Development of interoperable, domain-specific extensions for the German Corona

1 Title page

Title:

- 3 Consensus (GECCO) COVID-19 research dataset using an interdisciplinary, consensus-based workflow 4 Authors: Gregor Lichtner^{1,2,3}, Thomas Haese¹, Sally Brose⁴, Larissa Röhrig^{1,5}, Liudmila Lysyakova^{6,7}, Stefanie 5 6 Rudolph^{6,7}, Maria Uebe^{6,7}, Julian Sass¹, Alexander Bartschke¹, David Hillus⁸, Florian Kurth^{8,9}, Leif Erik Sander⁸, Falk Eckart¹⁰, Nicole Toepfner¹⁰, Reinhard Berner¹⁰, Anna Frey¹¹, Marcus Dörr¹², Jörg Janne 7 Vehreschild^{13,14,15}, Christof von Kalle^{6,7}, Sylvia Thun¹ 8 ¹ Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany 9 10 ² Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Informatics, Berlin, Germany 11 ³ Universitätsmedizin Greifswald, Department of Anesthesia, Critical Care, Emergency and Pain 12 Medicine, Greifswald, Germany 13 ⁴ Robert Koch Institute, Department of Methodology and Research Infrastructure, Research Data 14 15 Management, Berlin, Germany ⁵ National Association of Statutory Health Insurance Physicians ("Kassenärztliche 16 Bundesvereinigung"; KBV), Digitalization and IT, Department Interoperability, Berlin, Germany 17 18 ⁶ Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, joint Charité and BIH Clinical Study Center, Berlin, Germany 19 20 ⁷ Berlin Institute of Health at Charité – Universitätsmedizin Berlin, joint Charité and BIH Clinical 21 Study Center, Berlin, Germany 22 ⁸ Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and 23 Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, 24 Berlin, Germany 25 ⁹ University Medical Centre Hamburg-Eppendorf, Department of Tropical Medicine, Bernhard 26 Nocht Institute for Tropical Medicine and Department of Medicine I, Hamburg, Germany 27 ¹⁰ Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany 28 ¹¹ University Hospital of Würzburg, Medical Clinic and Policlinic I, Würzburg, Germany 29 30 ¹² Universitätsmedizin Greifswald, Department of Internal Medicine B, Greifswald, Germany ¹³ Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany 31
- 32 ¹⁴ German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
- ¹⁵ Department II of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt,
 Frankfurt am Main, Germany

35 Abstract

36 Background

37 The COVID-19 pandemic has spurred large-scale, inter-institutional research efforts. To enable these 38 efforts, researchers must agree on dataset definitions that not only cover all elements relevant to the 39 respective medical specialty but that are also syntactically and semantically interoperable. Following 40 such an effort, the German Corona Consensus (GECCO) dataset has been developed previously as a 41 harmonized, interoperable collection of the most relevant data elements for COVID-19-related patient 42 research. As GECCO has been developed as a compact core dataset across all medical fields, the 43 focused research within particular medical domains demands the definition of extension modules that 44 include those data elements that are most relevant to the research performed in these individual 45 medical specialties.

46 Objective

To (i) specify a workflow for the development of interoperable dataset definitions that involves a close collaboration between medical experts and information scientists and to (ii) apply the workflow to develop dataset definitions that include data elements most relevant to COVID-19-related patient research in *immunization, pediatrics,* and *cardiology.*

51 Methods

52 We developed a workflow to create dataset definitions that are (i) content-wise as relevant as possible 53 to a specific field of study and (ii) universally usable across computer systems, institutions, and countries, i.e., interoperable. We then gathered medical experts from three specialties (immunization, 54 55 pediatrics, and cardiology) to the select data elements most relevant to COVID-19-related patient 56 research in the respective specialty. We mapped the data elements to international standardized 57 vocabularies and created data exchange specifications using HL7 FHIR. All steps were performed in 58 close interdisciplinary collaboration between medical domain experts and medical information 59 scientists. The profiles and vocabulary mappings were syntactically and semantically validated in a two-60 stage process.

61 Results

We created GECCO extension modules for the *immunization*, *pediatrics*, and *cardiology* domains with respect to the pandemic requests. The data elements included in each of these modules were selected according to the here developed consensus-based workflow by medical experts from the respective specialty to ensure that the contents are aligned with the respective research needs. We defined dataset specifications for a total number of 48 (*immunization*), 150 (*pediatrics*), and 52 (*cardiology*)

- 67 data elements that complement the GECCO core dataset. We created and published implementation
- 68 guides and example implementations as well as dataset annotations for each extension module.

69 Conclusions

These here presented GECCO extension modules, which contain data elements most relevant to COVID-19-related patient research in *immunization, pediatrics* and *cardiology*, were defined in an interdisciplinary, iterative, consensus-based workflow that may serve as a blueprint for the development of further dataset definitions. The GECCO extension modules provide a standardized and harmonized definition of specialty-related datasets that can help to enable inter-institutional and cross-country COVID-19 research in these specialties.

77 Keywords

- 78 COVID-19
- 79 Interoperability
- 80 GECCO dataset
- 81 FHIR
- 82 Research dataset
- 83 FAIR principles

85 Introduction

The COVID-19 pandemic has led to unprecedented strong efforts in connecting nationwide and 86 87 international research to help in managing the disease and its effects on public health. To enable 88 research across different health care providers, institutions or even countries, interoperability 89 between the medical data systems is essential [1]. Therefore, early in the pandemic, the German 90 Corona Consensus Dataset (GECCO) has been developed in a collaborative effort to provide a 91 standardized, unified core dataset for inter-institutional COVID-19-related patient research [2]. The 92 GECCO dataset specifies a set of 81 essential clinical data elements from 13 domains such as anamnesis 93 & risk factors, symptoms, and vital signs, that have been selected by expert committees from university 94 hospitals, professional associations, and research initiatives. Since its development, the GECCO dataset 95 has been implemented in a large number of institutions, most notably in virtually every German 96 university hospital, which now provides access to the GECCO dataset in the context of the German 97 COVID-19 Research Network of University Medicine ("Netzwerk Universitätsmedizin") [3,4].

98 The GECCO dataset has been developed to contain as many relevant data elements as possible, but 99 few enough to keep the effort of implementing the dataset manageable. Therefore, the dataset 100 contains mostly data elements of general research interest, excluding data elements that are only of 101 interest for particular medical specialties or use cases. These data items are considered part of domain-102 specific extension modules to the GECCO dataset, which are introduced in this article.

Thus, we here aimed to develop domain-specific extensions to the GECCO dataset that cover the most relevant data elements for COVID-19-related patient research for the medical specialties of *immunization, pediatrics,* and *cardiology*. To that end, we first developed a workflow that aims at providing dataset definitions that (i) contain the most relevant data elements for the research aims of the end users and (ii) that can be applied universally across institutions and countries. We then followed that workflow with different groups of medical experts from different medical specialties to define extension modules relevant for *immunization, pediatrics,* and *cardiology*.

These extension modules complement the GECCO core dataset and use the same international health IT standards and terminologies as the GECCO dataset, such as the *Systematized Nomenclature of Medicine - Clinical Terms* (SNOMED CT)[5] and *Logical Observation Identifiers Names and Codes* (LOINC)[6,7] and the *Fast Healthcare Interoperability Resources* (FHIR)[8,9] standard. The extension modules were developed in close alignment with the GECCO dataset to ensure interoperability and compatibility with existing definitions.

We here describe the consensus-based data element selection and data format definition workflowthat we applied in close collaboration between medical experts from *immunology, pediatrics,* and

118 cardiology domains on the content definition side and medical information specialists and FHIR 119 developers on the technical side. This workflow may serve as a blueprint for further development of 120 consensus-based data set definitions.

121 Methods

122 Workflow definition

We aimed to develop a workflow to create dataset definitions that are (i) content-wise as relevant as 123 possible to a specific field of study and (ii) universally usable across computer systems, institutions, 124 125 and countries, i.e., interoperable. We based the specification of the workflow on our experience with 126 the definition of the German Corona Consensus (GECCO) dataset, where health professionals from 50 127 institutions (university hospitals, professional associations and other relevant organizations) 128 participated to define the most relevant data elements for general scope COVID-19-related research 129 [2]. To fulfil the first requirement (relevancy), we decided to leave the full responsibility of data element selection to groups of medical professionals of the respective specialty, with only minimal 130 131 interference by the development team. We have deliberately left the exact process open of how the 132 group of medical experts may select the data elements (e.g., literature review, focus groups, 133 consensus-based processes) to allow maximal flexibility of the dataset definition workflow with 134 respect to the medical experts' values and preferences. To fulfil the second requirement 135 (interoperability), we adopted a model loosely based on Jacobsen's workflow for data FAIRification [10], with mapping, quality assurance and publication steps as outlined in detail below. 136

137 Selection of data items

138 The content of the domain-specific research datasets was defined by medical domain experts in a 139 transparent workflow (Figure 1). The involvement of the medical domain experts as the end-users of 140 the data to be provided ensured that the contents of the datasets are aligned to the actual research needs. In our project, the so-called subject- and organ-specific working groups of the national 141 142 pandemic cohort net (NAPKON) served as the domain-specific groups of medical experts. These groups 143 were established by voluntary association of medical experts from the respective medical specialty in the context of the nationwide NAPKON project in Germany. Each of the subject- and organ-specific 144 145 working groups elected a board, and all communication between the dataset developers and the 146 working groups was organized and carried out via the working groups' board. In preparation for the 147 GECCO extension modules, we invited the subject- and organ-specific groups for immunology, 148 *pediatrics* and *cardiology* to provide up to 50 data elements with up to 10 response items each that 149 were, in the view of the medical experts, the most relevant data elements to patient-related COVID-150 19 research in their medical specialty and that were not already included in the GECCO core dataset.

151 If necessary, more data items or response options could be provided in coordination with the 152 development team. The provided data items were then reviewed by the development team and a first 153 definition of the contents of the extension module was returned to the respective subject- and organ-154 specific working group for approval or change requests. After approval by the subject- and organ-155 specific working group, the definition of the extension module content was considered finalized.

156 Development of the standardized data formats

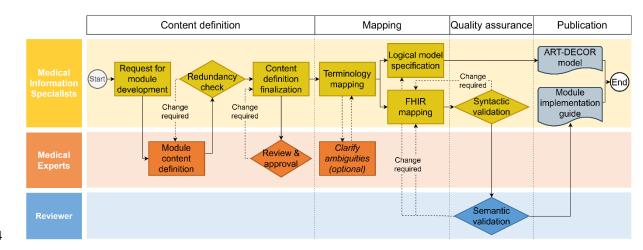
157 To map the data items selected by the subject- and organ-specific working groups to international 158 standard vocabularies, we performed a consensus-based mapping procedure, where every concept 159 was mapped to appropriate vocabularies SNOMED CT for general concepts [11], LOINC for 160 observations [7], International Statistical Classification of Diseases and Related Health Problems, 10th 161 revision, German modification (ICD-10-GM) for diagnoses [12], Anatomical Therapeutic Chemical 162 Classification System (ATC) for Germany for drugs and active ingredients [13], Unified Code for Units 163 of Measure (UCUM) for measurement units [14]) by two medical information scientists independently. 164 Ambiguities and non-matching mappings were then discussed within the development team and in 165 close collaboration with the medical experts of the subject- and organ-specific working groups until 166 consensus was achieved. The data item-to-concept mappings were annotated on ART-DECOR, an 167 open-source collaboration platform for creating and maintaining dataset element descriptions [15].

As for the GECCO dataset, the format for data exchange was specified using HL7 FHIR resources. The mapping of data items to FHIR resources was performed in an iterative, consensus-based workflow among the development team. Wherever possible, published FHIR profiles from the GECCO dataset, from the Medical Informatics Initiative (MII) [16] or the National Association of Statutory Health Insurance Physicians ("Kassenärztliche Bundesvereinigung"; KBV) [17] – in this order of priority – served as the base definition for the future extension module profiles.

174 The profiles and value sets were specified using the FHIR Shorthand (FSH) language (version 1.2.0) and 175 translated to Structure Definition JSON files using the HL7 FSH SUSHI software package (version 2.2.3) 176 [18,19]. We required that at least one exemplary instance be defined for every profile. Syntactic 177 validation of the profiles and value sets definitions was performed using the error-free conversion of 178 the FSH files to JSON using SUSHI and subsequent validation of each profile with their defined instances 179 using the HL7 FHIR validator as implemented in the FHIR Shorthand Validator Python package (version 180 0.2.2) [20]. After successful syntactic validation of a set of profiles, the profiles were subjected to a 181 two-stage review process as follows. First, the profiles and corresponding value sets and extensions were internally reviewed for semantic appropriateness with the GECCO core developer (JS). After all 182 183 necessary changes and approval by the internal reviewer, the profiles were subjected to the second 184 review round by an external FHIR development expert. Subsequent to necessary corrections and

approval of the external reviewer, the respective profiles together with their value sets and optionally
extensions and code systems were considered finalized and published to the main branch of the git
repository.

188 The whole development process was performed collaboratively on GitHub. Syntactic validation of the 189 profiles was performed by continuous integration/continuous development (CI/CD) workflows 190 implemented as GitHub actions. Semantic validation during the internal and external review rounds 191 was performed using pull requests to two different git branches. After the final approval, profiles and 192 value sets were merged into the main branch of the extension module's repository, which served as 193 the publication branch of the respective module. Since then, maintenance requests and updates of the 194 extension modules are handled via GitHub issues. All kinds of relevant changes become a subject of 195 the internal review as defined above; major changes (e.g., non-technical corrections) are additionally 196 exposed to the external review.


197 Implementation guides were created for all three extension modules using the FHIR IG publisher tool 198 and a customized template for the implementation guide's HTML pages [21]. The implementation 199 guides are published to GitHub pages and remain automatically synchronized with the main branch of 190 the respective repository via CI/CD workflows.

202 Results

203 Dataset definition workflow

204 We developed an interdisciplinary, iterative, consensus-based workflow for the definition of domain-205 specific COVID-19 research datasets based on two key requirements: The first key requirement for the 206 content of the datasets was that the content definition (i.e., selection of data elements) was to be 207 performed in full responsibility by a group of medical experts to ensure that the selected data elements 208 are truly those that are required in research of their respective medical specialty. The second key 209 requirement was to produce FAIR (Findable, Accessible, Interoperable, Reusable) digital assets [22]: 210 The dataset definitions shall be represented in FHIR profiles and implementation guides and these shall 211 be registered on open platforms (Findable), they shall be retrievable through open, free, standard 212 protocols (Accessible), they shall use only standard, international medical terminologies such as 213 SNOMED CT and LOINC (Interoperable) and they shall be released with rich usage guides and examples 214 (FHIR implementation guide) and under a permissive license (Reusable).

215 To fulfill these requirements, the dataset definition workflow consists of four phases: Content 216 definition, mapping, quality assurance and publication (Figure 1). In the content definition phase, a 217 group of medical experts from a particular medical specialty are approached by the development team 218 consisting of medical information specialists and asked to provide a list of the data elements that are 219 most relevant to patient-related COVID-19 research in their respective medical specialty. How the 220 medical expert group compiles the list in detail is left to their discretion (e.g., based on systematic 221 literature review, or Delphi consensus processes). The medical information scientists only review the 222 provided lists for consistency and redundancy and compile the final content definition in agreement 223 with the medical experts group. In the mapping phase, all data elements are then mapped to 224 international terminologies in consultation with the group of medical experts. Based on these a logical 225 model and the mappings of data elements to FHIR resources are established. In the quality assurance phase, the FHIR specifications are syntactically validated using automated software tools and then 226 227 subjected to a two-staged review process with two individual data interoperability and harmonization 228 experts to validate the specifications semantically, i.e., validate that the data elements defined by the 229 group of medical experts are appropriately mapped to international standards. After any required 230 changes, the logical model and the FHIR implementation guide are published openly accessible to the 231 research community in repositories that fulfill the FAIR criteria as closely as possible, such as ART-232 DECOR[15] for logical models and GitHub or the FHIR Implementation Guide registry for the implementation guide[23]. 233

234

Figure 1 Flowchart of the consensus-based, interdisciplinary dataset definition and mapping workflow 235 236 for the domain-specific COVID-19 research datasets.

237

Datasets contents 238

Groups of medical experts 239

240 In the context of the national pandemic cohort net ("Nationales Pandemie Kohorten Netz"; NAPKON) project of the German COVID-19 Research Network of University Medicine [24], so-called subject- and 241 242 organ-specific working groups were established by the voluntary association of medical experts from 243 different medical specialties. In preparation for the domain-specific dataset definitions that extend the GECCO core dataset, the working groups for immunology, pediatrics, and cardiology were invited by 244 245 the dataset development group to provide up to 50 data elements with up to 10 response items each 246 that were of particular interest to their field concerning patient-related COVID-19 research and that 247 were not already included in the GECCO core dataset. For the immunization dataset definition, 248 physicians from the "NUM-COVIM" study for the determination and use of SARS-CoV-2 immunity [25-249 27] assumed the role of the organ-specific working group, as no such working group had been 250 established previously.

252 Overview

The domain-specific dataset definitions developed in this work extend the GECCO core dataset by a total number of 48 data items for the *immunization* extension module, 150 for the *pediatrics* extension module, and 52 for the *cardiology* extension module. These data items have been collected via an iterative consensus-based approach from the respective subject- and organ-specific working groups and belonging to 10 of the 13 data categories of the GECCO dataset (Table 1). Data elements and number of items for each individual extension module are shown in Table 2, Table 3, and Table 4. The full lists of items are shown in the supplementary tables 1, 2, and 3.

GECCO Data Category	GECCO Extension Module			
	Immunization	Pediatrics	Cardiology	
Anamnesis & Risk factors	13	21	6	
Complications	24	47	7	
Demographics	-	6	-	
Epidemiological factors	-	-	-	
Imaging	-	2	36	
Laboratory values	1	27	2	
Medication	1	35	1	
Onset of illness & admission	6	2	-	
Outcome at discharge	-	-	-	
Study enrollment & Inclusion criteria	-	-	-	
Symptoms	-	9	-	
Therapy	2	1	-	
Vital signs	1	-	-	
Total items	48	150	52	

260 Table 1 Number of data items per GECCO dataset category for each extension module.

261 All data items were mapped to the appropriate FHIR resources Observation, Condition, Procedure, 262 MedicationStatement, Encounter, Questionnaire, QuestionnaireResponse, Immunization, 263 ImagingStudy, List, and Specimen, and 26, 14, and 18 profiles (25, 17, and 12 value sets) were created 264 for the *immunization*, *pediatrics*, and *cardiology* extension module, respectively. The data items that 265 were already part of the GECCO dataset and that were not removed during the data selection step 266 were taken over from GECCO and referenced as such in the implementation guides.

The implementation guides for the three extension module have been published on GitHub pages [28– 30]. The source FHIR ShortHand (FSH) files have been published on GitHub [31–33]. Logical models and dataset descriptions are hosted on ART-DECOR, an open collaboration platform for modelling dataset definitions and their descriptions and terminology bindings [34–36].

medRxiv preprint doi: https://doi.org/10.1101/2022.05.12.22274089; this version posted February 6, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a	ĊĊ-	BY-N	C-ND 4.0	International license .
------------------------------	-----	------	----------	-------------------------

Category	Data Element	FHIR Resource	# items	
Anamnesis	Chemotherapy	Procedure	1	
	Immunosuppressive therapy	Procedure	1	
	Regular Alcohol Intake	Observation	2	
COVID-19 infection & treatment	Disease course	Encounter, Procedure	5	
	SARS-CoV-2 infection	Condition	1	
	SARS-CoV-2 variant	Observation	1	
Immunization	Contraindications to immunization	Immunization	2	
	Immunizations performed	Immunization	3	
	Reason for immunization	Immunization	5	
	Willingness to receive additional immunization doses	Observation	1	
Immunization reactions	Analgesic or antipyretic drug intake	MedicationStatement	1	
	Body temperature	Observation	1	
	Complications after immunization	Observation	5	
	Medical treatment for adverse reactions	Encounter	3	
	Symptoms after Vaccination	Condition	16	
Total			48	

272 Table 2 Types of data elements in the immunization extension module extending the GECCO core

- 273 dataset. Shown are the data elements and the FHIR resource they have been mapped to, as well as the
- 274 number of items for each data element (i.e., different response options).

Category Data Element		FHIR Resource	# items
Complications	Complications to COVID-19	Condition	47
Demographics	Body measures	Observation	6
Imaging	Echocardiography	Procedure, Imaging Study	1
	PET-CT	Procedure, Imaging Study	1
Immunization	Immunizations performed	Immunization	2
Laboratory values	Laboratory values	Observation	27
Medical history	Chronic Hematologic Diseases	Condition	8
	Chronic Kidney Diseases	Condition	2
	Congenital Disease	Condition	1
	Gastrointestinal Diseases	Condition	6
	Medical History Stem Cells Transplant	Condition	2
Medication	Medication	MedicationStatement, List	35
Symptoms COVID-19 Symptoms		Condition	9
Therapy	Hospitalization	Observation	2
	Thoracic Drainage	Procedure	1
Total			150

275 Table 3 Types of data elements in the pediatrics extension module extending the GECCO core dataset.

276 Shown are the data elements and the FHIR resource they have been mapped to, as well as the number

277 of items for each data element (i.e., different response options).

Category	Data Element	FHIR Resource	# items
Anamnesis	Chronic cardiologic diseases	Condition	6
COVID-19-related complications	Cardiologic complications of COVID-19	Condition	7
Echocardiography	Echocardiography findings	Observation	20
	Echocardiography procedure	Procedure	3
Electrocardiography	Electrocardiography findings	Observation	11
	Electrocardiography procedure	Procedure	2
Laboratory Values	Laboratory values	Observation	2
Medication	Angiotensin receptor antagonist	MedicationStatement	1
Total			52

- 279 *Table 4 Types of data elements in the cardiology extension module extending the GECCO core dataset.*
- Shown are the data elements and the FHIR resource they have been mapped to, as well as the number 280
- of items for each data element (i.e., different response options). 281

282 Discussion

283 We here present an interdisciplinary, iterative, consensus-based workflow to the definition of research 284 datasets, focusing on creating datasets with the most relevant data elements for a particular field of 285 study and on creating universally usable datasets according to the FAIR principles [22]. We applied the 286 workflow to develop three GECCO extension modules that contain data items relevant for COVID-19-287 related patient research in the *immunization*, *pediatrics*, and *cardiology* fields. These extension 288 modules complement the GECCO core dataset for domain-specified research. The data items are 289 represented in HL7 FHIR profiles and use international terminologies, to ensure a harmonized, 290 standardized, and interoperable dataset definition for these medical domains. The provision of data 291 according to the extension modules introduced in this article will enable cross-institutional and cross-292 country data collection and collaborative research with a particular focus in *immunization*, pediatrics, 293 and cardiology.

294 We have specified and implemented an interdisciplinary, iterative, consensus-based workflow for the 295 selection of data items and the development of the dataset definition. The close collaboration and the 296 constant feedback loops with domain experts from the respective medical specialties right from the 297 beginning of the project, as performed here, are key for the successful development of a useful dataset 298 definition. Indeed, since the selection of relevant data items was driven by the end-users of the 299 dataset, who are the researchers that later will be using the data for their specialized areas of research, 300 the semantic usability of the datasets is guaranteed. Likewise, having medical information specialists 301 develop the formal dataset specification ensures technical interoperability and usability of the dataset 302 definition.

303 Next to the successful development of dataset definitions, several factors determine a successful 304 deployment or use of the developed extension modules [37]. First and most importantly clear and 305 concise documentation of how to implement and provide data using the dataset definition is required. 306 For FHIR-based dataset definitions, so-called implementation guides are used to provide both a 307 narrative overview as well as technical details on the dataset definition [38]. Thus, we have created 308 and published implementation guides for each of the here-developed extension modules. Second, the example implementations of the extension modules serve as a blueprint for developers and data 309 310 engineers who implement the extension modules for their clinical databases. From our experience 311 with the implementation of the GECCO dataset, well-defined example data items may be of equal if 312 not higher importance than the technical description of the dataset specification, as developers and 313 engineers tend to use the examples as blueprints for their implementation. Thus, we equipped every 314 FHIR profile defined in the extension modules with at least one example. These examples are 315 incorporated and issued within the implementation guides of the modules. Specifically, we aimed to

316 provide one example for each different category of response option per profile. Thirdy, the actual 317 implementation of the extension modules should be part of follow-up infrastructure projects to supply 318 funding and resources for filling the dataset definition with actual data. For the GECCO dataset, this is 319 ensured by follow-up projects of the German COVID-19 Research Network of University Medicine 320 ("Netzwerk Universitätsmedizin"), such as CODEX+, which includes several implementation tasks that 321 are actively using the GECCO dataset items [39] and further projects [40–43]. Fourth, once the dataset 322 definitions are implemented and leveraged in use cases, additional demands to the dataset are likely 323 raised or issues with existing definitions are revealed. The maintenance of existing definitions (e.g., 324 performing technical corrections or even evolving the definitions or adding new items) is, therefore, 325 necessary and must be organized and funded. Last, successful use of the extension modules is also 326 highly dependent on the degree of interoperability of the dataset definitions in the first place [1,44,45]. 327 For example, the use of questionnaires to assess certain features is common in clinical research. 328 However, depending on the exact wording of the question and the number and wording of response 329 options, results from different studies might not be directly comparable although they assessed the 330 same features, as the questions and response options differ between studies. In the presented 331 extension modules, several items were at first specified in a questionnaire-like fashion and direct 332 implementation of these as Questionnaire resources in FHIR would have limited the applicability of 333 such data elements, especially when aiming to map these elements from an electronic health records 334 (EHR) system. In these cases, we revised the data elements specification to use interoperable concepts 335 rather than questions. Here, repeated consultation with and final approval of the group of medical 336 experts was key to be able to convert questions into interoperable concepts that convey the same 337 information as intended by the content definition of the group of medical experts. In general, we 338 recommend not to use Questionnaire/QuestionnaireResponse FHIR profiles in cases where the 339 information to be represented can be modeled using more general, interoperable concepts and FHIR 340 resources.

341 Conclusion

342 We here introduce the development workflow and the resulting dataset definitions for GECCO 343 extension modules for the *immunization*, *pediatrics*, and *cardiology* domains. We have defined and 344 implemented a workflow in which interdisciplinary teams of medical domain experts, medical 345 information scientists and FHIR developers closely collaborate in an iterative, consensus-based fashion 346 for the successful development of useful and interoperable dataset definitions. This workflow may 347 serve as a blueprint for further dataset definition projects, such as further dataset definitions for 348 extending the GECCO core dataset. The extension modules described in this work have been validated 349 and published. Their implementation and active use are anticipated in the context of current 350 nationwide COVID-19 research networks in Germany.

351 Acknowledgements

The NAPKON ("Nationales Pandemie Kohorten Netz", German National Pandemic Cohort Network) project is funded under a scheme issued by the Network of University Medicine (Nationales Forschungsnetzwerk der Universitätsmedizin (NUM)) by the Federal Ministry of Education and Research of Germany (Bundesministerium für Bildung und Forschung (BMBF)) grant number 01KX2021. The funding body did not take a role in the design of the study, development of the dataset or in the writing of the manuscript.

- 358 We thank Yannick Börner for his valuable contribution to the definition of the FHIR profiles. We thank 359 all members of the subject- and organ-specific working groups.
- 360

361 Conflict of interests

362 The authors declare that they have no competing interests.

363 Data Availability

The implementation guides for the three extension modules have been published on GitHub pages [28–30]. The source FHIR ShortHand (FSH) files have been published on GitHub [31–33]. Dataset descriptions can be found on ART-DECOR [34–36]

367 Authors' contributions

All authors contributed to the development of the extension modules. GL, TH, SB, LR, JS, AB, ST performed terminology mapping, FHIR profiling and critical review of the concept and resource mappings. TH, SB, LR defined the datasets in ART-DECOR. DH, FK, LES, FB, FE, NT, RB, AF, MD developed and compiled the list of data items for the datasets. SR, LL and MU coordinated the project and the consensus finding process within and between working groups. JJV, CvK, ST conceived the work. GL drafted the manuscript. All authors read and approved the final manuscript.

375 References

- Lehne M, Sass J, Essenwanger A, Schepers J, Thun S. Why digital medicine depends on interoperability. Npj Digit Med Nature Publishing Group; 2019 Aug 20;2(1):1–5. doi: 10.1038/s41746-019-0158-1
- Sass J, Bartschke A, Lehne M, Essenwanger A, Rinaldi E, Rudolph S, Heitmann KU, Vehreschild JJ,
 von Kalle C, Thun S. The German Corona Consensus Dataset (GECCO): a standardized dataset for
 COVID-19 research in university medicine and beyond. BMC Med Inform Decis Mak 2020 Dec
 21;20(1):341. doi: 10.1186/s12911-020-01374-w
- Gruendner J, Deppenwiese N, Folz M, Köhler T, Kroll B, Prokosch H-U, Rosenau L, Rühle M, Scheidl
 M-A, Schüttler C, Sedlmayr B, Twrdik A, Kiel A, Majeed RW. The Architecture of a Feasibility Query
 Portal for Distributed COVID-19 Fast Healthcare Interoperability Resources (FHIR) Patient Data
 Repositories: Design and Implementation Study. JMIR Med Inform 2022 May 25;10(5):e36709.
 doi: 10.2196/36709
- Sedlmayr B, Sedlmayr M, Kroll B, Prokosch H-U, Gruendner J, Schüttler C. Improving COVID-19
 Research of University Hospitals in Germany: Formative Usability Evaluation of the CODEX
 Feasibility Portal. Appl Clin Inform Georg Thieme Verlag KG; 2022 Mar;13(2):400–409. doi:
 10.1055/s-0042-1744549
- Millar J. The Need for a Global Language SNOMED CT Introduction. Nurs Inform 2016 IOS Press;
 2016;683–685. doi: 10.3233/978-1-61499-658-3-683
- Fiebeck J, Gietzelt M, Ballout S, Christmann M, Fradziak M, Laser H, Ruppel J, Schönfeld N,
 Teppner S, Gerbel S. Implementing LOINC Current Status and Ongoing Work at a Medical
 University. Stud Health Technol Inform 2019 Sep 3;267:59–65. PMID:31483255
- McDonald CJ, Huff SM, Suico JG, Hill G, Leavelle D, Aller R, Forrey A, Mercer K, DeMoor G, Hook
 J, Williams W, Case J, Maloney P, for the Laboratory LOINC Developers. LOINC, a Universal
 Standard for Identifying Laboratory Observations: A 5-Year Update. Clin Chem 2003 Apr
 1;49(4):624–633. doi: 10.1373/49.4.624
- Lehne M, Luijten S, Vom Felde Genannt Imbusch P, Thun S. The Use of FHIR in Digital Health A
 Review of the Scientific Literature. Stud Health Technol Inform 2019 Sep 3;267:52–58.
 PMID:31483254
- Vorisek CN, Lehne M, Klopfenstein SAI, Mayer PJ, Bartschke A, Haese T, Thun S. Fast Healthcare
 Interoperability Resources (FHIR) for Interoperability in Health Research: Systematic Review.
 JMIR Med Inform 2022 Jul 19;10(7):e35724. doi: 10.2196/35724
- 407 10. Jacobsen A, Kaliyaperumal R, da Silva Santos LOB, Mons B, Schultes E, Roos M, Thompson M. A
 408 Generic Workflow for the Data FAIRification Process. Data Intell 2020 Jan 1;2(1–2):56–65. doi:
 409 10.1162/dint_a_00028
- 410 11. SNOMED CT. SNOMED. Available from: https://www.snomed.org/ [accessed Mar 16, 2022]

411 12. Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM). ICD-10-GM. Available from:
 412 https://www.bfarm.de/EN/Code-systems/Classifications/ICD/ICD-10-GM/_node.html [accessed
 413 Mar 16, 2022]

- 414 13. Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM). ATC. Available from:
 415 https://www.bfarm.de/DE/Kodiersysteme/Klassifikationen/ATC/_node.html [accessed Mar 16,
 416 2022]
- 417 14. The Unified Code for Units of Measure. Available from: https://ucum.org/trac [accessed Mar 16,
 418 2022]
- 419 15. art-decor.org. Available from: https://www.art-decor.org/mediawiki/index.php/Main_Page
 420 [accessed Mar 16, 2022]
- 42116.MedizininformatikInitiative-SIMPLIFIER.NET.Availablefrom:422https://simplifier.net/organization/koordinationsstellemii [accessed Mar 15, 2022]
- 42317. KassenärztlicheBundesvereinigung(KBV)-SIMPLIFIER.NET.Availablefrom:424https://simplifier.net/organization/kassenrztlichebundesvereinigungkbv[accessedMar15,4252022]
- 426 18. FHIR Shorthand. Available from: http://hl7.org/fhir/uv/shorthand/ [accessed Apr 25, 2022]
- 427 19. SUSHI Unshortens Short Hand Inputs. 2022. Available from: https://github.com/FHIR/sushi
 428 [accessed Apr 25, 2022]
- 429 20. Lichtner G. FHIR Shorthand Validator. 2021. Available from: https://github.com/glichtner/fsh 430 validator [accessed Mar 15, 2022]
- 431 21. napkon-module-template. 2022. Available from: https://github.com/BIH-CEI/napkon-module 432 template [accessed Mar 15, 2022]

Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten 433 22. 434 J-W, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, 435 Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, 436 Heringa J, 't Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, 437 Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, 438 Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, 439 Wittenburg P, Wolstencroft K, Zhao J, Mons B. The FAIR Guiding Principles for scientific data 440 management and stewardship. Sci Data Nature Publishing Group; 2016 Mar 15;3(1):160018. doi: 441 10.1038/sdata.2016.18

- 442 23. Implementation Guide Registry. Available from: http://fhir.org/guides/registry/ [accessed Nov 3,
 443 2022]
- 444 24. Schons M, Pilgram L, Reese J-P, Stecher M, Anton G, Appel KS, Bahmer T, Bartschke A, 445 Bellinghausen C, Bernemann I, Brechtel M, Brinkmann F, Brünn C, Dhillon C, Fiessler C, Geisler R, 446 Hamelmann E, Hansch S, Hanses F, Hanß S, Herold S, Heyder R, Hofmann A-L, Hopff SM, Horn A, 447 Jakob C, Jiru-Hillmann S, Keil T, Khodamoradi Y, Kohls M, Kraus M, Krefting D, Kunze S, Kurth F, 448 Lieb W, Lippert LJ, Lorbeer R, Lorenz-Depiereux B, Maetzler C, Miljukov O, Nauck M, Pape D, 449 Püntmann V, Reinke L, Römmele C, Rudolph S, Sass J, Schäfer C, Schaller J, Schattschneider M, 450 Scheer C, Scherer M, Schmidt S, Schmidt J, Seibel K, Stahl D, Steinbeis F, Störk S, Tauchert M, 451 Tebbe JJ, Thibeault C, Toepfner N, Ungethüm K, Vadasz I, Valentin H, Wiedmann S, Zoller T, Nagel 452 E, Krawczak M, von Kalle C, Illig T, Schreiber S, Witzenrath M, Heuschmann P, Vehreschild JJ, 453 NAPKON Research Group. The German National Pandemic Cohort Network (NAPKON): rationale, 454 study design and baseline characteristics. Eur J Epidemiol 2022 Aug 1;37(8):849-870. doi: 455 10.1007/s10654-022-00896-z

456 25. Hillus D, Schwarz T, Tober-Lau P, Vanshylla K, Hastor H, Thibeault C, Jentzsch S, Helbig ET, Lippert 457 LJ, Tscheak P, Schmidt ML, Riege J, Solarek A, Kalle C von, Dang-Heine C, Gruell H, Kopankiewicz 458 P, Suttorp N, Drosten C, Bias H, Seybold J, Al-Rim B, Bardtke L, Beheim-Schwarzbach JI, Behn K, 459 Bergfeld L, Bethke N, Bleicker T, Briesemeister D, Brumhard S, Conrad C, Dieckmann S, Frey D, 460 Gabelich J-A, Georg P, Gläser U, Hasler L, Hetey A, Hiller AL, Horn A, Hülso C, Kegel L, Koch W, 461 Krannich A, Kroneberg P, Lisy M, Mackeldanz P, Maeß B, Münn F, Olk N, Peiser C, Pohl K, Hermel 462 A, Rönnefarth M, Rubisch C, Rezza AS, Schellenberger I, Schenkel V, Schlesinger J, Schmidt S, 463 Schwanitz G, Sinnigen A-S, Stubbemann P, Tesch J, Treue D, Wendisch D, Zvorc S, Klein F, Kurth 464 F, Corman VM, Sander LE. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective 465 466 cohort study. Lancet Respir Med Elsevier; 2021 Nov 1;9(11):1255–1265. PMID:34391547

- Tober-Lau P, Schwarz T, Vanshylla K, Hillus D, Gruell H, Suttorp N, Landgraf I, Kappert K, Seybold
 J, Drosten C, Klein F, Kurth F, Sander LE, Corman VM. Long-term immunogenicity of BNT162b2
 vaccination in older people and younger health-care workers. Lancet Respir Med Elsevier; 2021
 Nov 1;9(11):e104–e105. PMID:34687656
- 471 27. NUM-COVIM study. Available from: https://covim-netzwerk.de/ [accessed Mar 16, 2022]
- 47228. NAPKONCardiologyModuleImplementationGuide.Availablefrom:https://bih-473cei.github.io/napkon-cardiology/ [accessed Mar 15, 2022]
- 474 29. NAPKON Pediatrics Module Implementation Guide. Available from: https://bih-475 cei.github.io/napkon-pediatrics/ [accessed Mar 15, 2022]
- 476 30. NAPKON Vaccination Module Implementation Guide. Available from: https://bih-477 cei.github.io/napkon-vaccination/ [accessed Mar 15, 2022]
- A78 31. NAPKON Cardiology Module. 2022. Available from: https://github.com/BIH-CEI/napkon cardiology [accessed Mar 15, 2022]
- 480 32. NAPKON Pediatrics Module. 2022. Available from: https://github.com/BIH-CEI/napkon-481 pediatrics [accessed Mar 15, 2022]
- 482 33. NAPKON Vaccination Module. 2022. Available from: https://github.com/BIH-CEI/napkon 483 vaccination [accessed Mar 15, 2022]
- 484 34. ART-DECOR: NAPKON Cardiology Module. Available from: https://art-decor.org/art-485 decor/decor-datasets--covid19f-
- 486 ?id=2.16.840.1.113883.3.1937.777.53.1.2&effectiveDate=2020-08-
- 487
 12T00%3A00%3A00&conceptId=2.16.840.1.113883.3.1937.777.53.2.250&conceptEffectiveDat

 488
 e=2021-02-16T13%3A25%3A43&language=en-US [accessed Mar 16, 2022]
- 489 35. ART-DECOR: NAPKON Pediatrics Module. Available from: https://art-decor.org/art-decor/decor 490 datasets--covid19f-?id=2.16.840.1.113883.3.1937.777.53.1.2&effectiveDate=2020-08-
- 491
 12T00%3A00%3A00&conceptId=2.16.840.1.113883.3.1937.777.53.2.453&conceptEffectiveDat

 492
 e=2021-08-25T12%3A45%3A26&language=en-US [accessed Mar 16, 2022]
- 49336.ART-DECOR:NAPKONVaccinationModule.Availablefrom:https://art-decor.org/art-494decor/decor-datasets--covid19f-
- 495 ?id=2.16.840.1.113883.3.1937.777.53.1.2&effectiveDate=2020-08-
- 496 12T00%3A00%3A00&conceptId=2.16.840.1.113883.3.1937.777.53.2.453&conceptEffectiveDat
- 497 e=2021-08-25T12%3A45%3A26&language=en-US [accessed Mar 16, 2022]

- Kush RD, Warzel D, Kush MA, Sherman A, Navarro EA, Fitzmartin R, Pétavy F, Galvez J, Becnel LB,
 Zhou FL, Harmon N, Jauregui B, Jackson T, Hudson L. FAIR data sharing: The roles of common
 data elements and harmonization. J Biomed Inform 2020 Jul 1;107:103421. doi:
 10.1016/j.jbi.2020.103421
- Shivers J, Amlung J, Ratanaprayul N, Rhodes B, Biondich P. Enhancing narrative clinical guidance
 with computer-readable artifacts: Authoring FHIR implementation guides based on WHO
 recommendations. J Biomed Inform 2021 Aug 25;122:103891. PMID:34450285
- S05 39. Lichtner G, Jurth C, Alper BS, Spies C, Boeker M, Meerpohl JJ, Dincklage F von. Representation of
 evidence-based clinical practice guideline recommendations on FHIR. medRxiv; 2022. p.
 2022.05.16.22275120. doi: 10.1101/2022.05.16.22275120
- 40. Rinaldi E, Stellmach C, Rajkumar NMR, Caroccia N, Dellacasa C, Giannella M, Guedes M,
 Mirandola M, Scipione G, Tacconelli E, Thun S. Harmonization and standardization of data for a
 pan-European cohort on SARS- CoV-2 pandemic. Npj Digit Med Nature Publishing Group; 2022
 Jun 14;5(1):1–13. doi: 10.1038/s41746-022-00620-x
- 512 41. Kapsner LA, Kampf MO, Seuchter SA, Gruendner J, Gulden C, Mate S, Mang JM, Schüttler C, 513 Deppenwiese N, Krause L, Zöller D, Balig J, Fuchs T, Fischer P, Haverkamp C, Holderried M, Mayer 514 G, Stenzhorn H, Stolnicu A, Storck M, Storf H, Zohner J, Kohlbacher O, Strzelczyk A, Schüttler J, 515 Acker T, Boeker M, Kaisers UX, Kestler HA, Prokosch H-U. Reduced Rate of Inpatient Hospital 516 Admissions in 18 German University Hospitals During the COVID-19 Lockdown. Front Public 517 2021;8. Available from: Health 518 https://www.frontiersin.org/articles/10.3389/fpubh.2020.594117 [accessed Oct 27, 2022]
- 519 42. Horn A, Krist L, Lieb W, Montellano FA, Kohls M, Haas K, Gelbrich G, Bolay-Gehrig SJ, Morbach C, 520 Reese JP, Störk S, Fricke J, Zoller T, Schmidt S, Triller P, Kretzler L, Rönnefarth M, Von Kalle C, 521 Willich SN, Kurth F, Steinbeis F, Witzenrath M, Bahmer T, Hermes A, Krawczak M, Reinke L, 522 Maetzler C, Franzenburg J, Enderle J, Flinspach A, Vehreschild J, Schons M, Illig T, Anton G, 523 Ungethüm K, Finkenberg BC, Gehrig MT, Savaskan N, Heuschmann PU, Keil T, Schreiber S. Long-524 term health sequelae and quality of life at least 6 months after infection with SARS-CoV-2: design 525 and rationale of the COVIDOM-study as part of the NAPKON population-based cohort platform 526 (POP). Infection 2021 Dec 1;49(6):1277-1287. doi: 10.1007/s15010-021-01707-5
- Prokosch H-U, Bahls T, Bialke M, Eils J, rgen, Fegeler C, Gruendner J, Haarbrandt B, Hampf C,
 Hoffmann W, Hund H, Kampf M, Kapsner LA, Kasprzak P, Kohlbacher O, Krefting D, Mang JM,
 Marschollek M, Mate S, Mü, Ller A, Prasser F, Sass J, Semler S, Stenzhorn H, Thun S, Zenker
 S, Eils R. The COVID-19 Data Exchange Platform of the German University Medicine. Chall Trust
 AI Added-Value Health IOS Press; 2022;674–678. doi: 10.3233/SHTI220554
- 44. Perlin JB. Health Information Technology Interoperability and Use for Better Care and Evidence.
 JAMA 2016 Oct 25;316(16):1667–1668. doi: 10.1001/jama.2016.12337
- 534 45. Cutillo CM, Sharma KR, Foschini L, Kundu S, Mackintosh M, Mandl KD. Machine intelligence in
 535 healthcare—perspectives on trustworthiness, explainability, usability, and transparency. Npj
 536 Digit Med Nature Publishing Group; 2020 Mar 26;3(1):1–5. doi: 10.1038/s41746-020-0254-2
- 537

539 Supplementary Appendix

- 540 The following tables show the data items that are included in the immunization extension module
- 541 (Table S 1), the pediatrics extension module (Table S 2), and the cardiology extension module (Table S
- 542 3). Note that these tables list only the data items of the extension modules that are not included in the
- 543 GECCO core dataset and that the complete dataset definition for each specialty consists of the GECCO
- 544 core dataset together with the data items of the extension module.

545 GECCO Immunization extension module

Category	Data Element	FHIR Resource	Item
Anamnesis	Chemotherapy	Procedure	Chemotherapy
	Immunosuppressive therapy	Procedure	Immunosuppressive therapy
	Regular Alcohol Intake	Observation	Frequency
			Quantity
COVID-19	Disease course	Encounter, Procedure	No symptoms
infection & treatment			Treated at home
			Treated at hospital with oxygen therapy
			Treated at hospital without oxygen therapy
			Treated at intensive care unit
	SARS-CoV-2 infection	Condition	SARS-CoV-2 infection
	SARS-CoV-2 variant	Observation	SARS-CoV-2 variant
Immunization	Contraindications to immunization	Immunization	Allergy
			Pregnancy
	Immunizations performed	Immunization	Date
			Lot number
			Туре
	Reason for immunization	Immunization	Everybody gets vaccinated
			Protection of private environment from
			infection/disease Protection of themself from infection/disease
			Protection of work environment from infection/disease
			Worrying about disadvantages
	Willingness to receive additional	Observation	Willingness to receive additional immunization doses
	immunization doses	Observation	
Immunization reactions	Analgesic or antipyretic drug intake	MedicationStatement	Analgesic or antipyretic drug intake
	Body temperature	Observation	Body temperature after vaccination
	Complications after immunization	Observation	Allergic reaction after immunization
			Injection site erythema
			Injection site pain at rest
			Injection site pain during pressure/movement
			Injection site swelling
	Medical treatment for adverse	Encounter	Ambulatory
	reactions		Inpatient
			No treatment
	Symptoms after Vaccination	Condition	Chill

Diarrhea
Difficulty breathing
Dyspnea
Exhaustion
Fatigue
Feeling feverish
Fever
Fever with chills
Joint pain
Liquid stool
Loose stool
Muscle pain
Nausea
Soft stool
Vomiting symptom

- 546 Table S 1 Data items in the immunization extension module extending the GECCO core dataset. Shown
- 547 are the data elements and the FHIR resource they have been mapped to, as well as the items for each
- 548 data element (i.e., different response options).

549

550 GECCO Pediatrics extension module

Category	Data Element	FHIR Resource	Item
Complications	Complications to COVID-19	Condition	Anemia
			Arterial aneurysm
			Ascites
			Aspergillosis
			Bacterial arthritis
			Bacterial endocarditis
			Bacterial meningitis
			Bacterial osteomyelitis
			Bronchiolitis
			Bronchitis
			Chlamydial infection
			Chronic fatigue syndrome
			Colitis
			Disease caused by Adenovirus
			Disease caused by Coronaviridae
			Disease caused by Human bocavirus
			Disease caused by Rhinovirus
			Disorder of liver
			Haemophilus influenzae infection
			Human metapneumovirus infection
			lleitis

			Infection caused by Candida albicans
			Infection caused by exhibited ableats
			Infection caused by Educitional con
			Infection caused by Resolution Infection caused by Pseudomonas aeruginosa
			Infection caused by recucinonas aeruginosa Infection caused by Staphylococcus aureus
			Infection caused by Streptococcus viridans group
			Infection caused by enterococcus
			Influenza
			Invasive Group A beta-hemolytic streptococcal disease
			Invasive Streptococcus pneumoniae disease
			Legionella infection
			Meningococcal infectious disease
			Mycoplasma infection
			Organic mental disorder
			Parainfluenza
			Peritonitis
			Pertussis
			Post-acute COVID-19
			Procedure needed Where Associated procedure =
			Resuscitation Pyelonephritis
			Respiratory syncytial virus infection
			Seizure disorder
			Streptococcus agalactiae infection
			Streptococcus pyogenes infection
			Syncope
Domographics	Dedumoscuros	Observation	
Demographics	Body measures	Observation	Birth height
			Birth height (percentile)
			Body mass index
			Body mass index (percentile)
			Head circumference
			Head circumference (percentile)
Imaging	Echocardiography	Procedure, Imaging Study	Echocardiography
	PET-CT	Procedure, Imaging Study	Positron emission tomography with computed tomography
Immunization	Immunizations performed	Immunization	Viral vector vaccine
			mRNA vaccine
Laboratory	Laboratory values	Observation	Alanine Aminotransferase
values			Albumin
			Amylase
			Calprotectin
			Cells in CSF
			Complement C3
			Complement C4
			Creatine kinase
			Creatine kinase.MB

			Erythrocyte sedimentation rate
			Glucose in CSF
			Hematocrit
			IgG
			Interleukin 10
			Interleukin 2 Receptor Soluble
			Lactate in CSF
			Lipase
			Natural killer cell function
			Neutrophil cytoplasmic Ab
			Nuclear Ab
			Protein in CSF
			Prothrombin time (PT)
			SARS-CoV-2 RT in stool
			SARS-CoV-2 RT in urine
			Sodium
			Triglyceride
			Urea
Medical	Chronic Hematologic Diseases	Condition	Blood coagulation disorder
history			Glucose-6-phosphate dehydrogenase deficiency anemia
			Hemolytic anemia
			Iron deficiency anemia
			Myelodysplastic syndrome
			Neutropenic disorder where Clinical course = Chronic
			Sickle cell-hemoglobin SS disease
			Thalassemia
	Chronic Kidney Diseases	Condition	Disorder of the urinary system where Occurrence = Congenital
		condition	Kidney disease where Occurrence = Congenital
	Congenital Disease	Condition	Congenital Disease
	Gastrointestinal Diseases	Condition	Allergy to cow's milk protein
	Gasti onitestinai Diseases	Condition	Celiac disease
			Chronic constipation
			Disorder of bile duct
			Disorder of gastrointestinal tract
			Inflammatory bowel disease
	Medical History Stem Cells Transplant	Condition	History of bone marrow transplant
			History of peripheral stem cell transplant
Medication	Medication	MedicationStatement	Blood product
			Bronchodilator
			Inotropic agent
			Medicinal product acting as antibacterial agent
			Medicinal product acting as hemostatic
			Product containing anakinra
			Product containing aspirin

	Thoracic Drainage	Procedure	Thoracic Drainage
			Total length of stay
Therapy	Hospitalization	Observation	Intensive care treatment duration
			Swallowing painful
			Splenomegaly
			Raspberry tongue
			Palmar erythema
			Pain in throat
			Myoclonus
			Large liver
			Eruption of skin
Symptoms	COVID-19 Symptoms	Condition	Delirium
			interleukin 23 receptor antagonist
			Tumor necrosis factor alpha inhibitor
			Steroid
			Sphingosine analogue
			Protein-tyrosine kinase inhibitor
			Mammalian target of rapamycin-Kinase inhibitor
			Janus kinase inhibitor
			Interleukin 6 receptor antagonist
			Interleukin 2 receptor antagonist
			Interleukin 17 receptor antagonist
			Interleukin 1 receptor antagonist
			Interferon
			Integrin inhibitor
			Immunoglobulin E
			Equine antithymocyte immunoglobulin
			Cytotoxic T-lymphocyte-associated protein 4 inhibitor
			Calcineurin inhibitor
			B cell activating factor inhibitor
			Antimetabolite
			Anti-CD52 antibody
			Anti-CD3/CD19 antibody
			Anti-CD3 antibody
		List	Anti-CD20 antibody
		MedicationStatement,	Alkylating agent
			Vasopressor
			Product containing tocilizumab

551 Table S 2 Data items in the pediatrics extension module extending the GECCO core dataset. Shown are

the data elements and the FHIR resource they have been mapped to, as well as the items for each data

553 element (i.e., different response options).

GECCO Cardiology extension module 555

Category	Data Element	FHIR Resource	Item
Anamnesis	Chronic cardiologic diseases	Condition	Atrial fibrillation
			Atrial flutter
			Cardiomyopathy
			Congenital heart disease
			Heart failure
			History of coronary artery bypass grafting
COVID-19-related	Cardiologic complications of	Condition	Bacterial respiratory infection
complications	COVID-19		Cardiogenic shock
			Complete atrioventricular block
			Myocarditis
			Pericardial effusion
			Ventricular fibrillation
			Viral disease
Echocardiography	Echocardiography findings	Observation	Abscess of heart
			Aortic valve regurgitation
			Aortic valve stenosis
			Heart valve disorder
			Left Ventricular Ejection Fraction
			Left ventricular hypertrophy
			Left ventricular wall motion abnormality
			Mitral valve regurgitation
			Mitral valve stenosis
			Paradoxical cardiac wall motion
			Pericardial effusion
			Pulmonic valve regurgitation
			Pulmonic valve stenosis
			Right ventricular hypertrophy
			Thrombosis
			Tricuspid annular plane systolic excursion (TAPSE)
			Tricuspid valve regurgitation
			Tricuspid valve stenosis
			Vegetation of heart
			Ventricular hypertrophy
	Echocardiography procedure	Procedure	Date
			Echocardiography
			Type of echocardiography
Electrocardiography	Electrocardiography findings	Observation	Atrial ectopics
			Atrioventricular Block
			Bundle Branch Block
			Inverted T wave
			Low QRS voltages
			Premature ventricular contractions
			QRS Axis

	Electrocardiography procedure	Procedure	QRS Interval QT Interval ST Interval Sinus rhythm 12 lead electrocardiogram Date
Laboratory Values	Laboratory values	Observation	Troponin I Troponin T
Medication	Angiotensin receptor antagonist	MedicationStatement	Angiotensin Receptor Antagonist

556 Table S 3 Data items in the cardiology extension module extending the GECCO core dataset. Shown are

557 the data elements and the FHIR resource they have been mapped to, as well as the items for each data

558 element (i.e., different response options).

559