
ten, müssen die Zusatzreflexe ebenen, parallel zu 
den {311} -Ebenen des Kupfers gelegenen Ober-
flächenbereichen zugeordnet werden, wobei die Streu-
zentrenanordnung dieser Bereiche mit der Struk-
tur der {31l}-Kupfer-Vizinalflächen übereinstimmt 
[ p ( l X 1)-Struktur]. 

Im weiteren Verlauf der Reduktion treten in der 
Nähe der BRAGG-Spannungen für das Kupfer wieder 
die diffusen Intensitätsflecken auf ( A b b . 2 3 b ) . Das 
bedeutet, daß ein Teil der bestrahlten Oberfläche am 
(100) -Pol die ursprüngliche, vom Sauerstoff unbe-
einflußte sphärische Form angenommen hat. Noch 
sind aber die { 4 1 0 } - u n d {31l}-Vizinalflächen stark 
ausgeprägt, was durch die nur geringfügig vermin-
derte Intensität der Beugungsreflexe bewiesen wird. 
Setzt man die Wasserstoffbehandlung fort, so ver-
schwinden schließlich alle Interferenzen der Vizinal-
flächen, und zwar diejenigen der {410}-Flächen 
gleichzeitig mit denen, welche von den { 3 1 l } - F l ä -
chen herrühren. Aus dieser Tatsache und der erfor-

derlichen relativ hohen Reaktionstemperatur folgt 
die Möglichkeit, daß sich die {410}-0berflächen-
schichten zunächst in {311}-Bereiche umordnen, von 
denen der Sauerstoff wahrscheinlich leichter entfernt 
werden kann. 

Übrig bleiben die nunmehr intensiven diffusen 
Beugungsflecken (Abb. 23 c). Der (100) -Pol ist voll-
ständig reduziert. Sein Beugungsbild entspricht ge-
nau dem eines getemperten Würfelpoles einer frisch 
geschmolzenen Kupferkugel (s. Abb. 5 ) . 

Herrn Prof. Dr. K . M O L I E R E möchte ich meinen be-
sonderen Dank für sein stets förderndes Interesse aus-
sprechen. Für fruchtbare Diskussionen danke ich den 
Herren Dr. G. L E H M P F U H L und Dr. K . K A M B E ebenso 
wie Herrn Prof. Dr. E . M E N Z E L und Herrn Dr. O . S C H O T T . 

Ich bedanke mich außerdem bei Herrn H.-J. K R A U S S für 
die Anfertigung der Zeichnungen. — Der Max-Planck-
Gesellschaft und der Deutschen Forschungsgemeinschaft 
bin ich für die Gewährung von Stipendien zu Dank ver-
pflichtet. 

Fluctuation Theory of Irreversible Processes 
C H . S C H N E E W E I S S * 

Institut für Physikalische Chemie der Universität Frankfurt/Main 

(Z. Naturforschg. 22 a, 1671—1677 [1967]; received 13 June 1967) 

LANGEVIN equations of the type dnx(t)/dtn-\-.. . + c x(t) —K (t) constitute the starting point of a 
phenomenological fluctuation theory of irreversible processes. These equations are not constructed 
from transport equations (as in the older theory), but via a generalized M A S T E R equation from 
phase space mechanics. The M A R K O F F processes of first and higher order defined by the various 
LANGEVIN equations are studied by the prediction theory of stationary stochastic processes. Instead 
of the variation principle of the ONSAGER—MACHLUP theory one has the minimization of the predic-
tion error. The mean relaxation path and the entropy of the considered processes are calculated. 
It is shown that the entropy consists of one part which is given by the relaxation path and another 
which is determined by the prediction error. 

1. Introduction 

The fluctuation theory of irreversible processes 
starts from stochastic differential equations of the 
type 

dw x(t) , . , . /", -, \ 
— ± l + . . . + c x ( t ) ( 1 . 1 ) 

where y.{t) is a random force, x{t) an external 
(thermodynamic) parameter and c a constant. Eq. 
( 1 . 1 ) is called a L A N G E V I N equation of order n. 

* Present address: Institut für Gesellschafts- und Wirtschafts-
wissenschaften der Universität Bonn, Statistische Abteilung, 
53 Bonn, Lennestr. 37. 

Originally1 these equations were derived from 
the phenomenological equations of irreversible pro-
cesses. This, however, had as a main disadvantage 
that the nature of the process x(t) could only be 
guessed. Later, V A N K A M P E N 2 was able to remove 
partly this deficiency in showing the intimate rela-
tion between the theory of the phenomenological 
phase space 3 and fluctuation theory. But since VAN 
K A M P E N ' S theory of phenomenological phase space 
is restricted to M A R K O F F processes he was only able 

1 L. ONSAGER and S. M A C H L U P , Phys. Rev. 91, 1 5 0 5 [ 1 9 5 3 ] . 
2 N . G . VAN K A M P E N , Physica 2 3 , 7 0 7 [ 1 9 5 7 ] . 
3 M . S. G R E E N , J. Chem. Phys. 2 0 , 1 2 8 1 [ 1 9 5 2 ] , 



to derive a first order L A N G E V I N equation. Further-
more there is no consequent derivation of the theory 
of phenomenological phase space from the Liou-
V I L L E equation, and it is not explicitly seen which 
approximations have to be introduced in order to 
arrive at the starting point of fluctuation theory. 

The situation now is by far better. The (pheno-
menological phase space) theory of Z W A N Z I G 4 pro-
vides us with a statistical basis which will prove to 
be broad enough to derive not only a first order 
fluctuation theory but also all higher order L A N G E V I N 

equations. By this theory we shall also be able to 
show explicitly the succession of approximations 
that have to be introduced to derive the fundamental 
equations of fluctuation theory from the L I O U V I L L E 

equation. 
Having established the validity of the L A N G E V I N 

equations we shall then calculate the mean relaxa-
tion path of the irreversible process and will give 
a new derivation of the fluctuation dissipation theo-
rem Doing this we shall not use the variation me-
thod of O N S A G E R and M A C H L U P 1. Instead we will in-
troduce the prediction theory6 of stationary sto-
chastic processes into statistical mechanics. This 

theory has not only the advantage of particular 
mathematical transparency and elegance, but gives 
also a new suggestive interpretation of entropy. 

2. The Theory of Phenomenological Phase Space 

Let us first recall some notations and results of 
ref. 4. Let x— . . . , qy, p i , . . . , p^} be a vector 
in phase space -T, A (x) a set of phase functions Aj 
(j = 1 , . . . , n), and cij = Aj(z) a special value of the 
phase function Aj; then the n dimensional linear 
manyfold of vectors a= { a l 9 . . . , aw} is called n di-
mensional phenomenological phase space or a space. 
The connection between phase space T and a space 
is given by the projection operator 

Pa... = ¥1—f dx S(A(x) — a)... (2.1) 

where W (a) = J d x d ( A ( x ) — a) is, as usual, the 
normalization. The probability density g (a,t) in 
a space is then given by 

g(a,t) = Jdx^Or)-a)f(x,t) (2.2) 

with f(x, t) being the phase space density. 

If one now introduces (2.1) into the "damping form" of the L I O U V I L L E equation [ref. 4, Eq. ( 1 8 ) ] , 
one gets [imposing the initial condition g{a, 0) = d(a — a„) ] a kinetic equation in a space [ref. 4, Eq. 
(24 ) ] 

g(a,t) = -ijdo'\dxd(A(x)-a)Ld(A(x)-a) (2 3) 

t 
- Jd«Jdo/|da;^(i4(z)-o)Lc-^1-,,-)L (1 -Pa)S(A-a) ff(^S) 

6 

(L being as usual the L I O U V I L L E operator). 
Introducing the definitions 

U{a,a,s) =i$dxd(A(x) -a)Ld(A-a) d{s-s0) with 0 < s 0 < t , (2.4) 

G(a,a,s) = J d x ^ ( ^ ( x ) - a) L e ^ - ^ L (I ~ Pa) L d(A - a), (2.5) 

and D{a,a,s) = — {U(a,a,s) + G(a, a, s ) } JF~1(a) , (2.6) 

Eq. (2.3) can be written in the form 
t 

g {a, t) = f ds J d a ' D [a, a', s) g ( a , t - s) . ( 2 . 7 ) 
o 

This important equation is called a generalized M A S T E R equation in a space. It shows a memory effect in 
that the change of g (a, t) is not only given by the presence but also by all times of the past. 

4 R. ZWANZIG, Phys. Rev. 124, 983 [1961]. 6 A. PAPOULIS, Probability, Random Variables and Stochastic 
5 R . S. D E GROOT and P. M A S U R , Non-Equilibrium Thermo- Processes, McGraw-Hill Book Co., New York 1 9 6 5 . 

dynamics, North Holland Publishing Co., Amsterdam 1962. 



Consider now a power series expansion of D [a, a, s) after potentials of a — a. This expansion stops after 
the second term 7 if one introduces (following Z W A N Z I G ) the assumption 

0{(LP)2}> 0{(LP)3} . (2.8) 

Introducing L and P one can show that (2.8) amounts to the postulate that the considered irreversible pro-
cess be "sufficiently slow". With ( 2 . 8 ) the expansion yields the generalized F O K K E R — P L A N C K equation 8 

i(a,t)--Z-*-{vria)g(a,t)}+l ds 2 | ( * „ ( « . * ) W («) ^ ) (2.9) 

where vr(a) = j* dx 5 (A (x) - a) Ar{x) (2.10) 

and Kqr(a,s) = ^ dx d (A (x) -a) Aq(l -Pa) e~isl A r (2.11) 

(A denoting the total time derivative of A). Eq. (2.9) will be the starting point of a generalized fluctuation 
theory. It still contains a time convolution which we now shall remove by extending the phenomenological 
phase space. 

3. Extension of Phenomenological Phase Space 

Let us return to Eq. ( 2 . 7 ) . This equation may be interpreted as a differential C H A P M A N — K O L M O G O R O F F 

equation of a non-MARKOFFian process 9. Such a process, however, can always be described as a M A R K O F F 

process by extending its state space 1 0 . A n increase of the number of dimensions of the state space implies 
a contraction of the memory interval. It seems to be natural (in view of thermodynamics of irreversible 
processes) to extend the phenomenological phase space, in which the considered relaxation process is de-
scribed, by the time derivations of the describing variables A j 

A,{x) = B,(x) . (3.1) 

Thus we get instead of (2.9) , applying (2.8) also to the B variables, 
71 3 n 3 

g{a, b,t) = — 3 - b) fir (a, b, t) } - ^2 dh W « , b) g{a, b, *)} 

where the notations used here are quite analogue to those after Eq. (2.9). Particularly we have 

Pa,b-— = J da J dbd (A (x)-a)d(A(x)-b)..., (3.3) 

vl(a,b) = Pa,bAl = blPa>b, (3.4) ux(o,b) = Pa,bÄx (3.5) 

and KXx(a, b,s) = Pa,b Äx(l-Pa>b) e~isL Ax . (3.6) 

Let us now assume that the relaxation time xc of not described internal parameters C are negligibly small 
compared with the relaxation time rB of parameters B. This permits us to take the " P A U L I limit" 11 of Eq. 
(3.2), i. e. we shall (in a well known way) remove the time convolution integral in Eq. (3.2). If the con-
dition rb ^> rc is not satisfied one can take into account further time derivatives of Aj. One will than 
arrive at L A N G E V I N equations of higher than of second order. In this paper, however, we shall restrict our-

7 CH. SCHNEEWEISS, Thesis, Naturwissenschaftl. Fakultät der 9 See e. g. K. KRICKEBERG, Wahrscheinlichkeitstheorie, B. G. 
Universität Frankfurt a. M. Teubner Verlagsgesellschaft, Stuttgart 1963, p. 160. 

8 This equation has also been derived by Z W A N Z I G [ref. *, 1 0 J . D O O B , Stochastic Processes, John Wiley & Sons, New 
Eq. (27)] in a mathematical easier but less straight for- York 1953. 
ward way. 11 I. OPPENHEIM and K. E. SHULER , Phys. Rev. 138, B 1007 

[1965]. 



selves to the P A U L I limit of Eq. (3.2), since the higher order case does not show up anything new. Thus 
we get from (3.2) 

11 3 " 3 
g(a,b,t) = - 2 ^-;{big{a,b,t)}~ 2 [ux{a, b) g(a, b, t)} 

( 3 . 7 ; 

oo 
where Kxx{a,b)= f ds b, s), and (3.4) has been used. 

o' 

In order to get the ordinary L A N G E V I N equations of fluctuation theory, let us "linearize" Eq. ( 3 . 7 ) and 
assume 

Ux(a,b)~Ud0,0) + 2 VJLJ ai j 
; = i 

and for the equilibrium distribution 12 W(a,b) , 

1 

(3.8) KXx(a, b) «^(0,0) 

IF(a,b)~exp ] - — ( 2 gki ak a, + 2 h-KX bb, 
k,l 

( 3 . 9 ) 

(3.10) 

k being the B O L T Z M A N N constant. 

Using (3.10) one can easily show 2 ' 7 that f/^(0,0) = 0 and (3.7) takes the form 

g(a,b,t) = - I {,bg(a,b,t)}- {V ag(a,b,t)} + ^ { ^ ( 0 , 0 ) W(a,b) ^ (3.11 

where, simply for reasons of convenience, only one A and one B variable are considered. 

4. Langevin Equations 

We are now in the position to derive the desired 
L A N G E V I N equations of an extended fluctuation 
theory. The only thing to do is to change the re-
presentation of the described stochastic processes, 
i. e. one has to change from a probability density 
representation to a representation by stochastic dif-
ferential equations. This can easily be achieved 

Using (3.8) , (3.9) and (3.10), Eq. (3.11) be-
comes 

A(t)=B(t), 

B{t)+2MB(t)+<o02A{t)=x(t) (4.1) 

where the phase functions A(z) = A (x(t)) = A(t) 
and B(t) are now considered as a stochastic (vector) 
process; and 

2 M = K h , co2 = gh~\ 

x{t) is called stationary white noise. One has 
x(t) =dW{t), where JV (t) is a W I E N E R process, 
and in view of (3.11) £ ( x ( 0 ) = 0 and 

(E being the expectation and c a constant.) Since 
( 3 . 1 1 ) is a F O K K E R — P L A N C K equation, x(t) is of 
course a stationary GAUssian—MARKOFF process and 
{A(t), B(t)} a M A R K O F F process of first order. This 
is equivalent to a M A R K O F F process of 2 . order 6 if 
one writes instead of (4.1) 

A(t) + 2 M A (t) + co02 A (t) =x{t). (4.3) 

If the transition to the P A U L I limit is allowed al-
ready in Eq. (2.9) (i. e. if one has for the relaxa-
tion times of the A parameters tj rg) one gets in 
an analogous way 

A(t) + f^A(t)=x{t) ( 4 . 4 ) 

E{x{t) x{t')}=cd(t-t), ( 4 . 2 ) 

12 See e. g. ref. 3. 

which represents of course the long time behaviour 
of the process (4.3). 

In order to apply the prediction theory to the 
processes (4.3) and (4.4) , let us calculate their 
correlation functions. Since x{t) is a stationary pro-
cess, A(t) [being a linear transformation of * ( / ) ] 
is also stationary. Therefore (by the W I E N E R — K I N T -

CHIN-theorem) we can use spectral densities. Con-
sidering x(t) as the input-process and A(t) as the 
output of a linear system one gets quite generally c 



for the spectral densities 

S(a>) = \H(i<o)\2SK(<o) (4.5) 

where H (i co) is callled the "system function" or 
"susceptibility". For the process (4.3) one gets 

SJJ(W) ( G > . _ Ö ) O , ) « + 4 M « Ö ) 2 ~ (4-6) 

and in view of the case 

M2 — co02 = ß2>0, (4.7) 

F O U R I E R transformation yields the correlation func-
tion 

Raa{*) = k g ~ i e ~ M ^ ^coshß x + Mß- sinhß \ x1) . 
(4.8) 

For the process (4.4) we get 

RAx) = k g'1 exp{ ( - co 212 M) \ x |} . (4.9) 

5. Prediction Theory of Irreversible Processes 

We shall now calculate the mean relaxation path 
and the entropy of the processes (4.3) and (4.4) 
by means of the prediction theory of stochastic pro-
cesses. For this reason let us first demonstrate the 
general idea of this theory at a discrete stochastic 
process. 

Let us consider the following situation. We know 
the n values 13 

a ( 1 ) ( < - 1 ) , 0 ( d ( « - 2 ) , . ..,aa)(t-n) (5.1) 

of a realization of the stochastic series 

,4(1) , A(2),...,A(t),...,A(t + x).... (5.2) 

and we are asked to estimate the value a(i) (f + r ) , 
[i. e. one is interested in the behaviour of the reali-
zation (5.1) t steps ahead]. 

The best extrapolation, however, will be a func-
tion of the known values (5.1), i. e. 

0(1) (« + T) = g (o (1 ) (t - 1 ) , . . . , a, D [t - n)) 1 3 a . ( 5 . 3 ) 

As a criterion of efficiency of the estimation 
ä{\) (t + z) we may take 

en{x)=E{\A{t + x)-g(A{t-\),...,A(t-n))\2}. 
(5.4) 

en(x) is called the mean quadratic extrapolation 
error. In order to get the best estimation we have to 
minimize the extrapolation error. This is a problem 
which generally involves great analytical difficulties. 
Therefore one restricts the class of all possible func-
tions g to the class of linear functions. That is to 
say we are working with a "wide sense theory" 10, 
since only covariances are taken into account. For 
GAUSsian processes which we are concerned with 
this restriction is of course of no effect. 

The minimization of en{x) is now very simple. 
Let us define a metric in the space of all random 
variables by 

(A, Y) =E{x,y) 

where (X, F) is the scalar product of the random 
variables X and Y. Now construct a perpendicular 
from A(t + x) on to the known random variables 
A (t — 1),..., A (t — n). The square of the length of 
this perpendicular is then of course en(x). 

In formulas: choose ) ] 1 , . . . , t]n such that 

E{[A{t + x)-{r)lA{t-\)+... + rjnA{t-n)}}A{t-i)}=0 (i=l,...,n) 

then the smallest prediction error is 

e„(r) =E{[A{t + x)-{rjlA{t-\)+... + nnA(t-n)}Y}. 

For the continuous case one has instead of (5.5) 

1 A (t") 1=0, t'^t A(t + x) - C dt A(t-t') h(t') 
6 

where a knowledge of the total past is assumed. 
Confining to stationary processes Eq. (5.7) becomes 

R(t + x-t") = \R{t-t"-t) h{t) dt 
o 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

Up to Eq. (5.7) t is an integer. 13a There should be no confusion, with notations in earlier 
sections. 



or, with t - t =T R(T' + t ) = $R(r'-t') h(t') dt. (5.9) 

This equation is called the W I E N E R - H O P F equation. If the stochastic process is known, i. e. if the correlation 
functions R are known, h(t) can in principle be calculated and one easily gets for the prediction error 

and for the best prediction 

e(x) = f l ( 0 ) - i R ( - r - t ) h(t') dt 
o 

A(t + r) = J d t A (t-t) h (t). 
o* 

(5.10) 

(5.11) 

Let us now consider the processes (4.4) and (4 .3) . This relation has as a consequence that (5.14) con-
The process ( 4 . 4 ) is of a particular simple struc-
ture. S i n c e its correlation function ( 4 . 9 ) is an ex-
ponential it belongs to the class of wider sense 
MARKOFFian processes 1 0 . 

These processes have the important property that 
for linear prediction only the knowledge of the pre-
sence is relevant, i. e. 

g = r]A(t) 1 3 b . (5.12) 

This implies, since 

rj = RA (T) /RA (0) = exp{ ( - < V / 2 M) | r |} , (5.13) 

ä(t + r) = e x p { ( - o V / 2 M ) | r | } a(t) . (5.14) 

Eq. (5.14) is an interesting and important result. 
Its importance results from the fact that the best 
prediction is equal to the expectation a of the con-
ditional density g(a, t) (in the P A U L I limit) : 

stitutes essentially the statement of the fluctuation 
dissipation theorem, i. e. the mean relaxation path 
[ a ( r ) ] is given by the equilibrium fluctuations 
(4 .9) . 

rpl . 1 • X 1 " 1 1 
ifte extrapoiaaon error, ±or wnicn one can snow 

that it is identical with the dispersion of g(a, t), 
is given by 
e^(r) = E{[A(t + x)-rj A(t)] A(t + r)} (5.16) 

= RA ( 0 ) - =KG~1(l - e x p { ( - W F / M ) |r |}). 

For the second order M A R K O F F process (4.3), which 
describes a memory effect, the prediction problem 
is not so easy. Here it is necessary to solve the 
W I E N E R — H O P F equation (5.9). One gets for the best 
extrapolation 

g = r]A(t)+CA(t) (5.17) 
where 

*1 = RAA(r) /R.u( 0) and 
a(r) = a(r). (5.15) 

C = RAA(T)/RAA(T) . 

(5.18) 

Using (4.8) Eq. (5.17) becomes 

d ( « + T) = e~M|t| (cosh r + sinh | r | ) a (t) + - J - e~M^ sinh ß 1x j d (t). (5.19) 

This is an interesting result, since it plainly shows the memory character of the process (4 .3) . The term 
with d(t) improves the prediction. 

For the prediction error one gets 
eAA(r)^= E{[A(t + z)-VA(t) -CA(t)] A(t + r)} = RaA(0) -rjRAÄ(x) + £RaA(t) 

= kg~l |l - e - 2 w M [(cosh ß x + -j- sinh ß\r\J + sinh2 ß \ x | J J. (5-20> 

In the strong damping case (M <o0) and for long times eAA(z) becomes eA(r). Quite generally one has 

l i m e ^ ( r ) = l ime^(r) = ^ ( 0 ) = RaA(0) = k g~K (5.21) 
T—*• OO T—*• OO 

6. Prediction Error and Entropy 
The G I B B S entropy is given by 

13b See footnote 13a. 

S = — k J da g(a, t\a0, 0) In (6.1) 



where g(a, j|a0 ,O) denotes a conditional probability density and W(a) = l im g(a, t j a0, 0) is the "equi-
t—K» 

librium distribution" ( i .e . the stationary probability density). In information theory H= — (1 Jk) S is 
known as mean conditional transinformation and one writes 

H = I(g(a,t\a0,0) || W(a)) (6.2) 

H may be interpreted as the information one pos-
sesses over a random variable A(t), if one knows 
the value a0 of a random variable A (0 ) . 

Besides H there exists the relative information IT 

which is defined by 

I, = J da„ V(a„) / (ST (a, t ] a„, 0) || W (a)) 

where g(a,t,a0, 0) denotes the simultaneous prob-
ability density of the random variables A (0) and 
A( t ) . / r may be interpreted as the mean information 
of one random variable relative to another. 

Let us again consider the first order GAussian— 
M A R K O F F process ( 4 . 4 ) . One has 

= y 2 i h m e x p j 
( 6 . 4 ) 

and 

r W " • (6-5) 

Introducing these expressions into (6.1) one gets 

SA=-\ü exp{ - 2 w2 t/M] (a02 - k g^) 
(6.6) 

2 k ln k g~i 

where a0 denotes a macroscopic deflection from 
equilibrium, i. e. a0 kg-1. 

Eq. (6.6) consists essentially of two terms. The 
first is determined by the best extrapolation and the 
second by the prediction error e^{t). It is interest-
ing to notice that this last term is except for the 
factor — k the relative information 7 

StA= - k IlA = - | k ln Yg —. (6.7) 

Introducing Eq. ( 5 . 1 6 ) one has 

SrA= ~ ln ( l - e x p { — <o02 t/M}) (6.8) 
and it is well known 5 that this term can be neglect-
ed in (6.6). Thus the entropy of the process is en-
tirely given by the best extrapolation. 

SA = - IÖ ao2 e x p { — 2 co02 t/M} 

= - H k g T e x p { - 2 <JL>02 t / M } ^ 

or, using ( 5 . 1 4 ) with ( 5 . 1 5 ) 

SA=-19 *Ht). (6.10) 

7. Summary and Discussion 

T h e starting point of the present investigations 
was the L I O U V I L L E equation of ordinary phase space 
[which lead to ( 2 . 3 ) ] . The Z W A N Z I G formalism then 
allowed the derivation of a generalized M A S T E R 

equation in a space. T h i s equation can b e inter-
preted as a differential C H A P M A N — K O L M O G O R O F F equa-
tion of a non-MARKOFFian process. In order to get 
the fundamental equations of a generalized fluctua-
tion theory from phenomenological phase space the-
ory three assumptions have to be introduced 

1. 0{(LP)2}>0{(LP)*} 
[Eq. ( 2 . 8 ) implying ( 2 . 9 ) ] . 

2. Extension of a space 
[Eq. ( 3 . 1 ) , in order to remove the time 
convolution of ( 2 . 9 ) ] . 

3. Linearization 
[Eqs. ( 3 . 8 ) and ( 3 . 9 ) implying ( 3 . 1 1 ) ] . 

Physically these conditions should be fulfilled for 
slow relaxation processes near equilibrium. 

The basic equations of fluctuation theory have 
then been studied using the prediction theory of 
stationary stochastic processes. In this theory the 
minimization of the prediction error replaces ON-
S A G E R ' S variation principle. It should be mentioned, 
however, that only the "extrapolation aspect" of 
O N S A G E R ' S theory has been investigated. But, of 
course, also the other problems studied by O N S A G E R 

a n d M A C H L U P 1 a n d T I S Z A a n d M A N N I N G 1 4 c a n b e 

investigated by the help of interpolation and filter-
ing theory and other well established methods of 
system theory. 
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