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The extension of the nuclear two-centre-oscillator to three and four centres is investigated. Some 
special symmetry-properties are required. In two cases an analytical solution of the Schrödinger 
equation is possible. A numerical procedure is developed which enables the diagonalization of the 
Hamiltonian in a non-orthogonal basis without applying Schmidt's method of orthonormalization. 
This is important for calculations of arbitrary two-dimensional arrangements of the centres. 

1. Introduction 

The wellknown inability of the liquid drop model 
to describe satisfactorily complicated fission pro-
cesses 1 led to the suggestion 3 that shell structure 
effects may play an important role. To discuss the 
shell effect of nuclear shapes appearing during an 
asymmetric fission of a nucleus Maruhn and Grei-
ner 4 extended the two-center shell model of Scharn-
weber et al. 5? 6 which is based on the double oscilla-
tor model. 

In all these cases one can handle only nuclear 
fissions into two fragments. To calculate multiple 
fission as well as cluster structures of light nuclei, 
it is necessary to consider general arrangements of 
more than two harmonic oscillators. They may be 
situated along a line, in a plane, or in space. 

The most general ansatz of such a potential is 

Vi(r) = I m {coli (x - Xi)2 + coli (y - yi) 2 

+ oßzi(z-z;)2} 1 = 1 , . . . , A T (1) 

{N = number of centres). 

As one can see immediately, we have to restrict the 
functions Vj(r) such that they match continuously 
in those planes joining neighbouring centres. In 
what follows, several cases are discussed. 

2. Linear Arrangements 
of Three and Four Centres 

The cylindrical symmetry and the continuity of 
V ( r ) require to make the following ansatz 

V(g,z) = \m (o)2 Q2 + o/zi (z - Zi)
2

) . (2) 

The resulting nuclear shapes given by equipotential 
surfaces are shown in Figure 1. 

i/^P^i | H ^ j P < 
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Fig. 1. Nuclear shapes and equipotential surfaces. In a) a 
general form for nuclear shapes treated here is shown. In 
b ) , c ) , and d) all fragments are equal but each one is either 
oblate (b) , spherical (c ) , or prolate (d) . The number of 

fragments is three or four respectively. 

Clearly V( o, z) is not continuous along the 2-axis, 
but has sharp edges at the matching planes between 
the centres. 

For mathematical convenience we choose equal o.)zl 

as an additional symmetry, which means equal de-
formation for all fragments, but we note that also in 
the more general case of unequal ojzi analytic solu-
tions are obtained. The Schrödinger equation is 
then given by 

h2 
A + I m (coQ2 o2 + ojz2 (z - zi) 2)-E 

2 m 
(3) 

The separation of variables according to 

^E(Q,<P,Z) =&{<P)'X(Q)'V(Z) WITH Z=Z-ZI 

(4) 
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yields the solution 

v(<p) = (2 n) - , / j e x p { i nrf <p) ;nrre A'\ 

/AQ) =C 
m a). 0 

h 

([i + I« 

,, I m0)z 'A Jr 1 m(°z ' r (l~nz3 mcoz / nz 1 m<o2 
= e x P 2h~ \ h * « ' « 2 > 2 ' h Z- + C * ' F ' { - 2 '2' h 

The single particle energies are given by ß) ti = + 1 , C 1 0 = 0 : 

Enzn.nv = h 03z [nz + k) + h ojq{ 2 nQ + \nrp\ + 1) . y/ (z _ o) continous 
(6) (F° + 2 nz F'2)C2,0 + {V° - nz U2)C2 = 0 , 

The wave function ip(z) contains 2 IX constants of f/. = a) continous F° • C-> () — U° • Co = 0 . 
integration (C](- and Co,) which have to be chosen 
such that xp(z) is a quantum mechanically acceptable ^ Case A —4 yields. 
wave function. The following requirements have to xp continous at z = 2 a 
be fulfilled: a \'k F1 C , + F° • Co.! - U° • C3 = 0 , 

a) continuity and differentiability, 
xp (2 a) continous V k I (1 - k a2) F1 + 2 k a2^ fA b) square integrability, ' K \v ; 3 j 

c) definite symmetrical behaviour under the ' CXA - k a(F° + 2 nz F2)C*,\ - k a(U° - nzU2)C3 = 0 ; 
transformation z—> —z (because of H being ] • 
svmmetric under reflection at z = 0) (parity / 1 — n \ 
quantum number tt ) . With the abbreviations V (0) continous Vk ( (1 - k a2) F1 + 2 k a2 ^ ' F'3 J 

f o = i f / 1 ;ka2^ ' Ci,i + k a(F° + 2 nz F2) C2,i = 0 , 

I n- 1 ß) 7i=-1: 
U0=U\- 2 ; 2 ; A : a 2 ) ' V ( 0 ) continous a Vk F1 • Chl - F° • C2A = 0 . 

ri _ p /1 — . 3 .jia2\ Eigenvalue equations can now be obtained by set-
' 2 2 / ting the determinant of the above systems equal to 

„, (2 — nz 3 „\ . z3ro. This yields in both cases: 
r- = \F\ ( o " ; 9 ; " " h ( < ) 

12 n \ a) N = 3 : 

U2 = U\ 2 n Z ; 2 ; k a r a) 7i= +1: F°{U°-nzU2) +U°(F° + 2nzF2) =0. 
( 3 _ n z 3 v / ? ) ( 8 ) 

( l - A ; a 2 ) f 1 + 2A-a2 < F3 = 0 ; 
A; = m o j / h \ ^ ' 

for the hypergeometrical functions we obtain ^ ^ = 4 : 
in the cases of three (four) centres for the a ) n = + 1 : ( f / ° - n, t/2) ( 1 - 2 k a2) F° Fl 

two possible symmetries tz = + 1 homogenous / l — n 
systems of equations for the C-coefficients: 2k a- yiz F1 F~ ^ h F 5 j 

a) Case N = 3 yields: + 2 U°(F» + 2 nz F2) 

a) r r = l , C o . 0 = 0 : • f (1 - k a2) F1 + 2 k a2 1 ^ F 3 ] = 0 , (9) 

(1 -ka2)Fi + 2ka2l~nz F*CU)-aVk(U»-nzU2) ß) ( i _ 4 A « 2 ) f " f + 2 k a2 

• Co = 0 , 

a V k F 1 Cj.o— U° C2 = 0 ; 
1 ^ f" F3 £/o + F1 (F° L/2 - F2 U°) = 0 . 
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If k is known the solutions of the equations above 
can be found by applying Newton's method. As 
usual in nuclear shell theory, k is evaluated from the 
relation 

h co0 = 41 A~1,) [MeV] (10) 

(see Ref. 6) and from the constraint of volume 
conservation (incompressibility of nuclear matter) 
when the deformation varies. In this work the most 
simple prescription for volume conservation, namely 
the surface-volume-conservation is used It yields 

k{a) = 1.226 r - 1 (a) . (11) 

Here r ( a ) , the cluster radius, is the solution of the 
cubic equation 

2 r3 + 3 (Ar — l ) a r2 = 2 7?3 + (Ar — 1) a3 (12) 

when a R-Nelsewhere [the case of separated 
fragments (a >R-N-y')] it is r = R N~y\ In the 
above formulas R means the radius of the un-
deformed nucleus: R = 1.256 A1, /a[fm] and the as-
sumption of spherical clusters (coQ = coz) is made. 

The generalization to ellipsoidal deformations of 
the nuclear fragments is done by introducing an 
additional deformation parameter ß. As suggested 
by the nuclear shapes occurring in this case (Fig. 1 ) , 
we choose ß equal to the ratio of the main axis, 
which gives ß = wzfcoQ. A straightforward calcula-
tion shows that we have only to substitute 

r{ß,a)=ß^r{a) (14) 

in Equation (12 ) . 
Now the quantum numbers can be obtained 

from the eigenvalue equations. They are plotted in 
Figs. 2, 3 against a for the model cases of C1 2 and 
O16. So are the single-particle-energies in Figures 4, 
5. The development of the single oscillator spectrum 
of the original compound nucleus into a threefold 
respectively fourfold degenerate oscillator spectrum 
for the separated fragments is noticed. As a con-
sequence of volume conservation the oscillator 
spacing is smaller in the former case than in the 
latter case. By adding the single-particle energies up 
to the Fermi-level, we obtain a rough estimate of 
the binding energy-depending on the deformation 
parameter a. This is shown for some light nuclei, 
for which the neglect of ls-forces makes some sense 
in Figs. 6 to 9. Obviously there occur quasistable 
triple- and quadriple cluster configurations. Their 
precise location and also their stability will be 
modified when ls-forces and fragment deformations 

Fig. 2. /^-eigenvalues for a 12C-nucleus composed of three 
fragments. The threefold degeneration for large separations 

is obviously. 

3 a[fm] 
Fig. 3. ^-eigenvalues for a 160-nucleus composed of four 

fragments. Here a fourfold degeneration occurs. 

are included in a more realistic calculation, which 
also have to be renormalized in the sense of Stru-
tinsky. Nevertheless, these results give a qualitative 
impression of the importance of the multiple cluster-
structures in light nuclei. 

3. Clover-Leaf Arrangements 
of Three and Four Fragments 

In the previous section it was shown that an 
analytical solution of the Schrödinger equation exists 
if several restrictions on the potential are assumed. 
In more general cases numerical methods have to be 
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3 a[fm] 
Fig. 4. Single particle energies for three fragments forming 
a 12C-nucleus. These energies were calculated using the eigen-
values shown in Figure 2. The rearrangement to three equi-

valent shells for large separations is clearly to be seen. 

3 a[fm] 
Fig. 5. Single particle energies for four fragments forming a 
160-nucleus with fourfolg degeneration for large separations. 

used. Usually the single particle wave functions of a 
harmonic oscillator, or of a more-center-oscillator 
composed of harmonic potentials are used as a basis 
for diagonalization. But this usually means involved 
calculations of matrix elements with complicated 
basis functions, especially if considering two or 
three-dimensional arrangements. In these latter cases 
an analytic solution may not be given even for 
harmonic potentials as the Schrödinger equation 

Fig. 8. Total single particle energy of a 38Ar-nucleus com-
posed of three fragments. 

Fig. 6. Total single particle energy for 12C. The single particle 
energies of Fig. 4 were added up to the fermi level without 
taking into consideration coulomb energy. The sharp peak is 
due to level crossing and probably will disappear when shell 

corrections are taken into consideration. 

0 1 2 3 
Fig. 7. Total single particle energy of a 160-nucleus composed 

of four fragments. 

100-1 E[MeV] / 

50 

a[fm] 
0 1293 MeV i 
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Fig. 9. Total single particle energy of a 4 8Cr-nucleus com-
posed of four fragments. 

does not separate. Hence we propose to look for a 
basis consisting of simple functions with good con-
vergence properties for a wide variety of deformed 
potentials. The potentials to be considered are those 
occurring in fission processes or clustesr structures 
in nuclei. They may be thought of as several har-
monic oscillators nearly having the shape of the 
desired potentials. 

An only slightly deformed nucleus may be treated 
excellently in the basis of the harmonic oscillator. 
Thus in the limits of one compound nucleus and of 
several fully separated fragments one can use the 
eigenfunctions of one or more harmonic oscillators 
respectively. The orthogonal basis wave functions 
within the z'th oscillator are 

I W) = Hk{x - xd x exp{ - i ( x - Xi)2} Nk . (15) 

Here Xi denotes the positions of the centre of the ith 

oscillator and Hk are Hermite polanomials. It is 
obvious that potentials of fragments not totally 
separated or cluster structures may be described 
equally well in this basis. Low states coincide with 
the properly symmetrized eienfunctions of the os-
cillators which are already separated in energies; 
high states coincide with the eigenfunctions of all 
n-oscillators which are nearly identical for high 
energies. So the intermediate levels of the potential 
ought to be a superposition of the intermediate 
levels of the n-oscillators. 

When actually treating problems in this basis, 
difficulties arise from the fact that the basis vectors 
cpkl are not orthonormal (over completeness of the 

1007 

basis) : Sets belonging to different centres i, j over-
lap. Indeed, 

+ oo 
/ e x p [ - § { ( x - x t ) 2 + (x-xj)2}] 

— OC 

• Nk Ni Hk (x - Xi) Hi (x - Xj) dx =j= dkl du . (16) 
Furthermore, the eigenfunctions of the different 
oscillators are nearly colinear for higher states 

+ OO 
/ e x p [ - l { { x - x i ) 2 + ( x - X j ) 2 } ] 

— oc 

• Nk2 Hk (X - Xi) Hk (x - Xj) dx « 1 . (17) 
Thus the basis becomes overcomplete, especially 
for a small separation of the centers. Because com-
mon numerical methods suppose the basis to be 
orthonormal one has either to orthogonalize accord-
ing to Schmidt's method, or a numerical procedure 
has to be provided allowing to treat the eigenvalue 
problem directly in the nonorthonormal basis. To 
avoid the time-consuming orthonormalization and 
to take advantage of the simple form of the basis 
functions when calculating the matrix elements, we 
have chosen the second method. 

Generally, the matrix H representing the Hamil-
tonian in the basis | (pl) has to be calculated and a 
nonunitary transformation T has to be found such 
that H is diagonalized. However, the calculations 
may be considerably reduced by treating the modi-
fied eigenvalue problem instead: 

A\v)=B\W)t (18) 
A and B being matrices. It must be remembered 
here that the matrix representing a self-adjoint 
operator is hermitean if it is represented in an 
orthonormal basis, which is not the case here. Thus 
especially (<pl H j cpk) is not the matrix representing 
the Hamiltonian in this nonorthonormal basis! 

We start with the Schrödinger equation 

U y ^ E y (19) 
in the basis j cpl) 

|V>= l a t W ) (20) 
i 

and obtains 
nya:\cp1) =E 2fl||^> • (21) 

i i 

Multiplying with the associated bra (cpk | we obtain 

ai^E^WW) "i- (22) 
i i 

This may be regarded as a matrix equation 

A\y>)=E-S\y) (23) 
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with 
Ski = 1 

\<pk\rH\<pl 

rp!i | <p' 1) , I W)i = at. (24) 

The matrix representing the Hamiltonian in this 
basis may now be calculated easily 

H = S~x A (25) 

but is, however, not hermitean. 
To obtain the eigenvalues and eigenvectors we 

firsts diagonalize S. As its elements are scalar pro-
ducts, it is hermitean according to the property of 
the scalar product 

(99* I cpl) = {(pl; (pk)* . (26) 

Hence there exists an unitary transformation U 

diagonalizing S 

U AU+-U\y) =EU SU+-U\ip) 

A ' = E-S'-\xpY . (27) 

This is the same eigenvalue problem in the basis 
I <p'1) = U+\ (pl). As the scalar product is positive 
definite the elements of 5 are positive. Thus there 
exists a regular matrix X with 

X-X = S'. (28) 

Transforming (27) with X yields 

XA'X-i-X] xpY = ES'-X\xpY (29) 

as S and S' commute. Multiplying by S ' - 1 we obtain 

A X~1-X\xp)' = EX\xpY, 

A"\W)" = E\xp)". (30) 

X transforms the eigenvalue equation to an ortho-
normal basis, and in this representation A" now 
actually is the matrix representing the Hamiltonian. 
Equation (30) may now be treated by standard 
methods. 

Up to now the basis vectors were supposed to be 
linearly independent. Generally this is true, but as 
already mentioned, for small separations and large 
eigenvalues some of the corresponding eigenvectors 
may become collinear, and the basis is then over-
complete. For further calculations, the superfluous 
basis vectors have to be eliminated. Usually it is 
rather complicated to test a set of vectors for linear 
independence. Therefore it is advantageous to di-
agonalize the matrix S first and then to eliminate + 
the linearly dependent vectors. If two basis vectors 
are linearly dependent, the matrix 5 is not regular. 
The matrix S' being similar to 5 is not regular 

either and thus contains at least one zero in its main 
diagonal. Therefore no inverse matrix S - 1 exists 
and the procedure fails, but the problem may be 
solved at this step by simply eliminating the rows 
and columns containing the zeros of S' and A' 

respectively. 

4. Calculation of Matrix Elements 

The elements of the matrix S can be calculated 
analytically 

+ 00 
(<pk \cpl) = / NkNiexp [ — 2 { (a; — X;)2 

—00 

+ (x-xj)2}]Hk(x-xi)Hl(x-xj) . (31) 

Using the transformation 

u = x — 2 (xi + Xj) ,d =Xi — Xj (32) 

and expanding //;,. and Hi into a series by means of 

dHn (x) /dx = 2 n Hn _ t (x) , (33) 

we obtain 
•cpk I y i j = j /Vjexp{ - <52/4} dk~lk\ /! 2k 

(34) 
= o 2 1 a ! ( / - a ) \ (k — I + z) ! 

The elements of the matrix A are of the form 

(<pk \rH\cf}) = {cpk\ d2/dx2 I <pl) + (<pk j V ' <pl. (35) 

The first term, the kinetic part of the operator, can 
also be given analytically. It reads 

+ 00 

{<Pk I d2/dx2 \cpl) = f N k Ni e x p { - i ( x - x , ) 2 } ( 3 6 ) 
—00 

3 2 
•Hk (x - Xi) exp{ - I (x - Xj)2} H, (x - Xj) . 

By means of (33) and 

xHn = n # „ _ i + i Hn + l (37) 

we may reduce this expression to a combination of 
scalar products 

3 2 

3 x 2 
V k 2 l 

T/(/c + 1 ) ( / + 1 
>((pk + 11 cpl+1) (38) 

m ± VKk + l) (<pk + 11 <pl~1) . 

The matrix elements of the potential energy 
(<pk J V(x)' (pl) can be calculated analytically only 
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for a few simple forms of the potential. If one con-
siders more complicated forms or a two- or three-
dimensional problem where the potential cannot be 
separated into independent terms for x, y and 2, no 
analytical calculations are possible. It is advanta-
geous, in this case, to calculate some matrix elements 
numerically and to derive the others from these by 
means of recursion relations8. As V(x) is a scalar 
these formulas are independent of the potential and 
it is sufficient to give them for the product of two 
basic functions. Any potential may be then be 
treated. 

Using the recursion relation 

Hk + 1 = 2xHk-2kHk_1 (39) 

we obtain 

Hk + i(x-Xi)H,i:v-xj) = HkHl + 1 + 2lHkHl.1 

-2kHk_1Hl-2(xi-xj)HkHl. (40) 

So it is only necessary to calculate the main diagonal 
and the few off-diagonal elements with k = I. 

5. Test of the Accuracy of the 
Numerical Method 

The following table (Tab. 1) shows the results 
obtained with the numerical method and the exact 
solution of the eigenvalues of a harmonic two-
oscillator of excentricity 1.5 (dimensionless coordi-
nates) . The dimension of the matrix diagonalized 

Table 1. Comparison between the results of analytical and 
numerical calculation. The dimension of the matrix diago-

nalized was 20, the excentricity 1.5. 

Analytic Numeric Error (%) 

.8015 .8015 .004 
1.1575 1.1600 .217 
2.6487 2.6491 .015 
3.6469 3.6574 .305 
5.1040 5.1044 .008 
6.4168 6.4192 .037 
7.9298 7.9243 .005 
9.3733 9.3736 .003 

10.9287 10.9295 .007 
12.4549 12.4557 .007 
14.0492 14.0513 .015 
15.6263 15.6280 .011 
17.2516 17.2597 .047 
18.8657 18.8986 .174 
20.5163 20.7690 1.232 
22.1590 .0000 
23.8304 .0000 
25.4960 .0000 
27.1851 .0000 
28.8697 .0000 

was twenty. As the Schrödinger equation separates 
for an harmonic more-centre-oscillator, only the 
eigenvalues in z-direction were considered. As the 
separation of the Schrödinger equation wTas made in 
cartesian coordinates for the numerical treatment, 
but in cylindrical coordinates for the analytic calcu-
lations the eigenvalues may not be compared 
immediately: Hermite's differential equation yields 
only odd positive integers while Kummer's equation 
yields all positive integers. However, the calculation 
to be performed for comparing the results is 
straightforward. 

As can be seen from the table the difference be-
tween the two results is very small. Of course, 
similar comparisons were made for other excentri-
cities and different dimensions of the matrices. All 
results were equally excellent, but for larger matrices 
attention must be paid to the accuracy of the inte-
gration over polynomials of higher degree. The 
convergence generally is excellent, nearly all eigen-
values obtained by diagonalization may be used. 
Actually in the example shown in the table only the 
last eigenvalue shows an error of more than .5 per-
cent. 

6. Conclusion 

The methods developed in this paper are very 
useful especially for a treatment of multiple fission 
processes and cluster structures of light nuclei. Only 
recently, triple fission with the emission of an 
a-particle in addition to two heavy fragments has 
become more interesting9. In this field a large 
amount of experimental data exists without an 
appropriate theory, and the method developed here 
may be appropriate for these problems after some 
mathematical generalization. 

A critical parameter is here the fission mass, but 
first calculations were done to solve the current 
discrepancies with the aid of the two centre shell 
model 1 0 . The treatment of cluster-structures using 
different centres for the a- or d-clusters will also be 
interesting n ' 12, even if shell-model calculations are 
not of such importance here because they may be 
treated explicitly by single-particle coordinates. 
However, since the interaction between nucleons and 
clusters are easier to treat in collective coordinates, 
a many-centre-ansatz may be an adequate starting 
point. 

We acknowledge stimulating discussions Avith 
Profs. W. Greiner, W. Scheid, and Dr. B. Müller. 
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