Mikrowellenspektrum und Struktur von Tribromsilan

M. MITZLAFF, R. HOLM und H. HARTMANN

Institut für Physikalische Chemie der Universität Frankfurt am Main

(Z. Naturforsch. 23 a, 65-67 [1968]; eingegangen am 14. September 1967)

The microwave spectra of $SiHBr_3$ and $SiDBr_3$ have been investigated in the region from 28 to 40 GHz. From the rotational constants the following structural parameters were derived by a least square method:

 $d_{\mathrm{Si-H}} = (1,494 \pm 0,009) \text{ Å}, \quad d_{\mathrm{Si-Br}} = (2,170 \pm 0,001) \text{ Å}, \quad \gtrless \operatorname{Br-Si-Br} = (111,36 \pm 0,25)^{0}.$

The results are compared with those obtained for other Si-halogen-compounds .

Mikrowellenspektrum und Struktur von Tribromsilan

Zur Strukturbestimmung von Tribromsilan wurden bisher nur ausführlich Elektronenstreuversuche von SPITZER, HOWELL und SHOEMAKER¹ unternommen, während auf Grund von IR- und Raman-Messungen² nur Vermutungen möglich waren. Die Fehlergrenzen dieser Untersuchungen sind so groß, daß sich über die Veränderung des Si-Halogenabstandes mit zunehmender Bromierung nichts aussagen läßt. Da besonders über d_{Si-H} keine genauen Angaben vorlagen, haben wir im Rahmen unserer mikrowellenspektroskopischen Untersuchungen an Si-Halogenverbindungen das Rotationsspektrum von Tribromsilan (SiHBr₃ und SiDBr₃) vermessen.

Experimentelles und Spektrum

Tribromsilan wurde in Analogie zum Trichlorsilan³ unter Ausschluß von Wasser und Sauerstoff durch Überleiten von Bromwasserstoff über Si-Pulver bei einer Temperatur zwischen 360° und 400°C hergestellt. Dabei wurde der Bromwasserstoff durch Zutropfen von Brom zu einem Gemisch von 2 Teilen Wasser und einem Teil rotem Phosphor gewonnen. Die Verwendung von schwerem Wasser ergab unter den üblichen Vorsichtsmaßnahmen DBr. Das erhaltene Rohgemisch wurde destilliert und die Fraktion mit dem Siedebereich 109° bis 111°C verwendet. Bei der Überprüfung der Reinheit der Substanzen mit dem Massenspektrometer ergab sich für SiDBr₃ ein Deuterierungsgrad von mehr als 97%.

Die Messungen wurden mit einem Stark-Mikrowellenspektrographen mit 20 kHz Rechteckmodulation bei -75 °C im Bereich von 28 bis 40 GHz durchgeführt. Es konnte bei Drucken zwischen 0,01

und 0,1 Torr und bei Feldstärken von 300 bis 500 Volt/cm gearbeitet werden. Die gemessenen Frequenzen sind in den Tabellen 1 und 2 zusammengefaßt. Die Werte v_{ber} sind mit folgenden Rotationskonstanten [MHz] berechnet:

	A	В	C
Si ²⁸ HBr ₂ ⁷⁹ Br ⁸¹	968,075	952,826	501,416
Si ²⁸ HBr ⁷⁹ Br ₂ ⁸¹	960,262	945,122	499,570
Si ²⁸ DBr ₂ ⁷⁹ Br ⁸¹	960,000	945,003	500,992
${ m Si^{28}DBr^{79}Br_2^{81}}$	952,531	937,307	489,266

Die angegebenen Frequenzen sind maximal 0,05 MHz ungenau. Die Komponenten eines Überganges der asymmetrischen Spezies liegen dichter zusammen als bei Trichlorsilan ($\varkappa = 0.94$ gegen 0,85).

Die untersuchten Übergänge (J > 14) erschienen bei den symmetrischen Spezies als starke, unaufgespaltene Linien, die von mehreren Schwingungssatelliten begleitet waren. Diese führen wir auf die leicht anregbaren Si-Br-Valenz- und Deformationsschwingungen zurück. Auch bei jeder Liniengruppe eines Überganges der asymmetrischen Spezies traten vor allem auf der Seite höherer Frequenzen intensive Schwingungssatelliten auf. Die Intensität der Absorptionslinien nahm für die tieferen Übergänge sehr stark ab, so daß Quadrupolaufspaltungen und Starksatelliten analog zu Trichlorsilan³ nicht untersucht werden konnten.

Bei Vernachlässigung einer Verschiebung des Linienmaximums durch Quadrupoleffekte erhält man das Spektrum der symmetrischen Spezies aus der Formel:

 $v = 2 B_0 (J+1) - 4 D_J (J+1)^3 - 2 D_{JK} (J+1) K^2.$

³ M. MITZLAFF, R. HOLM u. H. HARTMANN, Z. Naturforsch. 22a, 1415 [1967].

¹ R. SPITZER, W. I. HOWELL U. V. SHOEMAKER, J. Amer. Chem. Soc. **64**, 62 [1942].

² F. HALVERSON, Rev. Mod. Phys. 19, 117 [1947].

M. MITZLAFF, R. HOLM UND H. HARTMANN

Molekül	Übergang	$v_{\rm ber}$ MHz	$v_{\rm gem}~{ m MHz}$
Si ²⁸ HBr ₂ ⁷⁹ Br ⁸¹	$17_{1601} \rightarrow 18_{1701}$	34 565,26	34 565,22
	$17_{1305} ightarrow 18_{1405}$	34559,77	$34\ 560,08$
	$17_{1107} \rightarrow 18_{1207}$	34 567.37	34 567,80
	$17_{1007} \rightarrow 18_{1107}$	{	,
	$17_{1008} \rightarrow 18_{1008}$	34569,21	34 569,60
	$170908 \rightarrow 180008$ $170919 \rightarrow 180719$	{	
	$17_{0512} \rightarrow 18_{0612}$	34572,50	94 559 69
	$17_{0513} \rightarrow 18_{0613}$	1 24 579 00	34 572,63
	$17_{0413} \to 18_{0513}$	54 512,00	1
	$17_{0216} ightarrow 18_{0316}$	34 573.63	ĩ
	$17_{0116} \rightarrow 18_{0216}$		34 573.52
	$17_{0315} \rightarrow 18_{0415}$	34 573,43	
	$17_{0215} \rightarrow 18_{0315}$)	
Si ²⁸ HBr ⁷⁹ Br ⁸¹ ₂	$17_{1601} \to 18_{1701}$	34286,80	34 286,80
	$17_{1305} \to 18_{1405}$	$34\ 280, 49$	34 280,96
	$17_{1107} \rightarrow 18_{1207}$	34 288.08	34 287.85
	$17_{1007} \rightarrow 17_{1107}$	1 01200,00	01201,00
	$17_{1008} \rightarrow 18_{1108}$	34 289,91	34 290,37
	$17_{0908} \rightarrow 18_{1008}$	{	
	$170909 \rightarrow 181009$ $170900 \rightarrow 180000$	34 291,16	$34\ 290,83$
	$170809 \rightarrow 180909$ $170612 \rightarrow 180712$	1 04 000 10	
	$17_{0512} \rightarrow 18_{0612}$	34 293,19	94 909 90
	$17_{0711} \rightarrow 18_{0811}$	1 24 909 70	34 292,89
	$17_{0611} \to 18_{0711}$	f 34 232,10	,
Si ²⁸ DBr ⁷⁹ Br ⁸¹	$17_{1601} \rightarrow 18_{1701}$	34 280,29	34 279,26
	$17_{1107} \rightarrow 18_{1207}$	1 94 901 96	94 991 97
	$17_{1007} \to 18_{1107}$	34281,30	34 281,27
	$17_{0909} \rightarrow 18_{1009}$	34 284 39	34 284 67
	$17_{0809} \rightarrow 18_{0909}$	1 01201,00	01201,01
	$17_{0711} \rightarrow 18_{0811}$	34 285,91	34 285,72
	$17_{0611} \rightarrow 18_{0711}$		
	$170414 \rightarrow 180514$ $170214 \rightarrow 180414$	34 287,07	
	$17_{0513} \rightarrow 18_{0613}$	1 04 000 77	34 286,80
	$17_{0413} \rightarrow 18_{0513}$	34 286,77	J
	$17_{0216} \to 18_{0316}$	1 34 987 51	1
	$17_{0116} \rightarrow 18_{0216}$	J 91201 , 91	34 287.50
	$17_{0315} \rightarrow 18_{0415}$	34287.31	01201,00
	$17_{0215} \rightarrow 18_{0315}$)	,
Si ²⁸ DBr ⁷⁹ Br ⁸¹	$17_{1601} \rightarrow 18_{1701}$	34 006.91	34 006.91
NI 221 212	$17_{1305} \rightarrow 18_{1405}$	34 000,56	34 000,71
	$17_{1205} \rightarrow 18_{1305}$	34 000,12	34 000,03
	$17_{1008} \to 18_{1108}$	34 010 01	34 010 01
	$17_{0908} \rightarrow 18_{1008}$	J 51 010,01	54 010,01
	$17_{0909} \rightarrow 18_{1009}$	34 011.30	34 010,93
	$17_{0809} \rightarrow 18_{0909}$	{	
	$170711 \rightarrow 180811$ $170811 \rightarrow 180711$	34 012,84	34 012,47
	$170611 \rightarrow 180711$ $170414 \rightarrow 180514$	1	
	$17_{0314} \rightarrow 18_{0414}$	34 014,03	24 012 70
	$17_{0513} \rightarrow 18_{0613}$	1 34 012 72	34 013,78
	$17_{0413} \rightarrow 18_{0513}$	34013,73	1

Tab. 1. Absorptionsfrequenzen der asymmetrischen Spezies.

mit den Zentrifugalaufweitungskonstanten D_J und D_{JK} . Ohne Berücksichtigung des Termes mit D_{JK} ergibt sich aus den Frequenzen in Tab. 2:

	$B_0 \mathrm{Mhz}$	$D_J{ m kHz}$
	MHz	kHz
i ²⁸ HBr ₃ ⁷⁹	968,302	0,163
i ²⁸ HBr ₃ ⁸¹	945,110	0,157
i ²⁸ DBr ₃ ⁷⁹	960,097	0,149
i ²⁸ DBr ₃ ⁸¹	937,274	0,144

Absorptionslinien für Si^{29/30}-Spezies konnten nicht einwandfrei identifiziert werden.

Molekül	J ightarrow J'	v MHz	B MHz
Si ²⁸ HBr ₃ ⁷⁹	$14 \rightarrow 15$	29 046,937	968,231
	15 ightarrow 16	30 983,020	968,219
	$16 \rightarrow 17$	32 919,114	968,209
	$17 \rightarrow 18$	34 855,095	968,197
	$18 \rightarrow 19$	36 791,068	968,186
	$19 \rightarrow 20$	38 726,991	968,175
Si ²⁸ HBr ₃ ⁸¹	14 ightarrow 15	28 351,140	945,038
	15 ightarrow 16	30 240,880	945,028
	16 ightarrow 17	32 130,612	945,018
	$17 \rightarrow 18$	34 020,252	945,007
	$18 \rightarrow 19$	35 909,949	944,995
	$19 \rightarrow 20$	37 799,304	944,983
$\mathrm{Si}^{28}\mathrm{DBr}_3^{79}$	$14 \rightarrow 15$	28 800,901	960,030
	$15 \rightarrow 16$	30 720,636	960,020
	16 ightarrow 17	32 640,396	960,012
	17 ightarrow 18	34 559,880	959,997
	$18 \rightarrow 19$	36 479,713	959,992
	$19 \rightarrow 20$	38 399,118	959,978
Si ²⁸ DBr ₃ ⁸¹	$15 \rightarrow 16$	29 990,370	937,199
Ū	$16 \rightarrow 17$	31 864,464	937,190
	$17 \rightarrow 18$	33 738,426	937,179
	$18 \rightarrow 19$	35 612,592	937,173
	$19 \rightarrow 20$	37 486,298	937,157
	20 ightarrow 21	39 360,120	937,146

Tab. 2. Absorptionsfrequenzen der symmetrischen Spezies.

Bei den Rotationslinien der symmetrischen Fälle konnte bis J = 20 keine K-Aufspaltung aufgelöst werden. Jedoch zeigten diese Linien mit wachsendem J eine immer stärker ausgeprägte Unsymmetrie durch einen steileren Anstieg auf der Seite tieferer Frequenzen. Der flachere Abfall auf der Seite höherer Frequenzen läßt dann auf eine negative Zentrifugalaufweitungskonstante D_{JK} schließen, wie es für ein Molekül XYZ3 mit dem Schwerpunkt innerhalb der YZ3-Pyramide zu erwarten ist. Aus der Linienbreite läßt sich die Größenordnung folgendermaßen abschätzen: Für Moleküle mit großem Trägheitsmoment bezüglich der Figurenachse ist die Besetzungsdichte der einzelnen K-Niveaus fast gleich. Die Linienintensität nimmt proportional $(1-K^2/(J+1)^2)$ ab. Daraus folgt, daß für den Übergang $J = 19 \rightarrow 20$ die Linie für K = 14 etwa

halb so intensiv ist wie die für K = 0. Aus einer gemessenen halben Halbwertsbreite von 400 kHz ergibt sich somit als obere Grenze

$$D_{JK} = -0.1 \,\mathrm{kHz} \,.$$

Struktur

Das H-Atom liefert nur einen geringen Beitrag zum Trägheitsmoment des Moleküls. Daher ist zur genauen Bestimmung von d_{SiH} die Untersuchung der deuterierten Spezies erforderlich. Mit diesen steht eine Rotationskonstante mehr als notwendig zu einer r_0 -Strukturbestimmung zur Verfügung. Als beste Anpassung ergaben sich folgende Strukturparameter:

$$egin{array}{rll} d_{\mathrm{Si-H}}&=&(1,494\pm0,009)\,\mathrm{\AA}\,,\ d_{\mathrm{Si-Br}}&=&(2,170\pm0,001)\,\mathrm{\AA}\,,\ arphi&=\mathrm{Rr-Si-Br}=(111.36\,\pm0.25)\,^\circ. \end{array}$$

Diese Werte liegen innerhalb der Fehlergrenzen von ¹, dürften aber erheblich genauer sein.

Wie man aus sterischen Gründen erwartet, ist der Winkel Br-Si-Br etwas größer als der Winkel Cl-Si-Cl bei Trichlorsilan³, der fast dem Tetraederwinkel entspricht. Der Si-H-Abstand muß kürzer angenommen werden als in ² vermutet. Die

- ⁴ A. H. SHARBAUGH, J. K. BRAGG, T. C. MADISON u. V. G. THOMAS, Phys. Rev. 76, 1419 [1949].
 ⁵ G. A. HEATH, L. F. THOMAS u. J. SHERIDAN, Trans. Research and the state of the state
- Faraday Soc. 50, 779 [1954].

Angabe von 1,57 Å aus dem Mikrowellenspektrum von SiH₃Br⁴ erscheint uns zu groß; denn bei SiH₃F und SiHF₃, SiH₃Cl und SiHCl₃ unterscheiden sich die Si-H-Abstände maximal nur um 2%. Die Unsicherheit ist vermutlich dadurch entstanden, daß keine D-Substitution vorgenommen wurde.

Bei der Betrachtung von d_{Si-H} aus den r_0 -Strukturen in der Reihe SiHF3, SiHCl3 und SiHBr3 ist eine Zunahme von $(1,455\pm0,005)$ Å⁵ über (1,472+0,002) Å⁶ zu (1,494+0,009) Å zu beobachten. Die Untersuchungen zeigen weiter, daß die Verkürzung der Si-Halogenbindung mit zunehmender Halogensubstitution des Monosilans auch bei Brom auftritt. Der Si-Br-Abstand nimmt von $(2,209 \pm 0,001)$ Å bei SiH₃Br⁴ auf $(2,170 \pm 0,001)$ Å bei SiHBr3 ab.

Die Verkürzung der X-Halogenbindung ist für X=C und Si gemeinsam, wenn sie auch wahrscheinlich verschiedene Ursachen hat. Dagegen ist die Änderung der X-H-Bindung für X=C und Si entgegengesetzt⁷.

Wir danken Herrn Dr. K. H. LEBERT für die Aufnahme der Massenspektren. Der Deutschen Forschungsgemeinschaft sind wir für personelle und sachliche Unterstützung zu besonderem Dank verpflichtet. - Die Rechnungen wurden zum Teil im Deutschen Rechenzentrum, Darmstadt, durchgeführt.

7 Q. WILLIAMS, J. T. COX u. W. GORDY, J. Chem. Phys. 20, 1524 [1952].

⁶ Aus den Daten von ³ errechneter r_0 -Wert.