as described before.

Figure S27. SZ2:19 truncation of chimeric di-partite XtpS NRPSs split at the A-T position. (a) Between each experimental approach, the production of non-optimized NRPS-14 varies, but is on average at ~10% of WT level. A set of modified subunit A and B variants were constructed by N-terminally truncating SZ2 by 9 AAs and 14 AAs and SZ19 by 2 AAs and 7 AAs, respectively. (b) Generated modified subunits were recombined with non-modified subunits and transformed into E. coli DH10B::MtaA to obtain NRPS-14, -59 to -66. Corresponding peptide yields (mg/L) and standard deviations are obtained from biological triplicate experiments. Rating of production titres and domain assignment is as described before.

Figure S28. SZ17:17 truncation of chimeric di-partite XtpS NRPSs split at the C-A position. (a) Between each experimental approach, the production of non-optimized NRPS-1 varies, but is on average at ~30% of WT level. A set of modified subunit A and B variants were constructed by N- terminally truncating SZ17 and SZ18 by 7 AAs and 14 AAs, respectively and C-terminally truncating SZ17 and SZ18 by 7 AAs. (b) Generated modified subunits were re-combined with non-modified subunits and transformed into E. coli DH10B::MtaA to obtain NRPS-1, -67 to -81. Corresponding peptide yields (mg/L) and standard deviations are obtained from biological triplicate experiments. Rating of production titres and domain assignment is as described before.

Figure S29. SZ4:21 truncation of chimeric di-partite XtpS NRPSs split at the A-T position. (a) Between each experimental approach, the production of non-optimized NRPS-15 varies, but is on average at ~30% of WT level. Modified subunit A was constructed by N- terminally truncating SZ4 by 14 AAs. (b) Generated modified subunits were re-combined with non-modified subunits and transformed into E. coli DH10B::MtaA to obtain NRPS-1, -67 to -81. Corresponding peptide yields (mg/L) and standard deviations are obtained from biological triplicate experiments. Rating of production titres and domain assignment is as described before.

Figure S30. Overview of truncated SZs. Left row: schematic representation of SZs and their corresponding AAs sequences. Right row. Truncated SZs variants and corresponding AAs sequence. Impact of truncated SZs on type S NRPSs is indicated and rated from -, -, -- to 0, +, ++, +++.

4. References

- 1. Abbood, N.; Duy Vo, T.; Watzel, J.; Bozhueyuek, K. A. J.; Bode, H. B., Type S Non-Ribosomal Peptide Synthetases for the Rapid Generation of Tailormade Peptide Libraries. *Chemistry* **2022**, *28* (26), e202103963.
- Bozhüyük, K. A. J.; Fleischhacker, F.; Linck, A.; Wesche, F.; Tietze, A.; Niesert, C. P.; Bode, H. B., De novo design and engineering of non-ribosomal peptide synthetases. *Nat Chem* 2018, 10 (3), 275-281.
- 3. Kegler, C.; Nollmann, F. I.; Ahrendt, T.; Fleischhacker, F.; Bode, E.; Bode, H. B., Rapid determination of the amino acid configuration of xenotetrapeptide. *Chembiochem* **2014**, *15* (6), 826-8.
- 4. Hanahan, D., Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983, 166 (4), 557-80.
- 5. Schimming, O.; Fleischhacker, F.; Nollmann, F. I.; Bode, H. B., Yeast homologous recombination cloning leading to the novel peptides ambactin and xenolindicin. *Chembiochem* **2014**, *15* (9), 1290-4.
- 6. Bozhueyuek, K. A. J.; Watzel, J.; Abbood, N.; Bode, H. B., Synthetic Zippers as an Enabling Tool for Engineering of Non-Ribosomal Peptide Synthetases*. *Angew Chem Int Ed Engl* **2021**, *60* (32), 17531-17538.
- 7. Shao, Z.; Zhao, H.; Zhao, H., DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. *Nucleic Acids Res* **2009**, *37* (2), e16.
- Yin, J.; Hoffmann, M.; Bian, X.; Tu, Q.; Yan, F.; Xia, L.; Ding, X.; Stewart, A. F.; Müller, R.; Fu, J.; Zhang, Y., Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 in Streptomyces coelicolor A3(2). *Sci Rep* **2015**, *5*, 15081.
- 9. Wang, H.; Li, Z.; Jia, R.; Yin, J.; Li, A.; Xia, L.; Yin, Y.; Müller, R.; Fu, J.; Stewart, A. F.; Zhang, Y., ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. *Nucleic Acids Res* **2018**, *46* (5), e28.
- Gibson, D. G.; Young, L.; Chuang, R. Y.; Venter, J. C.; Hutchison, C. A., 3rd; Smith, H. O., Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat Methods* 2009, 6 (5), 343-5.
- 11. Fu, C.; Donovan, W. P.; Shikapwashya-Hasser, O.; Ye, X.; Cole, R. H., Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase. *PLoS One* **2014**, *9* (12), e115318.