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Abstract 9 

Precise estimates of genome sizes are important parameters for both theoretical and practical 10 

biodiversity genomics. We present here a fast, easy-to-implement and precise method to estimate 11 

genome size from the number of bases sequenced and the mean sequence coverage. To estimate 12 

the latter, we take advantage of the fact that a precise estimation of the Poisson distribution 13 

parameter lambda is possible from truncated data, restricted to the part of the coverage distribution 14 

representing the true underlying distribution. With simulations we could show that reasonable 15 

genome size estimates can be gained even from low-coverage (10X), highly discontinuous genome 16 

drafts. Comparison of estimates from a wide range of taxa and sequencing strategies with flow-17 

cytometry estimates of the same individuals showed a very good fit and suggested that both 18 

methods yield comparable, interchangeable results.  19 

Introduction 20 

Eukaryotic genomes vary tremendously in size (Oliver et al. 2007; Bennett & Leitch 2005; Petrov 21 

2001; Kapusta et al. 2017; Carta et al. 2020), yet the underlying processes for this variability are not 22 

yet fully understood (Elliott & Gregory 2015). To understand and study mechanisms of genome size 23 

variation, such as proliferation of repetitive elements (Blommaert et al. 2019), effective population 24 

size (Lefébure et al. 2017; Lynch & Conery 2003) or correlation to other traits (Gardner et al. 2020; 25 

Prokopowich et al. 2003), reliable estimates for the taxon under scrutiny are therefore mandatory. 26 

This is all the more important as substantial changes in genome size may even occur among closely 27 

related sister species, i.e. over relatively short evolutionary time scales (Keyl 1965; Agudo et al. 2019, 28 

Vitales et al. 2020). A precise estimation of genome size is also important for genomic projects. For 29 

example, in the assembly of genomes, the proportion of the true genome size covered by a given 30 

assembly draft is a quality criterion and limits the maximum size of the draft. Also resequencing 31 
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projects requiring a certain coverage e.g. for genotyping profit from a reliable genome size estimate 32 

(Fountain et al. 2016).  33 

Flow cytometry is generally deemed to yield reliable estimates of genome size (Johnston et al. 2019; 34 

Doležel & Greilhuber 2010). Yet, this method is not without caveats (Wang et al. 2015) and requires 35 

specialised laboratory skills and availability of the relatively expensive equipment. Moreover, the 36 

method depends on availability of fresh or frozen tissue with largely intact cells, which narrows the 37 

range of taxa for which such analyses are practically feasible (Johnston et al. 2019).  38 

Bioinformatical analysis of next generation sequencing data provides an alternative for estimating 39 

genome size (Vurture et al. 2017). Besides the widely used k-mer based methods (Lipovský et al. 40 

2017; Li & Waterman 2003), Schell et al. 2017 introduced a very simple method for genome size 41 

estimation, relying on mapping statistics of NGS reads mapped back to a draft assembly. The 42 

approach assumes that the probability to sequence a genome position is identical over the entire 43 

genome, i.e. that their true coverage is Poisson distributed. Even though there is a slight bias 44 

regarding the double strand breaking positions during DNA preparation for NGS sequencing, the 45 

impact on the resulting sequencing coverage distribution is negligible (Poptsova et al. 2014). In a 46 

perfect assembly covering the entire genome, lambda as the parameter of the underlying Poisson 47 

distribution (as well as the mean and median) of the coverage distribution should therefore be 48 

identical to the true coverage. Dividing the number of sequenced, successfully back-mapped bases by 49 

the lambda of the observed coverage should yield a precise estimate of the true genome size. In 50 

most real draft genomes, however, repetitive regions are not resolved which results in collapsed 51 

repeat regions, and in an assembly that is shorter than the true length (Treangen & Salzberg 2012). 52 

These collapsed repeat regions are over-proportionally covered, skewing the coverage distribution, 53 

and hence, estimates of lambda upwards. A second source of systematic error in assemblies are 54 

relatively diverged heterozygous regions, e.g. from inversions that are not identified as homologous. 55 

These will result in a double representation of the respective region in the genome, making it longer 56 

(Asalone et al. 2020). Consequently, the expected coverage of these regions in the assembly will be 57 

half of the true coverage and skew the coverage distribution and parameters estimated from it 58 

downwards. In real genome assemblies, both errors likely occur to various extents (Sohn & Nam 59 

2018), rendering a naïve use of parameters estimated from the observed coverage distribution 60 

misleading.  61 

We show here how the observed coverage distribution and an estimate of the number of bases 62 

sequenced from genome assembly drafts can be used to infer precise estimates of genome size. We 63 

name the approach ModEst from Modal Estimation of genome size. We tested the methods with 64 

simulations, including various degrees of divergent heterozygous sites and a tetrapoid genome, and 65 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.05.18.444645doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444645
http://creativecommons.org/licenses/by-nc-nd/4.0/


compare genome size estimates from real data over a wide range of genome sizes with those derived 66 

from flow cytometry and k-mer based methods.  67 

Material and Methods 68 

Theoretical background 69 

Under the assumption that NGS sequencing methods sequence all bases in a genome with equal 70 

probability, dividing the number of bases sequenced (N) by the true length of the genome (L) yields 71 

the mean or expected coverage (c) (Sims et al. 2014).  72 

c = N / L 73 

Since the coverage distribution is discrete, it can be modelled by a Poisson distribution with 74 

parameter λ as c. As we are interested in L, we need to find reliable estimates for N and c from 75 

empirical data.  76 

The number of bases used for the assembly of a particular genome is usually known. This number is, 77 

however, not necessarily identical to the number of bases sequenced from the target genome. 78 

Depending on the origin of the DNA, the data set may contain more or less reads originating from 79 

contaminations, the microbiome, and certainly reads from the mitochondrial or plastid genomes 80 

(Kumar et al. 2013). Even though several tools and pipelines exist to remove the bulk of such reads 81 

(Chaliis et al. 2020), this rarely succeeds completely. The number of bases after thorough cleaning, 82 

Nclean, estimates therefore rather the upper limit of N.  83 

An alternative is the number of bases mapped back to the genome assembly draft Nbm. For this 84 

number to represent a good approximation of the number of bases sequenced from the 85 

corresponding genome, all genomic elements (telomers, centromers, repeats) must be represented 86 

in the assembly at least once without presence of contamination etc. and all reads must map back. 87 

This number is therefore a lower limit estimator of N.  88 

As detailed in the introduction, the empirical coverage distribution of back-mapped reads is usually 89 

biased by errors in the genome draft due to collapsed repeats and/or other assembly errors. 90 

However, commonly at least a substantial part of the back-mapped reads map to unique sequences 91 

in the genome draft and should consequently show a coverage distribution following the true 92 

underlying Poisson distribution. Estimating λ from the part of the distribution we know is not biased 93 

by assembly errors should therefore yield a reliable estimator of c. In Schell et al. 2017, the modal 94 

value of the empirical coverage distribution (m), i.e. the most often observed coverage was used as 95 

an estimator of c. The modal value is a fairly good approximation of λ because the difference is in all 96 

cases smaller than or equal to 1 and therefore becomes relatively less biased when λ is high (i.e. high 97 
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mean coverage). Nevertheless, better methods for estimating λ from truncated Poisson distributions 98 

exist (Delignette-Muller & Dutang 2015; Nadarajah & Kotz 2006; Böhning & Schön 2005; David & 99 

Johnson 1952).  100 

As mentioned above, the coverage distribution may show more than a single peak. One possibility to 101 

obtain a bimodal distribution arises from highly divergent heterozygous tracts in the respective 102 

genome. In the assembly process, such divergent tracts may not be identified as homologous by the 103 

algorithm and thus occur as separate regions. Consequently, the coverage in such areas is only half 104 

the true coverage. If a considerable proportion of the genome consists of such divergent 105 

heterozygous regions, a second peak may appear in the coverage histogram. It has its maximum 106 

usually at half the coverage of the larger peak. In this case, the peak with the larger coverage 107 

represents the true coverage. Except for recent hybrid individuals, the latter peak should 108 

nevertheless always be the higher one.  109 

Another possibility to obtain a multimodal coverage distribution arises from polypoid species. If the 110 

multiplied genomes diverged to an extent that both are completely represented in the assembly, the 111 

genome size estimation process is not any different from a diploid species. The other extreme would 112 

be a multiplied genome that is so little diverged that only a single copy appears in the assembly. In an 113 

intermediate stage, some more diverged parts of the multiplied genomes may be resolved, while 114 

others are collapsed in the assembly. The collapsed parts are expected to be over-covered and 115 

therefore the lowest peak represents the true coverage.  116 

In general, the observation of a multimodal coverage distribution of the backmapped reads is 117 

indicative of issues with the assembly. Genome size estimation with the proposed ModEst method 118 

should be nevertheless possible, given appropriate caution.  119 

Practical approach 120 

All the figures needed to estimate the genome size according to the method described here are 121 

usually collected in the process of genome assembly or can be easily calculated with standard tools. 122 

In particular, samtools stats and bedtools genomecov can be used for this purpose. The output of 123 

samtools stats provides information on bases sequenced and mapped, while the output of bedtools 124 

genomecov provides the empirical coverage distribution. The latter can be used as input for R. After 125 

preparing the data, we first estimated the modal value of the empirical distribution. This modal value 126 

is used as starting point for a Maximum Likelihood method to estimate λ from a truncated Poisson 127 

distribution as implemented in the R-libraries truncdist and fitdistrplus (Delignette-Muller & Dutang 128 

2015; Nadarajah & Kotz 2006). We empirically determined suitable upper and lower truncation limits 129 

and give recommendations below. The respective R-code can be found in the Supplement and a Perl 130 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.05.18.444645doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444645
http://creativecommons.org/licenses/by-nc-nd/4.0/


wrapper-script, including all necessary dependencies can be found at 131 

https://github.com/schellt/backmap.  132 

Simulations 133 

To illustrate the influence of factors like sequencing depth, genome size, repeat content and -134 

distribution on the different genome size estimation methods, we simulated five different genomes 135 

according to real examples. Publicly available genome assemblies and annotations of Saccharomyces 136 

cerevisae, Caenorhabditis elegans, Arabidopsis thaliana, Drosophila melanogaster and Scophthalmus 137 

maximus were used to obtain distributions of size and distance between annotated repeat regions. 138 

Simulated genomes of the size of the five genome assemblies mentioned above were then created 139 

using a custom Python-tool, available at https://github.com/Croxa/Simulate-Genome. Regions 140 

annotated as repeat regions (rr) were filled with random repeat units up to 10 bp length, high 141 

complexity regions with random nucleotides. For sake of ease, we simulated the genomes on a single 142 

chromosome. A mean GC content of 0.5 was applied to both categories. Characteristics of the 143 

simulated genomes can be found in Table 1.  144 

Table 1: Simulated genomes and their characteristics, rr = repeat regions.  145 

Simulated genome Size 

(Mbp) 

average count 

of bases 

between rr 

average count 

of bases of rr 

% of rr 

1 Saccharomyces cerevisae-like 12 1246.68 156.67 5.26 

2 Caenorhabditis elegans-like 100 508.66 166.42 13.23 

3 Arabidopsis thaliana-like 120 622.32 311.55 18.06 

4 Drosophila melanogaster-like 144 372.42 242.48 23.39 

5 Scophthalmus maximus-like 524 521.84 45.64 3.74 

 146 

From these simulated genomes, we generated synthetic next-generation sequencing short read sets 147 

of 10X, 30X and 60X coverage using ART Illumina 2.5.8  (Huang et al. 2012). This tool emulates the 148 

sequencing process with built-in, technology-specific read error models, base quality value profiles 149 

parameterized empirically for large sequencing datasets and even adds the sequencing adapters. The 150 

reads were simulated paired-end, length of 150 bp with a standard deviation of 10 and an insert size 151 

of 300 bp. The Illumina sequencing system profile was HiSeq 2500 (HS25).  152 

The read sets were trimmed with Trimmomatic 0.39 (Bolger et al. 2014). Trimmed were usual 153 

Illumina adapters (ILLUMINACLIP:adapter.fa:2:30:10), leading and trailing bases with a quality score 154 
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lower than 5, sliding windows with the size of 20 and an average quality score below 5 and reads 155 

with a length of 50 or lower.  156 

In a first set of experiments, the trimmed read sets of different coverage were back-mapped to the 157 

simulated genomes they were derived from. Mapping was executed within the wrapper script 158 

backmap.pl using bwa mem 0.7.17 without changing default options from backmap.pl. BWA 159 

(Burrows-Wheeler Aligner) is a widely used algorithm for mapping low-divergent sequences against a 160 

large reference genome (Li 2013).  161 

To estimate the influence of genome assemblies of varying quality on the accuracy of the genome 162 

size estimate, we assembled each read set with SPAdes, the St. Petersburg genome assembler. This 163 

algorithm is implemented in a toolkit containing various assembly pipelines (Bankevich et al. 2012). 164 

SPAdes 3.13.0 was used to assemble both trimmed paired and unpaired reads in a one-pass assembly 165 

using default options. The respective read sets were back-mapped and analysed as described above. 166 

For one simulation (A. thaliana-like, 10X coverage), we evaluated the effect of different truncation 167 

limits on the precision of the λ estimation. For coverage class windows ranging from 11 to 5, centred 168 

on the modal value, the deviation of the ML estimate decreased from 0.4% to 4%. We performed the 169 

λ calculations therefore with a window size of eleven around the estimated modal value.  170 

The influence of different amounts of diverged heterozygous genome stretches on size estimation 171 

was evaluated using the Saccharomyces-like genome. We simulated the genome with X,Y and Z% 172 

heterozygous stretches. To make sure that these stretches were not collapsed in the assembly 173 

process, we chose a sequence divergence of 10%. Likewise, we inferred the effect of polyploidy on 174 

genome size estimation with our method. We doubled the Saccharomyces-like genome and 175 

randomly changed bases in the complex part of one of the genomes. We simulated divergences of 176 

0.5%, 1% and 5% among the two genomes. Both sets of simulations were performed as described 177 

above with 30X coverage.  178 

For all simulations, we calculated four different genome size estimates:  179 

i) Nclean/λ, the number of “sequenced” bases after cleaning and trimming divided by the 180 

truncated Poisson ML λ estimate derived from the empirical coverage distribution. 181 

ii) Nclean/m, the number of “sequenced” bases after cleaning and trimming divided by the 182 

modal value of the empirical coverage distribution. 183 

iii) Nbm/λ, the number of back-mapped bases divided by the ML λ estimate derived from the 184 

empirical coverage distribution.  185 

iv) Nbm/m, the number of back-mapped bases divided by the modal value of the empirical 186 

coverage distribution. 187 
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For each estimate, we calculated the relative deviation from the true known genome size.  188 

Empirical data 189 

We used data from de novo genome assemblies that were sequenced in the last few years at the 190 

LOEWE Translational Biodiversity Genomics Centre and for which flow cytometry estimates from the 191 

same individual/clone/population were available. The taxonomic range of genomes comprised plants 192 

and several animal taxa with a focus on insects (Table 2).  193 

Table 2. Genomes used for empirical evaluation.  194 

Species Taxon Flow-

cytometr

y 

estimate 

[Mb] 

Backmappin

g estimate 

[Mb] 

k-mer based 

estimate 

[Mb] 

Sequencing 

technique 

Citation 

Hydropsyche tenuis  Insecta 260.6 228.6 222.8 Short read Heckenhauer et al. 

2019  

Plectrocnemia conspersa  Insecta 455.2 364.9 316.3 Short read Heckenhauer et al. 

2019  

Agapetus fuscipens  Insecta 721.8 583.5 463.2 Short read Heckenhauer et al. 

2021 

Odontocerum albicorne Insecta 1616.0 1270.0 1103.4 Short read Heckenhauer et al. 

2021 

Drusus annulatus Insecta 840.2 684.3 592.3 Short read Heckenhauer et al. 

2021 

Halesus radiatus Insecta 1212.4 972.3 918.7 Short read Heckenhauer et al. 

2021 

Micropterna sequax Insecta 1434.7 1100.0 981.7 Short read Heckenhauer et al. 

2021 

Micrasema longulum ML1 Insecta 663.6 707.7 650.7 Short read Heckenhauer et al. 

2021 

Micrasema longulum ML3 Insecta 663.6 637.8 635.2 Short read Heckenhauer et al. 

2021 

Micrasema minimum Insecta 588.8 329.3 333.8 Short read Heckenhauer et al. 

2021 

Rhyacophila evoluta Rss1 Insecta 651.3 581.8 518.8 Short read Heckenhauer et al. 

2021 

Rhyacophila evoluta HR1 Insecta 651.3 565.5 514.4 Short read Heckenhauer et al. 

2021 

Glaux maritima (also 

known as Lysimachia 

maritima) 

Angiosperm 

plant 

1270.0 1541.4 1221.3 Short read Segers et al. 

unpublished data 
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Radix auricularia Mollusca 1575.0 1603.0 947.1 Short read Schell et al. 2017  

Crematogastor levior Insecta 455.0 356.0 255.9 Short read Hartke et al. 2019 

Daphnia galeata Crustacaea 155.0 157.0 150.5 Short read Nickel et al. 2021  

Candidula unifasciata Mollusca 1540.0 1420.0 977.6 Short read Chueca et al. 2021a 

Styela plicata Tunicata 430.9 468.6 338.8 Short read Galià-Camps et al. 

unpublished data 

 Callionymus lyra Teleostei 645.0 653.2 562.0 Short read Winter et al. 2020 

Pimpla turbinella Insecta 300.0 298.0 206.0 Short read Reumont et al. 

unpublished data 

Fagus sylvatica Angiosperm 

plant 

582.4 542.0 541.0 Short read Mishra et al. 2021  

Aedes japonicus Insecta 857.0 836.3 699.0 Short read Reuss et  al. 

unpublished data 

Nyctereutes procynoides Mammalia 3100.0 3230.0 - Long read Chueca et al. 2021b  

Microthlaspi erraticum Angiosperm 

plant 

194.5 211.00 
 

211.0 - Short read Mishra et al. 2020  

Crematogastor levior, 

species B 

Insecta 390.0 406.7 - Long read Feldmeyer et al. 

unpublished data 

Camponotus femoratus Insecta 330.0 340.0 - Long read Feldmeyer et al. 

unpublished data 

Astacus astacus Crustacaea 16891.0 16750.0 - Short read Theissinger et al. 

unpublished data 

Lamprophis fuliginosis Squamata 1480.0 1617.0 - Long read Hiller et al. 

unpublished data 

Desmodus  Mammalia 2337 2089 - Long read Hiller et al. 

unpublished data 

 195 

If not stated otherwise in the citations, genome size estimates from flow cytometry were estimated 196 

following a protocol with propidium iodide-stained nuclei described in (Hare & Johnston 2012). 197 

Tissue of the organism was chopped with a razor blade in a petri dish containing 2 ml of ice-cold 198 

Galbraith buffer. The suspension was filtered through a 42-μm nylon mesh and stained with the 199 

intercalating fluorochrome propidium iodide (PI, Thermo Fisher Scientific) and treated with RNase II 200 

A (Sigma-Aldrich), each with a final concentration of 25 μg/ml. The mean red PI fluorescence signal of 201 

stained nuclei was quantified using a Beckman-Coulter CytoFLEX flow cytometer with a solid-state 202 

laser emitting at 488 nm. Fluorescence intensities of 5000 nuclei per sample were recorded. We used 203 

the software CytExpert 2.3 for histogram analyses The total quantity of DNA in the sample was 204 

calculated as the ratio of the mean red fluorescence signal of the 2C peak of the stained nuclei of the 205 

target organism divided by the mean fluorescence signal of the 2C peak of the reference standard 206 

times the 1C amount of DNA in the standard reference. Six replicates were measured on six different 207 
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days to minimize possible random instrumental errors. We report the mean value of these 208 

measurements.  209 

For each of the genomes, we calculated Nbm/m since we could not reconstruct the exact state of 210 

taxonomic read cleaning i.e. removal of contamination reads from other taxa for all genomes. The 211 

modal value was chosen, because the coverage exceeded 50X in most cases. For comparison, we 212 

performed or used published k-mer based estimates as far as available. First a k-mer profile was 213 

generated from Illumina reads using jellyfish 2.3.0 tools (Marçais & Kingsford 2011) count with a 214 

length of k=21 and counting k-mers on both strands and histo. Subsequently, the generation 215 

histogram was used as input for the GenomeScope webserver (Vurture et al. 2017) together with the 216 

above mentioned length of k and read length. For some organisms, the approach could find no 217 

appropriate model. In addition, it is not suitable for long read technologies.  218 

Statistical analysis 219 

The performance of the two bioinformatic genome size estimation methods was evaluated by their 220 

linear regression fit with the respective flow-cytometry estimates. We compared the two slopes of 221 

the regression for statistical difference (Cohen et al. 2013).  222 

Results 223 

Simulations 224 

The single-pass assemblies derived from the simulated short reads were highly fragmented with 225 

thousands of short scaffolds, almost independent of simulated coverage (Table 3). For the 226 

S. saccharomyces-like, the C. elegans-like and the S. maximus-like genomes, the total lengths of the 227 

assemblies were above 90% of the true size, for the remaining two below 80%. This was reflected in 228 

the back-mapping rates that were highly correlated to the relative assembly length (r = 0.995, p < 229 

0.001, Table 3).  230 
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Table 3. Characteristics of simulated genomes, their assemblies, back-mapping and estimation of the parameter of the underlying Poisson-distribution.  231 

 232 

Simulated genome simulated 

coverage 

true size 

[Mbp] 

assembly size 

[Mbp] 

proportion of 

true length 

number of 

contigs 

mean contig 

length [bp] 

Mbp "sequenced" 

=Nclean 

bp mapped 

= Nm 

proportion of 

bases mapped 

Saccharomyces_cerevisae_like 10 12.08 11.24 0.930 2,021 5,561 120.8 113.0 0.931 

 30 12.08 11.24 0.931 1,823 6,170 362.4 339.1 0.932 

 60 12.08 11.24 0.932 1,906 5,905 724.8E+08 677.7 0.931 

Caenorhabditis_elegans_like 10 100.0 92.77 0.927 105,104 883 100.0E+09 933.7 0.904 

 30 100.0 9280 0.928 98,341 944 300.1E+09 2807 0.910 

 60 100.0 92.25 0.929 99,957 930 600.2E+09 5598 0.904 

Arabidopsis_thaliana_like 10 120.1 92.83 0.773 66,881 1,388 1201 956.6 0.780 

 30 120.1 93.03 0.775 63,695 1,461 3602 2881 0.785 

 60 120.1 92.75 0.772 61,615 1,505 7205 5759 0.784 

Drosophila_melanogaster_like 10 144.1 107.8 0.748 104,002 1,037 1441 1118 0.755 

 30 144.1 107.7 0.747 95,701 1,125 4322 3382 0.763 

 60 144.1 107.6 0.747 95,523 1,127 8643 6725 0.756 

Scophthalmus_maximus_like 10 524.1 523.4 0.999 76,507 6,842 5241 5220 0.994 

 30 524.1 524.1 1.000 63,360 8,261 15720 15670 0.995 

 60 524.1 425.1 1.000 63,260 8,274 31440 31340 0.995 

Saccharomyces_cerevisae_like 1% divergent 

heterozygous regions 

30 12.08 11.78 0.975 1,152 10,226 356.1 352.2 0,989 

5% divergent heterozygous regions 30 12.08 12.18 1.008 3,020 4,032 354.0 350.5 0,990 

10% divergent heterozygous regions 30 12.08 12.68 1.049 5,435 2,333 351.4 347.1 0,988 

10% divergent heterozygous regions 30 12.08 13.68 1.133 10,163 1,346 346.1 341.9 0,988 

Tetraploid Saccharomyces_cerevisae_like 0.5% 

divergence among duplicated genomes 

30 24.16 11.75 0.486 1,197 9,818 712.9 700.4 0.982 

1% divergence 30 24.16 13.09 0.542 6,699 1,954 713.0 696.8 0.977 

5% divergence 30 24.16 22.92 0.949 4,719 4,857 714.4 700.3 0.980 

233 
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The least relative deviation from the true genome size overall was found for the Nclean/λ estimator 234 

(mean deviation 0.00017, range 0.00003-0.00056), followed by Nclean/m (0.054, 0.0169 - 0.111), 235 

Nbm/m (0.094, 0.014-0.209) and Nbm/λ (0.112, 0.003-0.224, Figure 1). There was a tendency for the 236 

method to perform better with higher coverage, mainly due to the smaller relative deviation of m 237 

from λ at higher coverage. Given the rather minor differences in contiguity among genome 238 

assemblies reconstructed from different coverages, this factor had only a minor role for the precision 239 

of the genomes size estimates (Table 3, Figure 1).  240 

 241 

Figure 1. Relative deviations of genome size estimators from true values for different simulated 242 

genomes and simulated coverages. The deviations of Nclean/λ (blue) from the true value are so small 243 

that they are not visible on the scale. The raw data table to this figure can be found in the 244 

Supplemental Table 1.  245 

The genome size estimates from simulated genomes with varying proportions of divergent 246 

heterozygous sites all yielded the same estimates (Supplemental Table 1). As can be seen in the 247 

respective coverage distributions, the only difference between the simulations was a second, lower 248 

peak at about half the expected coverage that grew with increasing amount of heterozygous regions. 249 

The position of the true peak remained unaffected (Figure 3a).  250 

Assembly of a tetraploid Saccharomyces cerevisae-like genome with the two lowest divergences 251 

between the duplicated genomes (0.5% and 1%) resulted in the reconstruction of approximately a 252 

single haploid genome, respectively (assemblies of lengths 1.18 Mb and 1.31 Mb, Supplemental 253 

Table 1). Therefore, the highest observed coverages for these simulations were both 59 and the λ 254 

estimates close to 60 (Supplemental Table 1, Figure 3b). Consequently, the genome size estimates 255 
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were close to the haploid length. However, with divergence 1%, a second peak with maximum 28, 256 

respectively λ 28.9 emerged (Figure 3b, Supplemental Table 1). Using this peak yielded estimates that 257 

were much closer to the truth (relative deviations between 0.005 and 0.06, depending on estimator). 258 

With 5% divergence, the duplicated genomes were almost fully resolved in the assembly and, hence, 259 

the peak at the true coverage and therefore the genome size estimates not further than 0.03 from 260 

the truth (Figure 3b, Supplemental Table 1).  261 

 262 

Figure 3. Coverage distributions for divergent heterozygous and tetraploid genomes. All distributions 263 

shown are based on the Saccharomyces_cerevisae_like genome. a) Coverage distributions for 0%, 5% 264 

10% and 20% of divergent heterozygous regions. b) Coverage distributions for tetrapoid genomes 265 

with 0.5%, 1% and 5% divergence among the duplicated genomes. Please note the logarithmic scale 266 

of the x-axes.  267 
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Empirical data 268 

Ordinary Least Squares Regression of 1C flow-cytometry estimates against the estimates derived 269 

from the coverage approach yielded an excellent fit (r² = 0.998, p = 2.2 x 10-34). Removing the outlier 270 

estimate for the crayfish genome did not change the result markedly (r² = 0.958, p = 2.1 x 10-17). The 271 

estimated slope was with 0.996+/- 0.043 (s.e.) very close to unity. The fit of the respective k-mer 272 

based estimates to the flow cytometry data was equally good (r² = 0.996, p = 1.1 x 10-26), however, 273 

the slope of 0.585 +/- 0.007 (s.e.) suggested a systematically lower k-mer estimate (Figure 2). The 274 

estimated slopes were significantly different from each other (t = 9.43, d.f. = 44, p < 1 x 10-6).  275 

 276 

Figure 5. Ordinary least square regression for Nbm/m (black) and k-mer based (red) genome size 277 

estimates on 1C flow-cytometry estimates derived from the same individuals, respectively. For better 278 

graphical representation, estimates were log transformed. Both regressions were highly significant (p 279 

< 0.0001). The Nbm/m estimates fit as well (r² = 0.998) than their k-mer based counterparts (r² = 280 

0.996). The slopes (0.995 for Nbm/m and 0.59 for k-mer based) were significantly different.  281 
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Discussion 282 

As long as reliable whole chromosome sequencing is technically not yet feasible and thus the true 283 

genome size is not known, genome size estimation of de novo sequenced genomes will be a 284 

necessary and important part of biodiversity genomics. We presented here with ModEst a fast, easy-285 

to-use and precise method for genome size estimation from NGS sequencing data. We have shown 286 

that the method works for a wide range of genome sizes. The method could become standard part of 287 

the genome assembly process, because it relies on data that is routinely collected. Albeit our method 288 

is not the first to propose the use of sequencing, respectively mapping statistics (Pflug et al. 2020; 289 

Pucker 2019), it requires less assumptions and much less bioinformatic effort than previously 290 

suggested approaches. The method does, admittedly, not solve the problem how much sequence 291 

information should be produced in the first place if there is absolutely no a priori information on the 292 

expected genome size of the target organism. However, very low modal coverages obtained with the 293 

method indicate that sequencing efforts should be increased.  294 

To evaluate the performance of our method and the factors influencing it, we performed a 295 

simulation study. We simulated five different genomes with the characteristics and genome sizes 296 

typical for various eukaryotic taxa. We could show that the precision of the estimate is largely 297 

independent from the contiguity and quality of the underlying genome assembly as long as most 298 

sequence elements in the genome are represented in the assembly draft. This finding was confirmed 299 

with the empirical samples, where e.g. the size estimate for giant genome of the crayfish Astacus 300 

astacus was gained from a very preliminary, highly discontinuous assembly with poor N50, which 301 

nevertheless yielded excellent concordance with the flowcytometry estimates (Table 2). This makes 302 

the method particularly suitable to obtain a reliable genome size estimate early in the assembly 303 

process and, if necessary, adjust the sequencing strategy. But also genome skimming projects 304 

(Dodsworth 2015) with low coverages could profit from the proposed method, as long as the 305 

obtained coverage is at least in the order of 2-5X. The simulations have further shown that divergent 306 

heterozygote stretches do not compromise the result of the genome size estimation.  307 

The accuracy of genome size estimates of simulated tetraploid organisms depended strongly on the 308 

degree of divergence between the genome copies. When the divergence was low (0.5%), the 309 

assembly of the duplicated was almost completely collapsed and consequently the modal coverage 310 

twice as high as the true coverage. However, already with 1% sequence divergence between the 311 

duplicated genomes, an additional peak close to the true value of 30 was observed. For 5% sequence 312 

divergence and higher (not shown), the assembly more or less fully resolved the duplicated genomes 313 

and the highest peak was identical to the true coverage. This stressed that multimodal coverage 314 

distributions point to issues with the assembly and should always be carefully investigated. 315 
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Nevertheless, if the ploidy of the organism is known, reliable estimates of the genome size can be 316 

gained even for recent polyploidisation events with our method as well. 317 

The simulation study relied on simulated short reads as obtained e.g. by the widespread Illumina-318 

platform. However, several included empirical examples (e.g. Chueca et al. 2021a) suggested that 319 

estimating the bases sequenced from the target genome with PacBio long reads worked equally well. 320 

In principle, as long as the assumption of random sequencing of bases from the genome is fulfilled, 321 

every sequencing platform should yield reliable estimates. For mixed assemblies, however, it is 322 

advisable to use only one sort of data (preferably the one with the higher number of sequenced 323 

bases, see below), because the underlying coverage distributions are usually different.  324 

We proposed four slightly different estimators of genome size. Simulations indicated that, as 325 

expected, the Nclean/λ estimator yielded by far the best results, in practice largely independent of 326 

coverage or assembly quality. However, since we gained the reads from simulated genomes, they 327 

were by definition free of contaminations, i.e. reads from other organisms or other (e.g. organellar) 328 

genomes. Whether Nclean, the number of bases sequenced after cleaning and trimming, is reasonable 329 

for empirical estimations depends thus on the confidence with regard to the amount of residual 330 

contamination in the data set.  331 

For the alternative, using the number of back-mapped reads, Nbm, as an estimator of the bases 332 

sequenced, precision depended strongly on the completeness of the genome assembly in terms of 333 

presence of all sequence elements, regardless of their copy-number. This seemed reasonable: if all 334 

repeat classes and complex regions are represented in the genome draft, all reads will find a place 335 

they can map to. If the confidence is high that Nclean is correct, the ratio Nbm/Nclean would be a good 336 

indicator of genome completeness in this sense.  337 

We have shown that the λ parameter of the underlying true Poisson distribution of base coverage is 338 

readily and reliably found by ML estimation, if we truncate the data to a small window around the 339 

modal value of the coverage distribution. Moreover, because the modal value of a Poisson 340 

distribution cannot deviate more than 1 from λ, the relative error from using m instead of λ 341 

decreases with increasing coverage. Most genome sequencing projects use coverages of several 342 

dozen X for at least one technique where the difference becomes marginal. Estimating genome size 343 

from low coverage e.g. of genome-skimming projects, however, should entail proper estimation of λ.  344 

Comparison of genome size estimates obtained with our sequencing coverage method to empirical 345 

data from flow cytometry obtained from the same individual achieved very good agreement, 346 

regardless of genome size. The regression slope of close to 1 indicated that the estimates obtained 347 

with our method can be used interchangeably with those from flow-cytometry. This allows 348 
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researchers to gather reliable and comparable genome size estimates for species where fresh 349 

material is difficult or impossible to obtain or access to flow-cytometry equipment is lacking.  350 

While the k-mer based estimates available were almost as consistent as those obtained from 351 

sequencing coverage, they were not as precise. The k-mer approach consistently underestimated the 352 

true size by more than one third. By their very nature, k-mer approaches estimate rather the content 353 

of high complexity regions (Lipovský et al. 2017). It will be therefore interesting to see whether the 354 

observed taxon-independent relationship of approximately 2/3 complexity regions to 1/3 repeat 355 

regions as found here mainly for animal species will hold true for more genomes. The work of Novák 356 

et al. (2020) also showed an almost constant, albeit higher proportion of repetitive regions for plant 357 

genomes with sizes up to 10 Gb.Above this size, the relative proportion of repeats declined. 358 

Obtaining more reliable genome sizes from a broad taxon range will allow to infer which processes 359 

are driving these patterns to which the proposed ModEst method can contribute.  360 
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Supplement  491 

R-code for estimating lambda from a truncated Poisson distribution 492 

library(fitdistrplus) 493 

library(truncdist) 494 

library(splitstackshape) 495 

#transform Qualimap output to R-object 496 

obj <- read.table("coverage_histogram.txt", header = TRUE) 497 

obj <- expandRows(obj, "freq") 498 

obj <- as.vector(obj$freq) 499 

summary(obj) 500 

#define function for mode 501 

mode <- function(obj) {uniqv <- unique(obj) uniqv[which.max(tabulate(match(obj, uniqv)))]} 502 

min <- mode – 5 503 

max <- mode + 5 504 

dtruncated_poisson <- function(x, lambda) {dtrunc(x, "pois", a=min, b=max, lambda=lambda)} 505 

ptruncated_poisson <- function(q, lambda) {ptrunc(q, "pois", a=min, b=max, lambda=lambda)} 506 

fitdist(obj, "pois", start = list(lambda = mode)) 507 
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Supplemental Table 1. Genome size estimates and deviations from true value for the simulated genomes.  508 

simulated genome coverage estimated 

λ 

modal 

coverage 

m 

Nclean/λ deviation 

Nclean/λ 

Nclean/m deviation 

Nclean/m 

Nbm/λ deviation 

Nbm/λ 

Nbm/m Nbm/m 

Saccharomyces_cerevisae_like 10X 9.995 9 12.08 -0.00044 13.42 0.11109 11.30 -0.06500 12.56 0.03933 

 30X 29.994 29 12.08 -0.00015 12.50 0.03446 11.30 -0.06447 11.69 -0.03209 

 60X 59.998 59 12.08 -0.00003 12.29 0.01693 11.29 -0.06505 11.49 -0.04920 

Caenorhabditis_elegans_like 10X 9.996 9 100.04 -0.00010 111.15 0.11103 93.37 -0.06678 103.74 0.03694 

 30X 29.995 29 100.03 -0.00019 103.49 0.03441 93.56 -0.06487 96.79 -0.03251 

 60X 59.994 59 100.04 -0.00003 101.73 0.01688 93.31 -0.06736 94.88 -0.05159 

Arabidopsis_thaliana_like 10X 9.993 9 120.04 -0.00038 133.42 0.11102 95.63 -0.20365 106.29 -0.11490 

 30X 29.996 29 120.07 -0.00016 124.22 0.03440 96.02 -0.20037 99.34 -0.17273 

 60X 59.992 59 120.08 -0.00005 122.11 0.01687 95.98 -0.20075 97.60 -0.18723 

Drosophila_melanogaster_like 10X 9.998 9 143.98 -0.00056 160.06 0.11100 111.75 -0.22432 124.22 -0.13773 

 30X 29.992 29 144.05 -0.00009 149.02 0.03438 112.72 -0.21756 116.61 -0.19059 

 60X 59.988 59 144.06 -0.00003 146.49 0.01685 112.09 -0.22198 113.98 -0.20884 

Scophthalmus_maximus_like 10X 9.996 9 523.93 -0.00027 582.29 0.11110 521.90 -0.00414 580.04 0.10680 

 30X 29.995 29 524.05 -0.00004 542.13 0.03448 522.34 -0.00330 540.37 0.03111 

 60X 59.998 59 524.03 -0.00008 532.95 0.01694 522.27 -0.00344 531.16 0.01353 

Saccharomyces_cerevisae_like 1% 

divergent heterozygous regions 

30X 29.999 30 11.87 -0,01747 11.87 -0,01749 11.74 -0,02827 11.74 -0,02829 
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5% divergent heterozygous regions 30X 29.999 30 11.80 -0,02321 11.80 -0,02324 11.68 -0,03286 11.68 -0,03288 

10% divergent heterozygous regions 30X 29.999 30 11.71 -0,03038 11.71 -0,03040 11.57 -0,04228 11.57 -0,04230 

20% divergent heterozygous regions 30X 29.999 30 11.54 -0,04504 11.54 -0,04507 11.40 -0,05666 11.40 -0,05668 

Tetraploid 

Saccharomyces_cerevisae_like 0.5% 

divergence among duplicated 

genomes 

30X 59.999 59 11.88 -0.50819 12.08 -0.49986 11.67 -0.51685 11.87 -0.50867 

1% divergence 30X 59.988 59 11.89 -0.50804 12.08 -0.49980 11.62 -0.51924 11.81 -0.51119 

1% divergence, correct peak 30X 28.986 28 24.60 0.01815 25.46 0.05398 24.04 -0.00502 24.88 0.03000 

5% divergence  30X 29.999 29 23.81 -0.01431 24.63 0.01965 23.34 -0.03376 24.15 0.00047 
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