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A Computation of the Globalization Index

Our starting point is an (n× n)-matrix A, which is row-stochastic, as is the one constructed in

Section 2.2. We think of it as the adjacency matrix of a weighted directed network over n nodes.

Thus, each entry aij is the relative weight with which node i connects to node j. Viewing such

normalized weights as probabilities, the directed distance ϕij from i to j is then identified as

the expected number of steps required to reach j from i when, at every node k = 1, 2, ..., n, each

possible link kl is chosen with probability akl. In our model, those paths reflect the transfers of

information (or know-how) from one country to another, which occur with intensities that are

proportional to the trades in the goods and services that embody that information.

To compute such expected magnitude, it is useful to consider the (n− 1)× (n− 1) matrix

A−j obtained from A by deleting the jth row and the jth column. (This matrix, of course, is

no longer a stochastic matrix.) Then, it can be easily seen that the probability that a path that

started at i is at k 6= j after r steps is simply [(A−j)
r]ik, where (A−j)

r is the rth-fold composition

of Aj with itself, and [·]ik stands for the ik-entry of the matrix [·]. Thus, the probability that it

visits node j for the first time in step r + 1 is simply

γij(r + 1) =
∑
k 6=j

[(A−j)
r]ik akj .
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Therefore, the expected number of steps ϕij can be obtained as follows:

ϕij =

∞∑
r=1

r γij(r) =

∞∑
r=0

(r + 1)
∑
k 6=j

[(A−j)
r]ik akj (1)

=
∑
k 6=j

∞∑
r=1

r
[
(A−j)

r−1
]
ik
akj =

[( ∞∑
r=1

r (A−j)
r−1
)
ik

]
k=1,2,...,n

k 6=j

(
akj

)
k=1,2,...,n

k 6=j

Using now a standard formula from linear algebra, we have:

∞∑
r=1

r (A−j)
r−1 = (I −A−j)−2

so that, in an integrated matrix form, the (column) vector
(
ϕij

)
i=1,2,...,n

i 6=j

can be written as

follows (
ϕij

)
i=1,2,...,n

i 6=j

= (I −A−j)−2
(
aij

)
i=1,2,...,n

i 6=j

.

Finally, note that, because A is a row-stochastic matrix, it follows that

aij = 1−
∑
k 6=j

aik

and therefore (
aij

)
i=1,2,...,n

i 6=j

= (I −A−j) e

where e is the column vector (1, 1, ..., 1)>. Hence the vector
(
ϕij

)
i=1,2,...,n

i 6=j

can be computed

from the following simple expression:(
ϕij

)
i=1,2,...,n

i 6=j

= (I −A−j)−2 (I −A−j) e

= (I −A−j)−1 e.

B Empirical model

We follow the approach developed in Moral-Benito (2013, 2016) and augment the dynamic

panel model of Section 5 by a feedback process that relates the predetermined variables to

all lags of the explained variable, all lags of the predetermined variables, and the exogenous

variables. Moreover, we transform the augmented model to obtain a simultaneous-equation

representation. This representation has proven useful because it facilitates the estimation of the

model by allowing a concentration of the parameters of the model’s log-likelihood. Thus, for

each country i, the model consists of a system of T + (T − 1)k equations, where T is the total

number of time periods. Using matrix notation, we can write the model compactly as:
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ARi = BZi +U i (2)

where the following definitions are used:

Ri = (yi,xi)
′ yi = (yi1, yi2, ...., yiT )′

xi = (xi2,xi3, ...,xiT )′ xit =
(
x1
it, x

2
it, ..., x

k
it

)′
Zi = (yi0,xi1, zi)

′ zi =
(
z1
i , z

2
i , ..., z

m
i

)′
U i = (εi + vi, ξi)

′ vi = (vi1, vi2, ..., viT )′

ξi = (ξi2, ξi3, ..., ξiT )′ ξit =
(
ξ1
it, ξ

2
it, ..., ξ

k
it

)′

A =

(
A11 A12

0 I

)
A11 =



1 0 0 · · · 0

−α 1 0 · · · 0

0 −α 1 · · · 0
...

...
...

. . .
...

0 0 0 −α 1


A12 =



0 0 · · · 0

−β 0 · · · 0

0 −β · · · 0
...

...
. . .

...

0 0 · · · −β


where I is an identity matrix of dimension (T − 1)k × (T − 1)k, εi can be interpreted as an

individual-specific effect, and ξit is a k × 1 vector of prediction errors. Furthermore, we have:

B =

(
B1

B2

)
B1 =


α+ γy β + γ δ

γy γ δ
...

...
...

γy γ δ

 B2 =


π2y π2x π2z

π3y π3x π3z

...
...

...

πTy πTx πTz



β =
(
β1, β2, ...., βk

)
γ =

(
γ1, γ2, ...., γk

)
δ =

(
δ1, δ2, ..., δm

)

πty =


π1
ty

π2
ty
...

πkty

 πtx =


π11
tx π12

tx . . . π1k
tx

π21
tx π22

tx . . . π2k
tx

...
...

...

πk1
tx πk2

tx . . . πkktx

 πtz =


π11
tz π12

tz . . . π1m
tz

π21
tz π22

tz . . . π2m
tz

...
...

...

πk1
tz πk2

tz . . . πkmtz

 .

Under normality of the random disturbances, the model in (2) gives rise to the following

2



log-likelihood function:

L(y,X|Z,θ) ∝ −N
2

log |Ω| − 1

2
tr
(
Ω−1UU′

)
(3)

where y, X and Z are the observations on yi, xi and zi for all N countries in the sample, θ is the

vector of model parameters, and U = [U1,U2, ...,UN ]. Moreover, Ω is the variance-covariance

matrix of U, and tr(·) denotes the trace of the corresponding matrix. Notice that the following

simplification was made:
∑N

n=1 U′nΩ−1Un = tr(Ω−1UU′). Also, notice that the determinant

of A is equal to unity.

C Integrated likelihood

The integrated likelihood used in Equation (13) is defined as follows:

p(y|Mj) =

∫
p(y|Mj ,θ)f(θ|Mj)dθ (4)

where p(y|Mj ,θ) is the conditional likelihood of the data. The expression in (4) is typically

hard to evaluate, but a simple and accurate approximation, the BIC approximation, makes

use of Laplace’s method. Let m(θ) = log(p(y|Mj ,θ)f(θ|Mj)) denote the posterior mode and

construct a Taylor-series expansion of m(·) around θ̃, where θ̃ = arg max
θ

m(θ):

m(θ) = m(θ̃) + (θ − θ̃)
′
m′(θ̃) +

1

2
(θ − θ̃)

′
m′′(θ̃)(θ − θ̃) (5)

where m′ and m′′ are the first and second derivatives of m, respectively. m(θ) reaches its

maximum at θ̃; therefore m′(θ̃) = 0, and Equation (5) becomes

m(θ) = m(θ̃) +
1

2
(θ − θ̃)

′
m′′(θ̃)(θ − θ̃) (6)

Inserting (6) into the integral gives:

p(y|Mj) =

∫
em(θ̃)+ 1

2
(θ−θ̃)

′
m′′(θ̃)(θ−θ̃)dθ = em(θ̃)

∫
e

1
2

(θ−θ̃)
′
m′′(θ̃)(θ−θ̃)dθ (7)

The integral is a Gaussian integral and, therefore, we obtain the following expression:

p(y|Mj) = em(θ̃)(2π)
k
2 | −m′′(θ̃)|−

1
2 (8)

where k and | −m′′(θ̃)| are, respectively, the rank and the determinant of −m′′(θ̃). In a large

sample, θ̃ ≈ θ̂, where θ̂ is the maximum likelihood estimator of θ. By taking logs, we obtain:

log p(y|Mj) = log p(y|Mj , θ̂) + log f(θ̂|Mj)) +
k

2
log(2π)− 1

2
log | −m′′(θ̃)| (9)
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Following Raftery (1995), in large samples, −m′′(θ̂) ≈ NI, where N is the number of

observations and I is the expected Fisher information matrix. Using that, we obtain |−m′′(θ̂)| ≈
Nk|I| and:

log p(y|Mj) = log p(y|Mj , θ̂) + log f(θ̂|Mj)) +
k

2
log(2π)− k

2
logN − 1

d
log |I| (10)

The first and the fourth term on the right-hand side of this expression are of order N and

logN , respectively, whereas all other terms are of order 1 or less. When we remove these terms,

we arrive at the following expression for the (approximated) integrated likelihood:

log p(y|Mj) = log p(y|Mj , θ̂)− k

2
logN (11)

This expression is well known, and it is very similar to the Akaike information criterion.

With this expression at hand, we are almost ready to compute the posterior model probability

given in (13). One more step is required because the model in (2) does not give us p(y|Mj , θ̂) but

rather p(y,Xj |Mj , θ̂), which is the joint conditional likelihood of (y,Xj), with Mj containing

the relevant Z-regressor variables.

In the BMA, we consider different models each consisting of a particular combination of

regressor variables. If we were to use the joint likelihood p(y,Xj |·), we would compare different

likelihoods, for instance, p(y,X1,X2, ...Xk|·) and p(y,X4,X5, ...Xk|·), which are, in fact, not

comparable. Thus, instead, we proceed as follows. For a given model Mj , we first maximize (3)

to obtain the maximum likelihood estimate of θj . Then, we compute the likelihood of the out-

come variable y conditional on the estimated model, that is p(y|Mj , θ̂j). Most importantly, this

statistic is comparable across the different models, and hence we can use this expression to com-

pute the posterior probability of the underlying model. The conditional likelihood p(y|Mj , θ̂j)

can be obtained in a relatively straightforward manner by transforming the model given in (2)

as follows:

Given θ̂, we first substitute the feedback process into the outcome-equation that yields:

yn,1 = (α̂+ γ̂0)yn,0 +
(
γ̂ + β̂

)
xn,1 + δ̂zn + εn + vn,1 (12)

and for t = 2, ..., T , we get:

yn,t = α̂yn,t−1 +
[
γ̂0 + β̂π̂t0

]
yn,0 +

[
γ̂ + β̂π̂t1

]
xn,1 +

[
δ̂ + β̂π̂t2

]
zn + β̂ξn,t + εn + vn,t (13)

For each country observation i, the model in (12)-(13) is a system of T equations that can

be compactly written as:

Ayi = BZi + CUi (14)
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where the following definitions are applied:

A = Â11 B =

[
0(

IT−1 ⊗ β̂
)
B̂2

]
+ B̂1 C =

[
I,−Â12

]
.

IT−1 is an identity matrix of order T − 1. The variables yi, Zi and Ui are defined as above

in (2) together with the matrices Â11, β̂, B̂2, B̂1, Â12 that are evaluated at the ML-estimate θ̂.

Finally, we write the log-likelihood of observation y, conditional on Z and θ̂ as follows:

log p(y|Mj , θ̂) ∝ −N
2

log |CΩ̂C′| − 1

2
tr(Ω̂

−1
UU′). (15)

The expression in (15) is substituted into (11) to obtain the approximated integrated likelihood.
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D Data

Mean Median Std Min Max

1.

Logarithm of real GDP per capita 8.35 8.39 1.30 5.19 10.72
Total population (mill.) 38.9 7.98 124 0.35 1148
Annual growth rate of population 0.02 0.02 0.01 −0.01 0.06
Price level of investment 0.93 0.64 2.06 0.11 21.5
Exports plus imports as a share of GDP 0.53 0.46 0.36 0.04 2.90
Consumption share of GDP 0.72 0.72 0.15 0.23 1.32
Investment share of GDP 0.22 0.21 0.09 0.03 0.57
Government share of GDP 0.10 0.08 0.06 0.02 0.39
Labor force participation rate 0.39 0.39 0.08 0.19 0.57

2.

Life expectancy at birth, in years 59.9 61.8 12.0 30.3 78.8
Population density, people per km2 120 37 391 1.4 4547
Urban population, % of total 0.45 0.43 0.24 0.02 1.00
Population aged 0–14, % of total 0.38 0.41 0.09 0.16 0.50
Population share aged 65+, % of total 0.06 0.04 0.04 0.01 0.18

3. Sachs–Warner openness measure 0.50 0.50 0.50 0.00 1.00

4. Democracy index 0.58 0.70 0.38 0.00 1.00

5. 1/0 dummy for former Spanish colony 0.21 0.00 0.41 0.00 1.00

6. 1/0 dummy for armed conflict 0.16 0.00 0.37 0.00 1.00

7.

Land area in km2 (thousand) 1026 272 2115 0.61 9590
Land share in the geographic tropics 0.55 0.95 0.48 0.00 1.00
Population share in the geographic tropics 0.51 0.78 0.49 0.00 1.00
Land area within 100km of navigable water 0.48 0.38 0.37 0.00 1.00
Land share in Koeppen–Geiger tropics 0.38 0.06 0.42 0.00 1.00
1/0 dummy for landlocked country 0.16 0.00 0.37 0.00 1.00
Air distance to NYC, Rotterdam, Tokyo 4205 4065 2594 140 9590
Timing of national independence 0.96 1.00 0.97 0.00 2.00
1/0 dummy for socialist rule in 1950–1995 0.10 0.00 0.30 0.00 1.00

8.
Average years of primary schooling 2.87 2.63 1.79 0.02 7.51
Average years of secondary schooling 1.06 0.72 1.05 0.01 5.09

9. Globalization Index 0.56 0.55 0.08 0.39 0.76

10.

1/0 dummy for Western European country 0.18 0.00 0.39 0.00 1.00
1/0 dummy for Latin-American country 0.26 0.00 0.44 0.00 1.00
1/0 dummy for East Asian country 0.11 0.00 0.31 0.00 1.00
1/0 dummy for Sub-Saharan country 0.26 0.00 0.44 0.00 1.00

Data sources: 1. Penn World Tables, 2. World Development Indicators, 3. Sachs and
Warner: “Trade Openness Indicators,” Data set: sachswarneropen.xls, 4. Polity IV Project:
Regime Authority Characteristics and Transitions Datasets: p4v2010.xls, 5. Centre d’Etudes
Prospectives et d’Informations Internationales (CEPII) geo cepii.xls, 6. Uppsala Conflict
Data Program (UCDP), Data set: 64464 UCDP PRIO ArmedConflictDataset v42011.xls,
7. Gallup, Mellinger, Sachs, Harvard University Center for International Development, Data
sets: physfact rev.csv (Physical geography and population), kgzones.csv (Köppen–Geiger
Climate zones), geodata.csv (Geography and Economic Development), 8. Barro and Lee
2000, Data set: appendix data tables in panel set format.xls, 9. UN Comtrade

Table 1: Data: Sources and descriptive statistics.
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Asia: Afghanistan, Armenia, Azerbaijan, Bahrain, Bangladesh, Bhutan, Brunei, Cambodia, China,
Georgia, Hong Kong, India, Indonesia, Iran, Iraq, Israel, Japan, Jordan, Democratic Republic of Korea,
Republic of Korea, Kuwait, Kyrgyzstan, Laos, Lebanon, Macao, Malaysia, Maldives, Mongolia, Myan-
mar, Nepal, Oman, Pakistan, Philippines, Qatar, Saudi Arabia, Singapore, Sri Lanka, Syria, Tajikistan,
Thailand, Turkey, Turkmenistan, United Arab Emirates, Uzbekistan, Vietnam, Yemen, Former Yemen

Europe: Albania, Andorra, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia,
Cyprus, Former Czechoslovakia, Czech Republic, Denmark, Estonia, Finland, France, Germany, East
Germany, Former USSR, Gibraltar, Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Latvia, Lithua-
nia, Luxembourg, Macedonia, Malta, Moldova, Netherlands, Norway, Poland, Portugal, Romania, Russia,
San Marino, Serbia-Montenegro, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, United King-
dom, Former Yugoslavia

Africa: Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central
African Republic, Chad, Comoros, Democratic Republic of Congo, Republic of Congo, Cote d’Ivoire,
Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau,
Kenya, Kiribati, Lesotho, Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, Mauritius, Morocco,
Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Seychelles, Sierra Leone, Somalia, South Africa,
Sudan, Swaziland, Tanzania, Togo, Uganda, Tunisia, Zambia, Zimbabwe

North America: Antigua & Barbuda, Bahamas, Barbados, Belize, Bermuda, Canada, Costa Rica,
Cuba, Dominia, Dominican Republic, El Salvador, Grenada, Greenland, Guatemala, Haiti, Honduras,
Jamaica, Mexico, Netherlands Antilles, Nicaragua, Former Panama, Panama, Saint Kitts-Nevis, Saint
Lucia, Saint Vincent, Trinidad-Tobago, United States

South America: Argentina, Aruba, Bolivia, Brazil, Chile, Colombia, Ecuador, El Salvador, Guyana,
Paraguay, Peru, Suriname, Uruguay, Venezuela

Australia: Australia, Fiji, French Polynesia, Marshall Islands, Micronesia, New Caledonia, New Zealand,
Palau, Papua New Guinea, Solomon Islands, Samoa, Tonga, Tuvalu

Countries in italics are included in the Bayesian model averaging analysis.

Table 2: Sample of countries

E Markov chain - Monte Carlo - Model Composition

Here we describe the first-order Markov chain that, as explained in Section 5, approximates

the posterior probability distribution induced by our BMA analysis. This Markov chain evolves

according to the following transition kernel. Suppose the current state of the chain is Mj .

Then, a candidate model is sampled from the neighborhood of Mj , where the neighborhood

consists of the set of models with either one variable more or one variable less than in Mj .

The candidate model, denoted by Mj′ , is then “compared” to Mj , and it is accepted with

probability min{1, P (Mj′ |y)

P (Mj |y) }. If the candidate model is accepted, then the Markov chain moves

to Mj′ ; otherwise, it stays at Mj . The ratio
P (Mj′ |y)

P (Mj |y) is the posterior odds ( = prior odds × Bayes

factor), and it measures how much the data support one model over the other. The posterior

odds for Mj and Mj′ are given by:

p(Mj′ |y)

p(Mj |y)
=
p(y|Mj′)

p(y|Mj)
×
p(Mj′)

p(Mj)

Here, p(y|M·) and p(M·) are the integrated likelihood and the prior probability of a given model,

respectively.
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We compute the following diagnostic statistics to check the mixing and convergence proper-

ties of the simulated chain. First, we compute the statistic Corr(Π, F req) tests for convergence

of the Markov chain, which consists of the following steps: (1) discard the first S0 steps of the

simulated Markov chain to eliminate possible effects from influential starting values; (2) split

the remaining chain into two parts: the first S1 steps and the subsequent S2 steps; (3) compute

the transition matrix T1, where an element of T1, say tij , records how many times the chain has

moved from model mi to model mj . The dimension of T1 is equal to the number of different

models in S1; (4) convert T1 into the transition probability matrix P1. An element of P1, say pij ,

is determined as tij/
∑dim(T )

k=1 tik, and it measures the probability of the chain moving from mi to

mj , conditional on being in mi; (5) calculate the ergodic probability of being in mi (from P∞1 ),

which gives the unconditional probability of observing model mi; (6) derive, for every mi ∈ S1,

the empirical frequency in S2 as ci/ dim(S2), where ci counts how often model mi is visited in

S2; (7) denote by Corr(Π, F req) the correlation coefficient between the ergodic probabilities of

all models in S1 and their empirical frequencies in S2. Corr(Π, F req) approaches one when the

Markov chain reaches stationarity. This is because any two subsets of a stationary chain give

rise to the same stationary distribution, and the stationary distribution is (in a large sample)

identical to the empirical frequency of each state.

Second, we also compute the statistic Corr(Bayes, Freq), which is another stationarity

test that involves the following steps: (1) eliminate a burn-in period from the simulated Markov

chain and identify the model with the highest posterior probability, denoting it by m̄; (2)

compute the empirical frequency for each model in the chain and denote it by fi; (3) calculate

the relative frequency for each model with respect to the best model: fi/fm̄; (4) determine

the Bayes factor for each model with respect to the best model: bi/bm̄ (the Bayes factor is

the ratio of the posterior probabilities of two models); (5) compute the correlation coefficient

Corr(Bayes, Freq) between fi/fm̄ and bi/bm̄. Corr(Bayes, Freq) approaches 1 as the chain

reaches stationarity. This is because the model selection along the chain is based upon the Bayes

factor (the probability that the chain accepts moving to a candidate model is equal to the Bayes

factor between the current model and the candidate model), and as a result, the chain visits

those models more often that have a high posterior probability.

Third, we derive the Raftery–Lewis dependence factor that is a measure for the mixing

behavior of the Markov chain. Dependence factors above 5 are critical and indicate bad mixing

of the chain or influential starting values—see Raftery and Lewis (1992) for details (the param-

eter values required in the test are as in Raftery and Lewis (1992) and given by q = 0.025,

r = 0.005, s = 0.95, ε = 0.001). To obtain an accurate representation of the posterior dis-

tribution, it is important that the chain explores those areas in the model space that have a

high probability mass. We follow George and McCulloch (1997) and use a capture-recapture

algorithm to estimate what fraction of the total posterior probability mass the Markov chain

has visited.

In Table 3, we report a number of statistics describing the properties of the simulated

Markov chain. Markov steps refers to the total number of steps (in 1000) of the simulated
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chain. Posterior model size refers to the posterior model size. Models covering 50% is the num-

ber of models with the highest posterior model probability that, in sum, account for 50% of the

posterior model probability. P(max) is the maximum posterior model probability achieved by a

single model. Visited probability refers to the estimated fraction of the total posterior probability

mass that the Markov chain has visited. This number is computed using the capture-recapture

algorithm described in George and McCulloch (1997). The remaining statistics describe the con-

vergence and mixing properties of the simulated chain. Generally, the values of these indicators

indicate very good mixing and convergence properties of the simulated Markov chain. For ex-

ample, the values of Corr(Π,Freq) and Corr(Bayes,Freq) are very close to unity, suggesting that

the simulated Markov chain has reached stationarity. Furthermore, we obtain a Raftery–Lewis

factor equal to 3.38, which indicates fast mixing of the process. Factors above 5 are critical and

indicate bad mixing of the chain or influential starting values. Lastly, the estimate for the total

posterior probability mass that the Markov chain has visited is very high and equal to 98%. The

high value is reassuring because an accurate representation of the posterior distribution requires

that the Markov chain reaches the areas in the model space with high probability mass.

Benchmark Higher-order trade

Markov steps (× 1000) 836 996
Posterior model size 8.7 8.3
Models covering 50% 58 97
Pr(best model) 7.20 4.78
Visited probability 98.0 95.7
Corr(Π,Freq) 0.997 0.909
Corr(Bayes,Freq) 0.998 0.966
Raftery–Lewis factor 3.38 3.42

Table 3: MC3 statistics.

F Robustness

As advanced in Section 8, here we explore the sensitivity of the findings in Section 6 to variations

in the data input, to modifications of the underlying model assumptions, and to alternative

measures of network centrality.

F.1 Data

Raw data vs. cleaned data: In our baseline approach, we use the raw trade data from the

UN Comtrade to compute the GI. However, a National Bureau of Economic Research project

led by Robert Feenstra has systematically cleaned a number of inconsistencies from the UN

Comtrade data. The resulting data set is available from the Center for International Data, and

a detailed description is provided in Feenstra et al. (2005). As a robustness check, we use these

data instead of the raw trade data to compute our GI. Then, we perform a BMA analysis where
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we include this new measure. The row labeled Feenstra in Table 4 shows the resulting findings

are very similar to the baseline results.

E(θk|y) PIP %sig

Benchmark 6.289*** 85 99

Feenstra 5.497*** 77 97
IMF DOTS 6.084*** 88 96
PWT 6.2 5.589*** 83 99
PWT 6.3 4.387*** 95 88
PWT 7.0 7.318*** 80 97
PWT 7.1, 1960–2009 5.823*** 71 96
PWT 7.1, 5 yrs 2.169*** 79 97

Table 4: Robustness: Data.

IMF DOTS: The International Monetary Fund (IMF) publishes the Direction of Trade

Statistics (DOTS), which provides detailed data on bilateral trade flows. We use these data in-

stead of the UN Comtrade data to compute the GI. Again, the results are largely unchanged—see

row “IMF DOTS” in Table 4.

Penn World Tables: Several variables included in the empirical analysis are constructed

from data taken from the Penn World Tables (PWT). Ciccone and Jarocinski (2010) raise the

important concern that the results of growth empirics are often sensitive to revisions in the

PWT data. We address this concern by using different releases of the PWT to compute the

relevant variables. Table 4 compares the results. By and large, our baseline findings are robust

to revisions of the PWT. An advantage of the recent releases of the PWT is that they extend

the time period covered by the data, which allows us to consider a longer period in the BMA.

Specifically, we can use the period from 1960–2010, which gives us a total of five observations

for each country. Again, the results are very similar to the baseline findings. As yet another

check, we also organize the data into five-year time intervals (instead of using 10-year intervals),

giving us a total of 10 country observations. As can be seen in Table 4, the higher-frequency

data do not lead to noteworthy changes in the sign and significance levels of the results.

F.2 Model specification

In the baseline approach, we use a binomial-beta structure as the model prior distribution.

We test the robustness of this choice by using a uniform prior as in Moral-Benito (2016).

Accordingly, all models are equally likely a priori, and P (Mj) = 2−K , where K is the number of

potential regressor variables. The results of the BMA analysis with the uniform prior are very

close to the results of the baseline case, as can be seen from Table 5. Hence, we conclude that

the assumption on the model prior distribution does not have a significant effect on the results.
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E(θk|y) PIP %sig

Benchmark 6.29*** 0.85 0.99

Uniform prior 6.46*** 0.95 0.97
Rich 9.52*** 0.98 0.99
Poor 4.18*** 0.79 0.84
15 best covariates 6.41*** 0.99 0.99
10 best covariates 6.37*** 0.99 1.00
15 worst covariates 4.93*** 0.99 0.98
10 worst covariates 4.61*** 0.99 1.00

Table 5: Robustness: Model.

Next, we note a large degree of heterogeneity among the countries in our sample. To account

for this heterogeneity, we include into the empirical analysis a large set of covariates and a full

set of dummy variables to control for country, region, and time fixed effects.

Despite these efforts, we cannot exclude the possibility of additional dependencies that

we have not properly controlled for. Two particularly relevant concerns are the existence of

spatially correlated shocks that affect geographically-proximate countries and the potentially

differential effect of the covariate for developed and undeveloped countries. We address these

concerns in various ways. First, we cluster the data by splitting the sample into rich and poor

countries. More concretely, we consider countries as poor (rich) if their GDP per capita in 1960

was less (more) than 1/5 of the level of the United States. The resulting samples consist of

48 poor countries and 34 rich countries. Then, we perform the BMA analysis on both samples

separately and report the results in Table 5. Importantly, the positive relationship between

openness and growth is found to be very robust for both high-income and poor countries, but

it seems somewhat stronger for the rich.

In a similar vein, we have also interacted in a separate experiment the trade share with

the region fixed effect to assess whether the relationship between the traditional openness mea-

sure and growth varies across regions. Interestingly, we find that the insignificant relationship

between the trade share and growth that arises in the baseline case also holds across all five

regions that we consider. Moreover, we interacted the region-fixed effect with time-fixed effects

to account for spatially correlated shocks. Again, we conclude that the results are very similar to

the baseline results, especially for the estimate of the globalization measure. For conciseness, we

do not report the results of the last two experiments here, but they are available upon request.

As an additional robustness test, we check whether our main findings are sensitive to the

number of regressor variables included in the empirical model. In the baseline case, we consider

34 candidate regressors. Now, we include only a subset of these variables into the model. In

particular, we pick those 10 (15) variables that had the highest posterior inclusion probability

in the baseline case. As an additional experiment, we select—together with the GI and initial

GDP per capita—those 10 (15) variables that had the lowest posterior inclusion probability.
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The results of the BMA analysis are in Table 5, and again, we observe no significant change

with respect to the baseline findings.

Finally, we recall that the analysis in Section 6 reveals a weak relationship between the

traditional measures of openness—such as the trade share and the Sachs–Warner index—and

economic growth, as indicated by low values of their posterior inclusion probability. Now we

want to address the concern that this result may be driven by a potential dependence between

our GI and the traditional measures. Table 6 shows the posterior mean and the inclusion

probability (rows) of the openness measures for the baseline case and for different combinations

of included variables (column). The results in the table do not reveal any notable dependencies

between the different measures.

Baseline Include
GI GI GI TS
S&W TS S&W

GI E(θk|y) 6.29*** 6.21*** 6.15*** 6.11***
PIP 0.85 0.83 0.81 0.80

TS E(θk|y) −0.07 −0.04 0.10
PIP 0.04 0.04 0.05

S&W E(θk|y) 0.18*** 0.18*** 0.13**
PIP 0.16 0.36 0.07

Table 6: Robustness: Openness measures.

F.3 Alternative measures of network centrality

Our GI reflects a notion of network centrality that is known as closeness centrality. Other

prominent notions of centrality considered in the literature are PageRank, Bonacich, eigenvalue,

or betweenness centralities—see, for example, Bloch, Jackson, and Tebaldi (2017). we focus on

PageRank centrality to avoid redundancy because they all behave quite similarly for the relevant

parameter ranges. According to PageRank centrality, a central/influential node is identified as

one that is largely connected to central/influential nodes. If we denote by ν = (νi) the vector

specifying such an “impact” for every node i, the centrality condition can then be written as

ν = (Ã)T ν,

where Ã is a perturbation of the adjacency matrix A defined by Ã = αA + (1 − α)U , where

0 < α < 1, and U is a (stochastic) matrix with entries all equal 1/n. The matrix Ã can still be

formally interpreted as the transition probability matrix of a Markov process. Such a Markov

process is clearly ergodic and thus has a unique invariant distribution. This allows PageRank

to identify the centrality of any given node i as its weight in that invariant distribution so that
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we may write

ν =
1− α
n

(I − αA>)−1e (16)

where n is the dimension of A and e is a column vector of all 1s. The notion of centrality given

by (16) implicitly presumes that all nodes in the network are symmetric and command the same

value. However, just as we did for our baseline measure introduced in Subsection 2.2, we want

to account for the fact that countries are very different in relative size within the world economy.

Again, this can be captured by replacing the uniform weighting embodied by the vector e by the

alternative vector β (also used by our baseline measure) where each βi captures the fraction of

country i’s GDP in the world economy. This leads to the following modified notion of PageRank

centrality:

ν =
1− α
n

(I − αA>)−1β, (17)

which is the measure of integration we apply to our full sample of 200 countries and all years

from 1962 to 2012. Table 7 below reports the outcome of the BMA exercise for different values

of α. There we observe that the magnitude of the posterior mean estimate of the PageRank

coefficient, the corresponding inclusion probability, and the %sig statistic all grow monotonically

with α, only achieving truly high values when this parameter is also high. These results are

very much in line with those obtained for our benchmark measure of country integration because

the parameter α plays in the present case a role analogous to δ for our benchmark integration

measure. Here, α determines how much PageRank is dependent on the network architecture,

hence depending on the full set of paths that directly and indirectly join each pair of nodes.

The results of Table 7, therefore, are again a manifestation of the importance that long-range

indirect connections have on growth even if integration were measured by the notion of PageRank

centrality.

E(θk|y) PIP %sig

PageRank centrality

α = 0.95 2.6332*** 0.63 76
α = 0.75 2.0135*** 0.34 71
α = 0.50 0.7264*** 0.11 52
α = 0.25 0.0506*** 0.08 44

Table 7: Global vs. local connections: PageRank centrality.

In addition to PageRank centrality, we have experimented with several other integration

measures that belong to none of the aforementioned centrality concepts. Most noteworthy

among those is the approach suggested by Arribas et al. (2009). One of the indicators they use

to assess a country’s integration is what they call degree of connection (DTC), which compares

the trade of a given country in the actual world with what would prevail in an ideal and perfectly

integrated one. More specifically, DTC measures whether a country’s international flows match

the weight of the other countries, being equal to 1 in case of a perfect match. This approach is
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conceptually very different from ours. Arribas et al. (2009) also consider the degree of openness

(DO), which, for each country, is equivalent to 1 minus its corresponding diagonal element in our

adjacency matrix A. These two different indicators capture a country’s aggregate trade flows

but not its architecture of first- and higher-order trade connections. Consequently, it is not

surprising that the correlation between our integration indicator and DO and DTC is generally

very low (as we showed to be the case with the traditional measures of openness in Section 4).

For example, in 2004, it is equal to −0.03 and −0.05, respectively. We also find an insignificant

role for these indicators when included in the BMA. For instance, the posterior mean associated

with the indicator DO is not significant (even at the 10% level), and the posterior inclusion

probability is only 6%.1

Lastly, we consider three different versions of random perturbations to the diffusion matrix

A in order to address the criticism expressed in Keller (1998) that a spurious version of the trade

network is likely to have the same implications for the global transmission of information as the

actual trade network. At the same time, the analysis below allows assessing the importance of

different dimensions of the network structure for the relationship between the GI and growth.

In the first case, we keep the structure of the original matrix A as in the baseline case—in terms

of the number of each country’s links and the set of its partners—and we simply perturb the

weight of existing links. In particular, we randomly assign a weight between 0 and 1 to each

existing link and re-normalize the resulting matrix so that it is row-stochastic. This approach

implies only a small modification to the original transition matrix A because the structure of

the matrix is preserved. Using this modified version of the transition matrix, we compute the

GI according to the approach described in Section 2.2. Clearly, the values of the GI depend

on the realization of the random draws of the link weights. To eliminate the variation in the

GI that is due to this randomness, we compute the GI for 100 different sets of realizations and

average over the outcomes. Lastly, we include the resulting GI into the BMA analysis. The

estimated coefficient of the GI is significant only at the 10% level, and the posterior inclusion

probability drops from 85% in the baseline case to 42%.

The second case that we consider involves a more substantial modification of the matrix A.

We keep the number and the weight of existing links for each country but assign the links to a

randomly selected set of trading partners. That is, we reshuffle the existing links of a given coun-

try. As before, we use the perturbed transition matrix to compute the GI, then we average over

100 different realizations and include the resulting GI in the BMA. The estimated coefficient of

the GI becomes insignificant, and the posterior inclusion probability of only 2%t is significantly

below the baseline value. In the last case, we allocate the total weight of each country’s links to a

randomly selected set of trading partners. That is, we keep the outward orientation of countries

1In another experiment, we identify the first principle component (FPC) of trade openness and compare it
to the GI. To conduct this comparison, we compute the correlation between the two variables and, in addition,
include the FPC instead of the GI into the BMA. We find a correlation coefficient of −0.36, which is slightly
higher (in absolute terms) than that for trade openness and the GI of −0.10. Still, the value is rather low,
indicating a relatively weak relationship between the two variables. When including the FPC into the BMA, we
find a posterior inclusion probability for this variable of less than 1%.
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as in the baseline case but perturb the number of links. In this case, we also obtain in the BMA

an insignificant coefficient estimate and very low posterior inclusion probability for the GI of 2%.

We interpret these findings as reflecting the importance of both the structure of the trade

network—in terms of the number of links of a country and the set of its trading partners—and

the intensity of trade connections between countries for the explanatory power of the GI. If we

keep the structure but modify the intensity of trade connections (as in the first case), then the

posterior inclusion probability of the GI declines substantially, but it is still higher than for

26 of 34 of the included covariates. Instead, if we perturb the set of trading partners (second

case) and, in addition, also the number of links (third case), then the relationship between the

modified GI and growth becomes very weak.

G Explaining discordance within the BMA analysis

As can be seen from Table 6 in the main text, there is a marked misalignment between the

posterior inclusion probability and the %sig-statistic for several of the variables included in the

BMA analysis. For example, the Government share has a PIP of only 11%, but the estimated

coefficient is significant in 91% of the models. To understand this pattern it is useful to consider

Figure 1, which focuses on the variables Government share and Armed conflict. It shows the

posterior probability mass over the whole range of coefficient estimates (bars) and, for each value

of the estimated coefficient, the share of models where the estimation is significant at the 5%

level (crosses) and the posterior inclusion probabilities of the respective models (circles). The

solid line and the broken lines represent the posterior mean and the 95% confidence bounds,

respectively.
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(a) Government share (PIP = 0.11; %sig = 91%)
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(b) Armed conflict (PIP = 0.75; %sig = 6%)

Figure 1: Discordance between PIP and %sig.

A comparison of the two panels yields some useful insights. It illustrates, in particular,
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that the posterior inclusion probability of a variable and the share of significant coefficient

estimates can be very different. In Panel (a), we observe that the coefficient associated with the

Government share is typically estimated very precisely across models (crosses are close to the

top of each bar), while the models that contained this variable are generally characterized by a

low goodness-of-fit (circles close to the bottom). As a result, the posterior inclusion probability

of these models is rather low across the entire range of the estimated coefficient. The opposite

can be observed in Panel (b), which shows the same set of statistics for the variable Armed

conflict. We find that the coefficient for Armed conflict is generally very imprecisely estimated,

whereas the models that include it have a high goodness-of-fit and thus provide this variable

with a high posterior inclusion probability.

In sum, the point here is that the identification of robust covariates according to the posterior

inclusion probability (as done by the model averaging approach) can lead to conclusions that

are very different from the traditional (single-equation) growth empirics that typically evaluates

variables on the basis of the significance level of the estimated coefficient for a certain model

specification. As a result of this practice, much of the empirical growth literature considers

the variable Government share as robustly related to growth (see, for example, the work by

Barro (1991, 1996) and Caselli et al. (1996)) whereas the results above lead to concluding the

exact opposite. The same applies (but in reverse order) to the variable Armed conflict. With a

posterior inclusion probability of 75%, this variable is found to be strongly related to growth.

This result is in stark contrast to much of the existing empirical work that interprets the mostly

insignificant coefficient estimates for this variable as evidence for a limited explanatory role.

See, for example, Barro and Lee (1994) and Easterly and Levine (1997). Such contradictory

assessment can also be established for several other candidate regressors, such as the Investment

price (Easterly, 1993), the Life expectancy (Barro and Lee, 1994), Democracy (Barro, 1996;

Dollar and Kraay, 2003), Landlocked (Easterly and Levine, 2001), or Former Spanish colony

(Barro, 1996), all of which have been suggested to be important for economic growth. Instead,

according to our results, these variables are characterized by low values of the posterior inclusion

probability, hence indicating a weak relationship to growth. For yet other variables, our results

are in line with the findings of the traditional empirical growth literature. This includes, for

example, the Investment share and the dummy variable for Sub-Saharan countries.2

H Geography and the Globalization Index

H.1 Modified globalization index

The computation of the modified GI presented in Section 7.4 for a given country i involves the

following steps. First, we denote by ϕm,j,−i the expected number of steps required to reach j

from any country m 6= i, conditional on not utilizing any of the links that involve country i.

2See Barro (1991, 1996), Barro and Lee (1994), Caselli et al. (1996), Easterly and Levine (1997), and Sala-i-
Martin (1997a, 1997b).
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ϕm,j,−i can be derived as follows:

ϕm,j,−i =
∑
k 6=i,j

∞∑
r=1

r
[
(A−i,−j)

r−1
]
m,k

ak,j (18)

Here A−i,−j is a (n − 2) × (n − 2) matrix obtained from the original adjacency matrix A by

deleting the ith and the jth column and the ith and the jth row. [·]m,k indicates the elements of

the mth row and the kth column of the array [·]. Rearranging Equation (18) yields the following

expression:

ϕm,j,−i =

( ∞∑
r=1

r (A−i,−j)
r−1

)
m,k


k=1,2,...,n; i 6=k 6=j

(ak,j)k=1,2,...,n; i 6=k 6=j (19)

where (ak,j)k=1,2,...,n;k 6=i,j is an (n−2)×1 vector that is obtained from the jth column of matrix

A by deleting the ith and the jth element. We use
∑∞

r=1 r (A−i,−j)
r−1 = (I −A−i,−j)−2 and

substitute it into (19), to obtain

ϕm,j,−i =
[
(I −A−i,−j)−2

m,k

]
k=1,2,...,n; i 6=k 6=j

(ak,j)k=1,2,...,n; i 6=k 6=j (20)

We compute ϕm,j,−i for all combinations of (m, j), where m = 1, 2, ..., n and j = 1, 2, ..., n, with

m 6= i, j 6= i. This yields the (n− 1)× (n− 1) dimensional matrix (ϕm,j,−i)
n
m=1,j=1;m6=i 6=j . An

element of this matrix specifies the expected number of steps from any country j to each of

country i’s potential trading partners m = 1, 2, ..., n,m 6= i. The key difference to the related

matrix in the benchmark case, that is, (ϕm,j)
n
m=1,j=1, is that here all connections from and to

country i are disregarded. The remaining steps of the calculations involve the aggregation of

ϕm,j,−i using the distance-related weighting factors as described in the main text.

H.2 The Frankel–Romer approach

The volume of trade of a country is potentially affected by its rate of economic growth, which

renders the matrix At = (aijt)
n
i,j=1 induced by the trade flows of year t and the resulting GI,

Φit, possibly endogenous to growth. In this section, we take a step to alleviate this endogeneity

issue. More concretely, in the spirit of the approach pursued by Frankel and Romer (1999), we

construct a modified GI measure that is based on bilateral geographical distance alone and rely

on it to instrument for Φit.

More concretely, the procedure implements the following steps. Let geoij denote the ge-

ographical distance (measured in kilometers) between countries i and j. In the first step, we

replace the elements of the transition matrix, aijt, with the inverse of the geographical distance,

1/geoij , between countries i and j. Naturally, after this step, the sum of each row is no longer

equal to one. Thus, to make the matrix row-stochastic, we normalize the elements of each row
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by the sum of each row. Let Ãt denote this modified transition matrix. An element of this

matrix, denoted by ãijt, is given by
1/geoij∑
k 1/geoik

. Clearly, ãijt is exogenous to growth. Next, we

use the modified transition matrix, Ãt, to compute the GI as described in Equations (9) and

(10). Let by Φ̃it denote the value of the modified GI for country i in period t. A key step of our

approach is to use Φ̃it as an instrument for the potentially endogenous GI, Φit. Specifically, we

estimate the following first-stage regression by OLS:

Φit = α+ γΦ̃it + µi + ζt + εit

where µi and ζt represent country and time fixed effects. We also consider a version where we do

not include fixed effects. We compute Φ̃it for all countries in our sample and for all years, which

gives us a total of 9553 observations. The estimated value of γ obtained from the regression is

equal to 0.45 and is highly significant with a 95% confidence interval of [0.42, 0.47]. Moreover,

the F-statistic of this regression is equal to 768.1 and far exceeds the value of 10 that is typically

considered the critical value for indicating weak instruments. Let by Φ̂it denote the predicted

values of the regression. In the final step, we include Φ̂it instead of the baseline GI measure,

Φit, into the BMA. Importantly, the estimated coefficient of the modified GI is highly signifi-

cant, and the posterior inclusion probability of 62% is only slightly below that of the baseline GI.

Two remarks are in order. First, even though the geographical distance between countries

is time invariant, the values of the modified GI are not necessarily constant over time. This is

because the number and the distribution of links in the trade network can change from year

to year. Second, and relatedly, while the modified GI alleviates the endogeneity issue by using

geographical distance as a measure of bilateral trade intensity, it does not completely remove it.

Arguably, we cannot exclude the possibility that the number of a country’s links is endogenous

to its growth performance. That is, our approach does not tackle the endogeneity of whether

two given countries engage in bilateral trade at all (extensive margin of trade) but only how

much they trade (intensive margin). As a result of the latter observation, we do not interpret

the results of the BMA with the modified GI as causal per se.

I Analysis of the patent data

In our analysis in Subsection 7.2, we focus on the patents originating in a sample of n = 149

countries that cite at least one other patent from a foreign country. That is, we disregard patents

that (i) cite no other patent or (ii) cite only patents of the same country. The latter condition

derives from the fact that we are interested in the flow of ideas between countries, and own-

country citations do not contribute to that flow. The analysis has centered on two variables,

Avgij and Probinvij , that measure, respectively, the average number of cited patents from j cited

in every citing patent from i, and the fraction of cross-country patenting relationships that

connect an inventor from i with another in j. Here we provide a precise description of how these
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variables are derived.

First, we explain the computation of each Avgij . It is based on two matrices, P and C, of

the following form:

P =


0 p12 p13 ... p1n

p21 0 p23 ... p2n

. . . ... .

pn1 pn2 pn3 ... 0

 C =


0 c12 c13 ... c1n

c21 0 c23 ... c2n

. . . ... .

cn1 cn2 cn3 ... 0

 .

The elements pij in matrix P represent the number of country-i patents that cite at least one

country-j patent. Notice that, in general, pij 6= pji and, of course, we may also find many

elements in P for which pij = 0. That is, cross-country patenting need not be symmetric and

the cross-citing patent network could be quite sparse. In our case the total number of elements

for which pij > 0 is equal to 3376 (thus much lower than the maximum n(n− 1)), whereas the

total number of patents that cite a foreign patent is equal to
∑n

i=1

∑n
j=1 pij = 2.98MM .3

In contrast, the elements cij in matrix C count how many country-j patents are cited in

total by country-i patents. Notice that this is a conditional statement as we include only those

country-i patents in cij that cite at least one country-j patent.
∑n

j=1 cij is the total number

of foreign patents cited by country-i patents. For our sample, we obtain that the total number

of citations to foreign patents is equal to
∑n

i=1

∑n
j=1 cij = 5.82mill. The element-by-element

division of both matrices C and P gives Avgij = cij/pij , which is the average number of country-

j patents cited per country-i patents.

Next, we explain how the variables Probinvij are obtained. Their computation relies on the

following matrix:

T =


0 t12 t13 ... t1n

t21 0 t23 ... t2n

. . . ... .

tn1 tn2 tn3 ... 0

 .

An element tij in matrix T specifies the total number of bilateral co-patenting relationships

between inventors from countries i and j. To fix ideas, consider two patents: Patent 1 was

created by a team of four U.S. inventors, two French inventors and two German inventors. Patent

2 was created by two U.S. inventors and three French inventors. Then, for this example, we would

obtain tUS,FRA = tFRA,US = 8 + 6 = 14, tUS,GER = tGER,US = 8, tFRA,GER = tGER,FRA = 4.

In our sample, the number of entries in the matrix T for which tij > 0 is equal to 1918 and

the total number of collaborations between international inventors is
∑n

i=1

∑n
j=1 tij = 286, 168.

Computing the fraction tij/
∑n

j=1 tij for each i, j = 1, 2, ..., n, we arrive at the corresponding

Probinvij .

3Note that if a country-i patent cites country-j and country-k patents, then this country-i patent will be
counted in both pij and pik. Due to this multiple counting of patents, we find that the row-sum

∑n
j=1 pij is

higher than the total number of country-i patents.
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