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a b s t r a c t 

The human brain achieves visual object recognition through multiple stages of linear and nonlinear transfor- 
mations operating at a millisecond scale. To predict and explain these rapid transformations, computational 
neuroscientists employ machine learning modeling techniques. However, state-of-the-art models require massive 
amounts of data to properly train, and to the present day there is a lack of vast brain datasets which exten- 
sively sample the temporal dynamics of visual object recognition. Here we collected a large and rich dataset of 
high temporal resolution EEG responses to images of objects on a natural background. This dataset includes 10 
participants, each with 82,160 trials spanning 16,740 image conditions. Through computational modeling we 
established the quality of this dataset in five ways. First, we trained linearizing encoding models that successfully 
synthesized the EEG responses to arbitrary images. Second, we correctly identified the recorded EEG data image 
conditions in a zero-shot fashion, using EEG synthesized responses to hundreds of thousands of candidate image 
conditions. Third, we show that both the high number of conditions as well as the trial repetitions of the EEG 

dataset contribute to the trained models’ prediction accuracy. Fourth, we built encoding models whose predic- 
tions well generalize to novel participants. Fifth, we demonstrate full end-to-end training of randomly initialized 
DNNs that output EEG responses for arbitrary input images. We release this dataset as a tool to foster research in 
visual neuroscience and computer vision. 
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. Introduction 

Visual object recognition is a complex cognitive function that is
omputationally solved in multiple linear and nonlinear stages by
he human brain ( Marr, 1980 ; Goodale and Milner, 1992 ; Van Es-
en et al., 1992 ; Riesenhuber and Poggio, 1999 ; Ullman, 2000 ; Grill-
pector et al., 2001 ; Malach et al., 2002 ; Carandini et al., 2005 ).
hrough these stages, representations of simple visual features such as
riented edges are transformed into representations of object categories
 Tanaka, 1996 ; Logothetis and Sheinberg, 1996 ). To understand the
rinciples of these representations and transformations, computational
euroscientists build and employ mathematical models that predict the
rain responses to arbitrary visual stimuli and explain their underlying
eural mechanisms ( Wu et al., 2006 ; Guest and Martin, 2021 ). The per-
ormance of these models benefits from training with large datasets: as
n example, deep neural networks (DNNs) ( Fukushima et al., 1982 ),
he current state-of-the-art computational models of the visual brain
 Yamins and DiCarlo, 2016 ; Cichy and Kaiser, 2019 ; Kietzmann et al.,
019 ; Richards et al., 2019 ; Saxe et al., 2021 ), are trained on millions
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f different data points ( Russakovsky et al., 2015 ). Yet, due to the diffi-
ulty of brain data acquisition, neuroscientific datasets usually comprise
o more than a few thousand trials per participant and a limited num-
er of conditions ( Kay et al., 2008 ; Cichy et al., 2014 ; Horikawa and
amitani, 2017 ). 

To address the data hunger of current modeling goals, recently pi-
neering efforts have been taken to record large datasets of functional
agnetic resonance imaging (fMRI) responses to images ( Chang et al.,
019 ; Allen et al., 2022 ). However, while providing excellent spatial
esolution, fMRI data lacks the temporal resolution to resolve neural
ynamics at the level at which they occur. Since neurons communicate
t millisecond scales, high temporal resolution neural data is a crucial
omponent for building models of the visual brain ( Thorpe et al., 1996 ;
an de Nieuwenhuijzen et al., 2013 ; Cichy et al., 2014 ; Harel et al.,
016 ; Seeliger et al., 2018 ; Bankson et al., 2018 ; Dijkstra et al., 2018 ).
hus, in the present study we collected a large millisecond resolution
lectroencephalography (EEG) dataset of human brain responses to im-
ges of objects on a natural background. We extensively sampled 10 par-
icipants, each being presented with 16,740 image conditions repeated
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ver 82,160 trials from the THINGS database ( Hebart et al., 2019 ) by
sing a time-efficient rapid serial visual presentation (RSVP) paradigm
 Intraub, 1981 ; Keysers et al., 2001 ; Grootswagers et al., 2019 ) with
timulus onset asynchronies (SOAs) of 200 ms. Despite introducing back-
ard and forward noise, these short SOAs were crucial to collect a
ataset large enough to exploit state-of-the-art machine and deep learn-
ng modeling techniques. 

We then leveraged the unprecedented size and richness of our dataset
o train and evaluate DNN-based linearizing and end-to-end encoding
odels ( Wu et al., 2006 ; Kay et al., 2008 ; Naselaris et al., 2011 ; van Ger-

en, 2017 ; Seeliger et al., 2018 ; Kriegeskorte and Douglas, 2019 , 2021 ;
hosla et al., 2021 ; Allen et al., 2022 ) that synthesize EEG responses to
rbitrary images. The results showcase the quality of the dataset and its
otential for computational modeling in five ways. First, the synthesized
EG data is strongly resemblant to its biological counterpart, with ro-
ust predictions even at single participants’ level. Second, we built zero-
hot identification algorithms ( Kay et al., 2008 ; Seeliger et al., 2018 ;
orikawa and Kamitani, 2017 ) that achieved high performance accu-

acies even when identifying among very large candidate image condi-
ions set sizes: 81.35% for a set size of 200 candidate image conditions,
1.05% for a set size of 150,000 candidate image conditions, and extrap-
lated accuracy = 10% for a set size of 4,514,035 candidate image condi-
ions, where chance ≤ 0.5%. Third, we show that both the high number
f conditions as well as the trial repetitions of the dataset contribute to
he trained models’ prediction accuracy. Fourth, we demonstrate that
he encoding models’ predictions generalize to novel participants. Fifth,
or the first time to our knowledge we demonstrate full end-to-end train-
ng ( Seeliger et al., 2021 ; Khosla et al., 2021 ; Allen et al., 2022 ) of ran-
omly initialized DNNs that output EEG responses for arbitrary input
mages. 

We release the dataset as a tool to foster research in computational
euroscience and to bridge the gap between biological and artificial vi-
ion. We believe this will be of great use to further understanding of
isual object recognition through the development of high-temporal res-
lution computational models of the visual brain, and to optimize artifi-
ial intelligence models through biological intelligence data ( Sinz et al.,
019 ; Hassabis et al., 2017 ; Ullman, 2019 ; Toneva and Wehbe, 2019 ;
ang et al., 2022 ; Dapello et al., 2022 ). All code used to generate the
resented results accompanies the data release. 

. Materials and methods 

.1. Participants 

Ten healthy adults (mean age 28.5 years, SD = 4; 8 female, 2 male)
articipated, all having normal or corrected-to-normal vision. They all
rovided informed written consent and received monetary reimburse-
ent. Procedures were approved by the ethical committee of the De-
artment of Education and Psychology at Freie Universität Berlin and
ere in accordance with the Declaration of Helsinki. 

.2. Stimuli 

All images came from THINGS ( Hebart et al., 2019 ), a database
f 12 or more images of objects on a natural background for each of
854 object concepts, where each concept (e.g., antelope, strawberry,
-shirt) belongs to one of 27 higher-level categories (e.g., animal, food,
lothing). The building of encoding models involves two stages: model
raining and model evaluation. Since each of these stages requires an
ndependent data partition, we pseudo-randomly divided the 1854 ob-
ect concepts into non-overlapping 1654 training ( Fig. 1 A ) and 200 test
 Fig. 1 B ) concepts under the constraint that the same proportion of the
7 higher-level categories had to be kept in both partitions. We then
elected ten images for each training partition concept and one image
or each test partition concept, resulting in a training image partition
f 16,540 image conditions (1654 training object concepts ×10 images
2 
er concept = 16,540 training image conditions) and a test image par-
ition of 200 image conditions (200 test object concepts ×1 image per
oncept = 200 test image conditions). We used the training and test data
artitions for the encoding model training and testing, respectively. The
xperiment had an orthogonal target detection task (see “Experimental
aradigm ” Section 2.3 ), and as task-relevant target stimuli we used 10
ifferent images of the “Toy Story ” character Buzz Lightyear. All images
ere of square size. We reshaped them to 500 ×500 pixels for the EEG
ata collection paradigm. For the modeling with DNNs we reshaped the
mages to 224 ×224 pixels, and normalized them. 

.3. Experimental paradigm 

The experiment consisted in a RSVP paradigm ( Intraub, 1981 ;
eysers et al., 2001 ; Grootswagers et al., 2019 ) with an orthogonal tar-
et detection task to ensure participants paid attention to the visual stim-
li ( Fig. 1 C ). All 10 participants completed four equivalent experimental
essions, resulting in 10 datasets of 16,540 training images conditions
epeated 4 times and 200 test image conditions repeated 80 times, for
 total of (16,540 training image conditions ×4 training image repeti-
ions) + (200 test image conditions ×80 test image repetitions) = 82,160
mage trials per dataset. 

One session comprised 19 runs, all lasting around 5 m. In each of
he first 4 runs we showed participants the 200 test image conditions
hrough 51 rapid serial sequences of 20 images, for a total of 4 test
uns ×51 sequences per run ×20 images per sequence = 4080 image tri-
ls. In each of the following 15 runs we showed 8270 training image
onditions (half of all the training image conditions, as different halves
ere shown on different sessions) through 56 rapid serial sequences of
0 images, for a total of 15 training runs ×56 sequences per run ×20
mages per sequence = 16,800 image trials. 

Every rapid serial sequence started with 750 ms of blank screen, then
ach of the 20 images was presented centrally with a visual angle of 7°
or 100 ms and a stimulus onset asynchrony (SOA) of 200 ms, and it
nded with another 750 ms of blank screen. After every rapid sequence
here were up to 2 s during which we instructed participants to first
link (or make any other movement) and then report, with a keypress,
hether the target image of Buzz Lightyear appeared in the sequence.
his reduced the chances of eye blinks and other artifacts during the im-
ge presentations. The images were presented in a pseudo-randomized
rder, and a target image appeared in 6 sequences per run. A central
ull’s eye fixation target ( Thaler et al., 2013 ) was present on the screen
hroughout the entire experiment, and we asked participants to con-
tantly gaze at it. We controlled stimulus presentation using the Psych-
oolbox ( Brainard, 1997 ), and recorded EEG data during the experimen-
al sessions. 

Additionally, we collected five minutes of resting state data at the
eginning and end of each of the four recording sessions, where we
nstructed participants to fixate a central bull’s eye fixation target pre-
ented on a gray background, to blink as little as possible, and to refrain
rom other facial or bodily movements. We did not further preprocess
r analyze this data. 

.4. EEG recording and preprocessing 

We recorded the EEG data using a 64-channel EASYCAP with
lectrodes arranged in accordance with the standard 10–10 system
 Nuwer et al., 1998 ), and a Brainvision actiCHamp amplifier. We
ecorded the data at a sampling rate of 1000 Hz, while performing on-
ine filtering (between 0.1 Hz and 100 Hz) and referencing (to the Fz
lectrode). We performed offline preprocessing in Python, using the
NE package ( Gramfort et al., 2013 ). We epoched the continuous EEG

ata into trials ranging from 200 ms before stimulus onset to 800 ms af-
er stimulus onset, and applied baseline correction by subtracting the
ean of the pre-stimulus interval for each trial and channel separately.
e then down-sampled the epoched data to 100 Hz, and we selected
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Fig. 1. Stimuli images and experimental paradigm. ( A ) The 
training image partition contains 1654 object concepts of 10 
images each, for a total of 16,540 image conditions. ( B ) The 
test image partition contains 200 object concepts of 1 image 
each, for a total of 200 image conditions. ( C ) We presented 
participants with images of objects on a natural background 
using a RSVP paradigm. The paradigm consisted of rapid serial 
sequences of 20 images. Every sequence started with 750 ms 
of blank screen, then each image was presented centrally for 
100 ms and a SOA of 200 ms, and it ended with another 750 ms 
of blank screen. After every rapid sequence there were up to 2 s 
during which we instructed participants to first blink and then 
report, with a keypress, whether the target image appeared in 
the sequence. We asked participants to gaze at a central bull’s 
eye fixation target present throughout the entire experiment. 

1  

s  

P  

a  

e  

t  

(  

s  

e  

(  

c  

l  

c  

u  

i

2

 

2  

g  

(  

v  

I  

(  

w  

(  

f  

2  

f  

I

2

 

t  

D  

t  

i  

t  

l  

e  

f  

t  

f  

t  

t  

d  

p  

t  

2  

p  

4  

1  

f  

f  

t
 

m  

d  

i  

f  

E  

t  

i  

t  

i  

a  

t  

t  

s  

t

2

 

S  
7 channels overlying occipital and parietal cortex for further analy-
is (O1, Oz, O2, PO7, PO3, POz, PO4, PO8, P7, P5, P3, P1, Pz, P2, P4,
6, P8). All trials containing target stimuli were not analyzed further,
nd we randomly selected and retained 4 measurement repetitions for
ach training image condition and 80 measurement repetitions for each
est image condition. Next, we applied multivariate noise normalization
 Guggenmos et al., 2018 ) independently to the data of each recording
ession. We did not apply any further artifact correction methods. For
ach participant, the preprocessing resulted in the EEG biological training

BioTrain) data matrix of shape (16,540 training image conditions ×4
ondition repetitions ×17 EEG channels ×100 EEG time points) and bio-

ogical test (BioTest) data matrix of shape (200 test image conditions ×80
ondition repetitions ×17 EEG channels ×100 EEG time points). We
sed the BioTrain and BioTest EEG data for the encoding models train-
ng and testing, respectively. 

.5. DNN models used 

We built linearizing encoding models ( Wu et al., 2006 ; Kay et al.,
008 ; Naselaris et al., 2011 ; van Gerven, 2017 ; Kriegeskorte and Dou-
las, 2019 ) of EEG visual responses using four different DNNs: AlexNet
 Krizhevsky, 2014 ), a supervised feedforward neural network of 5 con-
olutional layers followed by 3 fully-connected layers that won the
magenet large-scale visual recognition challenge in 2012; ResNet-50
 He et al., 2016 ), a supervised feedforward 50 layer neural network
ith shortcut connections between layers at different depths; CORnet-S
 Kubilius et al., 2019 ), a supervised deep recurrent neural network of
our convolutional layers and one fully-connected layer; MoCo ( He et al.,
020 ), a feedforward ResNet-50 architecture trained in a self-supervised
ashion. All of them had been pre-trained on object categorization on the
LSVRC-2012 training image partition ( Russakovsky et al., 2015 ). 

.6. Linearizing encoding models of EEG visual responses 

The first step in building linearizing encoding models is to use DNNs
o nonlinearly transform the image input space onto a feature space. A
NNs feature space is given by its feature maps, layerwise representa-

ions (nonlinear transformations) of the input images. To get the train-
ng and test feature maps we fed the training and test images separately
3 
o each DNN and appended the vectorized image representations of its
ayers onto each other. We extracted AlexNet’s feature maps from lay-
rs maxpool1, maxpool2, ReLU3, ReLU4, maxpool5, ReLU6, ReLU7, and
c8; ResNet-50 ′ s and MoCo’s feature maps from the last layer of each of
heir four blocks, and from the decoder layer; CORnet-S’ feature maps
rom the last layers of areas V1, V2 (at both time points), V4 (at all four
ime points), IT (at both time points), and from the decoder layer. We
hen standardized the appended feature maps of the training and test
ata to zero mean and unit variance for each feature across the sam-
le (images) dimension, using the mean and standard deviation of the
raining feature maps. Finally, we used the Scikit-learn ( Pedregosa et al.,
011 ) implementation of nonlinear principal component analysis (com-
uted on the training feature maps using a polynomial kernel of degree
) to reduce the feature maps of both the training and test images to
000 components. For each DNN model, this resulted in the training
eature maps matrix of shape (16,540 training image conditions ×1000
eatures) and test feature maps matrix of shape (200 test image condi-
ions ×1000 features). 

The second step in building linearizing encoding models is to linearly
ap the DNNs’ feature space onto the EEG neural space, effectively pre-
icting the EEG responses to images. We performed this linear mapping
ndependently for each participant, DNN model and EEG feature (i.e.,
or each of the 17 EEG channels ( c ) ×100 EEG time points ( t ) = 1700
EG features). We fitted the weights W t,c of a linear regression using
he DNNs’ training feature maps as the predictors and the correspond-
ng BioTrain data (averaged across the image conditions repetitions) as
he criterion: during training the regression weights learned the exist-
ng linear relationship between the DNN feature maps of a given image
nd the EEG responses of that same image ( Fig. 2 A ). No regularization
echniques were used. We then multiplied W t,c with the DNNs’ test fea-
ure maps. For each participant and DNN, this resulted in the linearizing
ynthetic test (SynTest) EEG data matrix of shape (200 test image condi-
ions ×17 EEG channels ×100 EEG time points) ( Fig. 2 B ). 

.7. Correlation 

We used a Pearson correlation to assess how similar the linearizing
ynTest EEG data of each participant and DNN is to the corresponding
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Fig. 2. Linearizing encoding algorithm. For 
ease of visualization, here and in the follow- 
ing figures we omit the EEG condition repeti- 
tions dimension. ( A ) Through the training im- 
age conditions we obtained the training DNN 

feature maps and the BioTrain EEG data, and 
used them to build linearizing encoding mod- 
els of EEG visual responses. For each combina- 
tion of EEG features (time points ( t ) and chan- 
nels ( c )) we estimated the weights W t,c of a lin- 
ear regression using the corresponding single- 
feature BioTrain data as criterion and the train- 
ing images DNN feature maps as predictors. ( B ) 
To obtain the linearizing SynTest EEG data we 
extracted the DNN feature maps of the test im- 
ages, and multiplied them with the estimated 
W t,c . 
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ioTest data, thus quantifying the encoding models’ predicted power
 Fig. 4 A ). We started the analysis by averaging the BioTest data across
0 image conditions repetitions (we used the other 40 repetitions to es-
imate the noise ceiling, see “Noise ceiling calculation ” Section 2.11 ),
esulting in a BioTest data matrix equivalent in shape to the linearizing
ynTest data matrix (200 test image conditions ×17 EEG channels ×100
EG time points). Next, we implemented a nested loop over the EEG
hannels and time points. At each loop iteration we indexed the 200-
imensional BioTest data vector containing the 200 test image condi-
ions of the EEG channel ( c ) and time point ( t ) in question, and cor-
elated it with the corresponding 200-dimensional linearizing SynTest
ata vector. This procedure yielded a Pearson correlation coefficient ma-
rix of shape (17 EEG channels ×100 EEG time points). Finally, we aver-
ged the Pearson correlation coefficient matrix over the EEG channels,
btaining a correlation results vector of length (100 EEG time points)
or each participant and DNN. 

.8. Pairwise decoding 

The rationale of this analysis was to see if a classifier trained on the
ioTest data is capable of generalizing its performance to the linearizing
ynTest data. This is a complementary way (to the correlation analysis)
o assess the similarity between the linearizing SynTest data and the
ioTest data, hence the encoding models’ predictive power ( Fig. 5 A ).
e started the analysis by averaging 40 BioTest data image conditions

epetitions (we used the other 40 repetitions to estimate the noise ceil-
ng, see “Noise ceiling calculation ” Section 2.11 ) into 10 pseudo-trials
f 4 repeats each, yielding a matrix of shape (200 test image condi-
ions ×10 image condition pseudo-trials ×17 EEG channels ×100 EEG
ime points). Next, we used the pseudo-trials for training linear SVMs to
erform binary classification between each pair of the 200 BioTest data
mage conditions (for a total of 19,900 image condition pairs) using their
EG channels vectors (of 17 components). We then tested the trained
4 
lassifiers on the corresponding pairs of linearizing SynTest data image
onditions. We performed the pairwise decoding analysis independently
or each EEG time point ( t ), which resulted in a matrix of decoding ac-
uracy scores of shape (19,900 image condition pairs ×100 EEG time
oints). We then averaged the decoding accuracy scores matrix across
he image condition pairs, obtaining a pairwise decoding results vector
f length (100 EEG time points) for each participant and DNN. 

.9. Zero-shot identification 

In this analysis we exploited the linearizing encoding models’ predic-
ive power to identify the BioTest data image conditions in a zero-shot
ashion, that its, to identify arbitrary image conditions without prior
raining ( Kay et al., 2008 ; Seeliger et al., 2018 ; Horikawa and Kami-
ani, 2017 ) ( Fig. 6 A ). We identified each BioTest data image condition
sing the linearizing SynTest data and an additional synthesized EEG
ataset of up to 150,000 candidate image conditions. These 150,000 im-
ge conditions came from the ILSVRC-2012 ( Russakovsky et al., 2015 )
alidation (50,000) plus test (100,000) sets. We synthesized them into
heir corresponding EEG responses following the same procedure de-
cribed above, resulting in the synthetic Imagenet (SynImagenet) data ma-
rix of shape (150,000 image conditions ×17 EEG channels ×100 EEG
ime points). The zero-shot identification analysis involved two steps:
eature selection and identification. 

In the feature selection step we used the training data to pick only the
ost relevant EEG features (out of all 17 EEG channels ×100 EEG time
oints = 1700 EEG features). We synthesized the EEG responses to the
6,540 training images, obtaining the synthetic train (SynTrain) data ma-
rix of shape (16,540 training image conditions ×17 EEG channels ×100
EG time points). Next, we correlated each SynTrain data feature (across
he 16,540 training image conditions, with a Pearson correlation), with
he corresponding BioTrain data feature (averaged across the image con-
itions repetitions). We then selected only the 300 BioTest data, lineariz-
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1  
ng SynTest data and SynImagenet data EEG features corresponding to
he 300 highest correlation scores, thus obtaining a BioTest data ma-
rix of shape (200 test image conditions ×80 condition repetitions ×300
EG features), a linearizing SynTest data matrix of shape (200 test im-
ge conditions ×300 EEG features), and a SynImagenet data matrix of
hape (150,000 image conditions ×300 EEG features). 

In the identification step we started by averaging the BioTest data
cross all the 80 image conditions repetitions: this yielded feature vec-
ors of 300 components for each of the 200 image conditions. Next, we
orrelated (through a Pearson correlation) the feature vectors of each
ioTest data image condition with the feature vectors of all the can-
idate image conditions: the linearizing SynTest data image conditions
lus a varying amount of SynImagenet data image conditions. We in-
reased the set sizes of the SynImagenet candidate image conditions
rom 0 to 150,000 with steps of 1000 images (for a total of 151 set sizes),
here 0 corresponded to using only the linearizing SynTest data candi-
ate image conditions, and performed the zero-shot identification at ev-
ry set size. At each SynImagenet set size a BioTest data image condition
s considered correctly identified if the correlation coefficient between
ts feature vector and the feature vector of the corresponding linearizing
ynTest data image condition is higher than the correlation coefficients
etween its feature vector and the feature vectors of all other candidate
inearizing SynTest data and SynImagenet data image conditions. Thus,
e calculated the zero-shot identification accuracies through the ratio
f correctly classified images over all 200 BioTest images, obtaining a
ero-shot identification results vector of length (151 candidate image set
izes). We iterated the identification step 100 times, while always ran-
omly selecting different SynImagenet data image conditions at each set
ize, and then averaged the results across the 100 iterations. 

To extrapolate the drop in identification accuracy with larger candi-
ate image set sizes we fit the power-law function to the results of each
articipant. The power law function is defined as: 

 ( 𝑥 ) = 𝑎 𝑥 𝑏 

here 𝑥 is the image set size, 𝑎 and 𝑏 are constants learned during func-
ion fitting, and 𝑓 ( 𝑥 ) is the predicted zero-shot identification accuracy.

e fit the function using the 100 SynImagenet set sizes ranging from
0,200 to 150,200 images (along with their corresponding identification
ccuracies), and then used it to extrapolate the image set size required
or the identification accuracy to drop to 10% and 0.5%. 

.10. End-to-end encoding models of EEG visual responses 

We based our end-to-end encoding models ( Seeliger et al., 2021 ;
hosla et al., 2021 ; Allen et al., 2022 ; Khosla and Wehbe, 2022 ; St-
ves et al., 2022 ) on randomly initialized AlexNet architectures which,
nce trained, predicted the EEG responses to the test images ( Fig. 9 A ).
or the end-to-end training we randomly selected (100 image con-
epts ×10 exemplars per concept = 1000 image conditions) as the val-
dation partition, we used the remaining training image conditions as
he training partition, and the test image conditions as the test partition.

e trained two types of models: AlexNets that predicted the EEG chan-
els activity of single time points, and AlexNets that predicted the EEG
hannel activity of all time points. To match the models’ output with
he dimensionality of the EEG data we replaced AlexNet’s 1000-neurons
utput layer with a 17-neurons layer (in case of the single-time-points
odels, where each neuron represents one of the 17 EEG channels), or
ith a 1700-neurons layer (in case of the all-time-points models, where

ach neuron represents one of the 1700 EEG data features). Next, we
andomly initialized independent AlexNet instances for each participant
nd EEG time point ( t ) (in case of the single-time-points models), or for
ach participant (in case of the all-time-points models). We used Py-
orch ( Paszke et al., 2019 ) to train the AlexNets on a regression task:
iven the input training images and the corresponding target BioTrain
EG data (averaged across the image condition repetitions), the models
ad to optimize their weights so to minimize the mean squared error
5 
etween their predictions and the BioTrain data. For training we used
atch sizes of 64 images and the Adam optimizer with a learning rate of
0 − 5 , a weight decay term of 0, and the default value for the remaining
yperparameters. We trained the models on 50 data epochs, and syn-
hesized the EEG responses to the test image conditions using the model
eights of the epoch leading to the lowest validation loss. For each par-

icipant, this resulted in the end-to-end SynTest data matrix of shape
200 test image conditions ×17 EEG channels ×100 EEG time points). 

.11. Noise ceiling calculation 

We calculated the noise ceilings of the correlation and pairwise de-
oding analyses to estimate the theoretical maximum results given the
evel of noise in the BioTest data: higher noise ceilings indicate a higher
ata signal-to-noise ratio. If the results of the SynTest data reach this
heoretical maximum the encoding models are successful in explaining
ll the BioTest data variance which can be explained. If not, further
odel improvements could lead to more accurate predictions of neural
ata. 

For the noise ceiling estimation we randomly divided the BioTest
ata into two non-overlapping partitions of 40 image condition repeti-
ions each, where the first partition corresponded to the 40 repeats of
ioTest data image conditions used in the correlation and pairwise de-
oding analyses described above. We then performed the two analyses
hile substituting the SynTest data with the second BioTest data parti-

ion (averaged across image condition repetitions). This resulted in the
oise ceiling lower bound estimates. To calculate the upper bound esti-
ates we substituted the SynTest data with the average of the BioTest
ata over all 80 image condition repetitions and reiterated the two anal-
ses. We assume that the true noise ceiling is somewhere in between the
ower and the upper bound estimates. To avoid the results being biased
y one specific configuration of the BioTest data repeats we iterated the
orrelation and pairwise decoding analyses 100 times, while always se-
ecting different repeats for the two BioTest data partitions, and then
veraged the results across the 100 iterations. 

.12. Statistical testing 

To assess the statistical significance of the correlation, pairwise de-
oding and zero-shot identification analyses we tested all results against
hance using one-sample one-sided t-tests. Here, the rationale was to re-
ect the null hypothesis H0 of the analyses results being at chance level
ith a confidence of 95% or higher (i.e., with a P -value of P < 0.05),

hus supporting the experimental hypothesis H1 of the results being sig-
ificantly higher than chance. The chance level differed across analyses:
 in the correlation; 50% in the pairwise decoding; (1 / (200 test image
onditions + N ILSVRC-2012 image conditions)) in the zero-shot identi-
cation (where N varied from 0 to 150,000). When analyzing the lin-
arizing encoding models’ prediction accuracy using different amounts
f training data we used a two-way repeated measures ANOVA to reject
he null hypothesis H0 of no significant effects of number of image con-
itions and/or condition repetitions on the prediction accuracy, and a
epeated measures two-sided t -test to reject the null hypothesis H0 of no
ignificant differences between the effects of training image conditions
nd condition repetitions. We Fisher transformed the correlation scores
efore performing the significance tests. 

We controlled familywise error rate by applying a conservative
onferroni-correction to the resulting P -values to correct for the number
f EEG time points ( N = 100) in the correlation and pairwise decoding
nalyses, for the amount of training data quartiles ( N = 4) in the analysis
f the linearizing encoding models’ prediction accuracy as a function of
raining image conditions and condition repetitions, and for the num-
er of candidate images set sizes ( N = 151) in the zero-shot identification
nalysis. 

To calculate the confidence intervals of each statistic, we created
0,000 bootstrapped samples by sampling the participant-specific re-
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ults with replacement. This yielded empirical distributions of the re-
ults, from which we took the 95% confidence intervals. 

. Results 

.1. A large and rich EEG dataset of visual responses to objects on a 

atural background 

We used a RSVP paradigm ( Intraub, 1981 ; Keysers et al., 2001 ;
rootswagers et al., 2019 ) to collect a large EEG dataset of visual re-

ponses to images of objects on a natural background ( Fig. 1 C ). This
ataset contains data for 10 participants who viewed 16,540 training im-
ge conditions ( Fig. 1 A ) and 200 test image conditions ( Fig. 1 B ) coming
rom the THINGS database ( Hebart et al., 2019 ). To allow for unbiased
odeling the training and test images did not have any overlapping ob-

ect concepts. We presented each training image condition 4 times and
ach test image condition 80 times, for a total of 82,160 image trials
er participant over the course of four sessions. Thanks to the time-
fficiency of the RSVP paradigm we collected up to 15 times more data
han other typical recent M/EEG datasets used for modeling ( Cichy et al.,
014 ; Seeliger et al., 2018 ). This allowed us to extensively sample single
articipants while drastically reducing the experimental time. The par-
icipants performed the target detection task well above chance (mean
ccuracy = 99.55%, SD = 0.41, P < 0.05, one-sample one-sided t -test), in-
icating that stimulus onset asynchronies of 200 ms were sufficient for
hem to inform conscious visual perceptions of image content. During
reprocessing we epoched the EEG recordings from − 200 ms to 800 ms
ith respect to image onset, downsampled the resulting image epoch

rials to 100 time points, and retained only the 17 occipital and parietal
hannels. As the basis of all further data assessment we aggregated the
EG recordings into a biological training (BioTrain) data matrix of shape
16,540 training image conditions ×4 condition repetitions ×17 EEG
hannels ×100 EEG time points) and a biological test (BioTest) data ma-
rix of shape (200 test image conditions ×80 condition repetitions ×17
EG channels ×100 EEG time points), for each participant. We quali-
atively inspected the EEG responses by averaging them across the im-
ge conditions and repetitions dimensions, and visualizing the resulting
vent related potentials (ERPs) across time. The ERPs of participant 1
how peaks of activity every 200 ms, consistent with the SOAs of the
SVP paradigm ( Fig. 3 A ). The amplitude of the peaks decreases over

he epoch time, suggesting a process of neural habituation during the
SVP sequences ( Fig. 3 B ). The ERPs of all other participants are shown

n Supplementary Figs. 1 and 2 . Providing this EEG data in its raw as
ell as preprocessed form is the major contribution of this resource. 

.2. The BioTest EEG data is well predicted by linearizing encoding models 

We then assessed the suitability of this dataset for the development
f computational models of the visual brain. We employed the training
nd test data, respectively, to build and evaluate linearizing encoding
odels which predict individual participant’s EEG visual responses to

rbitrary images ( Wu et al., 2006 ; Kay et al., 2008 ; Naselaris et al.,
011 ; van Gerven, 2017 ; Kriegeskorte and Douglas, 2019 ). We based
ur encoding algorithm on deep neural networks (DNNs), connection-
st models which in the last decade have excelled in predicting human
nd non-human primate visual brain responses ( Cadieu et al., 2014 ;
amins et al., 2014 ; Güçlü and van Gerven, 2015 ; Storrs et al., 2021 ).
he building of encoding models involved two steps. In the first step
e nonlinearly transformed the image pixel values using four DNNs
re-trained on ILSVRC-2012 ( Russakovsky et al., 2015 ) commonly used
or modeling brain responses: AlexNet ( Krizhevsky, 2014 ), ResNet-50
 He et al., 2016 ), CORnet-S ( Kubilius et al., 2019 ) and MoCo ( He et al.,
020 ). Separately for each DNN we fed the training and test images, ex-
racted the corresponding feature maps across all layers, appended the
ayers’ data together and downsampled it to 1000 principal components
sing principal component analysis (PCA), resulting in the training DNN
6 
eature maps matrix of shape (16,540 training image conditions ×1000
eatures) and the test DNN feature maps matrix of shape (200 test image
onditions ×1000 features). In the second step we fitted the weights W t,c 

f several linear regressions that independently predicted each EEG fea-
ure’s response (i.e., the EEG activity at each combination of time points
 t ) and channels ( c )) to the training images by linearly combining the
raining feature maps of each DNN ( Fig. 2 A ). We then multiplied the
earned W t,c with the test DNN feature maps, obtaining the linearizing
ynthetic test (SynTest) EEG data matrix of shape (200 test image con-
itions ×17 EEG channels ×100 EEG time points) ( Fig. 2 B ). Following
his procedure we obtained different instances of linearizing SynTest
ata for each participant and DNN. A qualitative inspection reveals that
he AlexNet linearizing SynTest data ERPs (obtained by averaging the
ignal over the image conditions dimension) are highly overlapping with
he BioTest data ERPs ( Fig. 3 ). 

To quantitatively evaluate the linearizing encoding models’ predic-
ive power we estimated the similarity between the linearizing SynTest
ata and the BioTest data through a Pearson’s correlation ( Fig. 4 A ). We
orrelated each linearizing SynTest data EEG feature (i.e., each combi-
ation of EEG time points ( t ) and channels ( c )) with the corresponding
ioTest data feature (across the 200 test image conditions), resulting in a
orrelation coefficient matrix of shape (17 EEG channels ×100 EEG time
oints). We then averaged this matrix across the channels dimension,
btaining a correlation coefficient result vector with 100 components,
ne for each EEG time point. 

As a complementary way to evaluate the linearizing encoding mod-
ls’ predictive power we quantified the similarity between the lineariz-
ng SynTest data and the BioTest data through decoding ( Fig. 5 A ).
ecoding is a commonly used method in computational neuroscience
hich exploits similar information present between the trials of each

xperimental condition to classify neural data ( Haynes and Rees, 2006 ;
ur et al., 2009 ). If the linearizing SynTest data and the BioTest data

ave similar information, a decoding algorithm trained on the BioTest
ata would generalize its performance also to the linearizing SynTest
ata. We tested this through pairwise decoding: we trained linear sup-
ort vector machines (SVMs) to perform binary classification between
ach pair of the 200 BioTest data image conditions, and then tested them
n the corresponding pairs of linearizing SynTest data image conditions.
e performed this analysis independently for each time point ( t ), re-

ulting in a decoding accuracy matrix of shape (19,900 image condition
airs ×100 EEG time points). We then averaged this matrix across the
mage condition pairs dimension, obtaining a decoding accuracy result
ector with 100 components, one for each EEG time point. 

We observe that the correlation results averaged across partici-
ants start being significant at 60 ms after stimulus onset, and re-
ain significantly above chance until the end of the EEG epoch at
00 ms ( P < 0.05, one-sample one-sided t -test after Fisher’s z-transform,
onferroni-corrected). Significant correlation peaks occur for all DNNs
t 110 ms after stimulus onset, with AlexNet, ResNet-50, CORnet-S
nd MoCo having correlation coefficients of, respectively, 0.67, 0.66,
.67 and 0.66 ( P < 0.05, one-sample one-sided t -test after Fisher’s z-
ransform, Bonferroni-corrected), where the chance level is 0 ( Fig. 4 B ).
he correlation results not averaged across channels are highest for the
ccipital and parieto-occipital channels ( Supplementary Fig. 3 ). To
ain insights into the linearizing encoding algorithm we built encod-
ng models following three different approaches, and evaluated them
hrough the correlation analysis. First, we trained encoding models us-
ng the PCA downsampled feature maps of individual DNN layers. Initial
arts of the EEG response ( < 200 ms) are better predicted by early DNN
ayers, whereas later parts of the EEG response ( > 200 ms) are better
redicted by intermediate/high DNN layers ( Supplementary Fig. 4 ), in
ine with the view of a hierarchical correspondence between human and
achine vision ( Yamins et al., 2014 ; Cichy et al., 2016 ; Seeliger et al.,
018 ; Güçlü and van Gerven, 2015 ). Furthermore, the encoding perfor-
ance of the different layers seems to differ mostly at around 100 ms af-

er stimulus onset, suggesting that the layers mostly diverge in how they
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Fig. 3. ERPs of the BioTest data, AlexNet linearizing SynTest data, and AlexNet end-to-end SynTest data (of the DNNs trained to predict all EEG time points at 
once), obtained by averaging the EEG signal across image conditions and repetitions. The ERPs of the biological and synthetic data are largely overlapping. ( A ) 
Single-channel ERPs and ( B ) channel-average ERPs of a representative participant (number 1). 

p  

u  

fi  

5  

P  

t  

o  

m  

t  

p  

u  

s  

a  

2
 

s  

e  

o  

i  

A  

o  

s  

i  

(  

c  

s  

t  

i  

t  

h

3

s

 

s  

p  

a  

B  

a  

t  

n  

2  

F  

I  

s  

f  

i  

n  

w  

a
 

t  

t  

d  

o  

t  

W  

o  

d  

t  

f  

s  

T  

t
 

B  

d  

s  

a  

s  

w  

t  

c  

b  

l  
rocess low-level visual features. Second, we trained encoding models
sing DNN feature maps with different amounts of PCA components,
nding that the prediction accuracies slightly increase in the range [100
00] PCA components, and are nearly identical in the range [500 2000]
CA components ( Supplementary Fig. 5 ). This indicates that most of
he explained EEG variability is accounted for by a small ( < 100) amount
f independent DNN feature dimensions. Third, we trained encoding
odels using feature maps of untrained DNNs. Surprisingly, we found

hat untrained networks explain a significant portion of variance ( Sup-

lementary Fig. 6 ), especially at time points around 100 ms after stim-
lus onset, suggesting that a considerable amount of the early EEG re-
ponse can be accounted for by inductive biases already present in the
rchitecture of untrained DNNs ( Cichy et al., 2016 ; Dosovitskiy et al.,
020 ). 

Similarly, the pairwise decoding results averaged across participants
tart being significant at 60 ms after stimulus onset, with significant
ffects present until the end of the EEG epoch at 800 ms ( P < 0.05,
ne-sample one-sided t -test, Bonferroni-corrected). Significant decod-
ng peaks occur for all DNNs at 100–110 ms after stimulus onset, with
lexNet, ResNet-50, CORnet-S and MoCo having decoding accuracies
f, respectively, 90.31%, 88.52%, 91.03% and 88.21% ( P < 0.05, one-
ample one-sided t -test, Bonferroni-corrected), where the chance level
s 50% ( Fig. 5 B ). All participants yielded qualitatively similar results
 Figs. 4 C , 5 C ). Taken together, these results show that the linearizing en-
oding models are successful in predicting EEG data which robustly and
ignificantly resembles its biological counterpart. Further, they show
hat each participant’s neural responses can be consistently predicted
n isolation, thus highlighting the quality of the visual information con-
ained in our EEG dataset and its potential for the development of new
igh-temporal resolution models and theories of the visual brain. 

.3. The BioTest data is significantly identified in a zero-shot fashion using 

ynthesized data of up to 150,200 candidate images 

The previous analyses showed that our linearizing encoding models
ynthesize EEG data that significantly resembles its biological counter-
art. Here we explored whether we can leverage this high prediction
ccuracy to build algorithms that identify the image conditions of the
7 
ioTest data in a zero-shot fashion, namely, that identify arbitrary im-
ge conditions without prior training. If possible, this would contribute
o the goal of building models capable of identifying potentially infinite
eural data conditions on which they were never trained ( Kay et al.,
008 ; Seeliger et al., 2018 ; Horikawa and Kamitani, 2017 ) ( Fig. 6 A ).
or the identification we used the linearizing SynTest and the synthetic

magenet (SynImagenet) data, where the latter consisted of the synthe-
ized EEG responses to the 150,000 validation and test images coming
rom the ILSVRC-2012 image set ( Russakovsky et al., 2015 ), organized
n a data matrix of shape (150,000 image conditions ×17 EEG chan-
els ×100 EEG time points). Importantly, those images did not overlap
ith either the image set for which EEG data was recorded. The further
nalysis involved two steps: feature selection and identification. 

In the feature selection step we retained the 300 EEG channels and
ime points best predicted by the encoding models, as narrowing down
he EEG data to these features improved the identification accuracy. In
etail, we synthesized the EEG responses to the 16,540 training images,
btaining the synthetic train (SynTrain) data matrix of shape (16,540
raining image conditions ×17 EEG channels ×100 EEG time points).

e then correlated each BioTrain data feature (i.e., each combination
f EEG channels and EEG time points) with the corresponding SynTrain
ata feature (across the 16,540 training image conditions), and only re-
ained the 300 linearizing SynTest, BioTest and SynImagenet data EEG
eatures corresponding to the 300 highest correlation scores. This re-
ulted in feature vectors of 300 components for each image condition.
he best features are mostly occipital and parieto-occipital channels be-
ween 70 ms and 400 ms after stimulus onset ( Supplementary Fig. 7 ). 

In the identification step we correlated the feature vectors of each
ioTest data image condition with the feature vectors of all the can-
idate image conditions, where the candidate image conditions corre-
ponded to the linearizing SynTest data image conditions plus a varying
mount of SynImagenet data image conditions. We increased the set
izes of the SynImagenet candidate image conditions from 0 to 150,000
ith steps of 1000 images (for a total of 151 set sizes), and performed

he identification at every set size. At each set size a BioTest data image
ondition is considered correctly identified if the correlation coefficient
etween its feature vector and the feature vector of the corresponding
inearizing SynTest data image condition is higher than the correlation
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Fig. 4. Evaluating the linearizing encoding models’ prediction accuracy through a correlation analysis. ( A ) We correlated each combination of linearizing SynTest 
EEG data features (time points ( t ) and channels ( c )) with the corresponding combination of BioTest EEG data features, across the 200 test image conditions, and then 
averaged the correlation coefficients across channels. This resulted in one correlation score for each time point (red portion in the correlation results toy graph). ( B ) 
Correlation results averaged across participants. The linarizing SynTest data is significantly correlated to the BioTest data from 60 ms after stimulus onset until the end 
of the EEG epoch ( P < 0.05, one-sample one-sided t -test after Fisher’s z-transform, Bonferroni-corrected), with peaks at 110 ms. ( C ) Individual participants’ results. 
Error margins reflect 95% confidence intervals. Rows of asterisks indicate significant time points ( P < 0.05, one-sample one-sided t-tests after Fisher’s z-transform, 
Bonferroni-corrected). In gray is the area between the noise ceiling lower and upper bounds, the black dashed vertical lines indicate onset of image presentation, 
and the black dashed horizontal lines indicate the chance level of no experimental effect. 

8 
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Fig. 5. Evaluating the linearizing encoding models’ prediction accuracy through a pairwise decoding analysis. ( A ) At each time point ( t ) we trained an SVM to 
classify between two BioTest EEG data image conditions (using the channels vectors) and tested it on the two corresponding linearizing SynTest EEG data image 
conditions. We repeated this procedure across all image condition pairs, and then averaged the decoding accuracies across pairs. This resulted in one decoding score 
for each time point (red portion in the decoding results toy graph). ( B ) Pairwise decoding results averaged across participants. The linear classifiers trained on the 
BioTest data significantly decode the linearizing SynTest data from 60 ms after stimulus onset until the end of the EEG epoch ( P < 0.05, one-sample one-sided t -test, 
Bonferroni-corrected), with peaks at 100–110 ms. ( C ) Individual participants’ results. Error margins, asterisks, gray area and black dashed lines as in Fig. 4 . 
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oefficients between its feature vector and the feature vectors of all
ther candidate image conditions. We calculated identification accura-
ies through the ratio of successfully decoded image conditions over all
00 BioTest image conditions, obtaining a zero-shot identification result
ector with 151 components, one for each candidate image set size. The
esults of the correct linearizing SynTest data image condition falling
ithin the three or ten most correlated image conditions can be seen in
upplementary Figs. 9–12 . 
9 
The zero-shot identification results averaged across participants are
ignificant for all SynImagenet set sizes ( P < 0.05, one-sample one-sided
 -test, Bonferroni-corrected). With a SynImagenet set size of 0 (corre-
ponding to using only the 200 linearizing SynTest data image con-
itions as candidate image conditions) the BioTest data image condi-
ions are identified by AlexNet, ResNet-50, CORnet-S and MoCo with
ccuracies of, respectively, 74.75%, 75.9%, 81.35%, 70.6%, where the
hance level is equal to 1 / 200 test image conditions = 0.5%. As the



A.T. Gifford, K. Dwivedi, G. Roig et al. NeuroImage 264 (2022) 119754 

Fig. 6. Zero-shot identification of the BioTest data using the linearizing SynTest data and the synthesized EEG visual responses to the 150,000 ILSVRC-2012 validation 
and test image conditions (SynImagenet). ( A ) We correlated the best features of each BioTest data condition with different image set sizes of candidate synthetic 
image conditions (linearizing SynTest + SynImagenet data). At each image set size, a BioTest data condition is correctly identified if it is mostly correlated to its 
corresponding linearizing SynTest data condition, among all other synthetic data conditions. This resulted in one identification score for each image set size (red 
portion in the identification results toy graph). ( B ) Zero-shot identification results averaged across participants. With a SynImagenet set size of 0 the synthesized data 
of AlexNet, ResNet-50, CORnet-S, MoCo significantly identify the BioTest data with accuracies of, respectively, 74.75%, 75.9%, 81.35%, 70.6% ( P < 0.05, one-sample 
one-sided t -test, Bonferroni-corrected). With a SynImagenet set size of 150,000 the synthesized data of AlexNet, ResNet-50, CORnet-S, MoCo significantly identify 
the BioTest data with accuracies of, respectively, 15.4%, 16.25%, 21.05%, 12.40%. ( C ) Individual participants’ results. Rows of asterisks indicate significant image 
set sizes ( P < 0.05, one-sample one-sided t-tests, Bonferroni-corrected). Error margins and black dashed lines as in Fig. 4 . 
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ynImagenet set size increases the identification accuracies monoton-
cally decrease. With a SynImagenet set size of 150,000 (correspond-
ng to using the 200 linearizing SynTest data plus the 150,000 SynIma-
enet data image conditions as candidate image conditions) the BioTest
ata image conditions are identified by AlexNet, ResNet-50, CORnet-
 and MoCo with accuracies of, respectively, 15.4%, 16.25%, 21.05%,
10 
2.40%, where the chance level is equal to 1 / (200 test image con-
itions + 150,000 ILSVRC-2012 image conditions) < 10 − 5 % ( Fig. 6 B ).
mportantly, even when the SynTest data image conditions are not iden-
ified, our algorithm often selects candidate image conditions conceptu-
lly and visually similar to the correct one ( Supplementary Fig. 13 ). To
xtrapolate the identification accuracies to potentially larger candidate
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Fig. 7. Linearizing encoding models’ prediction accuracy 
as a function of training data. ( A ) Training linearizing en- 
coding models using different quartiles of image condi- 
tions and condition repetitions result in a significant ef- 
fect of both factors ( P < 0.05, two-way repeated mea- 
sures ANOVA after Fisher’s z-transform). ( B ) Training lin- 
earizing encoding models using all image conditions leads 
to higher prediction accuracies than training them using 
all condition repetitions ( P < 0.05, repeated measures 
two-sided t -test after Fisher’s z-transform, Bonferroni- 
corrected). The gray dashed line represents the noise ceil- 
ing lower bound. The asterisks indicate a significant dif- 
ference between all image conditions and all condition 
repetitions ( P < 0.05, repeated measures two-sided t - 
test after Fisher’s z-transform, Bonferroni-corrected). Er- 
ror margins and gray dashed lines as in Fig. 4 . 
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mage set sizes we fit a power-law function to the results. We averaged
he extrapolations across participants, and found that the identification
ccuracy would remain above 10% with a candidate image set size of
16,918 for AlexNet, 759,895 for ResNet-50, 4,514,036 for CORnet-S
nd 355,826 for MoCo, and above 0.5% (the original chance level) with
 candidate image set size of 10 11.25 for AlexNet, 10 10.14 for ResNet-50,
0 13.02 for CORnet-S and 10 9.04 for MoCo ( Supplementary Fig. 8 ). All
articipants yielded qualitatively similar results ( Fig. 6 C ). These results
emonstrate that our dataset allows building algorithms that reliably
dentify arbitrary neural data conditions, in a zero-shot fashion, among
illions of possible alternatives. 

.4. The amount of training image conditions and condition repetitions 

oth contribute to modeling quality 

To understand which aspects of our EEG dataset contribute to its
uccessful modeling we examined the linearizing encoding models’ pre-
iction accuracy as a function of the amount of trials with which they
re trained. The amount of training trials is determined by two factors:
he number of image conditions and the number of EEG repetitions per
ach image condition. Both factors may improve the modeling of neural
esponses in different ways, as high numbers of image conditions lead
o a richer training set which more comprehensively samples the rep-
esentational space underlying vision, and high numbers of condition
epetitions increase the signal to noise ratio (SNR) of the training set. 

To disentangle the effect of both factors we trained linearizing en-
oding models using different quartiles of training image conditions
4135, 8270, 12,405, 16,540) and condition repetitions (1, 2, 3, 4), and
ested their predictions through the correlation analysis. We performed
n ANOVA on the correlation results averaged over participants, EEG
eatures (all channels; time points between 60 and 500 ms) and DNN
odels, and observed a significant effect of both number of image con-
itions and condition repetitions, along with a significant interaction
f the two factors ( P < 0.05, two-way repeated measures ANOVA af-
er Fisher’s z-transform) ( Fig. 7 A ). All participants yielded qualitatively
imilar results ( Supplementary Fig. 14 ). This suggests that the amount
f image conditions and condition repetitions both improve the model-
ng of neural data. 

We then asked which of the two factors contributes more to the lin-
arizing encoding models’ prediction accuracy. For this we compared
odel prediction accuracy for cases where the number of repetitions or

onditions differed, but the total number of trials was the same. As we
ad four trial repetitions, we divided the total amount of training trials
nto quartiles (25%, 50%, 75% and 100% of the total training trials).
t each quartile we trained linearizing encoding models using all image
onditions and the quartile’s percentage of condition repetitions, and
ested their predictions through the correlation analysis. For example,
t the first quartile we trained linearizing encoding models using all
mage conditions and one condition repetition, corresponding to 25%
f the total training data. To compare, we repeated the same procedure
11 
hile using all condition repetitions and the quartile’s percentage of im-
ge conditions. The correlation results averaged across participants, EEG
eatures (all channels; time points between 60 and 500 ms) and DNNs
how that using all image conditions (and quartiles of condition repe-
itions) leads to higher prediction accuracies than using all condition
epetitions (and quartiles of image conditions) ( P < 0.05, repeated mea-
ures two-sided t -test after Fisher’s z-transform, Bonferroni-corrected)
 Fig. 7 B ). All participants yielded qualitatively similar results ( Supple-

entary Fig. 15 ). This indicates that although both factors improve the
odeling of neural data, the amount of image conditions does so here

o a larger extent. 

.5. The linearizing encoding models’ predictions generalize across 

articipants 

Next we explored whether our linearizing encoding models’ predic-
ions generalize to new participants. We asked: Can we accurately syn-
hesize a participant’s EEG responses without using any of their data
or the encoding models’ training? If possible, our dataset could serve
s a useful benchmark for the development and assessment of meth-
ds that combine EEG data across participants ( Koyamada et al., 2015 ;
axby et al., 2020 ; Richard et al., 2020 ; Kwon et al., 2019 ; Zhang et al.,
021 ). To verify this we trained linearizing encoding models on the av-
raged SynTrain EEG data of all minus one participants ( Fig. 8 A ), and
ested their predictions against the BioTest data of the left out partici-
ant through the correlation and pairwise decoding analyses ( Fig. 8 B ).
e repeated this procedure for all participants. 
When averaging the Pearson correlation coefficients across partic-

pants we observe that the correlation between the linearizing Syn-
est data and the BioTest data starts being significant at 60 ms after
timulus onset, and remains significantly above chance until the end
f the EEG epoch at 800 ms ( P < 0.05, one-sample one-sided t -test af-
er Fisher’s z-transform, Bonferroni-corrected). Significant correlation
eaks occur for all DNNs at 130 ms after stimulus onset, with AlexNet,
esNet-50, CORnet-S and MoCo having correlation coefficients of, re-
pectively, 0.45, 0.45, 0.45, 0.44 ( P < 0.05, one-sample one-sided t -
est after Fisher’s z-transform, Bonferroni-corrected), where the chance
evel is 0 ( Fig. 8 C ). Likewise, the decoding accuracies averaged across
articipants start being significant at 60 ms after stimulus onset, with
ignificant effects present until the end of the EEG epoch at 800 ms ( P
 0.05, one-sample one-sided t -test, Bonferroni-corrected). Significant
ecoding peaks occur for all DNNs at 130 ms after stimulus onset, with
lexNet, ResNet-50, CORnet-S and MoCo having decoding accuracies of,
espectively, 67.40%, 66.58%, 67.58%, 66.20% ( P < 0.05, one-sample
ne-sided t -test, Bonferroni-corrected), where the chance level is 50%
 Fig. 8 D ). In both analyses all participants yielded qualitatively simi-
ar results ( Supplementary Figs. 16 and 17 ). This shows that our EEG
ataset is a suitable testing ground for methods which generalize and
ombine EEG data across participants. 
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Fig. 8. Evaluating the prediction accuracy of linearizing encoding models which generalize to novel participants, through correlation and pairwise decoding analyses. 
( A ) We trained linearizing encoding models on the averaged SynTrain EEG data of all minus one participants. ( B ) We tested the encoding models’ predictions against 
the BioTest data of the left out participant through the correlation and pairwise decoding analyses. This resulted in one correlation/decoding score for each time 
point (red portion in the correlation/decoding results toy graph). ( C ) Correlation results averaged across participants. The linearizing SynTest data is significantly 
correlated to the BioTest data from 60 ms after stimulus onset until the end of the EEG epoch ( P < 0.05, one-sample one-sided t -test after Fisher’s z-transform, 
Bonferroni-corrected), with peaks at 130 ms. ( D ) Pairwise decoding results averaged across participants. The linear classifiers trained on the BioTest data significantly 
decode the ĺ inearizing SynTest data from 60 ms after stimulus onset until the end of the EEG epoch ( P < 0.05, one-sample one-sided t -test, Bonferroni-corrected), 
with peaks at 130 ms. Error margins, asterisks, gray area and black dashed lines as in Figs. 4 and 5 . 
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.6. The BioTest EEG data is successfully predicted by end-to-end encoding 

odels based on the AlexNet architecture 

So far we predicted the synthetic data through the linearizing encod-
ng framework, which relied on DNNs pre-trained on an image classi-
cation task. An alternative encoding approach, named end-to-end en-
oding ( Seeliger et al., 2021 ; Khosla et al., 2021 ; Allen et al., 2022 ), is
ased on DNNs trained from scratch to predict the neural responses to
rbitrary images. This direct infusion of brain data during the model’s
earning could lead to DNNs having internal representations that more
losely match the properties of the visual brain ( Sinz et al., 2019 ;
llen et al., 2022 ). However, with a few exceptions ( Seeliger et al.,
021 ; Khosla et al., 2021 ; Allen et al., 2022 ; Khosla and Wehbe, 2022 ;
t-Yves et al., 2022 ), the development of end-to-end encoding models
as been so far prohibitive due to the large amount of data needed
o train a DNN in combination with the small size of existing brain
atasets. Thus, in this final analysis we exploited the largeness and
ichness of our EEG dataset to train randomly initialized AlexNet ar-
hitectures to synthesize the EEG responses to images, independently
or each participant. We trained end-to-end models that (i) each pre-
icted the channels activity of one time point, and that (ii) each pre-
icted the channels activity of all time points. We started by replac-
ng AlexNet’s 1000-neurons output layer with a 17-neurons layer (in
ase of single-time-points models, where each neuron corresponds to
ne of the 17 EEG channels) or with a 1700-neurons output layer (in
ase of all-time-points models, where each neuron corresponds to one
f the 1700 EEG data features). Then, for each participant and EEG
ime point ( t ) (single-time-points models), or for each participant (all-
ime-points models), we trained one model to predict the multi-channel
EG responses to visual stimuli using the training images as inputs and
he corresponding BioTrain data as output targets ( Fig. 9 A ). We de-
loyed the trained networks to synthesize the EEG responses to the 200
est images. Similarly to the linearizing SynTest data, the end-to-end
ynTest data ERPs are highly overlapping with the BioTest data ERPs
 Fig. 3 ). Finally, we evaluated the end-to-end encoding model’s predic-
ion accuracy through the correlation and pairwise decoding analyses
 Fig. 9 B ). 

We observe that the correlation results averaged across participants
tart being significant at 60 ms after stimulus onset, with correlation co-
fficient peaks at 110 ms of 0.68 (single-time-points models) and 0.63
all-time-points models), and have significant effects until 650 ms ( P <
.05, one-sample one-sided t -test after Fisher’s z-transform, Bonferroni-
orrected) ( Fig. 9 C ). The correlation results not averaged across chan-
els are highest for the occipital and parieto-occipital channels ( Sup-

lementary Fig. 18 ). Similarly, the pairwise decoding results averaged
cross participants start being significant at 60 ms after stimulus onset,
ith decoding accuracy peaks at 100 ms of 91.43% (single-time-points
odels) and 86.58% (all-time-points models), and have significant ef-

ects until 670 ms ( P < 0.05, one-sample one-sided t -test, Bonferroni-
orrected) ( Fig. 9 D ). All participants yielded qualitatively similar re-
ults ( Supplementary Figs. 19 and 20 ). The models encoding single
nd all time points resulted in qualitatively similar accuracies, with the
ingle time points model having moderately higher prediction accura-
ies. Improvements in encoding predictions might come from recurrent
odels that incorporate the temporal dimension of the EEG signal in

heir architecture, such as recurrent or long short-term memory net-
orks. This proves that our EEG dataset allows for the successful train-

ng of DNNs in an end-to-end fashion, paving the way for a stronger
ymbiosis between brain data and deep learning models benefitting
oth neuroscientists interested in building better models of the brain
 Seeliger et al., 2021 ; Khosla et al., 2021 ; Allen et al., 2022 ) and com-
uter scientists interested in creating better performing and more brain-
ike artificial intelligence algorithms through inductive biases from bi-
logical intelligence ( Sinz et al., 2019 ; Hassabis et al., 2017 ; Ullman,
019 ; Toneva and Wehbe, 2019 ; Yang et al., 2022 ; Dapello et al.,
022 ). 
13 
. Discussion 

.1. Summary 

We used a RSVP paradigm ( Intraub, 1981 ; Keysers et al., 2001 ;
rootswagers et al., 2019 ) to collect a large and rich EEG dataset of neu-

al responses to images of real-world objects on a natural background,
hich we release as a tool to foster research in vision neuroscience and

omputer vision. Through computational modeling we established the
uality of this dataset in five ways. First, we trained linearizing encod-
ng models ( Wu et al., 2006 ; Kay et al., 2008 ; Naselaris et al., 2011 ;
an Gerven, 2017 ; Kriegeskorte and Douglas, 2019 ) that successfully
ynthesized the EEG responses to arbitrary images. Second, we correctly
dentified the recorded EEG data image conditions in a zero-shot fashion
 Kay et al., 2008 ; Seeliger et al., 2018 ; Horikawa and Kamitani, 2017 ),
sing EEG synthesized responses to hundreds of thousands of candidate
mage conditions. Third, we show that both the high number of condi-
ions as well as the trial repetitions of the EEG dataset contribute to the
rained model’s prediction accuracy. Fourth, we built encoding mod-
ls whose predictions well generalize to novel participants. Fifth, we
emonstrate full end-to-end training ( Seeliger et al., 2021 ; Khosla et al.,
021 ; Allen et al., 2022 ) of randomly initialized DNNs that output EEG
esponses for arbitrary input images. 

.2. The benefits of large-scale datasets 

In the last years cognitive neuroscientists have drastically increased
he scope of their recordings from datasets with dozens of stimuli
o datasets comprising several thousands of stimuli per participant
 Chang et al., 2019 ; Naselaris et al., 2021 ; Allen et al., 2022 ). Com-
ared to their predecessors, these large datasets more comprehensively
ample the visual space and interact better with modern data-hungry
achine learning algorithms. In this spirit we extensively sampled 10
articipants with 82,160 trials spanning 16,740 image conditions, and
howed how this unprecedented size contributes to high modeling per-
ormances. We released the data in both its raw and preprocessed format
eady for modeling to allow researchers of different analytical perspec-
ives to use the dataset in their preferred way immediately. We believe
he largeness of this dataset holds great promise for neuroscientists in-
erested in further improving theories and models of the visual brain,
s well as computer scientists interested in improving machine vision
odels through biological vision constraints ( Sinz et al., 2019 ; Hassabis

t al., 2017 ; Ullman, 2019 ; Toneva and Wehbe, 2019 ; Yang et al., 2022 ;
apello et al., 2022 ). 

.3. Linearizing encoding modeling 

We showcased the potential of the dataset for modeling visual
esponses by building linearizing encoding algorithms ( Wu et al.,
006 ; Kay et al., 2008 ; Naselaris et al., 2011 ; van Gerven, 2017 ;
riegeskorte and Douglas, 2019 ) that predicted EEG visual responses

o arbitrary images. The linearizing encoding models synthesized data
hich significantly resembles its biological counterpart robustly and

onsistently across all participants, not only in terms of its univariate
ctivation (ERPs), but crucially also in terms of the visual information
ontained in its multivariate activity pattern (as demonstrated by the
orrelation, decoding and identification analyses). These results high-
ight the signal quality of the EEG dataset, making it a promising can-
idate for testing existing hypotheses of visual mechanisms, and for the
evelopment of new high-temporal resolution models and theories of
he neural dynamics of vision capable of predicting, decoding and even
xplaining visual object recognition. 

We built linearizing encoding models using four distinct DNNs, find-
ng that differences in architecture (feedforward vs. residual vs. recur-
ent) and learning algorithm (supervised vs. self-supervised) did not lead
o qualitative changes in brain prediction accuracies ( Storrs et al., 2021 ;
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Fig. 9. Evaluating the end-to-end encoding 
models’ prediction accuracy through corre- 
lation and pairwise decoding analyses. ( A ) 
Single-time-points models: at each EEG time 
point ( t ) we trained one encoding model end- 
to-end to predict the SynTrain data channel re- 
sponses using the corresponding training im- 
ages as input. Additionally, we trained end-to- 
end encoding models to predict all EEG time 
points and channel responses at once (algorith- 
mic visualization not shown). ( B ) We used the 
trained encoding models to predict the end- 
to-end SynTest data using the test images as 
input, and evaluated their prediction accura- 
cies by comparing the end-to-end SynTest and 
BioTest data through correlation and pairwise 
decoding analyses. This resulted in one cor- 
relation/decoding score for each time point 
(red portion in the correlation/decoding re- 
sults toy graph). ( C ) Correlation results aver- 
aged across participants. The end-to-end Syn- 
Test data is significantly correlated to the 
BioTest data from 60 ms after stimulus onset 
until 650 ms ( P < 0.05, one-sample one-sided 
t -test after Fisher’s z-transform, Bonferroni- 
corrected), with peaks at 110 ms. ( D ) Pairwise 
decoding results averaged across participants. 
The linear classifiers trained on the BioTest 
data significantly decode the end-to-end Syn- 
Test data from 60 ms after stimulus onset until 
670 ms ( P < 0.05, one-sample one-sided t -test, 
Bonferroni-corrected), with peaks at 100 ms. 
Error margins, asterisks, gray area and black 
dashed lines as in Figs. 4 and 5 . 
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onwell et al., 2022 ). However, despite prediction accuracy being an im-
ortant evaluation metric, it is not informative of how the different DNNs
re making the predictions ( Schyns et al., 2022 ). For example, are they
sing different portions of the input images? Or are they informing their
redictions based on different visual representations/transformations?
e believe that addressing these (and other) underexplored questions
ill result in a better understanding and interpretability of DNNs as
odels of the brain, and that this will in turn lead to the engineering of

rain models with higher predictive and explanatory power. 
As expected, the prediction accuracy of our encoding algorithms did

ot reach the noise ceiling level ( Supplementary Figs. 21 and 22 ), in-
icating that our dataset is well suited for further model improvements.
nterestingly, we found that the modeling accuracy is not homogeneous
cross time: the differences between the prediction accuracy and the
oise ceiling are smaller in the first 100 ms after image onset, and peak
t 200–220 ms, suggesting that the four DNNs used are more similar to
he brain at earlier stages of visual processing. This calls for future im-
rovements in model building to more closely match the internal rep-
14 
esentations of the brain at all time points. Two observations in our
inearizing encoding modeling results hint to a potentially promising
irection to achieve this. First, we showed that trained DNNs are only
elatively better than untrained ones in predicting the EEG signal, espe-
ially at earlier time points ( ∼100 ms) (in line with Cichy et al., 2016 ):
 considerable amount of the early EEG response is thus explained by
nductive biases built in the architecture of untrained DNNs. Second, the
rediction accuracies (of both trained and untrained DNNs) are closer to
oise ceiling for early EEG time points (thought to represent the initial
ow-level visual processing). With these two points in mind, we propose
hat improvements in brain predictions might come from incorporating
NNs with more high-level/semantic representations. Improvements in

he same direction might also come from investigating the differences
etween trained vs. untrained networks, and how these differences con-
ribute to better brain predictions. For example, how do the visual rep-
esentations of DNNs change after training? Which aspects of neural
epresentations are predicted by trained models, and not by untrained
nes? Answering these questions could give novel insight into the nec-
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ssary and sufficient properties that computer vision algorithms must
ave to be adequate models of the brain. 

.4. Both number of image conditions and condition repetitions improve 

odeling quality 

Building linearizing encoding algorithms with different amounts of
raining data revealed that the encoding models’ prediction accuracies
re significantly affected by both the amount of EEG image conditions
to a higher extent) and repetitions of measurements (to a lower extent).
iven that the noise ceiling lower bound estimate is not reached, these
ndings suggest that the prediction accuracy of the linearizing encod-

ng models would have benefited from either more training data trials,
r from a training dataset with the same amount of trials but having
ore image conditions and less repetitions of measurements. Based on

hese observations, for future dataset collections we recommend prior-
tizing the amount of stimuli conditions over the amount of repetitions
f measurements. 

.5. End-to-end encoding 

So far limitations in neural dataset sizes led computational neurosci-
ntists to model brain data mostly using pre-trained DNNs ( Cadieu et al.,
014 ; Yamins et al., 2014 ; Güçlü and van Gerven, 2015 ; Naselaris et al.,
015 ; Seeliger et al., 2018 ). Here, we leveraged the largeness and rich-
ess of our dataset to demonstrate, for the first time to our knowledge
ith EEG data, the feasibility of training a randomly initialized AlexNet
rchitecture to predict the neural responses to arbitrary images in an
nd-to-end fashion ( Seeliger et al., 2021 ; Khosla et al., 2021 ; Allen et al.,
022 ; Khosla and Wehbe, 2022 ; St-Yves et al., 2022 ). Compared to lin-
arizing encoding, where the DNN representations are biased on arbi-
rary tasks which might not well reflect the representations of the visual
rain, the end-to-end encoding approach opens the doors to training
omplex computational algorithms directly with brain data, potentially
eading to models which more closely mimic the internal representa-
ion of the visual system ( Sinz et al., 2019 ; Allen et al., 2022 ). To gain
nsight into the algorithm of the visual brain the internal representa-
ions of these models can be visualized ( Zeiler and Fergus, 2014 ), in-
erpreted ( Bau et al., 2020 ), and even compared across models (e.g.,
omparing the features of two DNNs trained to predict EEG and fMRI
ata, respectively). Training DNNs end-to-end with neural data will in
urn make it possible for computer scientists to use the neural rep-
esentations of biological systems as inductive biases to improve the
erformance of artificial systems under the assumption that increas-
ng the brain-likeness of computer models could increase their perfor-
ance in tasks at which humans excel ( Sinz et al., 2019 ; Hassabis et al.,
017 ; Ullman, 2019 ; Toneva and Wehbe, 2019 ; Yang et al., 2022 ;
apello et al., 2022 ). For example, computer vision models can be bi-
sed by neural data through multitask learning ( Caruana, 1997 ), trans-
er learning ( Pan and Yang, 2009 ) or multimodal learning ( Ngiam et al.,
011 ) training paradigms. 

.6. Zero-shot identification 

Decoding models in neuroscience typically classify between only a
ew data conditions, while relying on data exemplars from these same
onditions to train ( Haynes and Rees, 2006 ; Mur et al., 2009 ). As a re-
ult, their performance fails to generalize to the unlimited space of dif-
erent brain states. Here we exploited the prediction accuracy of the
ynthesized EEG responses to build zero-shot identification algorithms
hat identify potentially infinite neural data image conditions, with-
ut the need of prior training ( Kay et al., 2008 ; Seeliger et al., 2018 ;
orikawa and Kamitani, 2017 ). Through this framework we identified

he BioTest EEG image conditions between hundreds of thousands of
andidate image conditions. Even when the identification algorithm
15 
ailed to assign the correct image condition to the biological EEG re-
ponses, we show that it nevertheless selected a considerable amount
up to 45%) of the correct image conditions as the first three or ten
hoices ( Supplementary Figs. 9–12 ), and that it often selected image
onditions conceptually and visually similar to the correct one ( Supple-

entary Fig. 13 ). These results suggest that our dataset is a good start-
ng ground for the future creation of zero-shot identification algorithms
o be deployed not only in research, but also in cutting-edge brain com-
uter interface (BCI) technology ( Abiri et al., 2019 ; Petit et al., 2021 ). 

.7. Inter-participant predictions 

Typically, computational models in neuroscience are trained and
valuated on the data of single participants ( Kay et al., 2008 ;
amins et al., 2014 ; Güçlü and van Gerven, 2015 ; Seeliger et al., 2018 ;
orikawa and Kamitani, 2017 ). While this approach is well motivated
y the neural idiosyncrasies of every individual ( Charest et al., 2014 ),
t fails to produce models that leverage the shared information across
ultiple brains. Here we show that our encoding models well predict

ut-of-set participants, indicating that our dataset is a suitable testing
round for methods which generalize and combine neural data across
articipants, as well as for BCI technology that can be readily used on
ovel participants without the need of calibration ( Haxby et al., 2020 ;
ichard et al., 2020 ; Kwon et al., 2019 ; Zhang et al., 2021 ). 

.8. Dataset limitations 

A major limitation of our dataset is the backward and forward
oise introduced by the very short (200 ms) stimulus onset asynchronies
SOAs) of the RSVP paradigm ( Intraub, 1981 ; Keysers et al., 2001 ;
rootswagers et al., 2019 ). The forward noise at a given EEG image trial
omes from the ongoing neural activity of the previous trial, whereas
he backward noise coming from the following trial starts from around
60 ms after image onset, which corresponds to the SOA length plus
he amount of time required for the visual information to travel from
he retina to the visual cortex. Despite these noise sources, we showed
hat the visual responses are successfully predicted during the entire
EG epoch, suggesting that the visual representation of an image is
ept in visual memory and continues being processed even after being
asked with the following images ( King and Wyart, 2021 ). We believe

hat averaging the EEG image conditions across several repetitions of
easurements reduced the noise, and that the backward noise was fur-

her mitigated given that the neural processing required to detect and
ecognize object categories can be achieved in the first 150 ms of vision
 Thorpe et al., 1996 ; Rousselet et al., 2002 ). 

A second limitation concerns the ecological validity of the dataset.
he stimuli images used consisted of objects presented at foveal vision
ith natural backgrounds that have little clutter. Furthermore, partic-

pants were asked to constantly gaze at a central fixation target. This
oes not truthfully represent human vision, in which objects are per-
eived and recognized also when at the periphery of the visual field,
ithin cluttered scenes, and while making eye movements. 

Third, our participants’ sample is biased towards young adults, and
ight not be representative of how visual object recognition occurs in

nfants, children or the elderly. Future studies could investigate poten-
ial age-related differences by collecting large amounts of visual re-
ponses from participants across the life span. Despite these limita-
ions, our results pave the way towards studies aiming to provide large
mounts of EEG responses recorded during more natural viewing con-
itions. 

.9. Contribution to the THINGS initiative 

The visual brain is an ensemble of billions of neurons communicat-
ng with high spatial and temporal precision. However, neither cur-
ent neural recording modalities, nor single lab efforts can capture
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his complexity. This motivates the need to integrate data across dif-
erent imaging modalities and labs. To address this challenge, the so-
alled THINGS initiative promotes using the THINGS database to col-
ect and share behavioral and neuroscientific datasets for the same set
f images - also used here - among vision researchers ( https://things-
nitiative.org/ ). We contribute to the initiative by providing rich high
emporal resolution EEG data, that complements other datasets in both
 within- and between-modality fashion. As an example of the within-
odality fashion, Grootswagers and collaborators recently published an
EG dataset of visual responses to images coming from the THINGS
atabase ( Grootswager et al., 2022 ). While their dataset comprises more
articipants and image conditions, our dataset provides more repetitions
f measurements, longer image presentation latencies, and an extensive
ssessment of the dataset’s potential based on the resulting high signal-
o-noise ratio. Researchers can choose between one or the other based
n the nature, requirements and constraints of their own experiments.
s an example of the between-modality fashion, Hebart and collabo-
ators recorded a large-scale fMRI/MEG datasets of responses to im-
ges from the THINGS database ( Hebart et al., 2022 ). Our data can be
sed to make bridges from the EEG domain to the fMRI and MEG do-
ains through modeling frameworks such as representational similarity

nalysis ( Kriegeskorte et al., 2008 ; Cichy et al., 2014 , 2016 ; Khaligh-
azavi et al., 2017 ), thus promoting a more integrated understanding
f the neural basis of visual object recognition. 

. Conclusion 

We view our EEG dataset as a valuable tool for computational neu-
oscientists and computer scientists. We believe that its largeness, rich-
ess and quality will facilitate steps towards a deeper understanding of
he neural mechanisms underlying visual processing and towards more
uman-like artificial intelligence models. 

ata availability 

The raw and preprocessed EEG dataset, the resting state EEG data,
he stimuli image set and the extracted DNN feature maps are available
n OSF at https:/doi.org/10.17605/OSF.IO/3JK45 . 

ode availability 

The code to reproduce all the results is available on GitHub at https:
/github.com/gifale95/eeg _ encoding . 

eclaration of Competing Interest 

The authors declare no competing interests. 

redit authorship contribution statement 

Alessandro T. Gifford: Conceptualization, Data curation, Formal
nalysis, Investigation, Methodology, Software, Visualization, Writing
original draft, Writing – review & editing. Kshitij Dwivedi: Method-
logy, Supervision, Writing – review & editing. Gemma Roig: Supervi-
ion, Writing – review & editing. Radoslaw M. Cichy: Conceptualiza-
ion, Funding acquisition, Methodology, Resources, Supervision, Writ-
ng – review & editing. 

ata availability 

I have shared the link to my data/code in the manuscript. 

cknowledgments 

A.T.G. is supported by a PhD fellowship of the Einstein Center for
eurosciences. G.R. is supported by the Alfons and Gertrud Kassel Foun-
ation. R.M.C. is supported by German Research Council (DFG) Grant
16 
os. (CI 241/1-1, CI 241/3-1, CI 241/1-7) and the European Research
ouncil (ERC) starting grant (ERC-StG-2018–803370). We thank Martin
ebart for support with the THINGS database. We thank Daniel Kaiser
nd Kendrick Kay for helpful comments on the manuscript. We thank
he HPC Service of ZEDAT, Freie Universität Berlin, for computing time.

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.neuroimage.2022.119754 . 

eferences 

biri, R., Borhani, S., Sellers, E.W., Jiang, Y., Zhao, X., 2019. A comprehensive review
of EEG-based brain – computer interface paradigms. J. Neural. Eng. 16 (1), 011001.
doi: 10.1088/1741-2552/aaf12e . 

llen, E.J., St-Yves, G., Wu, Y., Breedlove, J.L., Prince, J.S., Dowdle, L.T., Nau, M.,
Caron, B., Pestilli, F., Charest, I., Hutchinson, J.B., Naselaris, T., Kay, K., 2022. A
massive 7T fMRI dataset to bridge cognitive neuroscience and computational intelli-
gence. Nat. Neurosci. 25 (1), 116–126. doi: 10.1038/s41593-021-00962-x . 

ankson, B.B., Hebart, M.N., Groen, I.I., Baker, C.I., 2018. The temporal evo-
lution of conceptual object representations revealed through models of be-
havior, semantics and deep neural networks. Neuroimage, 178, 172–182.
doi: 10.1016/j.neuroimage.2018.05.037 . 

au, D., Zhu, J.Y., Strobelt, H., Lapedriza, A., Zhou, B., Torralba, A., 2020. Understanding
the role of individual units in a deep neural network. Proc. Natl. Acad. Sci. 117 (48),
30071–30078. doi: 10.1073/pnas.1907375117 . 

rainard, D.H., 1997. The psychophysics toolbox. Spat. Vis. 10, 433–436.
doi: 10.1163/156856897x00357 . 

adieu, C.F., Hong, H., Yamins, D.L.K., Pinto, N., Ardila, D., Solomon, E.A., Majaj, N.J.,
DiCarlo, J.J., 2014. Deep neural networks rival the representation of primate IT
cortex for core visual object recognition. PLoS Comput. Biol. 10 (12), e1003963.
doi: 10.1371/journal.pcbi.1003963 . 

arandini, M., Demb, J.B., Mante, V., Tolhurst, D.J., Dan, Y., Olshausen, B.A., Gallant, J.L.,
Rust, N.C., 2005. Do we know what the early visual system does? J. Neurosci. 25 (46),
10577–10597. doi: 10.1523/JNEUROSCI.3726-05.2005 . 

aruana, R., 1997. Multitask learning. Mach. Learn. 28 (1), 41–75.
doi: 10.1023/A:1007379606734 . 

hang, N., Pyles, J.A., Marcus, A., Gupta, A., Tarr, M., Aminoff, E.M., 2019. BOLD5000,
a public fMRI dataset while viewing 5000 visual images. Sci. Data, 6 (1), 1–18.
doi: 10.1038/s41597-019-0052-3 . 

harest, I., Kievit, R.A., Schmitz, T.W., Deca, D., Kriegeskorte, N., 2014. Unique semantic
space in the brain of each beholder predicts perceived similarity. Proc. Natl. Acad.
Sci. 111 (40), 14565–14570. doi: 10.1073/pnas.1402594111 . 

ichy, R.M., Kaiser, D., 2019. Deep neural networks as scientific models. Trends Cogn.
Sci., (Regul. Ed.) 23 (4), 305–317. doi: 10.1016/j.tics.2019.01.009 . 

ichy, R.M., Khosla, A., Pantazis, D., Torralba, A., Oliva, A., 2016. Comparison
of deep neural networks to spatio-temporal cortical dynamics of human visual
object recognition reveals hierarchical correspondence. Sci. Rep. 6 (1), 1–13.
doi: 10.1038/srep27755 . 

ichy, R.M., Pantazis, D., Oliva, A., 2014. Resolving human object recognition in space
and time. Nat. Neurosci. 17 (3), 455–462. doi: 10.1038/nn.3635 . 

onwell C., Prince J.S., Alvarez G.A., Konkle T., 2022. Large-scale benchmarking of di-
verse artificial vision models in prediction of 7T human neuroimaging data. bioRxiv .
doi: 10.1101/2022.03.28.485868 . 

apello J., Kar K., Schrimpf M., Geary R., Ferguson M., Cox D.D., DiCarlo J.,
2022. Aligning model and macaque inferior temporal cortex representations im-
proves model-to-human behavioral alignment and adversarial robustness. bioRxiv .
doi: 10.1101/2022.07.01.498495 . 

ijkstra, N., Mostert, P., de Lange, F.P., Bosch, S., Gerven, M.A., 2018. Differen-
tial temporal dynamics during visual imagery and perception. Elife, 7, e33904.
doi: 10.7554/eLife.33904 . 

osovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X., Unterthiner T., Dehghani
M., Minderer M., Heigold G., Gelly S., Uszkoreit J., 2020. An image is worth 16 ×16
words: transformers for image recognition at scale. arXiv preprint arXiv: 2010.11929 .
doi: 10.48550/arXiv.2010.11929 . 

ukushima, K., Miyake, S., 1982. Neocognitron: a self-organizing neural network model
for a mechanism of visual pattern recognition. In: Competition and Cooperation in
Neural Nets, pp. 267–285. doi: 10.1007/978-3-642-46466-9_18 . 

oodale, M.A., Milner, A.D., 1992. Separate visual pathways for perception and action.
Trends Neurosci. 15 (1), 20–25. doi: 10.1016/0166-2236(92)90344-8 . 

ramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Goj, R.,
Jas, M., Brooks, T., Parkkonen, L., Hämäläinen, M.S., 2013. MEG and EEG data analy-
sis with MNE-Python. Front. Neurosci. 7 (267), 1–13. doi: 10.3389/fnins.2013.00267 .

rill-Spector, K., Kourtzi, Z., Kanwisher, N., 2001. The lateral occipital com-
plex and its role in object recognition. Vision Res. 41 (10–11), 1409–1422.
doi: 10.1016/S0042-6989(01)00073-6 . 

rootswagers, T., Robinson, A.K., Carlson, T.A., 2019. The representational dynamics of
visual objects in rapid serial visual processing streams. Neuroimage, 188, 668–679.
doi: 10.1016/j.neuroimage.2018.12.046 . 

rootswagers, T., Zhou, I., Robinson, A.K., Hebart, M.N., Carlson, T.A., 2022. Human EEG
recordings for 1,854 concepts presented in rapid serial visual presentation streams.
Sci. Data, 9 (1), 1–7. doi: 10.1038/s41597-021-01102-7 . 

https://things-initiative.org/
http://www.doi.org/10.17605/OSF.IO/3JK45
https://github.com/gifale95/eeg_encoding
https://doi.org/10.1016/j.neuroimage.2022.119754
https://doi.org/10.1088/1741-2552/aaf12e
https://doi.org/10.1038/s41593-021-00962-x
https://doi.org/10.1016/j.neuroimage.2018.05.037
https://doi.org/10.1073/pnas.1907375117
https://doi.org/10.1163/156856897x00357
https://doi.org/10.1371/journal.pcbi.1003963
https://doi.org/10.1523/JNEUROSCI.3726-05.2005
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1038/s41597-019-0052-3
https://doi.org/10.1073/pnas.1402594111
https://doi.org/10.1016/j.tics.2019.01.009
https://doi.org/10.1038/srep27755
https://doi.org/10.1038/nn.3635
https://doi.org/10.1101/2022.03.28.485868
https://doi.org/10.1101/2022.07.01.498495
https://doi.org/10.7554/eLife.33904
http://arxiv.org/abs/2010.11929
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1007/978-3-642-46466-9_18
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1016/S0042-6989(01)00073-6
https://doi.org/10.1016/j.neuroimage.2018.12.046
https://doi.org/10.1038/s41597-021-01102-7


A.T. Gifford, K. Dwivedi, G. Roig et al. NeuroImage 264 (2022) 119754 

G  

 

G  

G  

 

H  

 

H  

H  

 

H  

H  

 

 

H  

 

H  

 

 

H  

 

 

H  

 

I  

 

K  

K  

K  

 

 

K  

 

K  

 

K  

 

K  

 

K  

 

K  

K  

 

K  

K  

 

 

K  

 

L  

M  

M  

 

M  

 

N  

N  

N  

 

N  

N  

 

 

P  

P  

 

P  

 

 

P  

 

R  

 

R  

 

 

R  

R  

 

R  

 

 

S  

S  

 

S  

 

S  

 

 

S  

S  

 

S  

 

T

T  

 

T  

T  

 

U  

U
v  

 

 

V  

 

v  

W  

 

üçlü, U., van Gerven, M.A.J., 2015. Deep neural networks reveal a gradient in the
complexity of neural representations across the ventral stream. J. Neurosci. 35 (27),
10005–10014. doi: 10.1523/JNEUROSCI.5023-14.2015 . 

uest O., Martin A.E., 2021. On logical inference over brains, behaviour, and artificial
neural networks. PsyArXiv . 

uggenmos, M., Sterzer, P., Cichy, R.M., 2018. Multivariate pattern analysis for
MEG: a comparison of dissimilarity measures. Neuroimage, 173, 434–447.
doi: 10.1016/j.neuroimage.2018.02.044 . 

arel, A., Groen, I.I., Kravitz, D.J., Deouell, L.Y., Baker, C.I., 2016. The temporal
dynamics of scene processing: a multifaceted EEG investigation. eNeuro, 3 (5).
doi: 10.1523/ENEURO.0139-16.2016 . 

assabis, D., Kumaran, D., Summerfield, C., Botvinick, M., 2017. Neuroscience-inspired
artificial intelligence. Neuron, 95 (2), 245–258. doi: 10.1016/j.neuron.2017.06.011 . 

axby, J.V., Guntupalli, J.S., Nastase, S.A., Feilong, M., 2020. Hyperalignment: modeling
shared information encoded in idiosyncratic cortical topographies. Elife, 9, e56601.
doi: 10.7554/eLife.56601 . 

aynes, J.D., Rees, G., 2006. Decoding mental states from brain activity in humans. Nat.
Rev. Neurosci. 7 (7), 523–534. doi: 10.1038/nrn1931 . 

e, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum contrast for
unsupervised visual representation learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9729–9738.
doi: 10.48550/arXiv.1911.05722 . 

e, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778. doi: 10.1109/CVPR.2016.90 . 

ebart, M.N., Contier, O., Teichmann, L., Rockter, A., Zheng, C.Y., Kidder, A., Cor-
riveau, A., Vaziri-Pashkam, M., Baker, C.I., 2022. THINGS-data: a multimodal col-
lection of large-scale datasets for investigating object representations in brain and
behavior. bioRxiv. doi: 10.1101/2022.07.22.501123 . 

ebart, M.N., Dickter, A.H., Kidder, A., Kwok, W.Y., Corriveau, A., Van Wicklin, C.,
Baker, C.I., 2019. THINGS: a database of 1,854 object concepts and more than
26,000 naturalistic object images. PLoS ONE, 14 (10), e0223792. doi: 10.1371/jour-
nal.pone.0223792 . 

orikawa, T., Kamitani, Y., 2017. Generic decoding of seen and imagined ob-
jects using hierarchical visual features. Nat. Commun. 8 (1), 1–15. doi: 10.1038/
ncomms15037 . 

ntraub, H., 1981. Rapid conceptual identification of sequentially presented pictures.
J. Exp. Psychol. Hum. Percept. Perform. 7 (3), 604. doi: 10.1037/0096-1523.7.3.
604 . 

ay, K.N., Naselaris, T., Prenger, R.J., Gallant, J.L., 2008. Identifying natural images from
human brain activity. Nature, 452 (7185), 352–355. doi: 10.1038/nature06713 . 

eysers, C., Xiao, D.K., Földiák, P., Perrett, D.I., 2001. The speed of sight. J. Cogn. Neu-
rosci. 13 (1), 90–101. doi: 10.1162/089892901564199 . 

haligh-Razavi, S.M., Henriksson, L., Kay, K., Kriegeskorte, N., 2017. Fixed versus
mixed RSA: explaining visual representations by fixed and mixed feature sets
from shallow and deep computational models. J. Math. Psychol. 76, 184–197.
doi: 10.1016/j.jmp.2016.10.007 . 

hosla, M., Ngo, G.H., Jamison, K., Kuceyeski, A., Sabuncu, M.R., 2021. Cortical response
to naturalistic stimuli is largely predictable with deep neural networks. Sci. Adv. 7
(22), eabe7547. doi: 10.1126/sciadv.abe7547 . 

hosla, M., Wehbe, L., 2022. High-level visual areas act like domain-general filters
with strong selectivity and functional specialization. bioRxiv. doi: 10.1101/2022.03.
16.484578 . 

ietzmann T.C., McClure P., Kriegeskorte N., 2019. Deep neural networks in computa-
tional neuroscience. Oxford Research Encyclopedia of Neuroscience . doi: 10.1093/acre-
fore/9780190264086.013.46 . 

ing, J.R., Wyart, V., 2021. The human brain encodes a chronicle of visual events at each
instant of time through the multiplexing of traveling waves. J. Neurosci. 41 (34),
722–7233. doi: 10.1523/JNEUROSCI.2098-20.2021 . 

oyamada S., Shikauchi Y., Nakae K., Koyama M., Ishii S., 2015. Deep learning of fMRI big
data: a novel approach to subject-transfer decoding. arXiv preprint , arXiv: 1502.00093 .
doi: 10.48550/arXiv.1502.00093 . 

riegeskorte, N., Douglas, P.K., 2019. Interpreting encoding and decoding models. Curr.
Opin. Neurobiol. 55, 167–179. doi: 10.1016/j.conb.2019.04.002 . 

riegeskorte, N., Mur, M., Bandettini, P.A., 2008. Representational similarity analysis-
connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2 (4), 8.
doi: 10.3389/neuro.06.004.2008 . 

rizhevsky A., 2014. One weird trick for parallelizing convolutional neural networks. arXiv

preprint , arXiv: 1404.5997 . doi: 10.48550/arXiv.1404.5997 . 
ubilius, J., Schrimpf, M., Kar, K., Rajalingham, R., Hong, H., Majaj, N., Issa, E.,

Bashivan, P., Prescott-Roy, J., Schmidt, K., Nayebi, A., Bear, D., Yamins, D.L., Di-
Carlo, J.J., 2019. Brain-like object recognition with high-performing shallow recur-
rent ANNs. Adv. Neural Inf. Process Syst. 32 . 

won, O.Y., Lee, M.H., Guan, C., Lee, S.W., 2019. Subject-independent brain–computer
interfaces based on deep convolutional neural networks. IEEE Trans. Neural Netw.
Learn. Syst. 31 (10), 3839–3852. doi: 10.1109/TNNLS.2019.2946869 . 

ogothetis, N.K., Sheinberg, D.L., 1996. Visual object recognition. Annu. Rev. Neurosci.
19 (1), 577–621. doi: 10.1146/annurev.ne.19.030196.003045 . 

alach, R., Levy, I., Hasson, U., 2002. The topography of high-order human object areas.
Trends Cogn. Sci. 6 (4), 176–184. doi: 10.1016/S1364-6613(02)01870-3 . 

arr, D., 1980. Visual information processing: the structure and creation of visual
representations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 290 (1038), 199–218.
doi: 10.1098/rstb.1980.0091 . 

ur, M., Bandettini, P.A., Kriegeskorte, N., 2009. Revealing representational content with
pattern-information fMRI – an introductory guide. Soc. Cogn. Affect. Neurosci. 4 (1),
101–109. doi: 10.1093/scan/nsn044 . 
17 
aselaris, T., Allen, E., Kay, K., 2021. Extensive sampling for complete models of individ-
ual brains. Curr. Opin. Behav. Sci. 40, 45–51. doi: 10.1016/j.cobeha.2020.12.008 . 

aselaris, T., Kay, K.N., Nishimoto, S., Gallant, J.L., 2011. Encoding and decoding in fMRI.
Neuroimage, 56 (2), 400–410. doi: 10.1016/j.neuroimage.2010.07.073 . 

aselaris, T., Olman, C.A., Stansbury, D.E., Ugurbil, K., Gallant, J.L., 2015. A voxel-wise
encoding model for early visual areas decodes mental images of remembered scenes.
Neuroimage, 105, 215–228. doi: 10.1016/j.neuroimage.2014.10.018 . 

giam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y., 2011. Multimodal deep learning.
In: Proceedings of the ICML . 

uwer, M.R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guérit, J.M., Hinrichs, H.,
Ikeda, A., Luccas, F.J.C., Rappelsburger, P., 1998. IFCN standards for digital record-
ing of clinical EEG. Electroencephalogr. Clin. Neurophysiol. 106 (3), 259–261.
doi: 10.1016/s0013-4694(97)00106-5 . 

an, S.J., Yang, Q., 2009. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22
(10), 1345–1359. doi: 10.1109/TKDE.2009.191 . 

aszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., 2019. Pytorch: an imperative style, high-
-performance deep learning library. Adv. Neural Inf. Process Syst. 32, 8026–8037 . 

edregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Courna-
peau, D., Brucher, M., Perrot, M., Duchesnay, É., 2011. Scikit-learn: machine learning
in Python. J. Mach. Learn. Res. 12, 2825–2830 . 

etit, J., Rouillard, J., Cabestaing, F., 2021. EEG-based brain–computer interfaces exploit-
ing steady-state somatosensory-evoked potentials: a literature review. J. Neural Eng.
18 (5), 051003. doi: 10.1088/1741-2552/ac2fc4 . 

ichard, H., Gresele, L., Hyvarinen, A., Thirion, B., Gramfort, A., Ablin, P., 2020. Modeling
shared responses in neuroimaging studies through multiview ICA. Adv. Neural Inf.
Process Syst. 33, 19149–19162 . 

ichards, B.A., Lillicrap, T.P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A.,
Clopath, C., Costa, R.P., de Berker, A., Ganguli, S., Gillon, C.J., 2019. A
deep learning framework for neuroscience. Nat. Neurosci. 22 (11), 1761–1770.
doi: 10.1038/s41593-019-0520-2 . 

iesenhuber, M., Poggio, T., 1999. Hierarchical models of object recognition in cortex.
Nat. Neurosci. 2 (11), 1019–1025. doi: 10.1038/14819 . 

ousselet, G.A., Fabre-Thorpe, M., Thorpe, S.J., 2002. Parallel processing in high-
level categorization of natural images. Nat. Neurosci. 5 (7), 629–630. doi: 10.1038/
nn866 . 

ussakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. ImageNet
large scale visual recognition challenge. Int. J. Comput. Vis. 115 (3), 211–252.
doi: 10.1007/s11263-015-0816-y . 

axe, A., Nelli, S., Summerfield, C., 2021. If deep learning is the answer, what is the
question? Nat. Rev. Neurosci. 22 (1), 55–67. doi: 10.1038/s41583-020-00395-8 . 

chyns P.G., Snoek L., Daube C., 2022. Degrees of algorithmic equivalence between
the brain and its DNN models. Trends in Cognitive Sciences. doi: 10.1016/j.tics.
2022.09.003 

eeliger, K., Ambrogioni, L., Güçlütürk, Y., van den Bulk, L.M., Güçlü, U., van Ger-
ven, M.A.J., 2021. End-to-end neural system identification with neural information
flow. PLoS Comput. Biol. 17 (2), e1008558. doi: 10.1371/journal.pcbi.1008558 . 

eeliger, K., Fritsche, M., Güçlü, U., Schoenmakers, S., Schoffelen, J.-.M., Bosch, S.,
van Gerven, M.A.J., 2018. Convolutional neural network-based encoding and de-
coding of visual object recognition in space and time. Neuroimage, 180, 253–266.
doi: 10.1016/j.neuroimage.2017.07.018 . 

inz, F.H., Pitkow, X., Reimer, J., Bethge, M., Tolias, A.S., 2019. Engineering a less artifi-
cial intelligence. Neuron, 103 (6), 967–979. doi: 10.1016/j.neuron.2019.08.034 . 

t-Yves, G., Allen, E.J., Wu, Y., Kay, K., Naselaris, T., 2022. Brain-optimized neural
networks learn non-hierarchical models of representation in human visual cortex.
bioRxiv. doi: 10.1101/2022.01.21.477293 . 

torrs, K.R., Kietzmann, T.C., Walther, A., Mehrer, J., Kriegeskorte, N., 2021. Diverse deep
neural networks all predict human inferior temporal cortex well, after training and
fitting. J. Cogn. Neurosci. 33 (10), 2044–2064. doi: 10.1162/jocn_a_01755 . 

anaka, K., 1996. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–
139. doi: 10.1146/annurev.ne.19.030196.000545 . 

haler, L., Schütz, A.C., Goodale, M.A., Gegenfurtner, K.R., 2013. What is the best fixation
target? The effect of target shape on stability of fixational eye movements. Vis. Res.
76, 31–42. doi: 10.1016/j.visres.2012.10.012 . 

horpe, S., Fize, D., Marlot, C., 1996. Speed of processing in the human visual system.
Nature, 381 (6582), 520–522. doi: 10.1038/381520a0 . 

oneva, M., Wehbe, L., 2019. Interpreting and improving natural-language processing (in
machines) with natural language-processing (in the brain). Adv. Neural Inf. Process
Syst, 32 . 

llman, S., 2019. Using neuroscience to develop artificial intelligence. Science, 363
(6428), 692–693. doi: 10.1126/science.aau6595 . 

llman, S., 2000. High-level Vision: Object Recognition and Visual Cognition. MIT press . 
an de Nieuwenhuijzen, M.E., Backus, A.R., Bahramisharif, A., Doeller, C.F.,

Jensen, O., van Gerven, M.A., 2013. MEG-based decoding of the spatiotem-
poral dynamics of visual category perception. Neuroimage, 83, 1063–1073.
doi: 10.1016/j.neuroimage.2013.07.075 . 

an Essen, D.C., Anderson, C.H., Felleman, D.J., 1992. Information processing in the pri-
mate visual system: an integrated systems perspective. Science, 255 (5043), 419–423.
doi: 10.1126/science.1734518 . 

an Gerven, M.A., 2017. A primer on encoding models in sensory neuroscience. J. Math.
Psychol. 76, 172–183. doi: 10.1016/j.jmp.2016.06.009 . 

u, M.C.K., David, S.V., Gallant, J.L., 2006. Complete functional characterization of
sensory neurons by system identification. Annu. Rev. Neurosci. 29 (1), 477–505.
doi: 10.1146/annurev.neuro.29.051605.113024 . 

https://doi.org/10.1523/JNEUROSCI.5023-14.2015
https://doi.org/10.1016/j.neuroimage.2018.02.044
https://doi.org/10.1523/ENEURO.0139-16.2016
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.7554/eLife.56601
https://doi.org/10.1038/nrn1931
https://doi.org/10.48550/arXiv.1911.05722
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1101/2022.07.22.501123
https://doi.org/10.1371/journal.pone.0223792
https://doi.org/10.1038/ncomms15037
https://doi.org/10.1037/0096-1523.7.3.604
https://doi.org/10.1038/nature06713
https://doi.org/10.1162/089892901564199
https://doi.org/10.1016/j.jmp.2016.10.007
https://doi.org/10.1126/sciadv.abe7547
https://doi.org/10.1101/2022.03.16.484578
https://doi.org/10.1093/acrefore/9780190264086.013.46
https://doi.org/10.1523/JNEUROSCI.2098-20.2021
http://arxiv.org/abs/2010.11929
https://doi.org/10.48550/arXiv.1502.00093
https://doi.org/10.1016/j.conb.2019.04.002
https://doi.org/10.3389/neuro.06.004.2008
http://arxiv.org/abs/1404.5997
https://doi.org/10.48550/arXiv.1404.5997
http://refhub.elsevier.com/S1053-8119(22)00875-8/sbref0048
https://doi.org/10.1109/TNNLS.2019.2946869
https://doi.org/10.1146/annurev.ne.19.030196.003045
https://doi.org/10.1016/S1364-6613(02)01870-3
https://doi.org/10.1098/rstb.1980.0091
https://doi.org/10.1093/scan/nsn044
https://doi.org/10.1016/j.cobeha.2020.12.008
https://doi.org/10.1016/j.neuroimage.2010.07.073
https://doi.org/10.1016/j.neuroimage.2014.10.018
http://refhub.elsevier.com/S1053-8119(22)00875-8/sbref0057
https://doi.org/10.1016/s0013-4694(97)00106-5
https://doi.org/10.1109/TKDE.2009.191
http://refhub.elsevier.com/S1053-8119(22)00875-8/sbref0060
http://refhub.elsevier.com/S1053-8119(22)00875-8/sbref0061
https://doi.org/10.1088/1741-2552/ac2fc4
http://refhub.elsevier.com/S1053-8119(22)00875-8/sbref0063
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/14819
https://doi.org/10.1038/nn866
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1038/s41583-020-00395-8
https://doi.org/10.1016/j.tics.2022.09.003
https://doi.org/10.1371/journal.pcbi.1008558
https://doi.org/10.1016/j.neuroimage.2017.07.018
https://doi.org/10.1016/j.neuron.2019.08.034
https://doi.org/10.1101/2022.01.21.477293
https://doi.org/10.1162/jocn_a_01755
https://doi.org/10.1146/annurev.ne.19.030196.000545
https://doi.org/10.1016/j.visres.2012.10.012
https://doi.org/10.1038/381520a0
http://refhub.elsevier.com/S1053-8119(22)00875-8/sbref0077
https://doi.org/10.1126/science.aau6595
http://refhub.elsevier.com/S1053-8119(22)00875-8/sbref0079
https://doi.org/10.1016/j.neuroimage.2013.07.075
https://doi.org/10.1126/science.1734518
https://doi.org/10.1016/j.jmp.2016.06.009
https://doi.org/10.1146/annurev.neuro.29.051605.113024


A.T. Gifford, K. Dwivedi, G. Roig et al. NeuroImage 264 (2022) 119754 

Y  

Y  

 

Y  

 

Z  

 

Z  

 

amins, D.L.K., DiCarlo, J.J., 2016. Using goal-driven deep learning models to understand
sensory cortex. Nat. Neurosci. 19 (3), 356–365. doi: 10.1038/nn.4244 . 

amins, D.L.K., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., DiCarlo, J.J., 2014.
Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proc. Natl. Acad. Sci. 111 (23), 8619–8624. doi: 10.1073/pnas.1403112111 . 

ang, X., Yan, J., Wang, W., Li, S., Hu, B., Lin, J., 2022. Brain-inspired models
for visual object recognition: an overview. Artif. Intell. Rev. 1–49. doi: 10.1007/
s10462-021-10130-z . 
18 
eiler, M.D., Fergus, R., 2014. Visualizing and understanding convolutional net-
works. In: Proceedings of the European Conference on Computer Vision.
doi: 10.1007/978-3-319-10590-1_53 . 

hang, K., Robinson, N., Lee, S.W., Guan, C., 2021. Adaptive transfer learning for EEG
motor imagery classification with deep convolutional neural network. Neural Netw.
136, 1–10. doi: 10.1016/j.neunet.2020.12.013 . 

https://doi.org/10.1038/nn.4244
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1007/s10462-021-10130-z
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1016/j.neunet.2020.12.013

	A large and rich EEG dataset for modeling human visual object recognition
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Stimuli
	2.3 Experimental paradigm
	2.4 EEG recording and preprocessing
	2.5 DNN models used
	2.6 Linearizing encoding models of EEG visual responses
	2.7 Correlation
	2.8 Pairwise decoding
	2.9 Zero-shot identification
	2.10 End-to-end encoding models of EEG visual responses
	2.11 Noise ceiling calculation
	2.12 Statistical testing

	3 Results
	3.1 A large and rich EEG dataset of visual responses to objects on a natural background
	3.2 The BioTest EEG data is well predicted by linearizing encoding models
	3.3 The BioTest data is significantly identified in a zero-shot fashion using synthesized data of up to 150,200 candidate images
	3.4 The amount of training image conditions and condition repetitions both contribute to modeling quality
	3.5 The linearizing encoding models’ predictions generalize across participants
	3.6 The BioTest EEG data is successfully predicted by end-to-end encoding models based on the AlexNet architecture

	4 Discussion
	4.1 Summary
	4.2 The benefits of large-scale datasets
	4.3 Linearizing encoding modeling
	4.4 Both number of image conditions and condition repetitions improve modeling quality
	4.5 End-to-end encoding
	4.6 Zero-shot identification
	4.7 Inter-participant predictions
	4.8 Dataset limitations
	4.9 Contribution to the THINGS initiative

	5 Conclusion
	Data availability
	Code availability
	Declaration of Competing Interest
	Credit authorship contribution statement
	Acknowledgments
	Supplementary materials
	References


