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It is suggested to diagonalize the Hamilton operator of a two- or more center shell model in 
terms of oscillator functions concentrated around the individual centers. The method is applied to 
the case of a two center oscillator with finite depth. 

I. Introduction II. The Method 

In the theory of nuclear fission and heavy ion 
scattering the shell effects to the potential energy 
surface are calculated with the aid of two center shell 
models1-3. Only for a restricted class of single 
particle potentials with two and more centers ana-
lytical eigensolutions can be obtained, e. g. for 
the symmetric two-center oscillator with infinite 
depth x< 4. 

Already when one includes the /2- and IS-terms 
in the symmetric two-center oscillator, the single 
particle Hamilton operator has to be numerically 
diagonalized in order lo obtain the eigensolutions. 
Depending on the basis functions used in the diag-
onalization procedure we distinguish between three 
different methods. As basis functions the following 
three sets can be used: a) the solutions of a de-
formed harmonic oscillator potential around the 
common center of mass5, b) the solutions of the 
asymmetric two center oscillator 2, and c) the solu-
tions of harmonic oscillator potentials around the 
individual centers 4- 6. Whereas the sets of functions 
in a) and b) form an orthogonal set this is not the 
case with the oscillator functions around different 
centers in c). Therefore, in applying the third 
method the basis set has first to be orthogonalized. 
This disadvantage is compensated by the advantage 
that the matrix elements of the various single par-
ticle Hamilton operators can be analytically calcu-
lated'. Also the basis wave functions have the right 
asymptotic behaviour for large center distances 
which is convenient for scattering problems. 

The purpose of this paper is to describe the third 
method in Sect. II by which not only two but also 
more center problems can be treated numerically 
quite easily. The method will be applied to the two 
center oscillator with infinite and finite depth in 
Section III. 

2.1 General Case 

Let us state the problem: In general a single par-
ticle Hamilton operator H is given in which the 
potential has minima around the centers at R,: 

H = p*-l2M + V{r,p,s,R„...,RN) (1) 

Avhere S denotes the spin vector of the nucleon. 
Examples for V are the two-center oscillator poten-
tials shown in Fig. 1 or the three-center oscillators 
investigated by Bergmann and Scheefer 4. For large 
separations of the centers, i.e. R, — Rj —>oc, the 
potential approaches the sum of single-particle po-
tentials around the individual centers. 

b) - \ / -

Fig. 1. Shapes of the nuclear system and the potential for 
various distances, a) Equipotential surfaces, b) Two-center 
oscillator potential with infinite depth, c) Two-center oscil-

lator potential with finite depth. 

To find the bound states of 
H ipn = En yn (2) 

we suggest a diagonalization of the Hamiltonian 
with a very simple set of basic functions, namely 
with oscillator wave functions. 

V';.( (r) = (p,lx [ [x - Rix) /aix) • q>nw [ [y - Riy) /aiy] 
•<pm [ (z — Riz) /aiz] (3) 
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where X = (nx, ny, nz) and i=l,...,N. 

The solutions of the one-dimensional harmonic os-
cillator are given by 8: 

1 
<Pn{x) 

]/nrt 2" n! 
exp { — x2/2} H„ (x) . (4) 

Since the potential is also symmetric with respect 
to z = 0, the eigenfunctions have good parity. There-
fore, we construct normalized functions with parity 
P = i 1 by superposing two corresponding oscilla-
tor wave functions (3) 9. 

fn. p(z) = [cpn ((z-z0)/a2) 
V2 az Mn,p 

+ P(-l)»-<pn((z + z 0)/az)] (10) 

az = ]/h/M coz. 

The normalization constant can be obtained from 
the overlap integrals (x0 = zjaz) : 

The oscillator lengths aix=Yk/M ojix, aiy and a 
are arbitrary and can be optimally adapted to the 
potential V in the vicinity of the centers. The basis 
set in Eq. (3) is overcomplete, i. e. 

Vu Vxj for | Rt - Ry | -> 0 
and nonorthogonal with respect to different centers. 

(ju j\X i) #= 0 for i + j. (5) 
The eigenenergies of Eq. (2) are the solutions of 
the eigenvalue equation: where Imn is given by 9 (see Appendix A) : 

\\(lij\H\Xi)-Eiuj |*»>|| = 0 . (6) 
Imn = J (fm + *<)) (pn (x - X0) dx 

For solving Eq. (6) we propose a two-step proce-
dure. First the basis functions (3) are orthonor- |/m! n! 2"i + w e-3"0* 2 
malized: 

fm, p fn, p dz — VMnwM„ 
{dmn + P(-l)mImn(x0)} 

( ID 

(12) 

Min <"'•'>)( — \ y 2~ * X m + n"~t 

t = o t\(m-t)! (n-t)! 

0 = 2 \Xi) (7) In the special case m = n it results: 

with (m ; n) =dmn . 

Then we apply an usual diagonalization procedure 
to solve the transformed eigenvalue equation: 

112 2 AnM (// j\H\Xi)-ESmn\\=0. (8) uj it 

2.2 Symmetrical Two-Center Potentials with 
Rotational Symmetry 

To illustrate the method we consider the special 
case, where the two-center potential is rotationally 
symmetric around the z-axis and additionally sym- P( —1) "=1 , fn,p = (Pii{z/az)l\/az, 
metric with respect to the origin at 2 = 0. The po-
tential centers are at 2 = + z0 . Examples of such 
potentials 1 will be discussed in the next sections. 

M„,p = i+P(-i)«e-*.! 2 O-T(-2x0*y. 
s = 0 S! 

(13) 
Asymptotically the functions (10) approach the so-
lutions of the one dimensional two-center oscillator. 
For 2q—>- 0 all functions with a factor P • ( — )n = — 1 
would vanish if no normalization constant is multi-
plied. Including the normalization these functions 
approach a linear combination of two neighbouring 
oscillator functions of the class P •( — )" = 1. 

For 2q —•>• 0: 
(14) 

1 
Because of the rotational symmetry the oscillator ]/(2n + l)a, ^ ^ +1 Vn<Pn l(z/az)] 

wave functions (3) have the following o- and ^-de-
pendence in terms of Laguerre polynomials 1 

m + ;»| 
gimp 

Gno.m(o,(p) 

with gaß{x) = 

and 

( - D 
1/2,71 Qne, m 

2a! 
(a + ß)\ 

x^L/ix2) 'exp { — 2^/2} 

a0 = Vh/Mo>0;n0 = 0 , 1 , 2 , . . . , (9) 
m = 0 , ± 1 , ± 2 , . . . 

Since the wave functions (9) are already ortho-
gonal, we have only to orthonormalize the 2-depen-
dent functions (10). For that we use the Schmidt 
procedure in which the orthonormalized functions 
Fj; are constructed as follows 10: 

k 
Ek(z) = 2 OA -»/»(z) 

n = 0 

= T/m U k - l W f F i f k d z ) (15) yi\k j=o -oc 
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with the coefficients: 
I k -1 + oo 

akn = "T/AT 1A-« - (1 - n) 2 ain J Fi /,. dz] (15a) VIV k i-n - o c 

and 
k - 1 + oo 

1 - 2 (J^/fcdz)2 . (15b) 
i = 0 - oo 

All the formulas are separately valid for P — ± 1. 
The integrals can be written as sums over the over-
lap integral given in Equation (11). 

Because of the overcompleteness of the set of 
functions fn for z0—> 0, care must be taken in the 
range of small values of z0. Two ways are possible: 
a) Instead of using the functions (10) one diago-
nalizes the two-center Hamiltonian with one-center 
oscillator wave functions concentrated at z = 0:Fn 

= <pn. b) When we apply the formulas (15) for 
ZQ —>• 0, the normalization constant Nk, Eq. (15 b), 
approaches zero in all cases where the wave func-
tion fh becomes linearly dependent on the functions 
/i, resp. Fi, with i<k [see Eq. (15 b)]. This means, 
no function Fk can be constructed which is ortho-
gonal to the F{ with i<k. Then the function fk is 
superfluous in the basis set (15) and may be dis-
regarded. In practical calculations one gives a lower 
limit £ 1 for Nk . If the normalization constant 
Nk results smaller than this limit (Nk <e) , the co-
efficients akn are set zero, respectively Fk = 0. 

Finally we end with an orthonormal basis set 
which is suitable to diagonalize symmetric two-
center Hamiltonians: 

V'k,p,ne,m = Fk,r{z) ••Gnt,tn{Q,<p) . (16) 

III. Application to Symmetric Two-Center 
Hamilton Operators 

In the following we apply the formalism of the 
preceding section to symmetric two-center Hamilton 
operators with oscillator potentials of infinite and 
finite depth. 

3.1 Two-Center Oscillator Potential with 
Infinite Depth 1 

The Hamiltonian operator has the following form 
in the simplest version, where one disregards I S-
and Z2-terms 1. 

h2 M 
H = ~ Y M A + T [ CO* Q2+M*(1'21" •Z°Y21' ( 1 7 } 

Since the eigensolutions of H can be analytically 
found, the example is suitable to test the method of 
the previous section. The eigensolutions are given 
according to Ref.1 as: 

V'=Gne,m{Q,<p) •V„t,p{z) (18) 
with (x = z/az) : 
v„,,r = Nni[0(x) +PG(-x)] e x p { - i ( | x | - a : 0 ) 2 } 

•U[-hnz,h, (\x\-x0)2]. 
Here we denote the normalization constant by Nnt, 
the step function by 0, the parity by P = ±1 , and 
Kummer's confluent hypergeometric function by U. 
The eigenvalues can be written: 

E = h wQ (2 n0 + \m\ + l) + h oiz(nz + %) . (19) 
The noninteger values nz are functions of and 
solve the equations: 
P= - l : C / ( - | n , , | , x 0 2 ) = 0 , (20) 

d 
P = l : 

dx f t 
exp {-lx02}U ( - 1 nz, |,x02) = 0 

After this review of the analytical solution, we solve 
the eigenvalue problem with the diagonalization 
procedure. The Hamilton operator separates into 
(Q,<p)- and z-dependent parts. Since the [Q,<p) -de-
pendence is already solved by the functions Gne>m, 
we need only to diagonalize the z-dependent part of 
(17). For that we calculate the energy matrix hki 
with the orthonormalized functions Fk of Equa-
tion (15). 

hM-5Fk{z)h(z) Fi(z) dz (21) 

with 
h{azx) = 

d2 

2 \ dx2 

In terms of the oscillator functions cpn we obtain: 
fc Mz y _ akm Oj 

2 hki = u„ 
V M m M n p 

with the matrix (see Appendix A) : 
+ oo 

um„(xo) = J [cpm{x-xo) +P{-l)m<pm{x + x0)] 

(22) 

• [2 n + 1 + 2 x0 (a: — | x j) ] <pn [x - x0) dx 
= + +P(-l)mImn] (22 a) 

4 x
0
( - l ) m + n xa* 

y2n + m n\ m\7i 

+ ( - i ) W i P 2 ( D ( ? ) 2 s + < - 1 

2 (?) (?) 

2 s 5 ! Hn + m-2s-2'(xo) 
s + Z 

s,t 

Hm-A-Z0 )Hn-t(Xo) 
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The functions Imn are defined in Equation (12). The 
Hermite polynomials satisfy the recurrence for-
mula 8: 
with 

H n 1 and H _ \ = e 

HnJrx = 2xHn — 2nHn_x 

1/n [1 — erf (x0) ] . (23) 

Stales with odd parity 

b) c) 

Fig. 2. In Figs, a) and b) the dependence of nz on the 
separation x0 is shown for the six lowest states of even and 
odd parity in the oscillator potential with infinite depth. 
The full drawn curves are obtained by diagonalizing the 
lowest basis states according to the method proposed in this 
paper. The dashed part of the curves is calculated by taking 
higher basis states in the diagonalization procedure into 
account. In Fig. c the deviations of the numerical values nz 

from the exact values obtained by Eq. (20) are plotted for 
the two highest states shown in Figs, a and b. 

Figure 2 shows an example for the diagonalization 
of the energy matrix (21). We have used the six 
lowest oscillator functions cpn from which an even 
or odd set of basis functions (10) can be con-
structed. For small values of < 1 the ortho-
gonalization procedure fails in the higher states 
because of the overcompleteness of the basis. In 
Fig. 2 c the numerical errors in the highest niveaus 
are drawn which are surprisingly small for such a 

small number of basis functions. The lower levels 
have much smaller errors. We conclude that already 
small basis sets are sufficient to reproduce the cor-
rect eigenvalues. I.e., the basis functions constructed 
as described, approximate the exact solutions very 
well. 

3.2 Two-Center Oscillator Potential with 
Finite Depth 

The oscillator potential of the previous section 
rises in the outside region, which is unrealistic for 
nuclear problems. A more realistic shell model po-
tential which allows also for continuum states is the 
cut-off two-center potential11 shown in Figure 1 c. 
The Hamilton operator is given by (without I2- and 
I S-terms) : 

H= -
h 2 

2 M 
with 

A + ( V - V 0 ) 6 ( l - ( 2 4 ) 

V = hM[<o*q* +oj2(\z\-z0)2] . ( 2 5 ) 

The potential depth V0 does not strongly depend on 
the nuclear number A and can be assumed as a 
constant in first approximation. If we restrict our 
discussion to symmetric fission with spherical frag-
ments, the frequencies are equal: co0 = wz = co. Then 
the potential surface V — V0 = 0 is formed by two 
spheres with radii R = y2 VjMw2 around the cen-
ters at z = ± z0 . To fix the frequency co as function 
of z0, we suppose that the volume enclosed by the 
potential surface V — V0 = 0 is conserved during the 
fission process because nuclear matter is nearly in-
compressible. It results 

co(z0) = (l/R)V2 VJM ( 2 6 ) 

where R solves the equation for z0 ^ R: 
(R + z0)2(2R-z0)=2R*(z0 = 0) . ( 2 6 a ) 

Only in the limitting cases z0 = 0 and z0—the eigenfunctions can be found analytically as shown in 
Appendix B where the harmonic oscillator with finite potential depth is solved. In the following we apply 
the diagonalization method of Sect 2.2 to obtain the bound states of the Hamilton operator (24), using the 
wave functions given in Eq. (16), we get: 

Hu,>={kPnom\T+V-V0\k'Pno'm) - (k P n0m\(V-V0) 0(V/V0 - 1) | k' P n j m) . 

The Hamiltonian is divided into the Hamiltonian of the usual two center oscillator described in the previ-
ous section and into the rest potential acting in the region where V>V0. With the result of Eq. (22) we 
obtain: 

Hxx' = Kn\ [(hoj(2n0 + \m\ + l) - V 0 ) dkk> + hkk'] - ( 2 7 ) 
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where 
oc oc 

r = I 
2 n%VMniVM„iV 

x = 0 y=0 
•[<pni(x-x o) + ? ( - ! ) * > cpni(x + x0)] [<pnt(x-x o) + ( 2 8 ) 

J j0[2/2+(x-xo)2-ro2] - [ y ' + i x - x ^ - r j ] Gnem{y) Gn • m(y)y dy 

with r0 = R/a, x0 = z0/a and a = yh/m oj . 
The integral has been solved analytically. Because of the finite Hermite and Laguerre polynomials it 

can be rewritten as a finite sum over integrals of the type 
oo oo 

Km,n(a) = J ( x - x 0 ) 2 - r 0 2 ] x»e"<* + « ) ! e ' ^ d x d y 
x = 0 ?/ = 0 

with the special values of a = 0, i x0 . The last integral Kmn is calculated in the Appendix A. 

(29) 

7ZJQ 

Fig. 3. The radius R, the potential depth V0 and the fre-
quency h co as functions of the two-center distance z0 for 

the nuclear system with , 4=210 . 

2 3 4 5 6 7 Zotfm] 5 6 7 ZJfm] 

Fig. 4. a) Levels of the oscillator potential with finite and 
infinite depth are drawn as functions of z0 . The numbers 
in parentheses give the quantum number nz , nQ and j m \ 
for z 0 = 0 . Only for the highest levels (4, 1, 0) and (0, 2, 0) , 
differences can be recognized between the eigenenergies of 
the potential with finite and infinite depths, b) The energy 
differences are enlarged for these two levels. Eeo denotes 
the energy in the infinite deep potential and Ef the energy 

in the potential with finite depth. 

As an example we have calculated the levels of the finite two-center oscillator for the symmetric fission 
of a nucleus with A = 210. The used values of R, h co and V0 are drawn in Fig. 3 as functions of the two-
center distance z0 . Examples for the levels of the cut-off two-center oscillator are given in Fig. 4 a, in 
which the different curves are denoted by the quantum numbers nz, nQ, m for z0 = 0. Only the energies 
of the highest bound levels differ notably from the levels of the infinite high two-center oscillator. This is 
shown in Fig. 4 b, where the energies of the highest levels are related to the corresponding levels of the 
infinite high two-center oscillator. 

I V . S u m m a r y 

In this paper we have calculated the bound states of the two-center oscillator with finite depth by a 
diagonalization procedure which uses one-center oscillator functions as basis states. The basis states are 
concentrated around the individual centers. The application of those basis states is adventageous because 
the matrix elements of the Hamiltonian can be found analytically. The method is not restricted to the 
problem of calculating bound states in two-center potentials, but may straigthforwardly extended to prob-
lems as the triple fission 14 and to cluster calculations 15 where three- and more-center potentials have to 
be introduced. 
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Appendix A : 
Integrals with Oscillator Wave Functions12 

In the following we consider integrals in which oscillator wave functions are involved 12. 
oo 

1. Imn = J cpm (x + x0) cpn (x-x0) dx 
- oo 

with the aid of 
m 

Hm(x + x0) = 2 ( ? ) (2 x0)»-*Hk{x) ( A . l ) 
A = 0 

it follows 
<pm(x + x0)<pn(x-x0) = e~x° ( — l)n Vml n\ 2

m + n

 | J. • 
& = o z = o Vkl ll 2l + K{m-k)l (n-l)\ 

Therefore, because of the orthonormalization of the functions cpn we get: 
Min (m, n) ^ ^ ^t ^.^m + n-2t 2 -t 

Imn- (-l)"Vm!nl2m,"e-*-' I ' „ ( „ ' J , , ( „ _ ( ) | - , (A.2) 
oo 

2. Lmn= J [cpm(x-xü) +P(- l)m <7)w(x + x0)] (|x|-o;) 99n(x-r0)dx. 
- oo 

We have: 
oo oo 

Lmn = 2(-l)m + n [jx<pm(x + xQ)<pn(x + x0)dx + ( - 1 )mP J x(pm{x-x0) (x + x0 ) dx] . (A.3) 
o o 

With the relation Hm(x)Hn(x) = 2 2s si (ms)(s) Hm + „_2s(x) 
s = 0 

the first integral in Eq. (A.3) becomes: 
00 1 oo Jm + n-2s 

J (x - X0) cpm {X) <pn (x) dx = yn2m + n m l n l ^ si (™) ( ? ) ( - l)m + n ~2s J (x - X0) ex'dx 

2 2° s\ (?)(?)Hm + n_2s_2(x0) (A.4) Vji2m + nm\nl sto 
with the definition 

y^z 

H-i = e-r°5 ——— [ 1 — erf (x0) ] and H= h ~ H_ t (x0) . 

The second integral in Eq. (A.3) is solved applying Eq. (A.l) : oo e - x „ o o $x(pm(x-x0)<pn(x + x0)dx= yn2m+nmlnl sJ<0 (?)(t)Hm-s(-x0) Hn_t(x0)2s + t jr> + t + 1e-xtdx 

e"''=T7 2 (?)(?)Hm-s(-x0)Hn_t(x0) (A.5) mI n! s, / = o \ 2 / Vjz2m-
So we obtain according to (A.4) and (A.5): 

2 ( _ 1)OT + TC e~x>s ( 
Lmn = Vjz2m + nm\n\ {s?02"5' } }Hm + n~2s-2(:ro) 

+ P(-l)mIoCsn)(7)Hm_s(-x0) Hn_t(x0)2' + ' - 1 ( " J - ) 1 } ' (A.6) 
oo oo 

3. £MB(a) = J J 0 [ r + ( x - x 0 ) 2 - r 0 2 ] x™e-(* + a )V n + 1 e^dxd* / . (A.7) 
x=0y=0 

We transform: 
,1 n C oo oc j 

Kmn(a) = ( - l ) " — \ J J 0[y*+(x-x0)2-r02]x'»e-(* + <yye-Wdxdy\ 
dp U = o y = 0 J ß = i 

n ' 00 ( — d* f 1 
= ^ jxme-(* + *y-dx+ d I 1 

2 x = o 2 dß 
(xt - ro) &(x,-r0) 

Thus we have reduced the expression (A.7) to elementary integrals. 

IT \ xme~(X + a)'~ {e-ß[T>-{x-x^ - 1 ) dx J . 
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Appendix B : 
Harmonic Oscillator with Finite Depth 

The Schrödinger equation of the spherical har-
monic oscillator with finite depth V0 and radius 
R = V2VJM~^ is given by 13: 

2 M 
A+0 1 

M O O T / co- r- - V0 y> = Ey>. 

(B.l) 
The eigenenergies E are discrete for £ < 0 and con-
tinuous for £ > 0 . The solutions of the problem can 
be factorized as: 

y> = cp(r)YIm . 

The radial function cp has the form for r<R: 

cp(r) -«'/«)• ( - „, / + 3 /2 ,^ - j " j (B.2) 

With a = yh/M w and with the number n defined 
as function of the energy 

E = hw(2n+ 1 + 3/2)-V0. (B.3) 

For r>R it results: 
<p{r)=ß[ji{kr)-tgdlfi,{kr)] (B.4) 

with 
k = V2M E/h2. 

The phase shift dt is real for the continuum states 
(£>0 ) and '<5/—> —ioo, respectively tg di = —i, for 

the discrete states: 
£ < 0 : <p(r) =BhlW{i\k\r) . (B.5) 

The steady continuation of the wave functions and 
their derivatives at r = R leads to the condition: 

k R 
j,_l(kR)-tgdlrll^(kR) 

= (21+1) 

j,(kR)-lgdlr]l(kR) 
J^-nJ+l^AR/a)2] 
Al - n, I + 3/2, (R/a)2] 

(B.6) 

- ( / ? / « ) 2 • 

In the case of £ > 0 the last equation determines the 
phase shift di as function of E. For £ < 0 we have 
tg di = — i and 

kR=i(R/a)2yi- (4 n+ 21+ 3)/(R/a)2 . (B.7) 

Then Eq. (B.6) represents the eigenvalue equation 
for the discrete values n as functions of the ratio 
(R/a)2 and angular momentum /. In the limit 
R/a-+^e we obtain the integer quantum numbers 
n = 0, 1, 2 . .. of the harmonic oscillator. In nuclear 
problems one uses h co = 41 MeV/A1 3 and V0 = 
50 MeV which corresponds to a ratio of (R/a)2 

= 2.44-A13. For such large ratios an asymptotic 
expansion of the eigenvalues can be derived: 

( f l / a ) 4 i V + 2 Z + i e - ( W 
n-N= -

1 + 

4(7V + Z+ 1/2)! TV! " 

'L _ (AT_i) (2 TV + 2 / 1) 

(B.8) 
\ 2 

with W = 0,1,2, . 
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