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One sentence summary 
 
The reliability of cortical representations emerges from experience-driven reorganization of endogenous 
networks 
 
 
Abstract 
 
The fundamental structure of cortical networks arises early in development prior to the onset of 
sensory experience. However, how endogenously generated networks respond to the onset of 
sensory experience, and how they form mature sensory representations with experience remains 
unclear. Here we examine this ‘nature-nurture transform’ using in vivo calcium imaging in ferret 
visual cortex. At eye-opening, visual stimulation evokes robust patterns of cortical activity that 
are highly variable within and across trials, severely limiting stimulus discriminability. Initial 
evoked responses are distinct from spontaneous activity of the endogenous network. Visual 
experience drives the development of low-dimensional, reliable representations aligned with 
spontaneous activity. A computational model shows that alignment of novel visual inputs and 
recurrent cortical networks can account for the emergence of reliable visual representations. 
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Cortical circuits emerge from a developmental sequence that includes two distinct phases: an early period 
prior to the onset of experience during which endogenous mechanisms are thought to formulate the initial 
framework of cortical networks (1–4), and a subsequent period during which these early networks are 
refined under the influence of experience (5–9). The visual cortex of higher mammals has served as a 
powerful model for exploring the contributions of these different phases to the development of mature 
cortical networks. Prior to the onset of visual experience, activity independent mechanisms combine with 
activity dependent mechanisms driven by patterns of endogenous activity derived from the retina and the 
LGN (10–12) to generate a robust modular network structure in visual cortex that is evident in patterns 
of spontaneous activity (13, 14). This endogenously generated functional network is thought to form the 
initial framework for the emergent cortical representation of stimulus orientation since visual stimulation 
at or before eye opening drives weakly orientation-selective responses at the cellular and modular scale 
(15–19) and spontaneous activity prior to eye opening is predictive of the representations of stimulus 
orientations at eye opening (14). Despite recognizing the considerable network organization present 
before experience, we lack a clear understanding of the capacity of the endogenous cortical network to 
reliably represent stimulus orientation at the onset of visual experience. Currently, we cannot rule out the 
possibility that the initial responses at eye opening are weak or exhibit only a poor modular structure. 
Moreover, while patterned visual input appears necessary to improve stimulus selectivity and to align the 
responses from the two eyes (15), the full scope of experience-driven transformations of these initial 
responses that give rise to mature stimulus representations is unknown at present.  
 
To explore these critical early developmental dynamics, we employed chronic in vivo calcium imaging of 
visually evoked activity in visual cortex of postnatal ferrets prior to and following the onset of visual 
experience (Fig. 1A; Methods). Utilizing calcium sensors to visualize activity at the modular and cellular 
scale allowed us to study developing visual representations in the behaviorally relevant regime of 
individual trials. Our experiments reveal dramatic developmental changes in network response reliability 
and significant departures of the emerging visual representations from early endogenous network 
structure that are driven by the visual experience. Based on a computational model whose predictions 
closely match the biology, we propose that visual experience drives the alignment of feedforward and 
recurrent networks to transform a nascent modular network with diverse and unreliable visual responses 
into a mature network with a distinctive modular structure and highly reliable visual responses.  
 
Strong but highly variable network responses in visually naïve animals 
As a frame of reference for the qualities of the earliest visual responses, we start with consideration of 
the patterns of activity evoked by grating stimuli in animals that have had several days of patterned visual 
experience (Fig. 1A-C). As expected, single trial responses were strong and modular (comprising a 
number of distinct active domains) and also highly reliable, such that repeated presentations of the same 
stimulus evoked highly similar single trial patterns of activity (assessed 0.5 s after stimulus onset, Fig. 
1C, upper). Intriguingly, in young, visually naïve animals, with eyes opened prematurely several days 
prior to the natural time of eye opening (EO), single trial grating evoked activity was also robust (Fig. 1B, 
lower) and displayed an equally pronounced modular structure (Fig. 1C, lower). However, single trial 
response patterns were strikingly different for repeated presentations of the same grating stimulus (Fig. 
1C, lower). 
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Figure 1: In visually naïve animals, grating stimulus evoked activity is robust and modular, but also highly variable 
both within and across trials.  
(A) Timeline of ferret visual cortex development and experiments (PD=postnatal day; EO=eye opening).  
(B) Grating stimulus evoked activity (GCaMP6s widefield epi-fluorescence imaging), averaged over the region of interest 

(ROI) in a visually naïve animal, two days prior to eye opening (EO-2; bottom) and in an experienced animal, six days 
after eye opening (EO+6; top). Light blue: stimulation (moving grating, 16 directions, randomly alternated). 

(C) Left: Examples of grating-evoked activity patterns for repeated presentations of the same stimulus. Top: experienced 
(EO+6); bottom: visually naïve (EO-2). Superimposed in green are the zero-contours from the first trial. Activity patterns 
are taken 0.5 s after stimulus onset. Right: Overlay of contours from n=5 trials (same stimulus). 

(D) Mean correlation between activity patterns evoked by the same stimulus, averaged over all stimuli (‘trial-to-trial 
correlation’, see main text and Methods). Animals longitudinally recorded. Error bars show Mean ± SEM for age groups: 
EO-3 to -2, EO+0, EO+4 to +7 (N= 4,11,11 animals, respectively). Control: random patterns with matched spatial 
correlation function (Methods). Legend, omitting control, applies also to (G), (I), (J), below.  

(E) Vector-sum orientation preference map (OPM); angle shown in color and magnitude (1 – circular variance (CV)) in 
luminance value.  

(F) Stability of activity pattern within a trial in a visually naïve (EO-2) and an experienced animal (EO+6).  
(G) Correlation between response patterns 1 s and 3 s after stimulus onset, averaged over all trials and stimuli (‘intra-trial 

stability’) at different ages. 
(H) Top: Examples of single cell grating-evoked activity patterns for repeated presentations of the same stimulus, 0.5 s after 

stimulus onset pooled over 4 imaging planes (GCaMP6 two-photon fluorescence imaging). Bottom: Cellular activity 
patterns during a trial (same field of view; activity temporally smoothed for illustration using a gaussian kernel, SD=0.33 
s).  

(I) Trial to trial correlation for cellular responses at different ages (N=5 animals). 
(J) Intra-trial stability of cellular activity, 0.5 s and 2.5 s after stimulus onset at different ages.  
Same animal presented in (C), (E), (F). For illustration, activity patterns were clipped at 2 SD. 
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To quantify this apparent difference in reliability of responses across trials we examined the ‘trial-to-trial 
correlation’ (see Methods for definition) in multiple animals across ages and found a dramatic increase 
in trial-to-trial correlation four days following the onset of visual experience (Fig. 1D, EO vs EO+4, 
p=0.0002, paired permutation test, see Methods), along with a striking increase in orientation 
discrimination (SI Fig. 1A). At the earliest time points tested, correlations between evoked activity patterns 
across trials while low, were greater than zero (Fig. 1D; p<10-5, random control patterns, see Methods) 
consistent with the presence of a nascent modular structure at this early stage. Indeed, averaging over 
trials in visually naïve animals confirmed the presence of a weak but systematic bias in preferred 
orientation across cortical space (orientation preference map – OPM) (Fig. 1E lower), consistent with 
previous studies that have found weak structure in trial-averaged activity patterns at these early time 
points (15–17, 19). Our observations suggest that a major contributor to the emergence of mature 
orientation representations (Fig.1E top) is reduction in response variability at the network scale.  
 
While these results have focused on the visual responses shortly (0.5 s) after stimulus onset, we thought 
it was important to assess whether a similar degree of instability was present in the dynamics of sustained 
activity. Our moving visual grating stimuli were presented for a duration of 4-5 seconds, and thus we 
systematically assessed the degree to which the evoked activity was stably maintained during visual 
stimulation by comparing the activity pattern 1 s after stimulus onset to that 2 s later. Indeed, following 
the onset of visual experience, responses were highly stable during the stimulation period (Fig. 1F top), 
contrasting with responses in the visually naïve cortex that showed a strong tendency to vary during the 
period of stimulation (Fig. 1F bottom). To quantify this trend, we defined ‘intra-trial stability’ as the 
correlation between activity patterns 1 s vs. 3 s after stimulus onset averaged over all trials and stimuli 
(see Methods). We found that across the animals in our sample, intra-trial stability increased significantly 
several days after eye opening (Fig. 1G; p<0.001, unpaired bootstrap test, see Methods), further 
emphasizing the high degree of instability in visually evoked responses of naïve animals.  
 
These wide-field imaging results were confirmed with two-photon imaging of the activity patterns in large 
populations of single neurons. Repeated presentations of the same visual grating stimulus in visually 
naïve animals evoked single cell responses with amplitude and spatial structure comparable to 
experienced animals, but with much lower uniformity of responses across trials (Fig. 1H top, SI Fig. 2). 
Cellular population activity patterns from younger animals were only weakly correlated trial to trial (Fig. 
1I), severely limiting orientation discrimination (SI Fig. 1B); but these patterns became progressively more 
correlated several days after eye opening (Fig. 1I), following a similar trajectory as observed with wide-
field imaging in larger fields of view (Fig. 1D). Additionally, population activity patterns in younger animals 
were not stably maintained during the period of stimulation (Fig. 1H lower, J), consistent with our results 
using wide-field imaging (Fig. 1G).  
 
Thus, with the initial exposure to activity driven by visual stimuli, endogenously generated circuits deliver 
responses that are strong and highly structured, but lack the reliability necessary to faithfully represent 
stimulus orientation. This implies that the weak stimulus tuning that has been observed at the level of trial 
averages (15–19) is not due to weak or poorly structured evoked activity, but reflects a significant trial-
to-trial variability of strong modular responses. But to shed light on the mechanism that gives rise to highly 
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reliable network responses requires first analyzing the overall organization of the initial grating evoked 
responses and their relation to the endogenous network structure.   
 
Reduction in diversity of modular patterns following onset of experience  
Our observation of weak consistency of initial responses – both across and within trials – raises the 
question whether the initial responses to visual grating stimuli consists of a diverse set of patterns, such 
that the single stimulus parameter visual angle is represented by a higher-dimensional linear manifold in 
the visually naïve cortex, and potentially by a much more confined manifold in the experienced cortex. 
To test this, we characterized the overall organization of evoked activity patterns for all trials and stimuli 
using principal component analysis. The principal components – themselves patterns (SI Fig. 3A) – reveal 
the most prevalent modes of co-variation between cortical locations across the activity patterns. In 
experienced animals, the projection of individual (z-scored and normalized) activity patterns into the 
space spanned by the two leading principal components (SI Fig. 3B) revealed a well-ordered circular 
structure with radius close to 1, suggesting that stimulus orientation is mapped onto a nearly two-
dimensional linear manifold in neural activity space (Fig. 2A, upper). In contrast, we found that in visually 
naïve animals many projection lengths were much smaller than 1 (Fig. 2A, lower) and the variance of 
evoked activity was distributed over the principal components more broadly than in experienced animals 
(Fig. 2B). To quantify this trend, we computed the linear ‘dimensionality’ of grating evoked response 
patterns (see Methods), which, initially was relatively high, but showed a pronounced decrease with the 
onset of visual experience (Fig. 2C, SI Fig. 3C). Thus, the early modular responses are more diverse, 
residing in a higher-dimensional linear manifold than those found in the experienced cortex following the 
onset of visual experience, suggesting that these initial modular patterns reflect a more flexible repertoire 
of network responses to visual input, fundamentally different from the experienced cortex.  
 
Initially weak correspondence between evoked and spontaneous activity  
Having observed this considerable diversity of early evoked activity patterns, we next sought to shed light 
on its potential origin by examining the relation of these initial evoked patterns to the endogenously 
generated network structure, as reflected by the spontaneous activity in the visually naïve cortex. One 
possibility is that the initial evoked patterns closely correspond to spontaneous patterns of the 
endogenous network, in which case we would be able to conclude that the patterns that form the initial 
representations of visual angles already exist in the endogenous network activity. Consistent with this 
idea, the patterns of spontaneous activity in the early visual cortex were observed to be modular and 
diverse (14), and appear reminiscent of the patterns of evoked activity we observe in visually naïve 
animals. Moreover, this early modular spontaneous activity is predictive of the columnar organization of 
the future orientation preference map (14) and, different from mice (20), a significant structural relation 
between the two remains evident in the mature visual cortex of carnivores (14, 21, 22) and primates (23). 
However, it is currently unclear how closely the initial visually evoked responses of the endogenous 
network correspond to its modular patterns of spontaneous activity.  
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Figure 2: Visually naïve animals show initial grating 
evoked responses that are diverse and only loosely 
aligned with spontaneous activity. 
(A) Single trial grating evoked activity patterns in a 

visually naïve animal (EO-2, bottom) and in an 
experienced animal (EO+6, top) projected into the 
space spanned by the first two principal 
components (PCs) computed on the respective 
day. Patterns were represented as vectors over all 
pixels and normalized to unit length. Here and 
below, evoked activity is taken 0.5 s after stimulus 
onset (unless noted otherwise). 

(B) Variance explained by leading principal 
components of evoked activity for different age 
groups (EO-3 to -2, EO+0, EO+4, EO+6: N= 
4,11,11,2 animals, respectively). Thick lines, 
average over animals; thin lines, individual animals. 

(C) Linear dimensionality (participation ratio, see 
Methods) of evoked activity. Error bars show Mean 
± SEM for age groups: EO-3 to -2, EO+0, EO+4 to 
+7 (N= 4,11,11 animals, respectively). 

(D) Spontaneous activity in the visually naïve cortex 
(EO-2). Bottom: Spontaneous activity trace (black) 
averaged over the ROI. Top: Spontaneous activity 
pattern at peak indicated by grey arrow (right), and 
its best matching (single trial) visual grating evoked 
activity pattern (left).   

(E) As (D), but for the (EO+4). 
(F) Top: Single trial grating evoked activity patterns 

(normalized to unit length, see Fig. 2B) in the 
visually naïve cortex projected into the space 
spanned by the first two PCs of spontaneous 
activity. Bottom: fraction of variance of 
spontaneous activity, evoked activity, and control 
patterns (red, blue, and grey, respectively) 
explained by the first 20 PCs of spontaneous 
activity. Thick lines, average over animals (N=11); 
thin lines, individual animals. Control in (F-H): 
random patterns with matched spatial correlation 
function (Methods). 

(G) As (F), but for the experienced cortex. The number 
of activity patterns in (C) and (D) were matched 
across age.  

(H) ‘Alignment of evoked with spontaneous activity’ 
defined as the fraction of spontaneous variance 
explained by an evoked pattern, averaged over all 
trials and stimuli. Error bars show Mean ± SEM for 
age groups: EO-3 to -2, EO+0, EO+4 to +7, N= 
4,11,11 animals, respectively. 
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To test this possibility, we therefore recorded spontaneous activity in the same animals studied above. 
As reported previously (14) we found that patterns of spontaneous activity in the early visual cortex often 
extended over the entire field of view and were comparable in strength to grating evoked activity (Fig. 
2D, E) and exhibited a similar local modular structure (SI Fig. 4). We extracted these patterns at the 
activity peaks during episodes of 5-10 minutes of spontaneous activity (see Methods) and used principal 
component analysis to reveal the most prevalent modes of co-variation across spontaneous patterns 
(see Methods; SI Fig. 3A, D). Overall, the linear dimensionality of spontaneous activity changed only little 
over the age range considered (SI Fig. 3D-F). Exploring the relationship between grating evoked and 
spontaneous activity recorded on the same day, we observed an only weak correspondence between 
the two in visually naïve animals, while their alignment became tight only following visual experience (Fig. 
2F, G). Projecting single trial evoked activity patterns onto the two leading principal components of 
spontaneous activity revealed in experienced animals a representation of the cyclic stimulus space that 
was comparable in the degree of order to the projections onto the two leading evoked components at the 
same age (Fig. 2G top; compare Fig. 2A top). Projection lengths were close to 1 and, consistently, most 
visually evoked variance was concentrated on the two leading principal components of spontaneous 
activity (Fig. 2G bottom; see SI Fig. 5E-G for similar results in awake animals). In contrast, in visually 
naïve animals two days prior to eye opening, projection lengths of evoked patterns onto leading 
spontaneous components were consistently smaller than 1 (Fig. 2F top) and the overlap onto the main 
spontaneous components, while still noticeably larger than for random control patterns (Fig. 2F bottom; 
p<0.001, see Methods), was considerably smaller than the values found when projecting the evoked onto 
the main evoked components (Fig. 2B). Defining ‘alignment of evoked with spontaneous’ as the fraction 
of total spontaneous variance that an individual evoked pattern on average explains, we observed a 
several-fold increase after eye opening (Fig. 2H, p=0.0003, paired permutation test, see Methods; 
consistent with alternative alignment measures, SI Fig. 5A-D). Such trend is reminiscent of reports at a 
later developmental stage in ferrets (24), while different from the trend observed in zebrafish (25). Our 
results thus argue against the possibility that the patterns of evoked activity, at the onset of vision, closely 
correspond to patterns of the endogenous network activity, and argue that these initial evoked responses 
consist of novel patterns. Moreover, while only loosely aligned at eye opening, single trial evoked patterns 
strongly align with spontaneous patterns following visual experience.   

 
Normal patterned visual experience is necessary to achieve mature network properties 
Having seen the transformation from visual responses that are variable and only loosely aligned with 
spontaneous activity in the visually naïve cortex to the reliable and well aligned responses several days 
later, we next sought to test the degree to which visual experience drives these developmental changes 
by studying responses in binocularly deprived animals. These animals (N=3) were lid-sutured for one 
week starting at P30 (the normal time of eye opening), preventing visual stimulation through the open 
eyes prior to the experiments (at around P38) (Fig. 3A; see Methods). As before, we recorded both visual 
grating evoked and spontaneous patterns of activity in all animals. Binocular deprivation had a significant 
impact on all of the four cortical network properties of grating evoked activity that we have shown change 
substantially after the onset of visual experience: trial-to-trial correlation, intra-trial stability, dimensionality 
and alignment with spontaneous activity. Principal component analysis revealed that evoked responses 
lacked the orderly circular distribution in two dimensions that is evident in normally reared animals and 
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age-matched controls (Fig. 3B; compare Fig. 2A upper). Indeed, visual responses in visually deprived 
animals lacked the reliability found in age-matched, visually experienced controls, both in trial-to-trial 
correlation and intra-trial stability (Fig. 3C, D; BD versus Control, c: p=0.017, d: p=0.021, unpaired 
bootstrap test) and showed weak orientation discrimination (SI Fig. 1C). Likewise, with deprivation, the 
diversity of visually evoked patterns was not significantly different from that found in visually naïve 
animals, with no sign of the decrease in dimensionality found in animals with experience (Fig. 3E, BD 
versus EO, p=0.38, unpaired bootstrap test). Finally, in the deprived animals, projecting evoked activity 
patterns onto the two leading principal components of spontaneous activity did not reveal an orderly 
structure (Fig. 3F; compare Fig. 3C top) and the overlap with the main spontaneous components, while 
noticeable, remained near the level of visually naïve animals (Fig. 3G; compare Fig. 2G bottom). 
Quantitatively, we did not observe any increase in alignment between evoked and spontaneous activity 
in deprived animals beyond what was observed in normal animals at the time of eye opening (p=0.971, 
unpaired bootstrap test; Fig. 3H). These results indicate that normal visual experience is critical for 
changes in a number of cortical network properties that accompany the emergence of reliable visual 
representations.  
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Figure 3: Patterned visual experience is required to develop low-dimensional, stable visual responses aligned with 
the spontaneous network activity. 
(A) Experimental timeline for deprivation (orange) and control (blue) experiments. 
(B) Evoked activity in deprived animals projected into the space spanned by the first two PCs of evoked activity computed on 

the same day (8 days after the normal time of eye opening). Activity was normalized to unit length (compare Fig. 2A). 
(C) Trial-to-trial correlation in deprived (N=3, orange) and control (N=2, blue) animals, in comparison to visually naïve animals 

at EO+0 (black, reproduced from Fig. 1D). Circles: single animals; error bars: Mean ± SEM. 
(D) As (C), but for intra-trial stability (naïve animals reproduced from Fig. 1G). 
(E) As (D), but for linear dimensionality (naïve animals reproduced from Fig. 2C). 
(F) Same as (B), but projected into the spontaneous PC space. 
(G) Fraction of variance of spontaneous activity, evoked activity, and control patterns (red, blue and grey, respectively) 

explained by the first 20 PCs of spontaneous activity for deprived animals.   
(H) As (C), but for alignment of evoked with spontaneous activity (naïve animals reproduced from Fig. 2H).  
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The feedforward-recurrent alignment hypothesis  
While, in principle, these network properties could change independently from one another (SI Fig. 6), 
the fact that they mature over the same period of time, and depend on experience, made us wonder 
whether they could be the product of a common underlying mechanism that builds reliable network 
responses. Ample computational work suggests that recurrent connections can give rise to amplification 
within subnetworks of coactive network units (26–31). Input that aligns more with such a subnetwork is 
expected to elicit a more robust response – an amplification that reflects greater resonance with the 
intrinsic network structure (Fig. 4A). At eye opening, the cortex is exposed to structured visually driven 
input for the first time and, assuming the two are, initially, not properly aligned, we reasoned that proper 
alignment of this novel feedforward drive to the cortical recurrent network could be an important factor in 
the maturation of faithful network responses to visual input. 
 
To explore this possibility, which we call the ‘feedforward-recurrent alignment hypothesis’, we studied a 
conceptual model of early cortex and its response to visually evoked input using a minimal linear recurrent 
network of rate units (see Methods). Each unit represents the pooled activity in a local group of neurons. 
Connections between units describe the net interactions between local pools. These interactions can be 
positive or negative and are assumed to be symmetric, for simplicity, with random values drawn from a 
Gaussian distribution. Importantly, the interactions are assumed to be strong enough to influence activity 
patterns, consistent with the observation that spontaneous cortical activity exhibits a modular structure 
prior to eye opening, even after silencing LGN (14). The network receives stimulus-driven, feedforward 
input that varies across neural populations, reflecting random biases in their input selectivity. 
 
We asked whether differences in the degree of feedforward-recurrent alignment (while keeping the 
statistical properties of the feedforward input and of the recurrent network unchanged) could reproduce 
the characteristics of network behavior that distinguish naïve and experienced V1 evoked responses. We 
computed the steady state responses of the network to a static input pattern to which we added a 
standard normal random vector to model trial-to-trial variability (Methods). Similarly, to model within-trial 
variability, we added standard normal white noise to the input and computed the correlation of responses 
at two different time points. Constructing input patterns with varying degree of alignment to the network 
(see Methods) revealed that those inputs that align better tend to give rise to less variable network 
responses, and this trend is systematic both across trials and within a trial (Fig. 4B, C). The reason for 
this trend is the stronger ability for aligned input to drive network responses, relative to the noise 
component, whose contribution is independent of alignment within this linear framework. Moreover, to 
reveal how the feedforward-recurrent alignment affects the dimensionality of the activity evoked by a low-
dimensional stimulus set, such as moving visual gratings, we considered the generic model of static input 
being sampled from a low-dimensional (correlated) Gaussian distribution with predefined degree of 
alignment (see Methods), observing that the dimensionality of the evoked activity patterns is smaller the 
better-aligned the input distribution is to the network (Fig. 4D). 
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Moreover, this feedforward-recurrent alignment framework also provides a way for conceptualizing 
patterns of spontaneous activity and their relation to evoked activity in naïve and experienced animals. 
We assume that spontaneous activity in the visual cortex results from a broad range of inputs involving 
various sources, and that these modular patterns, driven by endogenous activity, reflect the current state 
of aligned feedforward-recurrent network. Robust modular spontaneous activity patterns are present at 
least 10 days prior to eye opening (14) indicative of a feedforward-recurrent network alignment 
conditioned solely by endogenous patterns of activity in visually naïve animals. Modeling these 
endogenous inputs as samples drawn from a high-dimensional Gaussian distribution (Fig. 4E, bottom), 
the distribution of network activity patterns resulting from these endogenous inputs transformed via the 
recurrent network, is much lower-dimensional than the input distribution (Fig. 4E, top; Methods). 
Assuming at eye opening visual experience drives novel patterns of feedforward input that are not as well 
aligned to the recurrent network as the endogenous patterns, the evoked and spontaneous pattern 
distributions overlap only little (Fig. 4F, top, green vs. red line), similar to what we observed in visually 
naïve animals (Fig. 2F). Experience-driven changes that optimize the feedforward-recurrent alignment 
would then result in distributions of evoked and spontaneous patterns of activity that strongly overlap 
(Fig. 4F, top, blue vs. red line), consistent with our observation in the visually experienced cortex (Fig. 
2G). Thus, in this generic, conceptual model, all four properties – trial-to-trial correlation, intra-trial 
stability, dimensionality of evoked activity and its alignment to spontaneous activity – are intricately linked 
to the feedforward-recurrent alignment, suggesting that the immaturity of these properties that we 
observe in the visually naïve cortex arises from a lack of alignment of feedforward and recurrent networks, 
while improving this alignment for visually driven input underlies, in part, the changes in the properties 
we observe after the onset of visual experience.  
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Finally, this led us to ask whether our biological data is consistent with key predictions of this feedforward-
recurrent alignment model. In the model, these four properties are linked due to the common underlying 
mechanism: network amplification of inputs aligned to the structure of recurrent interactions. Notably, for 
input well aligned to the recurrent network this model predicts a tight link even at the level of individual 
trials, namely that responses that exhibit greater similarity with the leading components of spontaneous 
activity also show higher intra-trial stability (Fig. 4G). Therefore, if this mechanism also holds for the 
cortex, then we expect to see such a trend also in the visually experienced age group, for which we 
assume a strong alignment to the recurrent network. Indeed, when analyzing the responses for all trials 
of all stimuli for animals in this age group, we observed that the larger the alignment of an individual 
evoked response pattern with spontaneous activity 0.5 s after stimulus onset, the more stable this 
response tended to be during the following few seconds of stimulation (Fig. 4H, I). Moreover, for trial-to-

Figure 4: Feedforward-recurrent alignment can account for the observed changes in network activity properties.  
(A) Schematic illustration of the feedforward-recurrent alignment hypothesis: In the experienced cortex, the feedforward 

input is aligned and ‘resonates’ with the recurrent network (right), whereas in the naïve cortex their relationship is random 
(left).  

(B-F) Computational model. 
(B) Top: Trial-to-trial correlation for random input (green) and input maximally aligned to the recurrent network (blue). 

Variability across trials is modelled by adding Gaussian noise (zero mean, unit variance) to each input (see Methods). 
Bottom: Trial-to-trial correlation as a function of feedforward-recurrent alignment. 

(C) As (B), but for intra-trial stability. Variability within trials is modelled by adding white Gaussian noise to each input starting 
from the steady-state evoked response (see Methods). Top shows activity of a network unit (normalized by average 
response).  

(D) As (B), but for dimensionality. Top shows variance explained by leading PCs of evoked activity (see Fig. 2B,C for 
comparison to experiment). Input is a 10-dimensional Gaussian distribution (see Methods). 

(E) Model of spontaneous activity (schematic, bottom): A broad, high-dimensional distribution of inputs aligned with the 
recurrent network (see Methods), producing a lower-dimensional output (top). 

(F) Alignment of evoked to spontaneous activity (see Fig. 2F,G (bottom) for comparison to experiment). Shaded region: 
SEM around mean (N=50 networks). 

(G) Model prediction: trials for which the steady-state evoked response is more aligned to spontaneous activity also show 
higher intra-trial stability. N=300 samples drawn for the input distribution used in (D) with optimal alignment and 
temporally varying noise as in (C). 

(H-J) Test, experimental data: 
(H) Outline of grating evoked activity 1 s (magenta) and 3 s (cyan) after stimulus onset for a response pattern more weakly 

aligned (left) and for one more strongly aligned (right) to spontaneous activity 0.5 s after stimulus onset. Intra-trial 
stability: 0.63 (left), 0.90 (right); alignment to spontaneous activity: 0.06 (left), 0.18 (right). Day: EO+4. Same animal as 
in Fig. 1F. 

(I) As (G) but for experimental data using all trials for all stimuli from the animal shown in (G) at EO+4.  
(J) Correlation for the data shown in (I) (large blue circle) and for all other animals in the oldest age group (grey circles; 13 

experiments from N=11 animals at EO+4 to +7). Error bars show Mean ± SEM. respectively). 
(K) Contours show outlines of grating evoked patterns (taken 0.5 s after stimulus onset) from different trials for a stimulus 

for which the average pattern is less (left) or more (right) aligned to spontaneous activity. Trial-to-trial correlation: 0.75 
(left), 0.84 (right); alignment to spontaneous activity: 0.13 (left), 0.18 (right). Same animal as in Fig. 1C. 

(L) As in (J), but quantifying the relationship illustrated in (K).   
(M) Evoked dimensionality co-varies with the alignment of the first evoked PC to spontaneous activity (see Methods). 13 

experiments from N=11 animals at EO+4 to +7 
Data presented in (H), (I) and (K) is from the same animal. 
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trial correlation we found an analogous trend (Fig. 4J, K; SI Fig. 7A-F) and, likewise, for dimensionality, 
when comparing mean values across different animals (Fig. 4M, SI Fig. 7E). Together, these results show 
that these tight links between network properties that the proposed mechanism implies is indeed 
consistent with our empirical data.  
 
Discussion 
Our results demonstrate that experience plays a critical role in transforming an endogenously structured 
modular network with robust, but diverse and unreliable visual responses into a mature network with a 
distinctive modular structure and highly reliable visual responses. Following the first steps in the 
development of visual representations with single trial resolution, we find that what appears to be an 
increase of initially weak stimulus tuning when observed at the level of trial averages (15–19), is better 
described as an increase in consistency both across and within trials of surprisingly robust modular visual 
responses. Moreover, we find that the initial evoked responses at eye opening consist of novel patterns, 
distinct from spontaneous activity of the endogenous network and that visual experience drives the 
development of low-dimensional, reliable representations aligned with spontaneous activity. 
 
Based on our computational model, we propose that these transformations involve the alignment of 
feedforward and recurrent networks in a fashion that is optimal for amplifying the novel activity patterns 
induced by the onset of visual experience. Such alignment is a property of the larger network, ensuring 
that individual activity domains act in concert when driven by visual input. Achieving alignment could 
involve changes in the feed-forward input to the recurrent network, changes in the recurrent network, or 
some combination of the two. We note that our model does not specify changes in the selectivity of 
feedforward inputs that are typically regarded as critical for development of the representation of 
orientation (29, 32–37). Nevertheless, the process of feedforward-recurrent network alignment could 
pave the way for the emergence of highly-selective feedforward responses following the onset of visual 
experience. The specific neural circuit changes that produce feedforward and recurrent network 
alignment and the plasticity mechanisms that enable them remain to be determined. Our observation that 
grating evoked activity, when falling closer to the main components of spontaneous activity, is more stable 
both within and across trials is consistent with a process of dynamic self-organization (38) in which more 
aligned, stable and thus more correlated activity patterns are strengthened by mechanisms of activity 
dependent synaptic plasticity. It remains for future studies to determine the exact sequence of 
developmental changes that drives alignment of feedforward and recurrent circuits enabling the 
emergence of highly reliable stimulus representations.  
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Methods

1 Experiments
The experimental procedures follow (1) and (2) and are described in this section. All experimental pro-

cedures were approved by the Max Planck Florida Institute for Neuroscience Institutional Animal Care

and Use committee and were performed in accordance with guidelines from the U.S. National Institute

of Health. Juvenile female ferrets from Marshal Farms were co-housed with jills on a 16 h light/8 h dark

cycle. Parts of the raw data used in this study were used to address different scientific questions in a pre-

vious publication (1). Also, the results presented in Fig. SI 5E-G are based on raw data used to address

different scientific questions in a previous publication (2)

1.1 Viral injections

Viral injections were performed as previously described (1)(2). Briefly we expressed GCaMP6s by mi-

croinjection of AAV2/1-hSyn-GCaMP6s-WPRE-SV40 (University of Pennsylvania Vector Core) into the

visual cortex 6-14 days before imaging experiments. In developing ferrets, viral expression using the

hSyn promoter has previously been demonstrated to primarily label excitatory neurons (3) and yield mul-

tiple millimeters of roughly uniform labeling of GCaMP6s (2). Anesthesia induction was performed using

either ketamine (50 mg/kg, IM) and/or isoflurane (1%–3%) delivered in O2 and then maintained with isoflu-

orane (1%–2%). Atropine (0.2 mg/kg, IM) was administered to reduce secretions, while Buprenorphine

(0.01 mg/kg, IM) and a 1:1 mixture of lidocaine and bupivacaine (injected directly into the scalp) were ad-

ministered as analgesics. Animal temperatures were maintained at 37◦C using a homeothermic heating

blanket. Animals were also mechanically ventilated and both heart rate and end-tidal CO2 were moni-

tored throughout the surgery. Under aseptic surgical technique, a small craniotomy was made over visual

cortex 6.5-7 mm lateral and 2 mm anterior to lambda. Approximately 1 mL of virus was pressure infused

into the cortex through a pulled glass pipette across two depths (200 mm and 400 mm below the surface).

This procedure reliably produced robust and widespread GCaMP6s expression in excitatory neurons over

an area > 3 mm in diameter (2). To improve the uniformity of the GCaMP6s expression, sometimes

an additional injection of 1 mL of virus was pressure injected into a separate region of cortex displaced

1-1.5 mm away from the first injection site.

1.2 Eyelid suture procedure

In deprivation and chronic imaging experiments, eyelids were binocularly sutured during a short surgical

procedure between P26-30. Anesthesia was induced with isoflurane (2%–5%) and Buprenorphine (0.01

mg/kg, IM) was administered. Using aseptic technique, both eyelids were sutured shut using continu-

ous sutures (6-0 Ethilon suture). Eyelid sutures were monitored daily until removed during an imaging

experiment.

1.3 Cranial window surgery

All animals were anesthetized and prepared for surgery as described above. In acute imaging experi-

ments, skin and muscle overlying visual cortex were reflected and a custom-designed metal headplate

(8 mm DIA) was implanted over the injected region with MetaBond (Parkell Inc.). Then a craniotomy and

a subsequent durotomy were performed, and the underlying brain stabilized with a custom-designed tita-

nium metal cannula (4.5 mm DIA, 1.5 mm height) adhered to a thin 4 mm coverslip (Warner Instruments)
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with optical glue (71, Norland Products, Inc). The headplate was hermetically sealed with a stainless-steel

retaining ring (5/16” internal retaining ring, McMaster-Carr) and glue (VetBond, 3M or Krazy Glue).

To allow repeated access to the same imaging field in chronic imaging experiments, we implanted a

cranial windows in each animal 2 days prior to the first imaging session. Using aseptic surgical tech-

nique, we adhered a metal headpost (7x7 mm) to the skull 3.5 mm anterior of bregma and a separate

custom-designed, chamber implant overlying the injected region using MetaBond and black dental acrylic.

At the end of the survival cranial window implant surgery, the metal cannula was sealed with a silicone

polymer plug (Kwik-kast, World Precision Instruments) to protect the imaging window between imaging

experiments. Whenever the imaging quality of the chronic cranial window was found to be suboptimal

for imaging, the chamber was opened under aseptic conditions, any regrown tissue/neomembrane was

removed, and a new coverslip was inserted.

1.4 Imaging experiments

Acute imaging experiments began immediately after the cranial window surgery. For survival imaging

experiments, where animals had a cranial window implanted days earlier, anesthesia was induced with

isoflurane (2%–5%) and atropine (0.2 mg/kg) was administered. Animals were intubated and ventilated,

and an IV catheter was placed in the cephalic vein. The silicon polymer plug overlying the sealed imaging

chamber was gently peeled off.

For both acute and survival imaging experiments, eyelid sutures were removed or eyelids were sepa-

rated where applicable to ensure visual stimulation was always presented to open eyes. Phenylephrine

(1.25%–5%) and tropicamide (0.5%) were applied to the eyes to retract the nictitating membrane and di-

late the pupil, and the cornea was protected with regular application of eye drops (Systane Ultra, Alcon

Laboratories). Prior to imaging, isoflurane levels were reduced from a surgical plane to 1%–1.5%. After

reaching a stable, anesthetic baseline for 30 minutes (280-300 bpm), animals were paralyzed with pan-

curonium bromide (0.1 mg/kg/hr in lactated Ringer’s with 5% dextrose, delivered IV). Upon completion of

imaging in acute experiments, isoflurane was raised to 5% and given Euthasol (0.5 ml, IV). In survival

experiments, animals were instead recovered from anesthesia and returned to their home cages. During

recovery, up to 3 repeated doses of neostigmine (0.06 mg/kg/hr, IV) and atropine (0.05 mg/kg/hr, IV) were

used to reverse paralysis.

1.5 Calcium signal measurement

Widefield epifluoresence imaging of GCaMP6s was achieved with a Zyla 5.5 sCMOS camera (Andor)

controlled by mManager (4). Images were acquired at 15Hz with 4x4 binning to yield 640x540 pixels

through a 4x air-immersion objective (Olympus, UPlanFL 4x N/0.13NA). For analysis, images were spa-

tially downsampled by a factor of 2x to yield 320x270 pixels at a spatial resolution of 11.63 mm/pixel.

The region of interest (ROI) was manually selected to include all parts of the field of view showing strong

GCaMP6s expression and a robust visually evoked signal.

Two-photon imaging of GCaMP6s was performed with a B-Scope microscope (ThorLabs) driven by a

Mai-Tai DeepSee laser (Spectra Physics) at 940 nm. The B-Scope microscope was controlled by Scan-
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Image (5) in a resonant-galvo configuration with multi-plane images (512x512 pixels) being sequentially

collected across either one or four imaging planes using a piezoelectric actuator for an effective frame rate

of 30 Hz or 6 Hz respectively. Images were acquired at 2x zoom through a 16x water immersion objec-

tive (Nikon, LWD 16X W/0.80NA) yielding cellular fields-of-views of 0.7mm on each side (1.36 mm/pixel).

The location of the two-photon calcium imaging ROIs was primarily determined by finding a location with

strong GCaMP6s expression and not occluded by large superficial vessels.

1.6 Visual stimulation

Visual stimuli were delivered on a LCD screen placed approximately 25–30 cm in front of the eyes using

PsychoPy (6). To evoke orientation responses, full-field square gratings at 100% contrast, at 0.015 or

0.06 cycles per degree and drifting at 1 or 4 Hz were presented at 16 directions. For optimal responsivity,

a single paired spatial and temporal frequency was used for each animal to assess binocular orientation-

specific responses. Stimuli were randomly interleaved and presented for 4 s followed by 3-6 s of gray

screen. Spontaneous activity was recorded in a darkened room, with the visual stimulus set to a black

screen.

2 Data analysis
All data analysis was performed using custom written scripts in either Python, MATLAB, or ImageJ.

2.1 Preprocessing for widefield imaging data

Following (2), all fluorescence images recorded on the same day were corrected for in-plane motion by

aligning them (rigid alignment in x and y position) to the preceding frame via maximal 2D cross correla-

tion. This alignment was primarily based on the high contrast vascular structure present in the raw images.

For further analysis, pixels contaminated by blood-vessel signals were removed from the images by gen-

erating a mask covering the vascular structure and setting the pixels within this mask to the values outside

the ROI. The remaining pixels defined a new ROI, which we used for all analyses. The vascular mask

was generated by high-pass filtering the time-averaged fluorescence image and selecting all pixels with a

fluorescence smaller than µF − 2σF , where µ and σ are the mean and standard deviation, respectively, of

this time-averaged fluorescence image across space. Overall, we found that similar results were obtained

when including the signal from the pixels in the vascular mask. In all patterns depicted in the figures the

vascular mask pixels were not removed, for illustration purposes.

The baseline F0 for each pixel was obtained by applying a moving rank-order filter to the raw fluores-

cence trace (25-30th percentile) with a time window of 60 s. The baseline corrected evoked activity was

calculated as (F-F0)/F0 = DF/F0.

Stimulus evoked responses

Visual grating evoked responses at time t after stimulus onset were calculated as the average DF/F0

over the period (t-0.066 ms, t+0.066 ms). Trial-averaged responses at time t were calculated by taking

the average across repeated trials to the same stimulus direction at time t after stimulus onset. For all
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analyses, we used t =0.5 s, apart from the analysis of intra-trial stability, in which case we compared the

response between t =1.0 s and t=3.0 s after stimulus onset (see below).

Patterns of spontaneous activity

To extract the large-scale patterns of spontaneous activity, we followed the approach described in (2).

Briefly, we first determined active pixels on each frame using a pixel-wise threshold set to 4 SD above

a pixel’s mean value across time, where the SD was estimated from the distribution obtained from the

pixel’s activity values below the mean and mean-reflected copies of these. A frame was named active if

>80% of its pixels within the ROI were active. Consecutive active frames were combined into a single

event starting with the first high-activity frame and then either ending with the last high-activity frame or,

if present, an activity frame defining a local minimum in the fluorescence activity. To assess the spatial

pattern of an event, we extracted the maximally active frame for each event, defined as the frame with the

highest activity averaged across the ROI. Imaging sessions in which fewer than ten spontaneous events

were detected were excluded from further analysis (2). Typically, the number of events per unit imaging

time increased with age and allowed us to gather >30 spontaneous patterns around eye opening and

>75 patterns 4-6 days after eye opening.

Spatial filtering

For analysis of the wide-field epifluorescence imaging data, we applied spatial band-pass filtering following

(2) to reduce spatial inhomogeneities in signal strength and photon noise. Briefly, we downsampled

the DF/F0 images to 160 × 135 pixels and spatially filtered them using two-dimensional Gaussian filter

kernels. For high-pass filtering, we subtracted from each downsampled DF/F0 image a smoothed version

of it obtained by applying a Gaussian filter with SD shigh = 196 µm and normalizing the filtered values

by the overlap of the filter kernel with the ROI mask, to correct for boundary effects. Subsequently, we

smoothed this image with a Gaussian filter kernel with SD slow = 26 µm for low pass filtering. The choice

of these filter values largely preserved the modular activity structure of grating evoked and spontaneous

activity in ferret visual cortex (2).

2.2 Preprocessing for two-photon imaging data

Cellular ROIs

Cellular ROIs were manually drawn using custom software in ImageJ (Cell Magic Wand) (3). The baseline

F0 for each pixel/cell was obtained by applying a moving rank-order filter to the raw fluorescence trace

(25-30th percentile) with a time window of 60 s. The baseline corrected evoked activity was calculated as

(F-F0)/F0 = DF/F0.

Morphing across age

To locate the same field-of-views between chronic imaging sessions, we acquired a series of z stack

images across different depths incremented at 5 µm steps during each experiment. For each chronic

experiment, the original field-of-view was carefully compared to the different z-locations, and a matched

location was chosen based on the relative similarity of physical landmarks, such as penetrating blood

vessels. We only chose cells for analysis that were common to both sessions. To aid the experimenter

in selecting common cells, all fields-of-view were registered into a common reference frame using a 2D
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elastic deformation (BUnwarpJ plug-in in ImageJ). To determine whether a pair of cell ROIs across chronic

experiments corresponded to the same cell, we putatively required that the centroid of the candidate

cell pairs were located within 4-5 µm and overlapped more than 25%. The experimenter then manually

decided whether the match was reasonable based on similarity of the local neighborhood and physical

shape of the cell ROIs.

Stimulus evoked activity

Visual grating evoked responses at time t after stimulus onset (Fig 1H-J) were calculated as the average

DF/F0 over the period (t-0.166 ms, t+0.166 ms). We used t = 0.5 s, apart from intra-trial stability, for

which we compared the response between t = 0.5 s and t = 2.5 s after stimulus onset (see below). For

Figs. SI 1 and SI 2 grating evoked responses were averaged over the full stimulus period.

2.3 Quantification

Overlap between activity spaces

In several instances (see below), we were interested in the degree to which the activity patterns of a set

A reside in the most prevalent linear dimensions of a second set of activity patterns B. To estimate this

quantity, we computed the fraction of variance of patterns A that is explained by the leading principal

components of the patterns in B. Concretely, the variance of A explained by the i-th principal component

pi,B is

vari,A =
pT
i,B ·ΣA · pi,B

Tr(ΣA)
, (1)

where ΣA is the covariance matrix of the pattern set A and the principal component vectors pi,B are

normalized to unit length. The principal components were estimated using sklearn (7 ) with the LAPACK

solver.

Trial-to-trial correlation

To measure how reliably the visual cortex responds to repeated presentations of an identical moving

grating stimulus (Fig. 1C-D, I), we first computed the correlations (here and below we used the Pearson’s

correlation coefficient, if not noted otherwise) between all possible pairs of single-trial response patterns

for that stimulus and took the mean over these correlations:

βθ =
2

Ntrial(Ntrial − 1)

Ntrial
∑

i=1

Ntrial
∑

j=i+1

corr
(

rθi , r
θ
j

)

, (2)

where Ntrial are the number of trials and rθ
i

is the response pattern for the i-th trial of stimulus θ (taken at

t = 0.5 s after stimulus onset). This mean correlation was then averaged over the Nstim. moving grating

directions θ to define the ’trial-to-trial correlation’ of responses for an animal on a given day.

Orientation Tuning

Orientation tuning for widefield (Fig. 1E) data was calculated based on trial-averaged evoked responses

to 16 binocularly presented moving grating stimuli equally spaced between 0◦ and 360◦. Orientation
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preference was computed by vector summation:

z (x) =
16
∑

k=1

rk(x) exp (−2 i π φk) , (3)

where rk(x) is the trial-averaged response to a moving grating with direction φk for pixel (widefield) or cell

(two-photon) x. The preferred orientation was defined as θ(x) = 0.5 arg(z(x)) and orientation selectivity

as abs(z)/
∑

16

k=1
|rk(x)| .

Intra-trial stability

To measure the reliability of the visual grating evoked responses within an individual trial (Fig. 1G, J),

we compared the response pattern at two different time points t1 and t2 after stimulus onset (1 s vs.

3 s, respectively, for widefield and 0.5 s vs. 2.5 s for two photon imaging data). First, we computed the

correlation

ρi = corr (ri(t1), ri(t2)) , (4)

where ri(t1) and ri(t2) are the response patterns for the i-th trial at times t1 and t2, respectively. ’Intra-

trial stability’ is defined by averaging this quantity over all trials from all grating directions (NEvoked =

Nstim. ×Ntrial trials in total).

Dimensionality

We estimated the linear dimensionality deff of the subspace spanned by either evoked (Fig 2C, Fig 3E,

Fig 4D, M) or spontaneous (Supplementary Fig. 3E) activity patterns by the participation ratio (8). To

cross-validate our estimates of the spectrum of the covariance matrix, we split the response patterns from

an imaging session into two equally large non-overlapping sets A and B (equal splits for each stimulus,

individually), and used set B to estimate the principal component vectors and set A to estimate the

variance for each of these components by applying Eq. (1) above. Our measure of ’dimensionality’ is then

defined by

deff =
(
∑

k vark,A)
2

∑

k var2k,A
, (5)

where vark,A is the cross-validated estimate of the k-th variance component. We repeated this calculation

for N=100 different random splits into sets A and B. All values reported are averages over these N

repetitions.

Alignment with spontaneous activity

To assess the overlap of evoked activity with the prevalent linear dimensions of spontaneous activity (on

the same day; Figs 4F,G and 3G), we calculated the fraction of evoked pattern variance that is explained

by the k-th principal component of the spontaneous pattern. To do so we used Equation (1), where A and

B are the sets of evoked and spontaneous patterns, respectively.

The quantity ’alignment to spontaneous activity’ (Fig. 2H) was defined as the fraction of total sponta-
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neous pattern variance explained by an individual evoked pattern,

γi =
rTi,E ·Σspont. · ri,E
‖ri,E‖2 Tr(Σspont.)

, (6)

averaged over all Nevoked evoked patterns. Here, ri,E is the ith evoked pattern taken 0.5 s after stimulus

onset and Σspont. the covariance matrix of the spontaneous patterns.

Tests of model predictions

Our model predicts that individual responses that are more aligned to spontaneous activity 0.5 s after

stimulus onset also tend to show a higher value of intra-trial stability during the subsequent stimulation

period (Fig. 4G). We tested whether the empirical data confirms this relationship by computing, for a given

animal on a given day, the correlation

ρintra = corri (γi, ρi) , (7)

where γi is the alignment of an evoked pattern ri to spontaneous activity (Eq. 6), and ρi is the intra-trial

stability of this evoked pattern (Eq. 4). As described above, the alignment to spontaneous activity was

computed 0.5 s after stimulus onset, while the intra-trial stability was assessed by comparing the response

between 1 s and 3 s after stimulus onset. The correlation ρintra is displayed in Fig. 4J.

Likewise, the model also predicts that individual stimuli, for which the average response is more aligned

to spontaneous activity, also show higher values of trial-to-trial stability (SI Fig. 7A). To test this prediction

we computed the correlation

ρinter = corrθ (γ̂θ, βθ) , (8)

where γ̂θ is the alignment of the trial averaged evoked pattern for stimulus θ to spontaneous activity (com-

puted by replacing the response with its trial average in Eq. (6), and βj is the trial-to-trial correlation for

that stimulus (Eq. 2). The correlation ρinter is displayed in Fig. 4L.

Moreover, to test for a relationship between alignment to spontaneous activity and dimensionality, we

assessed the degree to which these two quantities co-vary across the animals in a given age group (Fig.

4M, SI Fig. 7E). Here, we only used the first principal component p1 of the evoked pattern set to estimate

alignment of evoked to spontaneous activity in order to avoid biases of dimensionality towards smaller

numbers (as, for instance, the average alignment of individual patterns would potentially do). Concretely,

we used Eq. (6), but with ri,E being replaced by p1. We then assessed for each age group individually the

correlation (across animals) between this alignment measure and the evoked dimensionality (Fig. 4M).

Finally, by performing the analogous analyses for the trial-to-trial correlation (SI Fig. 7E, left) and intra-trial

stability (SI Fig. 7E, middle) we also tested for the relationship between these quantities and the alignment

to spontaneous activity on an animal by animal level.

2.4 Statistical analysis

We used re-sampling methods for hypothesis testing. Significance was assessed by comparing the aver-

age value of a given statistics between the real data and a suitable control distribution. The p-value was
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computed as the fraction of values in the control distribution that were more extreme than the difference

observed in the real data.

Random control patterns

To test for the significance of a statistics characterizing the structure of a set of evoked or spontaneous

patterns (for example, the trial-to-trial correlation in Fig. 1D), we computed the same statistics for N =

1000 control sets, each one of which comprises an equal number of surrogate patterns as the original

set. The patterns in a control set exhibit the identical spatial correlation functions as the original patterns,

but all statistical relationships beyond, i.e. higher order statistics and relationships among patterns, are

eliminated. To generate one control set, we produced one surrogate pattern for each real pattern by

computing its Fourier-transform, randomly shuffling the Fourier-phases (while preserving the amplitudes),

back-transforming it into real space and re-applying the ROI mask of the real pattern. Repeating this

procedure N times using different shuffles generated N control sets, from which we computed N control

values of the statistics of interest, the distribution of which we compared with the real value.

Unpaired bootstrap test

To test whether a group average differs significantly between two groups (as for instance the difference

between the response properties in normally reared vs. deprived animals in Fig. 3), we used an unpaired

test based on a control distribution of group differences generated via bootstrap resampling. To generate

control group differences, we pooled the data from the original two groups, drew two new groups of

the same size from this pool by randomly drawing samples with replacement, and then computed the

difference between the group averages. Repeating this procedure N = 1000 times resulted in a control

distribution of group averages, which we compared with the real difference.

Paired permutation test

To test whether a group of animals showed a significant change across age (for instance, to establish

whether the increase in trial-to-trial correlation in Fig. 1D is significant), we employed a paired permu-

tation test to generate a control distribution. We randomly flipped the data points for a given animal

between age groups and recomputed the difference between the group averages. Repeating this proce-

dure N = 1000 times resulted in a control distribution, which we compared with the real difference.

Error bars were, if not mentioned otherwise, computed as the standard error of the mean (SEM) within a

given age-group.

3 Network model

3.1 Motivation

We used a network model to study the feedforward-recurrent alignment hypothesis, which states that

the experience-driven maturation of faithful visual representations after eye opening involves the proper

alignment of visual input to the cortical recurrent network, such that this input gets sufficiently amplified

through the network interactions. As a simple example for such amplification mechanism, consider an
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input pattern that primarily drives network units that also excite each other through their recurrent interac-

tions. Such input is expected to elicit a response that is more robust against external and intrinsic sources

of noise than an input pattern that drives a population with mixed (i.e. positive and negative) interactions.

In the former case the input ’resonates’ with the network, while in the latter case the input gets dispersed

through the network interactions.

According to this hypothesis, in the experienced cortex the inputs are well-aligned with the recurrent cor-

tical network, whereas in the visually naive cortex, when patterned visual stimuli drive the visual system

for the first time, the alignment of these novel inputs is only poorly developed. The transition from poorly

aligned to well-aligned inputs is proposed to explain - via the change in network amplification that such

improvement in alignment implies - the changes in the network properties we observed with the onset

of visual experience, i.e. the development of reliable evoked responses that reside in a low-dimensional

manifold, aligned with spontaneous activity. To explore this possibility, we studied a computational network

model, which allowed us to cast this feedforward-recurrent alignment hypothesis into concrete mathemati-

cal terms, to test whether it can account for the changes in the network properties we observed during the

maturation of visual representations and to derive further predictions that we tested using our empirical

data.

3.2 Model setup

The model is intended to provide a concrete, yet as simple as possible formalization of this feedforward-

recurrent alignment hypothesis in terms of a minimal linear network model of stimulus-evoked and sponta-

neous neural population activity in layer 2/3 of the early visual cortex. We assumed that prior to eye open-

ing a sufficiently strong recurrent network of excitatory and inhibitory neural populations is established in

the visual cortex. This assumption is consistent with the pronounced, widespread, modular patterns of

spontaneous activity seen in excitatory neural populations in the ferret visual cortex at this early stage in

development, and the observation that such activity persists even after silencing the LGN (2). The as-

sumption of strong inhibition, specifically, is consistent with the observation that these early spontaneous

activity patterns in excitatory neural populations critically depend on network inhibition, which itself is or-

ganized into widespread modular patterns of activity that co-align with those in excitatory populations (9).

Furthermore, we assumed that at eye opening, when structured visual stimuli drive the visual system for

the first time, the relationship between the recurrent network previously established in layer 2/3 and this

novel type of visually driven input is random. Moreover, visually driven input was assumed to be stochas-

tic, reflecting various noise sources along the visual pathway including those within the cortex. Finally,

we modeled spontaneous activity as the response of the recurrent network to an aligned, but relatively

broad (i.e. high-dimensional) drive, assuming that spontaneous activity reflects inputs from a wide range

of different sources.

We modeled the recurrent neural network using a standard firing rate equation

τr
dr

dt
= −r+ J · r+ h . (9)
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Here, r is the vector of rate units. Each unit ri, with i = 1, ..., n, represents the pooled activity in a local

group i of cortical neurons. The n × n matrix J describes the net interactions between these local pools

of neurons, which can be positive or negative. To keep the network as generic and simple as possible,

we assumed the network structure to be random and symmetric with interaction strengths drawn from a

normal distribution N (µJ , σJ ) with mean µJ = 0 and standard deviation σJ = R/2
√
n. Here, R describes

the overall strength of recurrent interactions. In all figures we used R = 0.85, ensuring that the recurrent

connections are strong enough to impact activity patterns. The size of the network was n = 200 (see

Table 1 for a summary of parameters). The external (feedforward) input to the network is denoted by

h = hdet+hsto and consists of a deterministic part hdet and a stochastic part hsto, which are both assumed

to be static, for simplicity, if not noted otherwise. Finally, we set the intrinsic timescale τr equal to 1 so all

time is measured in units of this time constant.

3.3 Network amplification

Following standard procedures (e.g. (10)), the solutions to Eq. (9) are efficiently expressed in terms of

the eigenvectors of the recurrent interaction matrix J. This matrix is real and symmetric and assumed to

have full rank, hence all eigenvalues λk are real and the eigenvectors ek form an orthonormal basis. In

this basis, the dynamics decouples and the firing rate is given by

r =
n
∑

k=1

ck(t)ek (10)

with coefficients ck that depend on the overlap of the external input and the eigenvectors. For the connec-

tivity defined above, the largest eigenvalue is approximately λmax ≈ R. For an input constant in time, the

steady-state solution of Equation (9) is given by

r∗ =
n
∑

k=1

(ek · h)
1− λk

ek (11)

showing that the network amplifies an input stronger the more it overlaps with eigenvectors exhibiting

a large eigenvalue. Consequently, the network responses tend to be biased towards the dimensions

spanned by these leading eigenvectors, which can suppress unspecific noise components and result in

activity distributions much lower-dimensional than the distribution of inputs, such as, for instance, in our

model of spontaneous activity (Fig. 4E).

The alignment of a feedforward input h with the recurrent network J was defined as

ν =
hTJh

hTh
. (12)

Rewriting the interaction matrix as

J =
n
∑

k=1

λkeke
T
k (13)
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we observe that the maximally possible alignment is assumed when the input is proportional to the eigen-

vector emax with maximal eigenvalue λmax, in which case the alignment is νmax = λmax ≈ R. According

to Eq. (11) such maximally aligned input also gets amplified the most by the recurrent network. A ran-

dom input, instead, typically overlaps with a broad range of eigenvectors with mixed positive and negative

eigenvalues and, therefore, its alignment will be close to zero and its net amplification much smaller. Note

that such alignment-dependent network amplification is a generic property of recurrent networks and

arises also in randomly structured networks, provided the recurrent interactions are sufficiently strong.

3.4 Population response properties

Our goal was to study whether the core network response properties considered in this study (i.e. inter-

and intra-trial stability, dimensionality and alignment with spontaneous activity) improve substantially by

aligning the feedforward input with the recurrent network structure (while keeping all other features of the

input and the recurrent network unchanged). In the following we describe how we studied these response

properties in the model.

Trial-to-trial correlation

To study the reliability of the network response to repeated presentations of the same stimulus in the model

and to analyze how this reliability depends on feedforward-recurrent alignment (Fig. 4B), we assumed that

the deterministic part of the stimulus-induced input to the network, det, is stimulus-dependent and fixed

across different trials, while the stochastic part, hsto, varies from trial to trial and is stimulus-independent,

for simplicity. The norm of the deterministic part of the input vector was set to 1, without loss of generality,

see Table 2 for summarized parameters. Concretely, we considered inputs drawn from the multivariate

normal distribution

htrial i ∼ N
(

hdet, σ
2
trial I

)

(14)

with stimulus-dependent mean hdet, and diagonal covariance matrix with strength σ2
trial . Given this input,

the distribution of evoked patterns is

rtrial i ∼ N (µE,ΣE) , (15)

where (using Eq. 11) the mean response is given by

µE =
n
∑

k=1

(ek · hdet)

1− λk

ek (16)

and the covariance structure by

ΣE = σ2
trial

n
∑

k=1

1

(1− λk)2
eke

T
k . (17)

Analogously to the experimental data, we computed trial-to-trial correlation by drawing response vectors

(N=100) from the pattern distribution (see Eq. 15) for a given input hdet and taking the mean over all

possible pairwise correlations between these response vectors. Fig. 4B upper shows histograms over

these pairwise correlations for a maximally aligned input, i.e. hdet equal to the eigenvector with largest

eigenvalue λmax (blue), and randomly aligned input of equal strength (green). To reveal the systematic

dependency of trial-to-trial correlation on feedforward-recurrent alignment (Fig. 4B lower), we chose hdet
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proportional to the eigenvectors with ascending eigenvalues. Note that sampling the mean inputs from

a broader distribution, such as the 10-dimensional Gaussian distribution defined in Dimensionality (see

below) led to similar results.

Intra-trial stability

To study the stability of the network response to a sustained stimulus and how this stability depends on

the alignment of the stimulus-induced input to the recurrent network (Fig. 4C), we assumed as input

h a stationary Gaussian stochastic process that is uncorrelated in space and time with variance σ2
noise ,

i.e. 〈hi(t)hj(t′)〉 = δ(t − t′)δijσ
2
noise and time-independent mean hdet that depends on the stimulus. The

stochastic differential equation for the external input is then dh = hdetdt + σnoise dW, where W is the

Wiener process, and the stochastic differential equation for the network activity

dr = (−r+ J · hdet) dt+ σnoise dW. (18)

We numerically integrated the equation above for a duration of T = 120 with the steady-state solution hdet

(see Eq. 11) as initial condition, using the Euler-Maruyama scheme with a time-step ∆t = 0.1 (see Table

3).

Analogously to the experimental data, we computed intra-trial stability as the correlation c(∆t) = r̂(t)r̂T (t+

∆t) between z-scored response vectors r̂(t) with time-lag ∆t. This correlation depends on the strength

of the noise relative to the signal and the temporal correlations induced by the recurrent connections. As

the temporal distance for assessing intra-trial stability in the experimental data is relatively large (2 s), we

assumed that most temporal correlations induced by the recurrent network can be neglected and chose

a sufficiently large time difference ∆t = 20. To obtain a more accurate estimate, we averaged c(∆t) over

all time points 0 ≤ t ≤ 100. Fig. 4C upper shows the normalized time-dependent response of the network

unit with maximal time-averaged response, for a maximally aligned input (blue), and a randomly aligned

input of equal strength (green). As above, to reveal the systematic dependency on feedforward-recurrent

alignment, we chose hdet to match eigenvectors with ascending eigenvalues (Fig. 4C lower).

Dimensionality

To study in the model how the dimensionality of stimulus-evoked activity depends on feedforward-recurrent

alignment (Fig. 4D), we applied time-independent inputs hDim to the network drawn from a low-dimensional

multivariate Gaussian distribution hDim ∼ N
(

0,ΣDim
)

with predefined dimensionality. As for the experi-

mental data, dimensionality was defined by the participation ratio (8) deff = (Σkvk)
2/Σkv

2
k, where vk are

the eigenvalues of the covariance matrix ΣDim. To construct ΣDim we chose these eigenvalues propor-

tional to an exponentially decaying function, i.e.

vl ∼ exp (−2l/β) , (19)

where β is a parameter. This models the decay of the variance explained by the leading principal com-

ponents of evoked activity observed in our experimental data (see Fig. 2B) and yields a dimensionality

deff ≈ β, which can be seen from the following argument: Inserting the expression (19) into the participa-
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tion ratio we obtain

deff =
(
∑n

k=1
exp(−2k/β))2

∑n
k=1

exp(−4k/β)
. (20)

In the regime relevant to us 1 ≪ β ≪ n holds and thus we can approximate the sums by indefinite

integrals, i.e.

deff ≈
(∫

∞

0
exp(−2k/β) dk

)2

∫

∞

0
exp(−4k/β) dk

=
β2/4

β/4
= β , (21)

showing that in this regime the effective dimensionality is indeed approximated by β. In Fig. 4D, we

used β = 10. We chose the following procedure to systematically vary the degree of alignment of this

low-dimensional input to the recurrent network. We ordered the eigenvectors ek of the interaction matrix

J according to their eigenvalues λk in descending order, such that e1 is the eigenvector with the largest

eigenvalue λmax and eN the eigenvector with the largest negative eigenvalue λmin. We then assigned

variances with exponentially decaying magnitude (according to Eq. 19) to M = κβ < n of these vectors,

starting with a leading eigenvector eL and proceeding with the index in ascending order. The index L thus

effectively determines alignment and the covariance matrix is then given by

ΣDim =
L+M
∑

k=L

vk−L

(

eke
T
k

)

. (22)

Truncating the sum at κβ results in an additional imprecision in the dimensionality, which can be estimated

by performing the integrals in Eq. (21) only up to an upper bound κβ. This results in

deff = β
1− exp(−2κ)

1 + exp(−2κ)
, (23)

which is negligible for sufficiently large κ. We used κ = 5 in which case the truncation error is less than

0.01%.

To compute the activity spectrum for a maximally aligned input (Fig. 4D upper, blue line) we chose L = 1.

For a random input (Fig. 4D, upper, green line) we used n orthonormal random vectors instead of the

eigenvectors. To systematically study how dimensionality depends on feedforward-recurrent alignment

(Fig. 4D lower), we varied L between 1 and n/2.

Given such low-dimensional Gaussian input distribution, the evoked activity patterns are then samples

from a Gaussian distribution with covariance structure

ΣAct. = (1− J)−1ΣDim(1− J)−T . (24)

Because the input covariance ΣDim and the interaction matrix J share an eigenbasis per construction, the

eigenvalues of ΣAct. can be expressed as

vAct.
k = exp (−2(k − L)/β)

1

(1− λk)2
, (25)
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for k = L, ..., L+M . The dimensionality of the evoked activity space can then be expressed as

deff =

(
∑

k exp (−2(k − L)/β)(1− λk)
−2

)2

∑

k exp (−4(k − L)/β)(1− λk)−4
. (26)

Alignment with spontaneous activity

We assumed spontaneous activity reflects inputs from a wide range of different sources, and so we

modeled these inputs as samples drawn from a broad Gaussian distribution (Fig. 4E). Moreover, given

that spontaneous activity is present more than a week prior to eye opening, we assumed this distribution is

already aligned to the recurrent network at eye opening and remains aligned, subsequently. We modeled

this distribution as

hspont. ∼ N
(

0,Σspont.
)

, (27)

where Σspont is defined as ΣDim (Eq. 22), but using L = 1 and βspont. = 20. Spontaneous activity patterns

are modeled as steady-state responses to these inputs and, following Eq. (24), are given by samples from

the distribution ri,S ∼ N (0,Σs.act.), where the covariance structure is given by

Σs.act. =
n
∑

k=1

exp (−2(k − 1)/βspont.)

(1− λk)2
eke

T
k . (28)

Analogous to the empirical data, we computed the alignment of evoked patterns with spontaneous activity

using Eq. (6).

3.5 Network parameters

See Tables 1, 2 and 3 for a summary of parameters.

All networks were simulated using custom-written code in python.

Table 1: Network parameters

Parameter Symbol Value

Number of network neurons n 200

Mean of weight distribution µJ 0

Magnitude of maximal eigenvalue R 0.85

Table 2: Simulation parameters

Number of trials Ntrial 100

Noise strength (trials) σtrial 0.02

Noise strength (time) σtime 0.3

Evoked dimensionality βevoked 10

Spont. dimensionality βspont. 20

Table 3: Numerical parameters

Parameter Symbol Value

Time step dt 0.1

Duration of simulation T 120

Time constant τr 1
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Supplementary Information 

SI Figure 1: The strong but highly variable network responses in visually naïve and deprived 
animals are accompanied by relatively weak orientation discriminability. (Related to Figs. 1 and 
3) 
(A) Discriminability index D’ (Cohen’s d) for distinguishing responses for a 0 and 90 deg grating 

stimulus. Data obtained from the same animals as in Fig. 1C. Error bars show Mean ± SEM for age 
groups (EO-3 to -2, EO+0, EO+4 to +7, N= 4,11,11 animals, respectively.  

(B) Same as (A), but for cellular responses. Same animals as in Fig. 1I.  
(C) Same as (A) but for deprived (N=3, orange) and control (N=2, blue) animals, in comparison to 

visually naïve animals at EO (black, reproduced from (A)). Circles: single animals; error bars: Mean 
± SEM. Same animals as in Fig. 3C.  
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SI Figure 2:  Chronic two photon calcium imaging of visual grating evoked activity in the early 
developing visual cortex reveals a high degree of response variability in visually naive animals 
in populations of individual cells. (Related to Fig. 1H-J)  
(A) Representative example of chronic two photon calcium recordings in the early developing ferret 

visual cortex (used in Fig. 1H-J). Approximately the same cortical region was imaged in a visually 
naive cortex (left) and after four days with visual experience (right). For illustration purposes, only 
about one quarter of the total imaging field of view is depicted.  A cell tracked over the two time 
points is marked by the blue box.   

(B) Visual grating evoked calcium traces (same stimulus, six trials) for a representative cell (marked in 
(A) by the blue box) in the visually naïve (bottom) and experienced (top) cortex.  

(C) Single trial responses (averaged over the entire stimulus period of 4 s) of the same cell as in (B) 
as a function of grating orientation. Open black circles: individual trials; solid red circles: trial averages.
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SI Figure 3: Additional analyses regarding the dimensionality of visual grating evoked and 
spontaneous activity. (Related to Fig. 2B-E) 
(A) Activity patterns can be expressed as a weighted superposition of principal components (PC), 

which themselves can be represented as patterns covering the same cortical ROI as the activity 
patterns. Three example PC are illustrated in red. 

(B) Large bold circles: three examples of evoked patterns projected into the space spanned by the first 
two PC of evoked activity. These patterns and the first two PCs are illustrated (in grayscale and red, 
respectively). Small faint circles: Projections of all evoked patterns (reproduced from Figure 2B). 

(C) Dimensionality estimates based on shared variances across two non-overlapping subregions in the 
ROI (following the method in Stringer et al., 2019) yield an age trend similar to our estimates in Fig. 
2C. To define the two subregions, we divided the ROI into N nonoverlapping stripes of width 392 
μm and assigned stripes with an odd index to subregion 1 and those with an even index to 
subregion 2. Pre-processing of calcium activity patterns was applied separately in these two 
subregions.  

(D) Fraction of variance of spontaneous activity explained by its leading PC for different age groups 
(EO-3 to -2, EO+0, EO+4, EO+6: N= 4,11,11,2 animals, respectively; thick lines, average over 
animals; thin lines, individual animals; see Methods).  

(E) Linear dimensionality of spontaneous activity across age (participation ratio, cross-validated, see 
Methods).  

(F) As (B), but for spontaneous activity.  
Note that the number of patterns is matched across age, but not between evoked and spontaneous 
activity, hindering a direct comparison of their dimensionality.  
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SI Figure 4: At a local, modular scale, the initial grating evoked patterns and the patterns of the 
endogenous network exhibit a similar correlation function. (Related to Fig. 2)  
(A) Example correlation patterns (Smith et al., 2018) for total signal correlation (top row) and 

spontaneous correlation (bottom row) for the same seed point in a visually naïve ferret. Scalebar: 1 
mm. 

(B) 2D correlation function of evoked (top) and spontaneous activity (bottom) at EO-2. Correlation 
patterns from (A, left) were averaged over all possible seed-points, displayed for a diameter of 0.8 
mm.  

(C) Radial profiles of correlation functions from (B) with SD over seed-points. Note the similar location 
and depth of the trough, indicating a similar spatial scale and degree of order in the local modular 
structure of the spontaneous and initial evoked activity.  

0.8 mm

EO-2
A B C

ev
ok

ed
sp

on
t.

EO-2

-1 1
Pairwise corr.

Se
ed

1 
m

m

SI Figure 4

0

1 Evoked

0.0 0.5
Distance in mm 

0

1

Pa
irw

is
e 

co
rre

la
tio

n

Spontaneous

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2022.11.14.516507doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516507
http://creativecommons.org/licenses/by-nc-nd/4.0/


SI Figure 5: Additional analyses of the alignment of spontaneous and visual grating evoked 
activity. (Related to Fig. 2F-H) 
(A) As a first alternative to the analysis in Fig. 2F-H we computed the 2nd order correlation between the 

spontaneous correlation and several evoked correlation structures, namely the total signal 
correlation (left), the trial-split signal correlation (middle) and the noise correlation (right). Animals 
were longitudinally recorded. Same animals and age bins as in Fig. 1 D, G: (EO-3 to -2, EO+0, 
EO+4 to +7, N= 4,11,11 animals, respectively). Correlations calculated for the subset of the 20% 
most selective locations at EO+4 excluding pairs with a distance smaller than 465 microns. 

(B-D): As a second alternative to the analysis in Fig. 2F-H, we analyzed the shared dimensions 
between spontaneous and evoked activity (Stringer et al, 2019). 

(B) Fraction of variance explained by shared dimensions between spontaneous and evoked activity 
across age for the animal from Fig. 2D-G. Shared dimensions were calculated as linear 
combinations of the leading principal components of spontaneous activity (of the same age) 
accounting for 75% of its own variance. 

(C) Fraction of evoked variance explained by shared dimensions four days after EO (top) and at EO 
(bottom). Thin lines: individual animals; Broad lines: average over animals. N=11 animals. 

(D) Total fraction of evoked variance explained by N=1, 2, all (orange, magenta, black) shared 
dimensions, averaged over animals (N=11). Error bars: Group average and SEM. 

(E-G) Alignment in awake animals. 
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(E) Projections of evoked patterns into the space spanned by the first two evoked PC, as in Fig. 2A top, 
but for an awake animal. 

(F) Projections of evoked patterns into the space spanned by the first two PC of spontaneous activity, 
as in Fig. 2G top, but for an awake animal.  

(G) Alignment of evoked to spontaneous activity in the awake cortex (N=2 animals; compare Fig. 
2H). Data in (E-G) from Smith et al., 2018.
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SI Figure 6: Network response properties can, in principle, change largely independently from 
one another. (Related to Fig. 4) 
Schematics of evoked activity projected onto the principal components (PC) of either evoked (compare 
Fig. 2A) or spontaneous activity (compare Fig. 2F, G) showcasing the four network properties in focus: 
trial-to-trial correlation (larger the smaller the scatter of responses with the same preferred orientation 
(marked by color)), dimensionality (smaller the larger the radius of projections onto evoked PCs), Intra-
trial stability (larger the smaller the extend of  trajectories of temporally evolving activity) and alignment 
with spontaneous activity (larger the larger the radius of projections onto spontaneous PC).  
(A) Evoked responses in visually naïve animals are relatively high-dimensional and show poor trial-to-

trial correlation, intra-trial stability and alignment with spontaneous activity. 
(B) Evoked responses in experienced animals are low-dimensional and show high trial-to-trial 

correlation, intra-trial stability and alignment with spontaneous activity. 
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(C) These four properties can develop largely independently from one another. The sketches show the 
schematics of evoked activity if only one of the four properties develops (left) and if all but one 
develops (right). 
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SI Figure 7: The model predicts a correlation between the alignment of the trial-averaged evoked 
pattern to spontaneous activity and trial-to-trial correlation, consistent with the empirical data. 
(Related to Fig. 4G-J) 
(A) Model prediction: single-trial responses to a stimulus for which the trial-averaged pattern is more 

aligned to spontaneous activity also show higher trial-to-trial correlation. N=300 samples drawn for 
the input distribution used in Fig. 4D with optimal alignment and added noise as in Fig. 4B. 

(B-D): Test in experiment.  
(B) Reproduced from Fig. 4K. Contours show outlines of grating evoked patterns (taken 0.5 s after 

stimulus onset) from different trials for a stimulus for which the average pattern is less (left) or more 
(right) aligned to spontaneous activity. Trial-to-trial correlation: 0.75 (left), 0.84 (right); alignment to 
spontaneous activity: 0.13 (left), 0.18 (right). 

(C) As (A) but for experimental data using all stimuli from the animal shown in (B) at EO+4.  
(D) Reproduced from Fig. 4L. Correlation for the data shown in (C) (large blue circle) and for all other 

animals in the oldest age group (grey circles; 13 experiments from N=11 animals at EO+4 to +7). 
Error bars show Mean ± SEM. respectively).  

(E) Trial-to-trial correlation, intra-trial stability and evoked dimensionality co-vary with the alignment of 
the first evoked PC to spontaneous activity (see Methods). 13 experiments from N=11 animals at 
EO+4 to +7. Parts of data reproduced from Figure 4M.  
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