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1. Motivation

The sky and stars in particular have fascinated humanity since its very beginning. While
cultures as ancient as the Babylonians tried to divine meaning from their constellation,
modern humanity has not lost its interest in them, though the method in which we try
to divine meaning has become more sophisticated. It is not their allurement alone that
might motivate their investigation. An accurate description of matter under extreme
circumstances, such as high temperatures and densities, is a highly coveted piece of
information in multiple fields of physics. It is referred to as the equation of state (EoS)
of high energy matter. The investigation of such matter comes with a plethora of com-
plications not least of which is the creation of such extreme conditions in a terrestrial
laboratory. While particle accelerators are a very successful method of investigating
matter at high temperatures, the time frame in which this can be done is limited to
the fractions of a second the particles collide, posing additional challenges. The high
density regime is even harder to probe on earth.
One of the most promising remedies for our lack of knowledge in this regard is astro-
physics. This is because high energy conditions that are impossible to achieve on earth
are common place in the cosmos. Furthermore, most objects observed are stable and
will not change much in a timescale relevant to us, especially in the case of neutron stars.
Although it is difficult to precisely determine astrophysical observables with current
technology next generation gravitational wave observatories like the Einstein telescope
[Maggiore et al., 2020] and Cosmic Explorer [Evans et al., 2021] are likely to improve
the constraints that can be put on the high density equation of state (EoS) drastically.

This thesis will aim to create an understanding of the place of neutron stars in the
search for the description of high energy matter. A particular focus will be on so-called
hybrid stars. To better illustrate how this thesis fits into the bigger picture of high energy
physics we look at the phase diagram of quantum chromodynamics (QCD) in figure 1.1.
It shows the state in which matter at high energies is observed and the corresponding
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1. Motivation

ways of probing its properties. As mentioned before, collider experiments like the
Large Hadron Collider (LHC) at CERN or the Realistic Heavy-Ion Collider (RHIC) at
the Brookhaven National Laboratory are well suited to investigate high temperature
conditions at comparatively low densities.
It is well known that at high densities or temperatures a phase transition from the
regular hadronic matter we are used to, to a quark-gluon plasma will take place. This is
inevitable as it becomes energetically favorable for the quarks that make up hadrons
to exist in a deconfined state under such extreme conditions. However, it is unknown
where exactly this phase transition occurs and in what way. In particular, it is unknown,
whether or not this phase transition is possible under conditions in the center of neu-
tron stars. Determining the validity of this hypothesis would be an invaluable step in
constraining the behavior of high energy matter.
In this thesis, we will explore the most important constraints provided by neutron star
observations on the equation of state for ultra dense matter using a highly parameter-
izable description for the hadronic phase and an optimistic constant speed of sound
approach for a potential quark phase. We are mostly concerned with possible indicators
provided by current observables at low temperatures that might point towards the
presence of a phase transition within neutron stars. However, we will also introduce
some modifications to our hadronic description to expand our analysis to finite tem-
peratures, which will allow us to investigate the mid-temperature region in the QCD
phase diagram at the density of neutron stars via protoneutron stars or binary-merger
simulations in the future.

2



1. Motivation

Figure 1.1.: A qualitative drawing of the temperature and baryon chemical poten-
tial axis of the QCD phase diagram. Methods of probing the border
between hadronic and quark matter are shaded in green. The ab-
breviations are as follows: FAIR refers to the Facility for Antiproton
and Ion Research at the GSI in Darmstadt and NICA refers to the
Nucleon Based Ion Collider Facility being constructed in Dubna. The
LHC is the Large Hadron Collider at CERN and RHIC the Relativistic
Heavy-Ion Collider at Brookhaven.
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2. Introduction

This thesis is structured in the following way: We will start in chapter 3 by examining
the assumptions that go into our description of hadronic matter. The model we use is
an equation of state that describes matter by modeling the interaction between particles
as the exchange of mesons. It is a relativistic mean field equation of state [Johnson and
Teller, 1955, Duerr, 1956, Walecka, 1974, Boguta and Bodmer, 1977, Serot and Walecka,
1986, Mueller and Serot, 1996, Typel et al., 2010, Hornick et al., 2018]. One of the main ad-
vantages of this type of EoS is its high parameterizability [Todd-Rutel and Piekarewicz,
2005, Chen and Piekarewicz, 2014, Hornick et al., 2018], allowing us to investigate a
brought spectrum of the parameter space with a single consistent approach. We will
construct this equation of state with the assumption of a negligible temperature and
then expand it later in the chapter to finite temperatures.
Once we established the underlying hadronic equation, we can focus on neutron stars
themselves in chapter 4. After a short summary of the field, the most common properties
of a neutron star that can be calculated will be introduced and their derivation shown.
This allows us to compare the results with state of the art astrophysical observables
from NICER [Miller et al., 2019, Riley et al., 2019, Raaijmakers et al., 2019, Miller et al.,
2021, Riley et al., 2021, Raaijmakers et al., 2021], LIGO/Virgo [Abbott et al., 2017, Abbott
et al., 2018, Abbott et al., 2019, Abbott et al., 2020] and other groups [Demorest et al.,
2010, Antoniadis et al., 2013, Fonseca et al., 2016, Cromartie et al., 2019, Romani et al.,
2022, Doroshenko et al., 2022].
In chapter 5 we will introduce a phase transition into the hadronic equation of state,
creating so-called hybrid stars [Ivanenko and Kurdgelaidze, 1965, Itoh, 1970, Alford
et al., 2005, Coelho et al., 2010, Chen et al., 2011, Masuda et al., 2013, Yasutake et al.,
2014, Zacchi et al., 2016]. They are referred to as such because they are part hadronic
and part quark star. We will examine the influence a phase transition has on the pre-
viously discussed observables. Most notably the mass radius relation, where a strong
indicator of a phase transition can be found in the form of twin stars; two stars with the
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2. Introduction

same mass but different radii [Kämpfer, 1981, Glendenning and Kettner, 2000, Schertler
et al., 2000, Schaffner-Bielich et al., 2002, Zdunik and Haensel, 2013, Alford et al.,
2015, Blaschke and Alvarez-Castillo, 2016, Zacchi et al., 2017, Alford and Sedrakian,
2017, Christian et al., 2018, Blaschke et al., 2020, Jakobus et al., 2021]. Such a configu-
ration is only possible for neutron stars with a phase transition. We also will take the
opportunity to discuss some topics that are only tangentially related to this work in
chapter 5 when we take a look at production scenarios of hybrid stars and alternative
explanations for potential data points.
We conclude in chapter 6 that given the current astrophysical data a phase transition in
neutron stars is possible. We will see that, depending on the parameters under which
this phase transition would take place[Christian et al., 2018, Christian and Schaffner-
Bielich, 2021, Christian and Schaffner-Bielich, 2022], the presence of a phase transition
in neutron stars will be either known or strongly constrained in the near future [Pascha-
lidis et al., 2018, Alvarez-Castillo et al., 2019, Christian et al., 2019, Montana et al.,
2019, Sieniawska et al., 2019, Christian and Schaffner-Bielich, 2020, Tsaloukidis et al.,
2022, Landry and Chakravarti, 2022].
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3. Our Equation of State

3.1. What is an Equation of State?

A fundamental concept in physics is the so-called equation of state (EoS). This equa-
tion describes the behavior of matter under specific conditions and assumptions. In
astrophysics the EoS is generally displayed as the connection of pressure p and the
energy density ε, for reasons that will become apparent in section 4.3. The most famous
equation of state is most likely the ideal gas law (pV = nRT). In this famous case, it
is assumed that the gas consists of point particles, that only interact with each other
and the boundary via elastic collisions. However, this model is obviously insufficient in
more complex or high density systems.
The equation of state of nuclear matter up to about saturation density n0 is well con-
strained by terrestrial experiments [Li and Han, 2013, Lattimer and Lim, 2013, Roca-
Maza et al., 2015, Hagen et al., 2015, Oertel et al., 2017, Birkhan et al., 2017] and effective
theories [Machleidt and Entem, 2011, Gandolfi et al., 2012, Hebeler et al., 2013, Drischler
et al., 2016], but the behavior at high densities is largely unknown. In theory, it is
possible to constrain the equation of state using astrophysical observables, such as
masses, radii and tidal deformation of neutron stars, which we will cover in great detail
in later chapters. An aspect of the EoS that is of some importance to these constraints
is the stiffness/softness of an equation of state. These terms refer to the increase of
the binding energy per particle as a function of density. They are used as a tool for
comparison between EoSs, where a stiff or hard equation of state has a stronger increase
of the energy per particle than a soft one. This behavior can also be related to pressure
and energy density, which are often more practical to use in astrophysics. A strong
increase in pressure as a function of energy density would indicate a stiff equation of
state.

6



3. Our Equation of State

In the following section, we will explore the intricacies of a particular high density
equation of state that profits significantly from its ability to be parameterized and
thus is capable of generating a good impression of the limits provided by a given
constraint.

3.2. Relativistic Mean Field Equation of State

A relativistic mean field (RMF) equation of state is constructed by employing quantum
field theory. It was first introduced by Johnson and Teller [Johnson and Teller, 1955],
Duerr [Duerr, 1956] and Walecka [Walecka, 1974]. The general procedure involves
deriving a Lagrangian containing all interactions necessary to reproduce nuclear matter.
The specific interactions depend on the particles that are taken into consideration. The
Lagrangian can then be used to find the equations of motion with the Euler-Lagrange
formalism. From there it is possible to extract the equation of state. This formalism is
described in multiple textbooks, see for an example specifically related to compact stars
[Glendenning, 2000].
In a conventional relativistic mean field model the interaction between nucleons is
described by including isovector ρ and isoscalar ω and σ mesons. The mesons are
represented as Lorentz scalar fields σ and Lorentz vector fields ωµ and ~ρµ, where σ

is responsible for the long range attraction, ωµ the short range repulsion and ~ρµ the
n/p asymmetry. Neutrons and protons can be understood as Dirac spinors ψi(i =

n, p). A Lagrangian can be found by combining the Lagrangians of the particles de-
scribed, as well as their interaction terms. The free Lagrangian for baryons is given as:

LB = ψB
(
iγµ∂µ −mB

)
ψB , (3.1)

with its mass m. The interaction Lagrangian for the mesons is described by employing
the dimensionless coupling constants gi with i = σ, ω, ρ:

Lint = ψB

(
gσσ− gωγµωµ − 1

2
g~ργµ~τ · ρµ

)
ψB −

1
3

bmn (gσσ)3 − 1
4

c (gσσ)4 , (3.2)

where the last two terms describe the scalar self-interaction of the σ fields and ~τ stands
for the isospin Pauli matrices. Finally the free Lagrangians for the σ, ω and ρ mesons

7



3. Our Equation of State

are given as:

Lσ =
1
2

(
∂µσ∂µσ−m2

σσ2
)

, (3.3)

Lω =
1
2

m2
ωωµωµ − 1

4
ωµνωµν , (3.4)

Lρ =
1
2

m2
~ρ~ρµ · ρµ − 1

4
~ρµν ·~ρµν . (3.5)

Adding them up one finds a typical Lagrangian:

L =∑
B

ψB

(
iγµ∂µ −mB + gσBσ− gωBγµωµ − 1

2
g~ρBγµ~τ · ρµ

)
ψB

+
1
2

(
∂µσ∂µσ−m2

σσ2
)
− 1

4
ωµνωµν +

1
2

m2
ωωµωµ

− 1
4
~ρµν ·~ρµν +

1
2

m2
~ρ~ρµ · ρµ − 1

3
bmn (gσσ)3 − 1

4
c (gσσ)4 .

(3.6)

This Lagrangian describes baryons with isovector ρ and isoscalar ω and σ mesons
[Glendenning, 1985, Glendenning, 2000]. Unlike in DD RMF models (see for example
[Typel et al., 2010]) the coupling constants gσ, gω and gρ are not density dependent.
Following the work of previous groups [Serot and Walecka, 1986, Mueller and Serot,
1996, Hornick et al., 2018] we add the following interaction Lagrangian to the previous
equation (3.6):

Lint = ∑
N

ψi
[
−qiγ

µ Aµ

]
ψi + Λω

(
g2

ρ~ρµ~ρ
µ
) (

g2
ωωµωµ

)
+

ζ

4!

(
g2

ωωµωµ
)2

, (3.7)

with Aµ as the photon field. The interaction Lagrangian contains the additional term
−ψiqiγ

µ Aµψi, as well as the last two terms describing a density dependence. This is
accomplished with the density dependent ρ−ω coupling term Λω and the quadratic
self coupling ζ of the ω mesons [Mueller and Serot, 1996, Horowitz and Piekarewicz,
2001, Todd-Rutel and Piekarewicz, 2005].
With knowledge of the Lagrangian we can find the equations of motion for the partici-
pating fields and finally energy density ε and the pressure p.
The equations of motion for the nucleons can be obtained from the Dirac equation:

(
iγµ∂µ − qiγ

µ Aµ −m∗−gωγ0ω0 −
gρ

2 τ3iγ
0ρ30)ψi = 0 , (3.8)

8



3. Our Equation of State

where τ3p = +1 and m∗ = m− gσσ, the effective mass of the nucleon. The photons
can be described using the Poisson equation, with the proton density as the source
term. The mesonic equations of motion, which can be gained from the Euler-Lagrange
equation, read as follows:

m2
σσ + mbg3

σσ2 + cg4
σσ3 = gσns , (3.9)

m2
ωω +

ζ

3!
g4

ωω3 + 2Λωg2
ρg2

ωρ2ω = gωn , (3.10)

m2
ρρ + 2Λωg2

ρg2
ωω2ρ =

gρ

2
n3 . (3.11)

This is the point at which mean field theory earns its name. In high baryon density
environments the meson fields can be replaced with their expectation values (ω = 〈ω〉,
σ = 〈σ0〉 and ρ = 〈ρ0

3〉), which enables us to simplify the otherwise highly complicated
non-linear quantum field equations of motion. The quantities n and ns represent
the nuclear and scalar densities (i.e. the sum of the respective neutron and proton
densities), while the quantity n3 = np − nn. The densities ni and ns

i can be defined
as:

ni =
γ

(2π)3

∫ ∞

0
d3k

[
f (k)− ¯f (k)

]
, (3.12)

ns
i =

γ

(2π)3

∫ ∞

0
d3k

m∗√
k2 + m∗2

(
f (k) + ¯f (k)

)
, (3.13)

with f (k) being the distribution function depending on the momentum k and γ being the
spin-isospin degeneracy. For now we will assume T = 0. Since the Fermi distribution
behaves like a Heavyside-function at zero temperature with limT→0 f (k) = Θ(µ− ε(k))
this simplifies to:

ns
i =

m∗

2π2

[
EFi kFi −m∗2 ln

kFi + EFi

m∗

]
, (3.14)

ni =
k3

Fi

3π2 , (3.15)

where EFi =
√

k2
Fi
+ m∗2 is the Fermi energy and kFi the Fermi momentum. Lets now

consider the energy-momentum tensor defined as:

Tµν ≡ ∂L
∂(∂µφi)

∂νφi − ηµνL . (3.16)

9



3. Our Equation of State

With our Lagrangian and keeping in mind, that the meson fields are replaced with their
expectation values this yields:

Tµν = iψ̄γµ∂νψ− [
1
2

m2
ωω̄2 − 1

2
m2

σσ̄2 +
1
2

m2
ρρ̄2 − 1

3
bmn (gσσ̄)3

− 1
4

c (gσσ̄)4 + Λω

(
gρgω ρ̄ω̄

)2
+

ζ

4!
(gωω̄)4 ]ηµν.

(3.17)

The energy-momentum tensor of a perfect fluid of a uniform system can be expressed
as:

Tµν = −pηµν + (p + ε)uµuν , (3.18)

with uµ the four-velocity. This means in the local rest frame the energy-momentum
tensor can be depicted as:

Tµν =


ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 , (3.19)

which then makes it easy to see, that we can express ε and p as:

ε = 〈ψ̄γ0k0ψ〉 − 〈L〉 , (3.20)

p = 〈ψ̄γikiψ〉+
1
3
〈L〉 , (3.21)

where we used that i∂νψ = kνψ and 〈L〉 is the term in brackets of equation (3.17). Now
we only need to determine 〈ψ̄γ0k0ψ〉 and 〈ψ̄γikiψ〉 and we are done. We assume again
zero temperature and find:

〈ψ̄γ0k0ψ〉 = 1
π2 ∑

I3

∫ ∞

0
k2dke(k)Θ(µ− e(k)) , (3.22)

where ei(k) = (gωω̄ + gρρ̄I3) ni + E(k)) describes the eigenvalues of the Dirac operators
for the particles i, which in our case are protons and neutrons. Furthermore, is Ei(k) =

10



3. Our Equation of State

√
k2 + (m− gσσ)2 the energy and I3 the isospin. This means:

〈ψ̄γ0k0ψ〉 = 1
π2

∫ k fp

0
k2dk

[
(gωω̄ +

1
2

gρρ̄) np +
√

k2 + (m− gσσ)2
]

+
1

π2

∫ k fn

0
k2dk

[
(gωω̄− 1

2
gρρ̄) nn +

√
k2 + (m− gσσ)2

]
=

1
π2

[
gωω̄ n +

gρ

2
ρ̄ n3 + ∑

i

∫ k fi

0
k2
√

k2 + (m− gσσ)2dk

]
.

(3.23)

We used here that n = nn + np and n3 = np − nn. It is now possible to employ the
equations of motion (3.9)-(3.11) to substitute n and n3 and subtract 〈L〉 from the result.
This finally allows us to express the energy density:

ε = 〈ψ̄γ0k0ψ〉 − 〈L〉 = ∑
i

1
8π2

[
kFi E

3
Fi
+ k3

Fi
EFi −m∗4 ln

kFi + EFi

m∗

]
+

1
2

m2
σσ2 +

1
2

m2
ωω2 +

1
2

m2
ρρ2l+

1
3

bm (gσσ)3 +
1
4

c (gσσ)4

+
ζ

8
(gωω)4 + 3Λω

(
gρgωρω

)2 .

(3.24)

For the pressure we proceed analogously and find:

〈ψ̄γkψ〉 = 1
π2 ∑

i

∫ k fi

0

k4
√

k + m∗
dk , (3.25)

which then again can be used to find an expression for the pressure. Alternatively,
one could use the connection of pressure and energy density to determine the former
using:

p = ∑
i

µini − ε , (3.26)

where µi is the chemical potential of particle i with:

µi = E fi + gωω̄ +
gρ

2
τ3iρ̄ . (3.27)
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3.3. Parameterization

In the previous section, we found expressions for the pressure and energy density. If
one now desires to actually use these equations, they will find, that there is a significant
amount of parameters that have not been fixed yet. RMF equations of state are phe-
nomenological models, where the parameters have to be fitted to experimental nuclear
data. Most notably the meson coupling constants gσ, gω and gρ, but also the ω − σ

coupling Λω, quadratic self coupling of the ω mesons ζ and other parameters can be
derived from nuclear matter properties such as the saturation density n0, the binding
energy per nucleon E/A, the incompressibility coefficient K and the effective nucleon
mass m∗/m at saturation.
There are various constraints on this large list of parameters, especially because many
of them are closely interlinked. For a recent study pertaining to these values in the
framework of a relativistic mean field equation see [Ghosh et al., 2022].
The isoscalar coupling constants (gσ, gω, b and c) can be determined by fixing n0 as well
as E/A, K and m∗/m. For a detailed description of this calculation see for example [Glen-
denning, 2000]. In the EoS used here we fix n0 = 0.16 fm−3, E/A(n0) = −16.3 MeV and
K(n0) = 240 MeV unless mentioned otherwise. This is based on [Shlomo et al., 2006]
and within the accepted values reported in [Oertel et al., 2017].
Furthermore, we follow the procedure described in [Chen and Piekarewicz, 2014] to fix
the isovector couplings (gρ and Λω) as a function of symmetry energy J and the slope
of the symmetry energy L at saturation density. Note that we set the quadratic ω meson
coupling ζ = 0, which generates the stiffest equation of state. The density-dependent
symmetry energy can be expressed as:

S(n) = S0(n) + S1(n) =
k2

F
6EF

+
g2

ρn
8m∗2ρ

, (3.28)

with
m∗2ρ

g2
ρ

=
m2

ρ

g2
ρ
+ 2Λωg2

ωω̄2 (3.29)

and S0(n) and S1(n) as the isoscalar and isovector. Since all isoscalar parameters have
been fixed, S0(n) and its derivatives are known. However, S1(n) is unknown as gρ and

Λω are not determined yet. It is known, that J = S(n0) and L = 3n0

(
dS
dn

)
0
, which we

12
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can use. We start with J:

J = S(n0) = J0 + J1 , (3.30)

J0 = S0(n0) =

(
k2

F
6EF

)
0

, (3.31)

J1 = S1(n0) =

(
g2

ρn
8m∗2ρ

)
0

. (3.32)

For a given effective mass at saturation density, we can compute J0, which yields J1 as
well, since we fix J. The slope parameter L can be written as

L = 3n0

(
dS
dn

)
0
= L0 + L1 , (3.33)

where

L0 = 3n0

(
dS0

dn

)
0
= 3n0

[(
∂S0

∂n

)
+

(
∂S0

∂m∗

)(
∂m∗

∂n

)]
0

,

L1 = 3n0

(
dS1

dn

)
0
= 3n0

[(
∂S1

∂n

)
+

(
∂S1

∂ω̄

)(
∂ω̄

∂n

)]
0

. (3.34)

This can be recast, as shown in [Chen and Piekarewicz, 2014], as:

L0 = J0

{
1 +

m∗2

E2
F

[
1− 3n

m∗

(
∂m∗

∂n

)]}
0

, (3.35)

with

(
∂m∗

∂n

)
= −m∗

EF

[
m2

σ∗

g2
σ

+
∂ns

∂m∗

]−1

(3.36)
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and

m2
σ∗

g2
σ

=
m2

σ

g2
σ
+ 2 b m gσ σ̄ + 3 c g2

σ σ̄2 , (3.37)

∂ns

∂m∗
=

1
π2

[
kF

EF

(
E2

F + 2m∗2
)
− 3 m∗2ln

(
kF + EF

m∗

)]
.

As one can see all parameters contributing to L0 are known and fixed. This leaves
L1:

L1 = 3J1

[
1− 32

(
g2

ω

m∗2ω

)
gω ω̄ Λω J1

]
0

, (3.38)

with m∗ω = mω. With L, L0 and L1 it is easy to calculate Λω. Using Λω we can find gρ by
combining equations (3.38), (3.29) and (3.32):

g2
ρ

m2
ρ
=

[
n

8J1
− 2Λωg2

ωω̄2
]−1

0
. (3.39)

3.4. Effects of Parameter Variation

One of the biggest advantages of the relativistic mean field approach is also one of
its greatest downsides. The EoS is highly parameterizable and can include a variety
of interactions and particles. In our model, the ability to vary the equation of state’s
stiffness is at the forefront of our consideration, which we accomplish by varying the
effective masses at saturation density (see section 3.3). We therefore keep the complexity
of the Lagrangian at a minimum and only include neutrons, protons, electrons, muons
and their anti particles, as outlined in the construction of our Lagrangian in section
3.2, and disregard more exotic possibilities like hyperons or delta mesons. This leaves
us with the symmetry energy J, the slope parameter L and the effective mass as input
parameters for our equation of state. It has been known for some time that the stiffness
of an equation of state is related to the effective mass at saturation density, where small
values of m∗/m lead to stiff EoSs and high values to soft ones [Boguta and Stöcker,
1983].
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Figure 3.1.: The effects of changing the parameters J, L and m∗/m on the equation
of state are shown, where one parameter is varied, and the other
two are kept constant. The upper three plots are at small pressures
close to saturation density. The bottom plots show the range that is
relevant at the core of neutron stars, which is significantly denser. The
variation of J shows no significant effect on the EoS in any regime,
while L causes a visible change at small densities but has little effect
in the full range. The only parameter variation that causes the EoS
to significantly change at high densities is m∗/m, which varies the
stiffness.
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With the slope parameter L being constraint to values of about L = 40− 60 MeV and
the symmetry energy to values of J = 30− 32 MeV [Li and Han, 2013, Lattimer and
Lim, 2013, Roca-Maza et al., 2015, Hagen et al., 2015, Oertel et al., 2017, Birkhan et al.,
2017, Adhikari et al., 2022, Zhang and Chen, 2022] the effective mass has the greatest
range of values in our approach. We vary it in steps of 0.05 from 0.55− 0.75, though it
should be noted that usually the best fit to nuclei is accomplished for values around
m∗/m = 0.61 ± 0.03 [Furnstahl and Serot, 2000]. Shirke et al. [Shirke et al., 2022]
published a very insightful recent study on this RMF EoS, where they investigate the
constraints using multidisciplinary physics. The values we use in this thesis are within
their allowed parameters.
The effects on the EoS of varying our three parameters are shown in figure 3.1. In this
figure, the upper three subplots show the pressure as a function of the energy density
in the small density range close to saturation density and the whole range required
for neutron star calculation in the bottom three plots. For each plot, one parameter is
varied while the others stay constant. From the middle plot, it is clear that varying
the symmetry energy in such small intervals has little effect on the equation of state.
This is true for both density regimes. This is in contrast to the difference generated
by varying the effective mass in the right two plots. At low densities effective masses
fixed to small values generate EoS with smaller pressure values at the same energy
density than higher effective masses. This behavior changes at saturation density. As
can be seen in the bottom right, changing the effective mass at saturation density has a
large impact on the equation of state at high densities. This leaves the variation of L
in the two sections on the left. Like the J variation, there is no impact on the equation
of state at high densities from changing L. This is reflected in the fact that L does not
effect the maximal mass of an equation of state significantly [Tolos et al., 2017a, Tolos
et al., 2017b] and has little effect on the mass radius relation of neutron stars as a whole
[Hornick et al., 2018]. However, at low densities close to saturation density L has a
distinct influence on the equation of state, where small values of L soften the equation
of state. This makes L a crucial parameter when fitting the equation of state to low
density constraints (see section 3.5).
When discussing the stiffness of the model, the quadratic self coupling of the ω mesons
ζ should be mentioned as well. In this work, we set ζ = 0, which leads to stiff equations
of state. However, it is well known even small values of ζ soften the EoS drastically.
From astrophysical constraints this puts an upper bound of 0.03 on ζ as Pradhan et al.
[Pradhan et al., 2023] show. The difference between those two methods of controlling

16



3. Our Equation of State

0

5

10

15

20

25

30

35

 0.2  0.4  0.6  0.8  1  1.2

physical

E
/A

 [
M

e
V

]

n/n0 [MeV]

m*/m=0.55 L=60 MeV

m*/m=0.60 L=50 MeV

m*/m=0.60 L=60 MeV

0

5

10

15

20

25

30

 0  0.2  0.4  0.6  0.8  1  1.2

unphysical or outside χEFT

E
/A

 [
M

e
V

]

n/n0

m*/m=0.55 L=40 MeV

m*/m=0.60 L=40 MeV

m*/m=0.65 L=40 MeV

Figure 3.2.: χEFT constraints compared to some choice examples of parameter
sets. The upper plot shows cases where all constraints are met, the
lower plot shows cases that do not fit χEFT or are unphysical. The
symmetry energy is set to J = 32 MeV, the slope parameter and
effective masses are stated in the plot. This figure was published in
[Hornick et al., 2018].

the stiffness of an EoS can be seen in the mass radius diagram, where non-zero ζ mass
radius relations feature similar radii and only diverge at higher central pressures, while
the softening caused by the effective mass also leads to a visible softening of the mass-
radius relation (see figure 4.1), where the mass radius relation diverge sooner.
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Figure 3.3.: χEFT limits compared with the RMF parameter sets we will use for the
majority of this work. The gray dashed line indicates the end point
of the crust EoS. Note that the RMF part after the crust is completely
within χEFT predictions.

3.5. Low Density Constraints on the Hadronic Equation

of State

Later in this work, we will discuss astrophysical constraints on the equation of state in
great detail. However, these constraints are most useful in a high density region. We
therefore need additional constraints to ensure that the equation of state describes the
low density region as well. Very generally speaking, there are two main ways in which
low density constraints are put on the equation of state. Firstly, there are constraints
from terrestrial experiments like finite nuclei data. Observables such as nuclei masses,
excitations and nuclear resonances can be determined with high accuracy. With these
parameters it is possible to constrain parameters at saturation density, like the binding
energy and the symmetry energy, as well as the value of n0 itself, which usually ranges
from n0 ≈ 0.15− 0.16 [Oertel et al., 2017]. In the relativistic mean field approach, these
parameters are used to calculate the coupling constants (as seen in section 3.3). This
way, the RMF EoS is compatible with finite nuclei constraints by construction. We orient
our values on the range deemed acceptable in the work by Oertel et al. [Oertel et al.,
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2017], who provide a detailed overview over various constraints on the equation of
state of compact stars.
The second main method of constraining the equation of state at low densities is
the consideration of pure neutron matter. Due to the low temperature, it is possible
to describe neutron matter using an effective field theory instead of the much more
resource intensive lattice QCD, which becomes necessary at higher energies. For this
effective theory, the breaking of chiral symmetry in the QCD Lagrangian is considered
and gives upper and lower limits on the band describable by χEFT. For χEFT pions and
nucleons are used as degrees of freedom instead of the quarks and gluons one would
expect for a theory dealing with strong interactions. The χEFT Lagrangian is constructed
by taking the most general QCD Lagrangian containing the broken symmetries. This
dictate a soft and a hard scale based on the pion mass and the ρ meson mass. The
QCD Lagrangian obviously would contain an infinite number of components, therefore
only the most impactful terms are taken into account when constructing the χEFT

Lagrangian. This is a complex task that numerous groups are working on. Usually
pion-neutron (πN), two body nucleon (NN) and further interactions are considered
to different degrees of order. We cannot scratch the surface of this topic here, as it is
a vast field. Many more ab initio approaches exist to describe nuclear matter up to
about saturation density. A very helpful review of the field from 2011 that also describes
some of the underlying concepts was compiled by Machleid and Entem [Machleidt and
Entem, 2011].
For our model, we fit the EoS to the next-to-next-to-next-to leading order three nucleon
interaction N3LO NNN constraints calculated by Drischler et al. [Drischler et al., 2016].
This fit was done in our publication [Hornick et al., 2018] where the parameters J, L
and m∗/m were varied as discussed in section 3.4. The publication by Drischler et
al. [Drischler et al., 2016] provides the χEFT results for the binding energy of neutron
matter as a function of the particle density. These constraints are visualized in figure
3.2 for a selection of parameter sets. The upper examples are within the χEFT band and
physically sound. The bottom plot contains results that are either unphysical or do
not fit the χEFT constraint. In this context unphysical refers to equations of state with
negative pressure. Hornick et al. provide an overview over the possible parameter sets
that result in χEFT compliant EoSs, which are summarized in table 3.1 and 3.2. Here
the abbreviations u, n and y are used for unphysical, not compatible and compatible
solutions. One might notice that unphysical solutions only appear at m∗/m = 0.55 and
even for those cases only for small slope parameters. This can likely be attributed to
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L [MeV] 40 45 50 55 60
m∗/m = 0.55 u u n y y
m∗/m = 0.60 n y y y n
m∗/m = 0.65 y y y y n
m∗/m = 0.70 y y y y n
m∗/m = 0.75 y y y y n

Table 3.1.: Compatibility of J = 30 MeV parameter sets with chiral effective field
theory results form [Drischler et al., 2016]. The abbreviation u, n and y
indicate a unphysical, not fitting and fitting solution respectively. A
slope parameter of L = 55 MeV allows all effective masses.

the Hugenholtz-van-Hove theorem [Boguta and Stöcker, 1983, Boguta, 1981] which
states: the Fermi energy at saturation has to be equal to the binding energy per nucleon.
This means, if we set the effective mass at saturation density to small values the ω field
has to strengthen and the equation of state has to stiffen. As established in section 3.4
lowering L softens the EoS. This means the stiffening of the lowered effective mass and
the softening from lowering L compete with each other, leading to unphysical solutions.
We can further tell from tables 3.1 and 3.2 that there are only two combinations of
J and L that support the entire range of effective masses. Since we are interested in
investigating the effects of varying the EoS stiffness, which is tied to the effective mass,
it is most useful for us to employ one of these sets. We therefore set J = 32 MeV and
L = 60 MeV for the remainder of the work, unless stated otherwise. The EoS for varied
effective masses with these parameters are compared to the χEFT band in figure 3.3.
Apart from the m∗/m = 0.55 all EoS are slightly outside the constraint at low densities.
However, this is not a concern as the deviation is acceptable. Furthermore, when
we start investigating astrophysical constraints in the next chapter, we will employ a
crust equation of state up to about half saturation density. This point is indicated by
a gray dashed line in figure 3.3 at which all equations of state are wholly within the
constraints.
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L [MeV] 40 45 50 55 60
m∗/m = 0.55 u u u n y
m∗/m = 0.60 n n y y y
m∗/m = 0.65 n y y y y
m∗/m = 0.70 y y y y y
m∗/m = 0.75 y y y y y

Table 3.2.: Analogous to table 3.1 with J = 32 MeV. A slope parameter of L =
60 MeV allows all effective masses.

3.6. Extending to Finite Temperatures

In cooled down neutron stars the Fermi momentum is much larger than the temperature,
as a result it is sufficient to use an equation of state at zero temperatures for their
description. However, shortly after a supernova, the newly born neutron star is still
extremely hot and not yet in equilibrium. For these so-called protoneutron stars, it is
necessary to consider the effect on the temperature as well. This is also true for neutron
star mergers, where immense heat is generated in the inspiral. In order to extend our
equation of state to finite temperatures, we need to reconsider the particle contributions
for the included particles. If we consider the distribution function at finite temperatures,
it does not reduce to a Heavyside-function at kF like in section 3.2. Instead, we have to
integrate over the entire parameter space.
We start with the pressure contribution for particle i and its corresponding antiparticle,
which we have to solve. It can be expressed as:

pi =
γi

3(2π)3

∫ ∞

0
dk3 k2

E(k)
( f (k)− ¯f (k)) , (3.40)

where f (k) is the distribution function. In our case we have fermions and therefore use
the Fermi distribution:

f (k) =
[

e
√

k2+m∗2−µ∗
T + 1

]−1

, (3.41)

¯f (k) =
[

e
√

k2+m∗2+µ∗
T + 1

]−1

. (3.42)
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Here T is the temperature, m∗ the effective mass of the particle and µ∗ = µ + B(gωω̄±
gρρ̄) the effective chemical potential with the baryon number B.
This means equation (3.40) reads explicitly:

pi =
γi 4π

3(2π)3

∫ ∞

0
dk

k4

E(k)

([
e

E(k)−µ∗
T + 1

]−1

−
[

e
E(k)+µ∗

T + 1
]−1

)
, (3.43)

where we used, that the energy is E(k) =
√

k2 + m∗2 and integrated over the angles.
We now substitute x = (E(k)− µ∗)/T, which leads to k2 = (xT + m∗)2−m∗2, allowing
us to simplify k in the following way:

k =
√

x2T2 + 2xTm∗ =
√

2xTm∗
√

1
2

T
m∗

x + 1 =
√

2m∗T
√

x

√
1 +

1
2

βx . (3.44)

We used the relation β = T
m∗ here. Furthermore, we find:

dx
dk

=
k

T
√

k2 + m∗2
,

dk = dx

√
k2 + m∗2

k
T = dx

E
k

T ,

E =
√

k2 + m∗2 = xT + m∗ .

(3.45)

Inserting this substitution in equation (3.43) we find:

pi =
γi

6π2

∫ ∞

0
dx k3T

([
ex+m∗

T −
µ∗
T + 1

]−1

−
[

ex+m∗
T +

µ∗
T + 1

]−1
)

(3.46)

We now define η = (µ∗−m∗)/T and η̄ = (µ∗+m∗)/T, which gives us:

pi =
γi

6π2

∫ ∞

0
dx

(
√

2m∗T
√

x

√
1 +

1
2

βx

)3

T
[

1
exp(x− η) + 1

− 1
exp(x− η̄) + 1

]
(3.47)

=
γi

6π2 T
∫ ∞

0
dx
(

2m∗Tx
(

1 +
1
2

βx
))√

2m∗T
√

x

√
1 +

1
2

βx
[

f (x, η)− ¯f (x, η)
]

(3.48)

=
γim∗

4
β

5
2

3π2

∫ ∞

0
dx
(

x
3
2 +

β

2
x

5
2

)√
1 +

1
2

βx
[

f (x, η)− ¯f (x, η)
]

. (3.49)
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In this last step we replaced all instances of T with β and simplified the remaining
expressions. This equation is numerically solvable. It is especially useful, that the
addends are so similar. Gong et al. [Gong et al., 2001] provide a suitable numerical
method of solving the following integral:

Fk(η, β) =
∫ ∞

0

xk
√

1 + β
2 x

exp(x− η) + 1
dx , (3.50)

which is the well known Fermi-Dirac integral. It can be identified with the addends in
equation (3.49). Note that k 6= k, as k is the momentum and k is an index. Now we can
write pi as a numerically solvable expression:

pi =
m∗4

π2
γi
√

2
3

β
5
2

[(
F3/2(η, β) +

β

2
F5/2(η, β)

)
−
(

F3/2(η̄, β) +
β

2
F5/2(η̄, β)

)]
. (3.51)

Analogously, we can find the expressions for the energy density, scalar density and vec-
tor density at finite temperatures, which results in the following equations:

n =
γ

2π2

∫ ∞

0
dk k2 [ f (k)− ¯f (k)

]
=

γ
√

2
2π2 m∗

3
β

3
2

∫ ∞

0
dx [(βF3/2(η, β) + F1/2(η, β))− (βF3/2(η̄, β) + F1/2(η̄, β))] ,

(3.52)

ns =
γ

(2π)3

∫ ∞

0
d3k

m∗√
k2 + m∗2

(
f (k) + ¯f (k)

)
=

γ
√

2
2π2 m∗

3
β

3
2

∫ ∞

0
dx [F1/2(η, β) + F1/2(η̄, β)] ,

(3.53)

εi =
4m∗4
√

2π
β

5
2

[(
F3/2(η, β) +

β

2
F5/2(η, β) + β−1F1/2(η, β)

)
+

(
F3/2(η̄, β) +

β

2
F5/2(η̄, β) + β−1F1/2(η̄, β)

)]
.

(3.54)

For all these equations the substitution x = (E(k)− µ∗)/T was used.
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3.7. Thermal Index for Relativistic Mean Field Results

With the extension to finite temperatures complete, we can investigate the effect of
varying the effective mass at saturation density on the behavior of the equation of state
with increasing temperature. A relevant quantity in this regard is the thermal index Γth,
which can be defined as:

Γth = 1 +
pth
εth

, (3.55)

where pth is the thermal pressure contribution and εth the thermal contribution to the
energy density, i.e.:

p(T) = p(T = 0) + pth , (3.56)

ε(T) = ε(T = 0) + εth . (3.57)

Γth can be identified with the adiabatic index for an ideal gas and has a value of 5/3
in the non-relativistic regime. The value for an ultra-relativistic ideal gas is 4/3. It is
expected that the thermal index of our relativistic mean field equation of state remains
close to these values (5/3 at low and 4/3 at high densities) but does not match them
exactly, as we are not assuming an ideal gas. In Figure 3.4 these limits are indicated with
dashed gray lines. The thermal index for three different effective masses is shown, with
two temperatures each. In all cases the thermal index approaches 4/3 asymptotically
for high densities and is close to 5/3 at smaller densities. The green lines indicating
a temperature of 20 MeV have higher maxima than the red lines indicating 50 MeV.
Although not shown in this figure we investigated the behavior of 0− 50 MeV cases
and noticed that this trend holds true where smaller temperatures generate higher Γth

at their peak. It is further noticeable that smaller effective masses, i.e. stiffer EoSs, lead
to higher maximal values of Γth as well. This is in line with our expectation, since the
pressure of a stiff EoS increases faster with the energy density than in a soft EoS, which
implies (p/ε)stiff > (p/ε)soft.
The equations of state thus far were all constructed under the assumption of β equilib-
rium, where µn = µp + µe holds. However, this assumption is only valid for compara-
tively small temperatures and when one considers for example protoneutron stars it is
often necessary to abandon β equilibrium and explicitly set the proton fraction Yp to
a specific value, instead. This is not a result of the high temperatures themselves, but
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a result of the short timescale at which protoneutron stars and neutron star mergers
operate. In this time β equilibrium cannot be established as the dynamical timescale is
much shorter than the equilibrium timescale. The proton fraction is the percentage of
positively charged baryonic particles, in most cases:

Yp =
np

nB
=

np

np + nn
, with the proton/baryon/neutron densities np/B/n. (3.58)

In addition to the thermal index in β equilibrium, the Γth for constant Yp = 10% and
Yp = 50% are shown in figure 3.4, for the different effective masses and temperatures.
We find that an increase in Yp leads to a smaller deviation from the 5/3 ideal gas esti-
mate. In other words: higher proton fractions lead to smaller Γth, if the proton fraction
is fixed for the entire EoS. However, the thermal index of the equation of state in β

equilibrium appears to be smaller than the thermal index for any explicitly set Yp. This
is surprising, as the proton fraction in β equilibrium is close to about 0.1 for the majority
of the EoS, especially for small temperatures and one would therefore expect the Γth in
β equilibrium to behave similarly as the Yp = 10% case. In figure 3.5 we take a look at
the proton fraction as a function of density for different temperatures in β equilibrium.
The same effective masses as in figure 3.4 are used. At high densities all EoSs approach
a value of about 0.15, but at low densities the influence of the temperature becomes
apparent. Hot matter has a significantly higher proton fraction than cold matter at
low densities. This is because at low densities the electron chemical potential is much
smaller than the temperature. This means the EoS is dominated by thermal equilibrium
and charge neutrality is not a large concern. When the density increases, so does the
electron chemical potential and accordingly the proton fraction drops. The lowest
temperature where the proton fraction at low densities exceeds Yp at high densities is
the T = 30 MeV case. Even though the proton fraction in β equilibrium at T = 20 MeV
never has values larger than 0.15, the thermal index of this EoS is noticeably below the
Yp = 0.5 case for fixed proton fraction.
However, it should be noted that our results for the β equilibrium case are in line
with similar works using a relativistic mean field equation, like Kochankovski et al.
[Kochankovski et al., 2022]. This is shown in the right-hand plot of figure 3.6, where
the EoS in β equilibrium used by Kochankovski et al. is shown in red and compared
with our results for m∗/m = 0.65 in green. The peaks of both equations of state are at
the same value of Γth, with our EoS featuring a slightly narrower curve, owing to the
different approaches. The figure also includes the Yp = 0.2 and Yp = 0.4 cases found by
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Kochankovski et al., as dashed and dotted red lines, respectively. These EoSs exhibit
the same behavior seen in our equations, where a fixed Yp generates higher Γ values
than the β equilibrium case.
A possible explanation for this phenomenon can be found when looking at the thermal
contributions from pressure and energy density separately. This is done in the left and
center plot of figure 3.6 for the m∗/m = 0.65 case at T = 20 MeV. For fixed proton
fraction, the pressure contribution pth increases notably with the increase of Yp, which
can be seen by comparing the orange line (Yp = 0.5) with the blue line (Yp = 0.1.) This
is not the case for the β equilibrium (green line) where the proton fraction is higher
than Yp = 0.1, but pth is smaller than in the fixed Yp = 0.1 case. In contrast, the thermal
contribution to the energy density always increases with increased Yp. Here, the β

equilibrium case contributes a larger value of εth than the Yp = 0.1 case. This could
explain why the thermal index in β equilibrium is smaller than for fixed proton fraction.
An even more in depth investigation of the causes for the increased pressure contri-
bution for the explicitly set Yp cases, as well as comparisons with other approaches,
such as temperature dependent χEFT results [Carbone and Schwenk, 2019, Keller et al.,
2022] has to be postponed to future works. Nevertheless, this equation of state explored
here should be usable for protoneutron star and neutron star merger simulations with
minimal adjustments.
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Figure 3.4.: From left to right: Decreasing effective masses at saturation density.
The green lines indicate a temperature of 20 MeV, the red lines indi-
cate 50 MeV. The proton fraction Yp is varied, where smaller values
of Yp lead to larger peaks. If Yp is not fixed to a specific value β
equilibrium is assumed (continuous lines), which results in a lower
peak, even though the proton fraction in β equilibrium is small.
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Figure 3.5.: The proton fraction Yp in β equilibrium as a function of the baryon
density nB for temperatures from T = 0− 50 MeV. All cases approach
a value of about 0.15 at high densities, but increased temperatures
lead to much larger proton fractions at small densities.
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Figure 3.6.: Left: The thermal contribution to the pressure for the m∗/m = 0.65 in
β equilibrium and for fixed Yp case at T = 20 MeV. Additionally, the
β equilibrium case of Kochankovski et al. [Kochankovski et al., 2022]
is shown for comparison. Center: The thermal contribution εth for
the same cases. Right: Comparison between the Γth in β equilibrium
EoS of [Kochankovski et al., 2022] with the m∗/m = 0.65 case, as well
as the behavior of fixed proton fraction in the EoS of [Kochankovski
et al., 2022].
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4.1. What are Neutron Stars?

Neutron stars are compact celestial objects that are produced by main sequence stars
undergoing a supernova. In fact, neutron stars are the densest objects in the known
universe, disregarding black holes. In contrast to the latter, neutron stars still contain
ordinary matter. Main sequence stars are stabilized by their thermal pressure, which is
generated by nuclear fusion. Once no more fusion material is left, the dense core of the
star collapses, since the gravitational pull has no counteracting force. For particularly
high masses of the initial star (about 20 M� or more) this collapse cannot be stopped, in
which case the star will end as a black hole. Less massive stars can be stabilized through
various processes. The least massive stars (Minital . 8M�) collapse to white dwarfs,
which are kept in hydro static equilibrium by the degeneracy pressure of the electrons.
This pressure is caused by the Pauli principle, which states that two fermions cannot
occupy the same state in a system. Neutron stars are the remnants of stars that fill the
gap between those that result in black holes and white dwarfs. A useful summary on
neutron star core collapse supernovae can be found here [Cerdá-Durán and Elias-Rosa,
2018].
The high densities during a core collapse supernova cause the electrons to be absorbed
by protons in the nuclei, increasing their neutron richness. Once a stable neutron and
proton ratio for a certain density is reached, we achieved β equilibrium. The neutron
fraction per nucleon increases with the density until a critical density is reached at about
4× 1011gcm−3. Here, no additional neutrons can be bound. This causes a so-called
neutron drip, resulting in a neutron liquid that surrounds the nuclei. This critical density
would be considered "astronomically" high on earth; however, in a neutron star it is
already reached about 0.1 km below the surface. Unlike white dwarfs, neutron stars
cannot be stabilized by degeneracy pressure alone. Instead, hydrodynamic equilibrium
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is kept by the repulsive interaction of the nuclei as well as the Pauli principle acting on
the neutron liquid.
A particularly important type of neutron star are pulsars. These pulsating radio sources
emit extremely regular radio signals. They are powered by their fast rotation and
due to them emitting radio waves are the only type of neutron star we can observe.
The precision of a pulsars rotation period is astonishing and has been used to define
standard time [Hobbs et al., 2012] with results comparable to atomic clocks.
Pulsars are the only type of neutron star with a detectable signal. Despite not directly
observing them, this is enough to enables us to determine their masses, if they are found
in a binary system. Here, the trajectory of pulsars companion can be used to calculate
its mass. Especially binary systems containing two neutron stars yield masses to a very
high degree of certainty, as we will see in subsection 4.4.1. Neutron star radii are much
harder to determine, because they are too compact to directly observe. As a result, other
effects such as luminosity observations or gravitational light deflections have to be used
to estimate the radii in some form. This can be accomplished for example by utilizing
hot spots on the neutron star surface, as we discuss in subsection 4.4.2. In any case,
it is possible to put a theoretical upper limit on the mass of a neutron star, in analogy
to the famous Chandrasekhar mass for white dwarfs. Depending on the mass of its
original star, it ranges from 2-3 M�. This is supported by astrophysical observations,
where multiple stars with at least 2 M� are known [Demorest et al., 2010, Antoniadis
et al., 2013, Fonseca et al., 2016, Cromartie et al., 2019]. It is also possible to put a lower
limit on the mass of neutron stars. This is due to the production scenario of neutron
stars that require the supernova of a massive main sequence star. This limit is in the
range of about one solar mass [Ozel et al., 2012, Ozel and Freire, 2016, Müller et al.,
2019, Suwa et al., 2018]. Some good resource for an introduction to compact star physics
are [Glendenning, 2000, Sagert et al., 2006, Schaffner-Bielich, 2020].
The extreme conditions in a neutron star make them ideal to investigate the equation of
state in an ultra dense regime. While the compactness of neutron stars is what makes
them attractive for equation of state research, it also poses a significant hurdle. This is
because neutron stars are too compact to be observed directly, with their radii ranging
from about 10 km to 15 km. It is possible to make precise calculations of mass, radius
and other quantities with only the equation of state and general relativity as underlying
assumptions. This will be shown in section 4.3. In theory, this assumed equation of state
could then be verified or falsified by comparing the precisely calculated quantities to
the known astrophysical constraints. However, current technology is severely limited in
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acquiring most astrophysical parameters, apart from mass. This means, that the amount
of equations of state not ruled out by the data is still vast. Despite these difficulties,
there have been significant recent advancements in observing neutron star quantities
by numerous mass measurements (see sections 4.4.1) or groups such as NICER (see
section4.4.2) and LIGO/Virgo (see section 4.4.3). In the near future, astrophysical
constraints are expected to be more robust, especially with the third generation of
gravitational wave detectors like the Einstein telescope [Maggiore et al., 2020] and
Cosmic Explorer [Evans et al., 2021] on the horizon. This dynamic between constantly
improving data and the constraints that can be obtained from it makes compact star
science a very active field, but it is worth taking a short look at its history before we
continue with its current state.

4.2. A (Very) Short History of Neutron Stars

Unlike many other astrophysical phenomena, neutron stars were conceptualized long
before their first detection. In 1932 Landau published an article about the maximal
mass of dense objects [Landau, 1932]. At the time, this only encompassed white dwarfs.
However, the article contained an idea for stars that are similar to giant atomic nuclei.
Rosenfeld [Rosenfeld, 1974] recalls a discussion between Bohr and Landau in 1932 in
Copenhagen, allegedly shortly after the discovery of the neutron was reported. This
has led to the assumption, that there is a correlation between these two publications.
However, there is evidence, that the conversation between Landau and Bohr already
took place in 1931 (see the article by Yakovlev et al. for a detailed examination of
this history [Yakovlev et al., 2012].). The term neutron star was first coined by Baade
and Zwicky [Baade and Zwicky, 1934b, Baade and Zwicky, 1934a], who suggested the
collapse of a massive star to a neutron star as the cause of a supernova. Neutron stars
were further investigated by Oppenheimer and Volkoff, who worked together with
Tolman using general relativity. They determined the maximal mass of neutron stars to
be 0.7M�, assuming of a spherical object composed of a free fermion gas [Oppenheimer
and Volkoff, 1939, Tolman, 1939]. The equations of state became more sophisticated
by assuming a mixture of nuclei, electrons and a free Fermi gas of neutrons in beta
equilibrium. By using the Skyrme model for the interaction of the nuclei [Skyrme, 1958],
Cameron [Cameron, 1959] could increase the maximal mass drastically to 2.0M�. There
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are many more important models with different predictions, which we will not cover
here. Again, we refer the reader to relevant textbooks like [Schaffner-Bielich, 2020],
which contains a more in depth, but still brief review of the history of neutron stars.
After the concept of a neutron star as the origin of a supernova was theorized for at
least 35 years, the first pulsar was discovered in 1967 by Jocelyn Bell-Burnell [Hewish
et al., 1968], who at the time was a Ph.D. student in the group of Anthony Hewish.
The regularity of the observed signal was so precise, that an intelligent origin, i.e.
extraterrestrials, was suspected at first. This led to them referring to the object as
LGM, little green men, jokingly. The signal was discovered in the crab nebular, the
position of which can be related to an event in the year 1054, where a "guest star" was
recorded by Japanese and Chinese observers [Duyvendak, 1942]. This "guest star"
was very likely the light from the supernova resulting in the pulsar discovered by
Bell-Burnell.

4.3. Neutron Star Quantities Calculated with the

Equation of State

The three most commonly used quantities to constrain the equation of state of neu-
tron stars are mass M, radius R and tidal deformability Λ. The former two can be
calculated by solving the Tolman–Oppenheimer–Volkoff (TOV) equations, which de-
scribe a spherically symmetric and non-rotating star in general relativity. The TOV
equations will be derived in the next subsection. The tidal deformability can be deter-
mined by solving a second order differential equation alongside the TOV equations,
this procedure will be explained in subsection 4.3.2. A rudimentary understanding
of general relativity on the reader’s part is assumed. We use geometrized units with
c = G = M� = 1.

4.3.1. Mass and Radius

In this subsection, the TOV equations will be derived. They follow directly from general
relativity and produce the mass and radius of a relativistic star with a given central
pressure pcentral. Furthermore, they require an equation of state connecting pressure and
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energy density. A more in depth derivation of the TOV equations than is to follow can
be found in most related textbooks, such as [Glendenning, 2000] or [Schaffner-Bielich,
2020]. We start by considering the scalar curvature:

R = gµνRµν = e−2νR00 − e−2λR11 −
2
r2 R22 (4.1)

= e−2λ(−2ν′′ + 2λ′ν′ − 2ν′2 − 2
r2 + 4

λ′

r
− 4

ν′

r
) +

2
r2 . (4.2)

For convenience Einsteins field equation can be displayed with mixed tensors, for
example:

G 0
0 = R 0

0 −
1
2

R = kT 0
0 . (4.3)

This leads to the entries of the Einstein tensor:

r2G 0
0 ≡ e−2λ(1− 2rλ′)− 1 = − d

dr
[r(1− e−2λ)] , (4.4)

r2G 1
1 ≡ e−2λ(1− 2rν′)− 1 , (4.5)

G 2
2 ≡ e−2λ(ν′′ + ν′2 − λ′ν′ +

ν′ − λ′

r
) , (4.6)

G 3
3 ≡ G 2

2 . (4.7)

By assuming a static star the energy-momentum tensor simplifies to the following
nonzero entries:

T 0
0 = ε and T µ

µ = −p where µ 6= 0 , (4.8)

with ε being the energy density and p the pressure, using this information on (4.4) one
finds:

r2G 0
0 = − d

dr
[r(1− e−2λ)] = kr2T 0

0 = kr2ε(r) . (4.9)

This expression can be integrated in order to yield:

e−2λ(r) = 1 +
k
r

∫ r

0
ε(r)r2dr . (4.10)
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By defining

M(r) ≡ 4π
∫ r

0
ε(r)r2dr (4.11)

and comparing (4.11) with g00, keeping in mind that g00 = e2ν = e−2λ = 1− 2GM(r)
r ,

one can find k = −8πG, in agreement with the Newtonian limit. This enables us to
write the Einstein tensor’s entries in the following differential equations interpreting
M(r) as the gravitational mass:

G 0
0 = e−2λ(

1
r2 −

2λ′

r
)− 1

r2 = −8πGε(r) , (4.12)

G 1
1 ≡ e−2λ(

1
r2 −

2ν′

r
)− 1

r2 = 8πGp(r) , (4.13)

G 2
2 ≡ e−2λ(ν′′ + ν′2 − λ′ν′ +

ν′ − λ′

r
) = 8πGp(r) , (4.14)

G 3
3 ≡ G 2

2 = 8πGp(r) . (4.15)

Equation (4.15) contains no new information compared to (4.14), but it is possible
to derive expressions for λ′, ν′, ν′2 and ν′′ from equation (4.12) and (4.13). These
expressions can be inserted into (4.14) resulting in an expression for the pressure,
which in conjunction with (4.11) can be displayed as the well known TOV equa-
tions:

dM(r)
dr

= 4πε(r)r2 ,

dp(r)
dr

= −
[p(r) + ε(r)]

[
M(r) + 4πr3p(r)

]
r(r− 2M(r))

. (4.16)

It is straight forward to solve these equations numerically. The initial conditions usually
used are r = 0, M(r = 0) = 0 and p(r = 0) = pcentral, integrating outward over
the radial coordinate to the star’s surface, where p(r = R) = 0. There is a slight
complication with these initial conditions due to the apparent singularity at r = 0.
This problem is solved by substituting a very small value of rinitial instead. Alterna-
tively, it is possible to recast the TOV equations in a way that one integrates over the
pressure p instead of r, which also avoids the singularity. However, this practice is
uncommon.
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4.3.2. Tidal Deformability

Another data point of great interest to modern astrophysics is the tidal deformability of
compact stars. It is an intrinsic quantity of an object describing how easy it is to deform
it with tidal forces. Early works regarding the relativistic tidal deformability came from
Flanagan, Hinderer et al. [Flanagan and Hinderer, 2008, Hinderer, 2008, Hinderer et al.,
2010] and Postnikov et al. [Postnikov et al., 2010].
Especially [Hinderer, 2008] contains an in-depth discussion of the derivation of the tidal
deformability and the Love-number. When two objects orbit each other, they induce a
quadrupole moment Qij on each other. This takes the following form:

Qij = −λEij , (4.17)

where Eij is the tidal field of the companion star and λ is the tidal deformability of the
star on which Qij is induced. It should be kept in mind that λ is an innate property of
the object and independent from the tidal field that causes the deformation. The tidal
deformability λ can be calculated using the relation:

λ = k2
2R5

3G
, (4.18)

where k2 is the so-called tidal Love-number, R the radius of the deformed object and G
the gravitational constant. Note that k2 is a constant that results from the perturbation,
where the index refers to the l = 2 mode of the oscillations eigenfunctions [Regge and
Wheeler, 1957, Hinderer, 2008]. It is clear that we need to determine k2 in order to find λ.
When a static tidal field Eij induces a quadrupole moment on a spherically symmetric,
static mass M one can write the metric coefficient gtt at large r in asymptotically mass
centered Cartesian coordinates as:

(1− gtt)

2
=− M

r
−

3Qij

2r3

(
ninj − 1

3
δij
)
+ O

(
1
r3

)
+

1
2

Eijxixj + O
(

r3
)

, (4.19)

(see [Thorne, 1998]), where ni = xi/r. With this expansion one can define Eij and Qij.
One can write down the line element for the geometry of space-time of a spherical, static
star as follows:

ds2
0 = g(0)αβ dxαdxβ = −eν(r)dt2 + eλ(r)dr2 + r2

(
dθ2 + sin2 θdφ2

)
(4.20)
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and the star’s stress-tensor as:

Tαβ = (ρ + p)uαuβ + pg(0)αβ , (4.21)

with ρ and p being the density and the pressure. Introduction of a perturbation hαβ

results in the full metric of the space-time:

gαβ = g(0)αβ + hαβ , (4.22)

where a linearized metric perturbation is introduced. The specifications are static, even-
parity perturbations with l = 2 in the Regge-Wheeler gauge [Regge and Wheeler, 1957].
This means hαβ can be written as:

hαβ = diag
[
e−ν(r)H0(r), eλ(r)H2(r), r2K(r), r2 sin2 θK(r)

]
Y2m(θ, ϕ) , (4.23)

with K(r) being related to H(r) by K′(r) = H′(r) + 2H(r)Φ′(r), where the prime indi-
cates a derivative with respect to r. In addition Ylm represents the spherical harmonics.
One can insert this expression and the non vanishing components of the perturbation
of the energy-stress tensor into the linearized Einstein equation δGβ

α = 8πδTβ
α . From

δGθ
θ − δGφ

φ = 0 one can gather that H2 = H0 ≡ H. A differential equation describing
H(r) is obtained:

H′′ + H′
[

2
r + eλ

(
2m(r)

r2 + 4πr(p− ρ)
)]

+H
[
−6eλ

r2 + 4πeλ
(

5ρ + 9p + ρ+p
(dp/dρ)

)
− ν′2

]
= 0

. (4.24)

In order to obtain the boundary conditions of (4.24) one can solve for H near r = 0,
which leads to:

H(r) = a0r2
[

1− 2π

7

(
5ρ(0) + 9p(0) +

ρ(0) + p(0)
(dp/dρ)(0)

)
r2 + O

(
r3
)]

, (4.25)

where a0 is a constant. Furthermore, equation (4.24) reduces outside the star to:

H′′ +
(

2
r
− λ′

)
H′ −

(
6eλ

r2 + λ′2
)

H = 0 , (4.26)
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which can be transformed into a form utilizing the associated Legendre equation with
l = m = 2:(

x2 − 1
)

H′′ + 2xH′ −
(

6 +
4

x2 − 1

)
H = 0 . (4.27)

This is achieved by substituting the variable x = (r/M − 1). A general solution to
equation (4.27) in terms of the Legendre functions Q2

2 and P2
2 can take the following

form:

H = c1Q2
2

( r
M
− 1
)
+ c2P2

2

( r
M
− 1
)

. (4.28)

The coefficients c1,2 have to be determined. This can be accomplished by substituting
the expressions for Q2

2 and P2
2 , which yields:

H =c1

( r
M

)2
(

1− 2M
r

)[
−

M(M− r)
(
2M2 + 6Mr− 3r2)

r2(2M− r)2 +
3
2

log
(

r
r− 2M

)]

+ 302

( r
M

)2
(

1− 2M
r

)
.

(4.29)

This equation has the following asymptotic behavior at large r:

H =
8
5

(
M
r

)3

c1 + O
(

M
r

)4

+ 3
( r

M

)2
c2 + O

( r
M

)
. (4.30)

It is now possible to determine c1 and c2 by matching equation (4.30) to the expansion
(4.19) using (4.17):

c1 =
15
8

1
M3 λE , c2 =

1
3

M2E . (4.31)

This can be solved for λ in terms of H and its derivative. Using equation (4.18) k2 can
be expressed in those terms as well. However, it is helpful to use the quantity y, instead
of H(r). The quantity y is defined as

y ≡ RH′(R)/H(R) . (4.32)
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We can write k2 as:

k2 = 8C5

5 (1− 2C)2[2 + 2C(y− 1)− y]×{
2C(6− 3y + 3C(5y− 8)) + 4C3 [13− 11y + C(3y− 2) + 2C2(1 + y)

]
+3(1− 2C)2[2− y + 2C(y− 1)] log(1− 2C)}−1 .

(4.33)

Where C is the compactness of the examined star, which is defined as C = M/R.
In order to find the explicit value of k2, one can calculate H and use that to find y,
following the method outlined in [Hinderer et al., 2010]. Consider the line element of
the space-time under perturbation:

ds2 =− e2Φ(r) [1 + H(r)Y20(θ, ϕ)] dt2

+ e2Λ(r) [1− H(r)Y20(θ, ϕ)] dr2

+ r2 [1− K(r)Y20(θ, ϕ)]
(

dθ2 + sin2 θdϕ2
)

,

(4.34)

where, as above, K(r) is related to H(r) by K′(r) = H′(r) + 2H(r)Φ′(r). It is possible to
restate equation (4.24) in the following way:(

−6e2Λ

r2 − 2 (Φ′)2 + 2Φ′′ + 3
r Λ′

+7
r Φ′ − 2Φ′Λ′ + f

r (Φ
′ + Λ′)

)
H

+
(2

r + Φ′ −Λ′
)

H′ + H′′ = 0 ,

(4.35)

where f is defined as f (p) = δε/δp.The second-order differential equation for H can be
separated in a first-order ordinary differential equation (ODE) system:

e2Λ =

(
1− 2mr

r

)−1

, (4.36)

dΦ
dr

= − 1
ε + p

dp
dr

, (4.37)

dp
dr

= −(ε + p)
mr + 4πr3p
r (r− 2mr)

, (4.38)
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dmr

dr
= 4πr2ε . (4.39)

Equation (4.36)-(4.39) contain the same information as the TOV equations (4.16), with
two additional functions H(r) and β(r):

dH
dr

= β (4.40)

dβ

dr
=2
(

1− 2
mr

r

)−1
H{−2π[5ε + 9p + f (ε + p)]

+
3
r2 + 2

(
1− 2

mr

r

)−1 (mr

r2 + 4πrp
)2
}

+
2β

r

(
1− 2

mr

r

)−1 {
−1 +

mr

r
+ 2πr2(ε− p)

}
.

(4.41)

This can easily be integrated numerically. The boundary conditions for β and H(r) are
found with the expansions β = 2a0r and H(r) = a0r2 for r close to 0. The value of a0

can be chosen arbitrarily, since it cancels out in the expression for k2. The value of y can
now be determined via equation (4.32), y = Rβ(R)/H(R).
Later in this work, we will discuss an equation of state with a jump in energy density at
constant pressure. If there is a discontinuity in energy density, the speed of sound cs has
a discontinuity as well, which effects k2. At the point of transition f (which is related to
cs) can be written as:

f =
dε

dp
=

1
c2

s
=

dε

dp

∣∣∣∣
p 6=ptrans

+ ∆εδ (p− ptrans) . (4.42)

Due to this behavior, the value of y has to be matched accordingly. In the model de-
scribed in section 5.1 this is already implicit with the constant speed of sound. However,
if one is considering a pure quark star the discontinuity in energy density at its surface
has to be taken into account in the following way:

y =
Rβ(R)
H(R)

− 4πR3ε−
M

, (4.43)

where ε− is the energy density inside the star. Damour and Nagar [Damour and Nagar,
2009] discussed the situation of a discontinuity in far more detail.
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A short note on nomenclature: the quantity Λ, which can be defined as

Λ =
λ

M5 =
3
2

k2C−5 , (4.44)

is usually referred to as tidal deformability. However, in some publications λ is assigned
that name instead. In both cases, the quantity describes the ability of the object to be
deformed by tidal forces; we will differentiate between the two in the following chapters
where necessary.

4.4. Constraints on Pure Neutron Star Equations of State

In this section, we examine the most relevant data points from astrophysical observa-
tions. Those are the mass constraints (subsection 4.4.1), the radius constraints (sub-
section 4.4.2) and the constraints from tidal deformability, which can be estimated
using gravitational wave signals from neutron star mergers (subsection 4.4.3). We then
apply the constraints to the equations of state presented in chapter 3. This is done by
comparing the precise predictions from theory (section 4.3) with the astrophysical data
points. It must be noted that our EoS is not suited to describe the crust of a neutron star.
Instead, we use an approach introduced by Baym, Pethick and Sutherland (BPS) [Baym
et al., 1971] that Negele and Vautherin expanded upon [Negele and Vautherin, 1973],
which is valid up to half saturation density. For higher densities, we use our relativistic
mean field approach.

4.4.1. Mass Constraints on Neutron Stars

One of the most constraining neutron star quantities we can determine is its mass. This
quantity, alongside an estimate of the radius can be extracted from the observation
of binary star systems that contain neutron stars. There is a variety of methods and
observables that aid in this endeavor, which can be found in relevant textbooks like
[Schaffner-Bielich, 2020]. In this context one might find the summary on masses and
radii of neutron stars by Özel and Freire useful as well [Ozel and Freire, 2016]. It
is possible to determine the mass of a pulsar with much greater accuracy than its
radius due to its small size. However, the rigorosity of the mass constraint is strongly
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dependent on the companion star in the system. For example, neutron stars in a x-
ray binary accrete mass from their companion, which complicates the determination
of its mass. A specific variation of such binaries are so-called black widow pulsars,
which slowly destroy their companion, earning them their sobriquet. This may even
destabilize or deform the neutron star and usually leads to large mass estimates with
significant uncertainties. The most reliable mass constraints can be derived from double
neutron star binaries, of which the most famous is the Hulse-Taylor binary [Hulse
and Taylor, 1975], the first binary pulsar system detected. For our purposes, the most
massive neutron stars are of particular interest. They provide a limit that every equation
of state aiming to describe reality has to account for. If an EoS cannot generate a neutron
star meeting the mass constraint, it is not a viable theory. It is well established, that the
maximal mass of neutron stars is at least 2 M� [Demorest et al., 2010, Antoniadis et al.,
2013, Fonseca et al., 2016]. However, newer observations report even higher masses,
such as the pulsar PSR J0740+6620 with 2.14+0.10

−0.09 M� [Cromartie et al., 2019] and even
more recently PSR J0952-0607 with 2.35± 0.17 M� [Romani et al., 2022]. One should
note, that the latter finding is a black widow pulsar, which casts slight uncertainty on the
result. The gravitational wave event GW190814 needs to be mentioned in this context as
well, as it was determined to originate from a merger of a 23.2+1.0

−1.0 M� black hole with a
2.59+0.08

−0.09 M� unknown object [Abbott et al., 2020]. This unknown object would either be
the most massive neutron star ever observed or the least massive black hole. It is located
in the mass gap between black holes and neutron stars. The consensus on the issue
seem to be that a black hole is the most likely explanation [Fattoyev et al., 2020, Tews
et al., 2021], but the possibility of a neutron star [Most et al., 2020, Dexheimer et al.,
2021, Nathanail et al., 2021, Godzieba et al., 2021] or more exotic compact object [Tan
et al., 2020, Bombaci et al., 2021, Wystub et al., 2021] cannot be ruled out completely.
Using the TOV equations discussed in section 4.3 we can determine the mass radius
relation for a given equation of state. In our case we examine the RMF equations of
state from chapter 3, where J = 32 MeV, L = 60 MeV and the effective mass is varied in
bins of 0.05 from m∗/m = 0.55 to m∗/m = 0.75 at zero temperature. The constraints
and mass radius relations are visualized on the left-hand side of figure 4.1. We find that
only the softest case, m∗/m = 0.75, falls short of the mass limit, if we consider only the
masses of known neutron stars. If we consider the unknown object of GW190814 as
well, only the cases m∗/m = 0.55 and m∗/m = 0.60 remain valid. This points towards
GW190814 not being a neutron star, as the constraint from GW170817 [Abbott et al.,
2017, Abbott et al., 2018, Abbott et al., 2019] rules out these exact cases, which we will
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see in subsection 4.4.3.

4.4.2. Radius Constraints on Neutron Stars

The precise measurement of a neutron star’s radius is as important to determining the
equation of state as the mass. However, it is much more difficult to determine the radius
from the dynamics of binary systems. The "Neutron star Interior Composition ExploreR"
(NICER) mission takes a different approach, where the X-ray signal of the observed
pulsar is examined in search for hot spots [Gendreau et al., 2012, Watts et al., 2016].
The visibility of a hot spot would increase the X-ray intensity. In a Newtonian picture,
the rotation of the pulsar should move the hot spots into and out of view. However,
the high compactness of neutron stars requires that general relativity is applied, which
means, that light is bend around the neutron star. Therefore, the hot spot is in view for
a longer time. This effect is intensified by a more compact object, enabling the observer
to relate the time the hot spots are visible with the compactness of the neutron star and
therefore its radius. This underlying concept of NICER is presented by Gendreau et al.
[Gendreau et al., 2012, Watts et al., 2016] when the mission was proposed. At the time of
this work NICER has investigated two pulsars PSR J0030+0451 [Miller et al., 2019, Riley
et al., 2019, Raaijmakers et al., 2019] and PSR J0740+6620 [Miller et al., 2021, Riley
et al., 2021, Raaijmakers et al., 2021], which at the time was the most massive neutron
star [Cromartie et al., 2019]. Even though NICER falls short of their initially stated
goal of reaching 5% certainty [Gendreau et al., 2012] the radius estimates from these
observations can be used to constrain the equations of state to great effect, especially
for hybrid star equations of state, as we will show in chapter 5. A significant hurdle is
the model used to describe the hot spots, which lead to two different radii estimates
for both measurements, one by Riley et al. [Riley et al., 2019, Riley et al., 2021] and
one by Miller et al. [Miller et al., 2019, Miller et al., 2021] using different models. The
data gained by NICER can be translated into regions in a mass radius diagram that a
mass radius relation has to pass through in order to be viable. These regions take the
form of likelihood ellipses, that are orientated along the compactness of the observed
neutron star. Particularly, the compactness of PSR J0030+0451 was well constrained to
C = 0.16± 0.01 [Raaijmakers et al., 2019].
Additionally, constraints could be put on the radius from gravitational wave observation.
It is possible to infer a radius estimate from the value of Λ̃ [Abbott et al., 2017], which is
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a quantity we discuss in the next subsection (see equation (4.45)). Radius estimates for
GW170817 [Abbott et al., 2017, Abbott et al., 2018, Abbott et al., 2019] were determined
by numerous groups (see for example: [Annala et al., 2018, Most et al., 2018, Tews et al.,
2018]). The results range between 8.53 km < R1.4M� < 13.74 km as Most et al. report
[Most et al., 2018]. GW170817 provides a stronger constraint on the upper limit of the
radius, where NICER features a strong constraint for the lower limit as well.
On the right side of figure 4.1 the mass radius relations of the equation of state from
chapter 3 is compared with the 1σ NICER results, as well as the mass constraints from
the previous subsection. We vary the effective mass and keep the symmetry energy
and slope parameter identical between the cases. The NICER constraints are depicted
as a red ellipse for the estimates by Riley et al. [Riley et al., 2019, Riley et al., 2021]
and green for the estimates by Miller et al. [Miller et al., 2019, Miller et al., 2021]. In
addition, the upper radius estimate for a 1.4 M� neutron star suggested by Most et al.
[Most et al., 2018] based on GW170817 is included as a dashed black line. However,
it should be noted that the tidal deformability can be used directly to constraint the
EoS to a stronger degree than the radius, which will be shown in the next subsection.
None of the parameter sets used here can be ruled out by either the radius constraints
from NICER or GW170817. However, it is notable that the softest EoS is located at the
lowest possible radius in the Riley constraint for J0740+6620 [Riley et al., 2021], while
the stiffest EoS is nearly outside the same constraint at the upper radius limit. On the
left side of the figure, a few mass radius relations based on a similar relativistic mean
field equations of state are shown. They were helpfully provided by Farrukh Fattoyev
[Fattoyev, 2022] and are strongly constrained from finite nuclei. As a result of this, the
effective mass cannot be varied in a spectrum as large as we do. The softness of the
equation of state is varied instead via the ω mesons quadratic self coupling ζ. Varying ζ

has the advantage over varying m∗/m when it comes to fitting the equation of state to
low density constraints, as ζ only effects the EoS at high densities. However, as is shown
in figure 4.1 the increase in softness does not result in significantly different radii. The
mass radius relation in this model can still be adjusted by varying the slope parameter,
where greater values of L lead to a placement of the mass radius relation at higher radii.
This comes with the additional problem that high values of L are not compatible with
χEFT constraints. In this work, we only vary m∗/m, which gives us a greater range
in radii that we can cover within chiral and astrophysical constraints. However, it
might prove interesting to investigate a varied ζs influence on the possibility of phase
transitions as well, especially because a phase transition might circumvent some of the
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astrophysical constraints high values of L are challenged by, such as GW170817. A short
overview of the L = 90 MeV EoSs used in figure 4.1 can be found in subsection 5.4.4
During the later stages of this work, a neutron star with a surprisingly small mass was
detected in a supernova remnant [Doroshenko et al., 2022]. A mass of M = 0.77+0.20

−0.17 M�
was reported for this remnant HESS J1731-347, which is below most estimates for the
smallest neutron star masses generated by supernovae [Ozel et al., 2012, Ozel and
Freire, 2016, Müller et al., 2019, Suwa et al., 2018]. Furthermore, a radius of 10.4+0.86

−0.78 km
was claimed, which is such a small value that nearly all but the softest pure hadronic
equations of state would be ruled out by this observation. To illustrate this point, the
2σ constraint from Doroshenko et al. [Doroshenko et al., 2022] is included in figure
4.1, where only the m∗/m = 0.75 case comes close. This has lead to some speculation
if this object might be something more exotic than a pure neutron star [Di Clemente
et al., 2022, Tsaloukidis et al., 2022]. We will touch upon this hypothesis in chapter
5.

4.4.3. Tidal Deformability from Gravitational Waves

Despite the well known dependence of the equation of state on the tidal deformability
Λ1 the possibility to constrain it using Λ is a comparatively new development. This
is because there needs to be a tidal field present that deforms the neutron star we
wish to observe. In other words, it is impossible to determine the tidal deformability
of a neutron star in isolation, we have to observe merger events instead. Such an
event still has to be in the frequency range of the gravitational wave detector, which
means that compact binary inspirals are required. This is also favorable because a
stronger gravitational field provided by compact objects causes a stronger deformation,
which in turn will lead to a stronger impact in the gravitational wave signal emitted.
However, this is only the case if the two objects are of similar size. For example, the
merger of a neutron star and a black hole does produce a detectable gravitational wave
signal, in fact we might have observed such an event already in GW190814 [Abbott
et al., 2020, Tsokaros et al., 2020, Most et al., 2020, Godzieba et al., 2021, Fattoyev et al.,
2020, Dexheimer et al., 2021, Lim et al., 2021, Tews et al., 2021, Tan et al., 2020, Zhang
and Li, 2020, Nunes et al., 2020, Blaschke and Cierniak, 2021, Nathanail et al., 2021].

1 see for example the previously discussed works: [Hinderer, 2008, Hinderer et al., 2010, Postnikov
et al., 2010]
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However, it is unlikely that the deformation of the neutron star would leave an impact
significant enough to be visible in the signal, which means that neutron star - black
hole mergers are not suitable to determine the tidal deformability. This leaves us with
the neutron star - neutron star merger scenario. Since two neutron stars are required
and both are deformed by the tidal field of the other, we cannot determine the tidal
deformability of just one companion star. Instead, we can extract a combined quantity
Λ̃:

Λ̃ =
16
13

(m1 + 12m2)m4
1Λ1 + (m2 + 12m1)m4

2Λ2

(m1 + m2)
5 , (4.45)

where Λ1 is the tidal deformability of the more massive star and Λ2 the tidal deforma-
bility of its companion. Additionally, it is possible to determine the so-called chirp mass
M from the gravitational wave phase. This chirp mass describes the inspiral phase of
the gravitational wave emission. It can be expressed as:

M =

(
q

(1 + q)2

) 3
5

M total , (4.46)

with q as the mass ratio between the two companions and Mtotal their combined masses.
The mass of a singular companion cannot be measured precisely in an inspiral. Instead,
one has to assume the values for the spin priors of the neutron stars |χ|. Using these an
estimate for the mass ratio can be determined, where low spin priors lead to smaller
uncertainties in q.
Currently, only one reliable neutron-neutron star merger event has been observed
[Abbott et al., 2017]. This event called GW170817 was determined to have a chirp
mass ofM = 1.1977+0.0008

−0.0003 [Abbott et al., 2017], which accounting for cosmological
redshift translates to M = 1.186+0.001

−0.001 [Abbott et al., 2019]. For low spin priors |χ|
they determine a mass ratio 1 < q < 1.4 [Abbott et al., 2017]. The parameter Λ̃ can be
constrained to Λ̃ < 800, which in turn can be used to find a likely upper value for the
tidal deformability of a 1.4M� neutron star, which [Abbott et al., 2017] initially stated to
be Λ1.4M� < 800. This was later updated to Λ1.4M� = 190+390

−120 [Abbott et al., 2018].
In addition to the gravitational wave event a corresponding electromagnetic signal
was observed, which can be used to constrain Λ̃ further, as Radice et al. [Radice et al.,
2018] and Coughlin et al. [Coughlin et al., 2018] did. Radice et al. found values of
Λ̃ ≥ 400, where Coughlin et al. using a different approach, find a lower limit of Λ̃ ≥ 197.
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Figure 4.2.: Left: Mass radius relation of EoSs with different effective mass
m∗/m. Right: The corresponding lines in a Λ1 − Λ1 plot, where
the LIGO/Virgo credibility limits from [Abbott et al., 2019] are repli-
cated as a dotted black line (50%) and a dashed black line (90%).
Higher effective masses are more suitable to the gravitational wave
data. This figure is from [Christian and Schaffner-Bielich, 2020].

An intuitive way of visualizing the constraints put on an equation of state by Λ̃
is a Λ1 −Λ2 plot. In such a plot, the value of Λ̃ can be translated to an area indicating
the confidence intervals of the measurement. The validity of an equation of state can
then be tested, by finding all possible combinations of neutron stars described by the
EoS, that add up to the chirp mass. Marking the point generated by such a combination
in the Λ1 − Λ2 plot will generate a line unique to the EoS. If the line is within the
credibility limit, the EoS is compatible with the data from GW170817. We use such
a plot to investigate the compatibility of our EoS with the gravitational wave data in
figure 4.2. On the left side of figure 4.2 the mass radius relations of the examined EoSs
are shown. We consider the EoSs discussed in chapter 3 with effective masses between
m∗/m = 0.55− 0.75 at zero temperature. On the right side, the Λ1 −Λ2 contains the
credibility limits, depicted as a bold black dashed line for the 90% limit and a smaller
dotted black line for the 50% limit. The x-axis is the tidal deformability value of the
more massive star, the y-value the less massive one. Merger scenarios closer to the
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origin are more compact than those far away. As we know, increased effective masses
lead to more compact solutions, which in turn are more compatible with the GW170817
data. The cases m∗/m = 0.55 and m∗/m = 0.60 are competently outside the credibility
limit, and the m∗/m = 0.65 case is only barely within the limit. Hornick et al. [Hornick
et al., 2018] confirm this result.
This result strongly indicates, that stiff equations of state are disfavored. However, this
finding goes contrary to the mass constraint, which disfavors soft equations of state.
Only the cases m∗/m = 0.65 and m∗/m = 0.70 are compatible with both GW170818 and
the newest mass constraint from J0952-0607 [Romani et al., 2022].
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In this chapter, we consider the possibility and implications of a phase transition from
hadronic to quark matter occurring in neutron stars. As mentioned before, it is known
that high density matter will at some point transition to a quark-gluon plasma. How-
ever, there is no certainty that the densities present in the center of a neutron star are
sufficient to allow for such a transition. Furthermore, a phase transition might destabi-
lize an otherwise stable neutron star, as was shown in some early works on the topic,
for example by Seidov [Seidov, 1971] and Kämpfer [Kämpfer, 1981]. A stable neutron
star with a phase transition between its hadronic crust and its quark matter core is
referred to as a hybrid star [Ivanenko and Kurdgelaidze, 1965, Itoh, 1970, Alford et al.,
2005, Coelho et al., 2010, Chen et al., 2011, Masuda et al., 2013, Yasutake et al., 2014, Za-
cchi et al., 2016], because its part quark star and part hadronic star, both of which are
theorized to have "pure"-star versions. Purely hadronic stars have been discussed in the
previous chapter and while pure quark stars will not be discussed in detail in this thesis
it is worth pointing out some relevant works: [Ivanenko and Kurdgelaidze, 1965, Itoh,
1970, Bodmer, 1971, Haensel et al., 1986, Alcock et al., 1986, Fraga et al., 2002, Zacchi
et al., 2015, Drago et al., 2016].

In section 5.1 we will discuss the model we use to describe the phase transition and the
stability of the resulting hybrid stars. We will proceed to investigate possible indica-
tions for a phase transition provided by mass, radius and tidal deformability data in
section 5.2 and search for those signatures using recent astrophysical observations in
section 5.3. Finally, we will take some time to touch on possible production scenarios
for hybrid stars as well as alternative explanations for potential data points in section
5.4.
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5.1. Equations of State with a Phase Transition

There are many possibilities of including a phase transition in an equation of state that
can vary based on the underlying assumptions, such as the presence of a mixed phase
or the order of the phase transition. The most common types of construction are the
Maxwell- and Gibbs-construction. A phase transition in thermodynamic equilibrium
requires, that the pressure and the chemical potential at the point of transition are
identical in both phases. For the Gibbs construction, one considers not only the baryon
chemical potential, but the charge chemical potential as well. The conditions for a Gibbs
construction between a quark phase (Q) and a hadronic phase (H) can be written as:

p(H)(µ
(H)
b , µ

(H)
q ) = p(Q)(µ

(Q)
b , µ

(Q)
q ); µ

(H)
b = µ

(H)
b ; µ

(Q)
q = µ

(Q)
q . (5.1)

Since global charge neutrality is imposed, the charge chemical potential for a specific
baryon chemical potential is fixed. This means it is unlikely for the chemical potentials
in the hadronic phase at the start of the transition to lead to charge neutrality in the
quark phase as well. This problem is solved with a mixed phase, where the chemical
potentials are adjusted along a pressure gradient ∆p. Descriptively, this means there are
"bubbles" of one phase present in the other, in such a way that global charge neutrality
in maintained. Depending on the models used, this mixed phase can be over a large
range of ∆p or a small one. This is related to the surface tension σ, where greater
surface tension leads to smaller ∆p. At a critical value of σ, which is dependent on the
model, ∆p tends to 0 and the construction can be regarded as a Maxwell construction
[Maslov et al., 2019], which is a simplified version of the Gibbs construction. Here only
the pressure and the baryon chemical potential need to be considered, and no mixed
phase is possible. The charge chemical potential jumps in this construction. The baryon
density is not identical in both phases and neither is the energy density ε(p). Instead,
ε(p) increases instantly at the point of transition for a value of ∆ε. Of course the concept
of this jump in energy density is applicable to a Gibbs construction as well however due
to the non-vanishing ∆p is less strictly defined.
In the following we will use a Maxwell construction, thus assuming a strong first order
phase transition with a strong surface tension present, since this heavily favors twin star
configurations (see section 5.2), which we want to investigate.
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5.1.1. Constant Speed of Sound Parameterization

In this work, we use a generic approach for the quark phase. It is based on earlier works
by Zdunik et al. [Zdunik and Haensel, 2013] and Alford et al. [Alford et al., 2014] and
offers a great amount of flexibility in fitting it to the hadronic EoS, while sacrificing some
microscopic clarity by assuming a constant speed of sound. This ansatz can be expressed
as a Maxwell construction and summarized as follows:

ε(p) =

εhadronic(p) p < ptrans

εhadronic(ptrans) + ∆ε + c−2
QM(p− ptrans) p > ptrans

, (5.2)

where a hadronic equation of state is used to describe the mantle of the star up to a
transitional pressure of ptrans, at which point the EoS undergoes a discontinuity in the
energy density ε of the value ∆ε. The following quark phase is described by assuming
a constant sound speed cQM, resulting in a linear function with a slope of c−2

QM. This
constant speed of sound approximation is a somewhat simplistic model, that could
be replaced by a more sophisticated EoS. However, this method of describing the
speed of sound as constant for quark matter is well established (see also [Zdunik et al.,
2006, Agrawal, 2010, Bonanno and Sedrakian, 2012, Zdunik and Haensel, 2013]). The
approach is justified by the nearly constant speed of sound predicted in two-flavor
superconducting (2SC) and color flavor locked (CFL) superconducting quark matter
predicted by NJL1 type models as Zdunik and Haensel argue [Zdunik and Haensel,
2013]. Due to it being generic, it lends itself to investigate a broad variety of possibilities,
allowing for an easy and still reliable fit to any hadronic EoS, where a more rigorous
model might need more manual adjustments.
Of the three free parameters of equation (5.2) we only fix the speed of sound, the other
parameters will be varied in the next (sub)sections. The value of cQM for the majority of
this work will be 1, which is the stiffest possible equation of state. We argue, that this
choice allows us to find the greatest possible variety in solutions, despite the conformal
limit being cQM = 1/3. Later in this chapter, figure 5.4 illustrates this point. Here, the
parameter space generating hybrid stars is shown. Using a constant speed of sound
at the conformal limit reduces the size of the parameter space, but cQM = 1 does not
produce a type of mass-radius relation that is not present for the conformal limit as well.
In figure 5.1 equation (5.2) is visualized with an equation of state from chapter 3 as

1 Nambu–Jona-Lasinio
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Figure 5.1.: The energy density and the pressure of an EoS with a first order
phase transition, as in (5.2). The hadronic EoS has the effective mass
m∗/m = 0.65 at saturation density. The parameters for the phase
transition are ptrans = 100 MeV/fm3 and ∆ε = 300 MeV/fm3. After
the phase transition, the matter is described as quark matter with a
constant speed of sound of cQM = 1.

the hadronic part, where the effective mass is m∗/m = 0.65. In this case the transition
parameters have the values ptrans = 100 MeV/fm3, ∆ε = 300 MeV/fm3 and cQM = 1.
The jump in energy density is represented by the dashed black line, the remainder of
ε(p) as a red line. The energy density in the hadronic phase at the point of transition is
εtrans and shown with a green dashed line, as is the transitional pressure ptrans, which is
identical in both phases.
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5.1.2. Stability Criterion for First Order Phase Transitions

It is not unreasonable to assume that the presence of a sharp first order phase transi-
tion to quark matter like described above might destabilize a neutron star. Thank-
fully, there is a criterion that considers this possibility, the so-called Seidov limit
[Seidov, 1971], that was rediscovered by Kämpfer [Kämpfer, 1981]. It states that a
value of ∆ε will not destabilize a neutron star with a central pressure close to ptrans, if

∆ε

εtrans
≤ 1

2
+

3
2

ptrans

εtrans
(5.3)

holds true. We will briefly summarize how it is derived following [Schaffner-Bielich,
2020]. We start by contemplating a star with the central pressure pcentral just below the
transitional pressure. Following the TOV equations (4.16) the gradient for the pressure
can be stated as:

dp
dr

= − p + ε

r(r− 2m)

(
m + 4πr3p

)
. (5.4)

Since we are interested in the phase transition we consider the core of the star specifically,
which means that we are operating at small radii allowing us to ignore Schwarzschild
corrections and to approximate the energy density and pressure as constant, barring
the phase transition of course. For a purely hadronic matter case, where we can use
pcentral ' ptrans and ε = εtrans, the mass of a small sphere at the star’s center can be
expressed as:

mHM =
4π

3
r3εtrans . (5.5)

This expression can be inserted into equation (5.4) giving us the pressure gradient just
before a phase transition takes place:

dpHM

dr
= − ptrans + εtrans

r2

(
4π

3
r3εtrans + 4πr3ptrans

)
, (5.6)

which can be integrated to find the pressure as a function of the radius r:

pHM(r) = ptrans −
2π

3
(ptrans + εtrans) (ptrans + 3εtrans) r2 . (5.7)
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If we increase the pressure at the center of the star slightly by a small amount δ to
pcentral = ptrans + δ a quark matter sphere is created at the center of the star. With the
way our equation of state is set up, this sphere should have a significantly different
energy density with εQM = εtrans + ∆ε, while the pressure changes only slightly. The
mass of the quark matter sphere can be stated as:

mQM =
4π

3
r3

QMεQM , (5.8)

with rQM being the radius of the sphere. To describe the pressure gradient of the region,
we again insert this mass into equation (5.4):

dpQM

dr
= − ptrans + εtrans

r2

(
4π

3
r3εQM + 4πr3ptrans

)
. (5.9)

Notice that pQM does not refer to the pressure of the quark phase, but to the circumstance
that a phase transition to quark matter is present in the considered star. Unlike for the
pressure increase δ this means εQM only contributes through the mass term. For δ only
the quark phase is relevant, which means we can write δ as:

δ = −2π

3
(

ptrans + εQM
) (

ptrans + 3εQM
)

r2
QM . (5.10)

Following Lighthill [Lighthill, 1950] who’s Newtonian stability analysis Seidov [Seidov,
1971] extended we can identify the difference in the two pressure solutions as a perturba-
tion function with an ansatz containing A and B as coefficients determined by the bound-
ary conditions and neglecting higher orders. This means:

Π = pQM − pHM = A +
B
r

. (5.11)

Considering the boundary condition for the radius of the quark core, with pQM = ptrans

at the point of transition, we find:

Π(rQM) =
2π

3
(ptrans + εtrans) (ptrans + 3εtrans) r2

QM . (5.12)

The second boundary condition is given by the gradient:

dΠ
dr

= − B
r2

QM
=

dpQM

dr
− dpHM

dr
=

4π

3
(ptrans + εtrans)

(
2ptrans + 3εtrans + 3εQM

)
rQM ,
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(5.13)

allowing us to find an expression for the coefficient A and relate it to δ:

A =
(ptrans + εtrans)

(
3ptrans + 3εtrans − 2εQM

)(
3ptrans + εQM

) (
ptrans + εQM

) δ . (5.14)

Let us now consider the entire compact star. At large radii Π can be simplified to
Π = A, as the term including B becomes small. This means pQM and pHM are identical,
except for a shift A(δ) that is constant. The mass change of the compact star caused by
changing the central pressure by δ can therefore be expressed as a relation of A and δ

resulting in:

dMQM

dpcentral
=

(ptrans + εtrans)
(
3ptrans + 3εtrans − 2εQM

)(
3ptrans + εQM

) (
ptrans + εQM

) × dMHM

dpcentral
. (5.15)

This expression will become negative if 3ptrans + 3εtrans − 2εQM < 0, which would
denote the end of a stable sequence [Bardeen et al., 1966]. As we were interested in the
greatest possible jump in energy density ∆ε before the sequence becomes unstable, we
rephrase the condition:

εQM

εtrans
=

εtrans + ∆ε

εtrans
≥ 3

2

(
1 +

ptrans

εtrans

)
, (5.16)

which can easily be identified as the Seidov limit (5.3).

5.2. Signature of Hybrid Stars in Astrophysical Data

As established in the previous section, it is quite possible for a phase transition to occur
in neutron stars without it destabilizing them. This raises the question, how this rapid
change at the core would be detectable or rather, if a detection is possible at all. In
this section, we will examine possible indicators for the presence of phase transition in
neutron stars. The application of these indicators to astrophysical data can be found in
the following section 5.3.

55



5. Hybrid Stars

10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5
Radius [km]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
as

s/
So

la
r M

as
s

1.5 Solar Masses

m*/m = 0.65
m*/m = 0.65, small 

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5
Radius [km]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1.5 Solar Masses

m*/m = 0.65
m*/m = 0.65, large 

Figure 5.2.: Left is a mass radius relation for the m∗/m = 0.65 EoS with a phase
transition and a small jump in energy density. The sequence remains
stable and there are no twin stars present. If ∆ε is increased, as is
the case on the right, twin stars can be found, in this case for 1.5M�,
which is the mass at the point of transition.

5.2.1. Mass Radius Effects

It is not far-fetched to assume that a sudden drastic change in the equation of state will
be reflected in the mass radius relation, if the sequence does not become unstable. An
example of that is shown in figure 5.2 on the left side. Here, a kink in the mass radius
relation clearly indicates the point of transition at around 1.5M�. This EoS is compliant
with the Seidov limit.
However, there is also a possibility not covered by the Seidov limit. A sequence of
neutron stars could regain stability after it was destabilized by a small quark matter core
close to the point of transition at even higher pressures. This scenario would manifest as
a second branch in the mass radius relation, which is made up entirely of hybrid stars,
whereas the first branch consists nearly completely of pure hadronic stars, as can be
seen on the right side of figure 5.2. A particularity of this case is the presence of a mass
gap between the last star of the hadronic branch and the minimum of the second branch,
creating two stars with exactly the same mass, but different radii. This configuration is
referred to as twin stars and could be a strong candidate for indicating the existence
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Figure 5.3.: Hadronic stars are shown in blue, hybrid stars are shown in red.
Either a mass gap is present, as is the case for class "disconnected"
(D) and "both" (B), or a phase transitions takes place without a mass
gap and the branches are "connected" (C), meaning only a kink is
present in the mass radius relation. Of course, it is also possible that
no phase transition is present, as shown in the "absent" (A) case.

of a phase transition in neutron stars if observed [Kämpfer, 1981, Glendenning and
Kettner, 2000, Schertler et al., 2000, Schaffner-Bielich et al., 2002, Zdunik and Haensel,
2013, Alford et al., 2015, Blaschke and Alvarez-Castillo, 2016, Zacchi et al., 2017, Alford
and Sedrakian, 2017, Christian et al., 2018, Blaschke et al., 2020, Jakobus et al., 2021].
Due to their status as a separate branch from the hadronic branch, they are also referred
to as the "third family" of compact stars, with the first "family" being white dwarfs
and the second neutron stars. We will discuss whether or not the indicators for a
phase transition provided by a mass radius relation with a kink or a mass gap are
sufficient for confirmation of a transition using current astrophysical constraints in
section 5.3.

Hybrid Star Classification by Alford et al.

Even a model as generic as the one presented in section 5.1.1 gives rise to a myriad of
hybrid star scenarios. Because of this, it can be useful to categorize the different results.
One of the first attempts to do so was presented by Alford et al. [Alford et al., 2013].
They used the Seidov limit to sort hybrid star solutions into the classes "absent" (A),
"both" (B), "connected" (C) and "disconnected" (D). These titles refer to the presence (or
absence in case of A) of hybrid stars in the two branches. In class A there are no hybrid
stars, they are absent. In class B the first and second branch both contain hybrids. In
case C, there is no second branch, because the two branches are connected. Hybrids
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Figure 5.4.: On the left side the parameter space for cQM = 1 is shown, on the
right the parameter space for cQM = 1/3 both sides use the RMF EoS
with m∗/m = 0.65 as the hadronic crust. The parameter sets leading
to twin stars (areas B and D following the Alford classification) are
shaded gray. The colorful areas indicate the four categories defined
in the following subsection 5.2.1. The parameter spaces leading
to twin stars allowing for specific classes of hybrid stars is strongly
dependent on the value of cQM. Smaller values for the speed of sound
decrease the parameter space significantly. However, none of the
four classes of hybrid stars vanish, even for the greatly diminished
parameter space of cQM = 1/3.
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can be found in the first branch. Finally, D covers the case that only the second branch
contains hybrid stars (compare fig. 5.3). This places class A and D above the Seidov
limit and class B and C below it, which can be seen in figure 5.4, where the Seidov
criterion is marked with a red straight line. Note that only the case B and D can contain
so-called twin stars, since a connected branch does not allow for two stars with the
same mass but different radii. The area covered by classes B and D is shaded gray, with
category I-IV (covered in the next subsection) overlaid. It is noticeable that for a more
realistic speed of sound cQM = 1/3 the parameter space decreases. However, all hybrid
star scenarios are still present, which means that using a higher sound speed opens up
a greater parameter space to explore without creating any type of solution unique to
it. As stated earlier, we will be using a speed of sound cQM = 1 for our calculations,
strengthening any constraints that we find despite the increased parameter space.
Another important thing to note is that the ∆ε/εtrans - ptrans/εtrans parameter space
seems to be nearly independent from the hadronic crust EoS, as Alford et al. find in a
similar plot [Alford et al., 2013].

Twin Star Classification by Christian et al.

The categorization by Alford et al. is useful in discussing what types of hybrid stars
exist. However, when considering constraints on the equation of state that describes
those hybrid stars, it provides no intuitive additional insights. To get a better feeling for
the connection between equation of state and the mass radius relation, it is useful to
consider the influence of the transition parameters. As outlined in [Christian et al., 2018]
the transitional pressure can reliably be correlated with the maximal mass of the purely
hadronic stars, while the discontinuity in energy density has a significant influence on
the position of the hybrid star maximum in the mass radius diagram.
In figure 5.5 the effects of varying the jump in energy density (left) and transitional
pressure (right) are shown for the m∗/m = 0.65 equation of state as an example.
On the right-hand side ∆ε is increased from a value of ∆ε = 200MeV/fm3 to ∆ε =

400MeV/fm3 with ptrans = 60MeV/fm3 being constant. Noticeably the shape of the
hybrid star branch remains the same for all values of ∆ε, only its position changes,
where high values of ∆ε move it to more compact solutions and lower values of ∆ε

keep it closer to the hadronic branch. On the left-hand side of the figure, the transitional
pressure is varied from ptrans = 10MeV/fm3 to ptrans = 140MeV/fm3 with a constant
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Figure 5.5.: Left: The jump in energy density is fixed to ∆ε = 350MeV/fm3

and ptrans is increased from ptrans = 10MeV/fm3 (green) to ptrans =
140MeV/fm3 (blue). The second branch becomes steeper with in-
creasing transitional pressure. Right: The transitional pressure is
fixed to ptrans = 60MeV/fm3 and the value of ∆ε increases from
∆ε = 200MeV/fm3 − ∆ε = 400MeV/fm3. The shape of the second
branch remains similar, but its position changes to more compact
solutions for increased ∆ε.
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jump in energy density of ∆ε = 350MeV/fm3. This is obvious for parameter sets above
the Seidov limit, where the hadronic branch loses stability with the addition of quark
matter. However, this is also the case for twin star configurations below the Seidov
limit (class B following Alford et al.). In these cases, there are usually only a few hybrid
stars in the first branch before the sequence becomes unstable. The value of ptrans also
determines the shape of the hybrid star branch. Low values of transitional pressure
will lead to a steep hybrid star branch and high values generate a flat second branch.
Surprisingly, the mass value of the hybrid star maximum seems to be determined mostly
by the value of ∆ε, with only a small connection to the transitional pressure.
Using this correlation between ptrans and the hadronic maximum, as well as ∆ε and the
hybrid star maximum, we can categorize the types of phase transition by their relation
to the most massive neutron star, currently known. In the following we will refer to
its mass value as Mdata, which is currently known to be about 2M� [Demorest et al.,
2010, Antoniadis et al., 2013, Cromartie et al., 2019, Nieder et al., 2020]. Only twin star
solutions (i.e. class B and D following Alford et al. [Alford et al., 2013]) will be part of this
categorization, as they are the most interesting cases for constraining the EoS. However,
the outlined trends are similar for connected branches C.

Category I is defined by both branches having masses higher than Mdata. This con-
dition can only be satisfied with a high value of ptrans, as the first maximum will be
too low otherwise. This will necessarily lead to a flat hybrid star branch, generating
a characteristic mass radius relation as shown in figure 5.6. If the second maximum
has values above Mdata as well, the energy density discontinuity has to feature rel-
atively small values. Otherwise, the second branch would dip below the set limit.
This is in contrast to category II. The maximal masses of the hadronic and hybrid star
branch are usually very close to each other in category I, due to the second branch’s
flatness.

Category II is defined by only the hadronic maximal mass reaching Mdata. Again, this
necessitates high values of ptrans, but uniquely allows the values of ∆ε to become nearly
arbitrarily large. A characteristic category II mass radius relation will look similar to
category I, with the first branch being indifferentiable and the second branch being
as flat as category I, but located at lower masses (see figure 5.6). This feature means,
that category II can contain twin stars with the greatest possible radius differences
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Figure 5.6.: Representative examples for category I-IV with the DD2 equation of

state as the hadronic part and a constant speed of sound (cQM = 1)
in the quark phase. The current value of Mdata is 2M�.
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when compared to all other categories. However, as we will see in section 5.3, it also
requires a hadronic EoS that fulfills all current astrophysical constraints without a phase
transition.

Category III is defined by the hybrid star maximum meeting or exceeding Mdata,
while the hadronic mass maximum is within the range of known neutron star masses,
i.e. not below the mass of about 1.1M� from the J0453+1559 companion [Martinez et al.,
2015], but also not above Mdata. This makes category III the most diverse category, as the
second branch can be very steep for early transitions and very flat at high transitional
pressures. The transition from category III to category I at high transition pressures
is fluid, as well as the transition to category IV at lower ptrans. Like category I the
values of ∆ε have to be chosen in a way that does not move the second branch to
values below Mdata. An example with some distance to both adjacent categories is
provided in figure 5.6. The mass radius relation on the right side of figure 5.2 is a
category III phase transition as well, demonstrating the similar behavior of a twin star
solution and a connected branch with similar parameters depicted on the left side of
that figure.

Category IV is defined by the hybrid star maximum exceeding Mdata and the tran-
sition taking place before the lowest currently known neutron star mass (currently
[Martinez et al., 2015]) is reached, which can only be achieved with a phase transition
at remarkably low values. This would mean, that if this category describes nature
accurately, all known neutron stars are in fact hybrid stars. Category IV contains the
steepest second branch of all categories. Like for category III cases with low transitional
pressures, the hybrid star branch runs approximately parallel to the x-axis near the point
of transition, but then rises at a nearly constant radius. This behavior is so pronounced
that the second branch of a category IV phase transition can be orthogonal to a category
I or II second branch. The quark matter equation of state is dominant in this category,
due to the early transition. This means that the mass radius relation contains the highest
mass values of all categories for a steep quark matter parameterization like ours.

The usefulness of this categorization should become apparent when one considers that
the detection of a single pair of twin stars could heavily constrain the conditions of the
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Features Category I Category II Category III Category IV
ptrans high high medium low

∆ε medium high medium medium-low
Hadronic maximum > Mdata > Mdata < Mdata < Mdata
Hybrid maximum > Mdata < Mdata > Mdata > Mdata

Second branch shape flat flat variable steep

Table 5.1.: These are the features that distinguish category I-IV.

phase transition, as well as provide evidence for the transition itself. This is highlighted
in table 5.1, where the features of each category are listed. For example, finding a star
with a radius significantly smaller than the radius of Mdata at lower masses would point
strongly towards a category II phase transition, which would constrain the transition
parameters to large values of ptrans and ∆ε. We refrain from stating concrete values in
table 5.1, as the parameters ptrans and ∆ε are depended on the base hadronic EoS and
the value of Mdata is likely to change at some point in the future.
The different categories for the cQM = 1 case are shaded over the ∆ε/εtrans - ptrans/εtrans

parameter space in figure 5.4. Since the transitional pressure very accurately determines
the mass at the first maximum, clear borders on the x-axis are present between the cate-
gories. The jump in energy density is not as clearly correlated with the second maximum,
leading to some slight overlap in the categories I and II.

5.2.2. Tidal Deformability Effects

The tidal deformability of a neutron star is mostly determined by its equation of state.
It is entirely possible that two stars with identical mass and radius, but a different
composition might behave differently under the influence of tidal forces. As such, it is
not surprising, that the presence of a phase transition would alter the tidal deformability
of a neutron star significantly. With the previous subsection in mind, we can already
predict how a phase transition could effect the tidal deformability. In subsection 4.3.2
we saw that tidal deformability Λ is proportional to C−5, where C = M/R is the
compactness (compare equation (4.44)). Increasing the compactness therefore decreases
the deformability significantly. As a result, hybrid stars, which are more compact than
regular stars, should be harder to deform.
This prediction is correct, as can be seen in figure 5.7, where some representative
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Figure 5.7.: Left: Mass radius relations for category II, III and IV phase transi-
tions with a DD2 hadronic base EoS. Right: The corresponding tidal
deformabilities.
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Figure 5.8.: The purple neutron-neutron (NN) line is generated by the DD2 equa-
tion of state. The golden hybrid-hybrid (HH) line is category IV. The
black dashed line is the 90% credibility limit determined by LIGO
and the dotted black line the 50% limit. This figure was published in
[Christian et al., 2019].
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Figure 5.9.: Category II EoSs can generate two separate lines, since neutron-
neutron (NN) and neutron-hybrid (NH) combinations can be found
that add up to Mtotal . The NN line is at the same location as the DD2
line in figure 5.8. The NH line is located close to the axis, because it
can only be generated by combinations of low mass hadronic stars,
with high values of Λ and massive hybrid stars, with small values of
Λ. This figure was published in [Christian et al., 2019].
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Figure 5.10.: Category III EoSs usually generate two lines. Depending on the
transition parameters, these lines are either neutron-neutron and
neutron-hybrid star lines (dark green) here denoted by category III
a or neutron-hybrid and hybrid-hybrid star lines (turquoise) here
called category III b. This figure was published in [Christian et al.,
2019].
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examples of the four categories are compiled. The DD2 equation of state [Typel et al.,
2010] is used for the hadronic mantle, and the speed of sound in the quark phase is
cQM = 1. Early phase transition solutions like the category IV case (gold) contain the
most compact hybrid stars with the lowest values of Λ, while the pure DD2 case (purple)
has the highest values of Λ.
As outlined in section 4.4 the tidal deformability of compact stars cannot be measured
directly. Instead, a combined value of both participants Λ̃ is calculated (see equation
(4.45)) and compared to the available areas of likelihood from a merger event, for
example in a Λ1 − Λ2 plot. Such a Λ1 − Λ2 plot contains a single line for a purely
hadronic EoS (see figure 4.2). This is because, for a purely hadronic EoS, each mass has
only one possible radius. However, if a transition takes place it becomes possible that
the stars participating in the merger are either both from the hadronic branch (NN),
both from the hybrid star branch (HH) or one from each branch (NH). Due to the vastly
different values of tidal deformability between the branches, these possibilities places
the results in distinctly different areas in a Λ1 −Λ2 plot. This means, if there are twin
stars present, more than one line can be generated, where their placement strongly
depends on the transition parameters and the total mass Mtotal of the merger event. For
example, a category III phase transition featuring a small transitional pressure would
only be able to provide a hybrid-hybrid (HH) explanation for a merger event with a
high total mass, since the total mass is not achievable with the combination of a hadronic
and a hybrid star. However, if the merger event involves a small total mass and the
maximal mass of the hadronic branch can be added to a more massive hybrid star this
small total mass can be reached and a neutron-hybrid merger (NH) is possible. In this
hypothetical, both HH and NH combination would be possible. If the total mass of the
merger event is even smaller, a neutron-neutron star merger (NN) could also reach the
Mtotal. However, if this is the case it is likely also the case that even the least massive
hybrid stars could not be combined to a total mass below Mtotal, therefor only NN and
NH mergers could be provided as an explanation for the merger by this EoS. There
is one case in which all three possible cases can be provided by the same EoS. This
scenario can only be realized if half the total mass is within the range of twin star masses.
We provided a formula to predict which kind of merger participants are allowed by a
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certain total mass in [Christian et al., 2019], which reads:

Mtotal


< 2Mtwin ⇒ NH, NN

= 2Mtwin ⇒ HH, NH, NN

> 2Mtwin ⇒ HH, NH

, (5.17)

where Mtwin is the range of twin star masses. In reality, it is much more useful to
consider the chirp massM instead of the total mass, as it is much better constrained,
though the two quantities are qualitatively nearly interchangeable and Mtotal is less
abstract. We will now check the predictions from equation (5.17) for our categories
using the data from GW170817 and the same EoSs shown in figure 5.7. GW170817
has a total mass of about 2.7 M�. We start with category I and IV, as these are the
limiting cases. The hybrid star branch in a category I phase transition has values close
to Mdata = 2 M�. This means a total mass of 2.7 M� cannot be obtained with the
combination of a hybrid star and a neutron star2. Therefore, the category I line in a
Λ1 −Λ2 plot based on GW170817 is indistinguishable from the pure case. The NN line
from the DD2 equation of state is plotted in figure 5.8 in purple. Contrary to the category
I case, a category IV EoS like the gold line of figure 5.7 will necessarily contain only
hybrid stars, because the transition takes place at masses that should not be realizable
in nature by definition. It will therefore also generate a single line and not multiple
ones. Category I and IV can be used as the limiting cases, because all other categories
will involve more compact participants than category I and less compact participants
than category IV. Note that a category I phase transition could generate a second line
for Mtotal ≥ 3 M� in the Λ1 −Λ2. However, the NH line would be placed at very high
values of Λ2 and low values of Λ1 as it would require a hadronic star with astonishingly
small mass to participate in the merger. A similar situation arises for the category II
case, where the twin star masses are still large (about 1.6 M� in this example) in a range
where it’s possible to find a hybrid star and a neutron star that can be combined to
Mtotal. Nevertheless, these massive hybrid stars can only be combined with very light
neutron stars increasing the discrepancy between Λ1 and Λ2 and placing the NH line
close to the y-axis. This is shown in figure 5.9. In the case of GW170817, the category II
neutron-hybrid star line is outside the credibility limit.

2 Remember that the minimal mass of neutron stars that can be generated by supernovae is about
1.0 M�
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If the transition takes place at lower transitional pressures we move into category III, for
which examples are given in figures 5.10 and 5.11. In figure 5.10 two category III case are
shown. One with Mtwin > 0.5Mtotal is plotted in dark green and denoted case (a), and
one in turquoise denoted case (b). The letters (a) and (b) refer to the location of the phase
transition, where in case (a) the transition takes place "above" the Mtwin < 0.5Mtotal

limit and case (b) "below" it. As predicted by relation (5.17) the category III a case has a
neutron-hybrid star line and a neutron-neutron star line, while the category III b case
features a neutron-hybrid and a hybrid-hybrid line. Notice, that the neutron-neutron
star line of the category III a case is still congruent with the pure DD2 line.
If the transitional pressure used for category III a is decreased further we find a solution
where 0.5Mtotal is in the range of Mtwin, which means we should be able to find a
neutron-neutron, neutron-hybrid and hybrid-hybrid line generated by a single EoS.
This is shown in figure 5.11, where four lines can be found in the Λ1 − Λ2 plot. We
expected to find only three lines, but the additional fourth line can be interpreted as
an expansion of the neutron-hybrid line, here denoted as NH(II). It is generated by the
merger of stars, where the more massive star also has a higher tidal deformability. This
behavior is found in so-called "rising twins" [Schertler et al., 2000], where a hadronic star
is more massive and has a higher radius than its hybrid counterpart. Given the strong
correlation of compactness and tidal deformability (equation (4.44)) it is apparent, that
rising twins would have a noticeable impact on the Λ1−Λ2 plot. To illustrate this point,
we consider figure 5.12, where the mass radius relation of the category III case from
figure 5.11 is shown. The upper and lower bounds of Mtwin are marked in green, the
range of stars that can generate a neutron-neutron line is shown by a dashed black line.
To indicate, that the compactness of hybrid stars is greater than that of the hadronic stars
a red line with the compactness of the hadronic maximum as its slope is drawn. It is
evident, that all hybrid stars are above that line and have therefore greater compactness
and lower tidal deformability. Furthermore, two stars that would generate a point on
the NH(II) line in figure 5.11 are marked, where the more massive one is the maximal
mass of the hadronic branch Max1 with Λ = 739 and the less massive is a star with
mass M2 and Λ = 387.
A curious side note is that the compactness of the hadronic maximum seems to be
greater or equal to the compactness of the least massive hybrid star for all cases we
checked. If this is a coincidence or somehow more explicitly linked to the transition
could be explored at some other time.
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Figure 5.11.: Category III with transition parameters such that 0.5 Mtotal is within
Mtwin will generate a neutron-neutron, neutron-hybrid and hybrid-
hybrid line from a single EoS. This figure was published in [Chris-
tian et al., 2019].
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This figure was published in [Christian et al., 2019].
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5.3. Constraints on the Hybrid Star Equation of State

In the previous section, we elaborated the different possible signatures a phase tran-
sition might generate in astrophysical data. In this section, we take the constraints
already discussed in section 4.4 and compare them to our predicted signatures for the
equation of state discussed in chapter 3. We find, that phase transitions can improve the
comparability of an EoS with some measurements, while being challenging to bring
into agreement with others.

5.3.1. Mass Constraints on Hybrid Stars

As we have seen previously in subsection 5.2.1 the jump in energy density governs
the position of the second branch, where small ∆ε decrease the distance between the
hadronic maximum and the hybrid minimum. Particularly small values of ∆ε might not
even lead to a mass gap, but a connected case. For category III and IV this means, that
the maximal mass overall will be determined by the jump in energy density. While the
mass constraint for category I and II can be applied in a straight forward way, because
it has to be located in the first branch, the maximal mass of category III and IV phase
transitions necessarily increases significantly after the phase transition. In [Christian
and Schaffner-Bielich, 2021] we investigated the mass limit of category III and IV phase
transitions, the results can be seen in figures 5.13-5.17. Here the maximal mass of the
second maximum M2 is plotted as a function of the jump in energy density for EoSs
with effective masses from m∗/m = 0.55 to m∗/m = 0.75 and a suitable collection of
transitional pressures. We will use four examples for each effective mass with ptrans

values that represent the earliest possible transition3 (purple), the first category III
transition (green), the highest ptrans of category III (orange) and a transitional pressure
between those two (blue). An alternative way of viewing the different transitional
pressures would be by mass, i.e. the green line corresponds to about 1M�, the blue line
to 1.5M� and the orange line to 2M� at the hadronic maximum.
Crucially the figures contain the masses of pulsar J0740+6620 [Cromartie et al., 2019]
shaded in red and the less massive companion of the GW190814 merger [Abbott et al.,
2020] shaded in blue allowing us to easily compare if the condition set by observation is

3 Earliest ptrans compatible with the NICER data from [Raaijmakers et al., 2019] according to [Christian
and Schaffner-Bielich, 2020], which is an estimate.
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J0740+6620

GW190814

Figure 5.13.: The maximal hybrid mass as a function of ∆ε with a m∗/m = 0.55
hadronic phase is shown. Different transitional pressures are de-
picted in purple (earliest transition), green (early category III tran-
sition), blue (phase transition at about 1.4M�) and orange (last
possible category III phase transition). Note that the orange case
is incompatible with the LIGO measurement of GW170817 [Ab-
bott et al., 2019, Christian and Schaffner-Bielich, 2020]. The dashed
line indicates ∆ε = 350 MeV/fm3. This jump in energy density
always generates a significant mass gap in the mass radius rela-
tion, if stability is regained at all. The shaded areas are constraints
from GW190814 [Abbott et al., 2020] and J0740+6620 [Cromartie
et al., 2019]. The black continuous line is placed at the estimated
value of J0740+6620. This figure was published in [Christian and
Schaffner-Bielich, 2021].
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J0740+6620

GW190814

Figure 5.14.: Maximal hybrid star masses generated by different transitional pres-
sures from category III and IV phase transitions of the m∗/m = 0.60
case. The m∗/m = 0.60 case contains lower values of M2 when
compared to the m∗/m = 0.55 case. However, it is still possible to
reach the lower limit of the error bar (shaded red) with all category
III phase transitions at energy density discontinuities larger than
∆ε ≥ 350 MeV/fm3 (dashed line). No combination reaches a mass
of 2.14M� (black vertical line) at ∆ε ≥ 350 MeV/fm3.
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J0740+6620

GW190814

Figure 5.15.: Only the lowest possible transitional pressure meets the mass con-
straint from J0740+6620 at ∆ε ≥ 350 MeV/fm3, which guarantees
a sizable mass gap. This figure was published in [Christian and
Schaffner-Bielich, 2021].
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GW190814

J0740+6620

Figure 5.16.: For m∗/m = 0.70 only the category IV case ptrans = 12 MeV/fm3

allows for a configuration with ∆ε ≥ 350 MeV/fm3 and a maximal
hybrid star mass M2 ≥ 2.05M�. All other cases would not produce
visible twin stars and the required hybrid star mass.
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J0740+6620

GW190814

Figure 5.17.: The effective mass m∗/m = 0.75 behaves similar to m∗/m = 0.70 in
that only the category IV case would produce visible twin stars and
sufficient hybrid star masses. However, it is the only case in which
the upper limit of category III (orange line) fails to reach the lower
estimate of J0740+6620, even for small jumps of ∆ε.
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met. It should be noted that it is not certain if the companion of the GW190814 merger is
the most massive neutron star ever observed or a surprisingly small black hole [Tsokaros
et al., 2020, Most et al., 2020, Godzieba et al., 2021, Fattoyev et al., 2020, Dexheimer et al.,
2021, Lim et al., 2021, Tews et al., 2021, Tan et al., 2020, Zhang and Li, 2020, Nunes et al.,
2020, Blaschke and Cierniak, 2021, Nathanail et al., 2021]. Like in section 4.4 we will
touch upon its implications if it were to be considered a neutron star.
Finally there is a dashed vertical line present in figures 5.13-5.17, it is drawn at ∆ε =

350MeV/fm3, which is a jump in energy density large enough to guarantee a noticeable
mass gap of about 0.1M� in the mass radius relation. There are certainly smaller ∆ε

that still generate a mass gap; however, for this discontinuity we can assume with
confidence that the effect on the mass radius relation would be detectable independent
from the other parameters and the EoS. This means concretely that all EoSs in figures
5.13-5.17 generating lines inside the red box indicating the mass of J0740+6620 and to
the right of the dashed black line at ∆ε = 350MeV/fm3 have masses compatible with
J0740+6620 and a significant mass gap, i.e. feature twin stars.
Figure 5.13 depicts the stiffest hadronic EoS with m∗/m = 0.55. Since the stiffest
EoS will generate the most massive stars all constraints derived for this EoS will also
be true for the rest. First, one notices, that an early phase transition, in this case
ptrans = 10MeV/fm3, leads to higher masses overall, which is caused by the greater
impact of the maximally stiff quark matter EoS. One also finds, that the lines generated
by different transitional pressures are not parallel. This is particularly obvious for the
orange case closest to category I. For small jumps in energy density, this case has the
lowest maximal masses, as one would expect due to the flat second branch associated
with such a phase transition. However, for high values of ∆ε it has higher maximal
masses than other phase transitions. This behavior can likely be explained when one
considers the corresponding mass radius relation. Since the phase transition occurs at
high masses the minimum of the hybrid star branch will also be located at high masses,
but the mass will not rise significantly along the second branch. The mass constraints
for phase transitions in EoSs with a m∗/m = 0.55 can be read directly from figure 5.13.
The hypothetical neutron star that might have been a part of the merger GW190814 is
reachable, which means if it where to be considered a neutron star it would not rule
out the presence of phase transitions. However, the required transitional parameters
would not create a significant mass gap, meaning a phase transition would be difficult
to differentiate from a purely hadronic EoS, as we will see in the next subsection. We
can conclude that all EoSs in our model with higher effective masses will not be able to
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generate twin stars for such high mass either.
For a more conventional mass constraint, i.e. J0740+6620, all transitional pressures allow
twin star solutions, as the dashed line indicating ∆ε = 350MeV/fm3 is crossed after the
lower limit of the red shaded area is reached. Furthermore, we can determine, that the
highest possible mass in the second branch that allows for twin stars with sizable mass
gaps to be generated with absolute certainty is about 2.2M�, the point where the purple
line meets the dashed line. Note that twin stars at higher masses might be possible,
since mass gaps do not require a ∆ε = 350MeV/fm3 discontinuity, but are ensured by
it. During this work a neutron star with a mass of 2.35± 0.17 M� [Romani et al., 2022]
was reported. This would point towards smaller ∆ε, which are easily compatible with
such a massive star but phase transitions would be harder to detect using mass and
radius measurements. It should also be noted that there are some uncertainties in this
reported mass value, as it belongs to a black widow pulsar, which are notoriously hard
to accurately determine due to their accretion.
For figure 5.14, which shows the m∗/m = 0.60 case, only the earliest transition (pur-
ple) reaches the hypothetical maximal neutron star mass provided by GW190814 in the
shown parameter space. It might be possible to reach the required masses if even smaller
jumps in energy density are considered (see for example figure 5.21 in the following
section), but since there is no consensus in the identity of the GW190814 companion and
because such small jumps would not lead to easily detectable particularities in the mass
radius relation that point towards a phase transition we will not consider this constraint
further.
With the increase of effective mass compared to the m∗/m = 0.55 case the maximal
masses of the second branch decrease for this EoS. As a result no set of transition pa-
rameters with ∆ε < 350MeV/fm3 reaches masses above the stated mass of J0740+6620,
which is 2.14 M� [Cromartie et al., 2019]. However, the lower limit is still achievable
with ∆ε < 350 MeV/fm3 for all transitional pressures, which implies, that twin stars
are possible for this EoS.
As can be seen in figure 5.15 the m∗/m = 0.65 case requires small transitional pressures
to ensure twin star solutions under the J0740+6620 constraint. The smallest value of
ptrans supporting the minimal mass of J0740+6620 for higher jumps in energy density
then ∆ε = 350 MeV/fm3 corresponds to the lower boundary of category III. However,
it is important to note, that the line generated by the upper transitional pressure of
category III (orange) is closer to the constraint from Cromartie et al [Cromartie et al.,
2019] than the line generated by a medium transitional pressure. This is due to the
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dynamic already discussed for figure 5.13, where the transition at high masses in the
first branch also implies high masses for the minimum of the second branch. Taking
into account, that our choice of ∆ε = 350 MeV/fm3 as boundary for twin stars is just a
rough approximation we can conclude, that the m∗/m = 0.65 case could feature high
transitional pressures leading to noticeable twin star solutions in addition to twin star
solutions from low ptrans. Medium values are unlikely to lead to twin stars for this case.
The previously mentioned DD2 equation of state has a very similar mass-radius relation
to this case and would follow similar constraints.
The m∗/m = 0.70 case heightens the problem of the previous case to the point, where
only the purple line of figure 5.16 meets the Cromartie et al. [Cromartie et al., 2019]
data point at ∆ε > 350MeV/fm3, with no other transitional pressure being close. This
means no category III transition featuring twin stars with a significant mass gap and in
compliance with this constraint can be generated. Only a category IV solution with a
dominant quark phase would meet this constraint. If we increase the effective mass to
the highest value we consider this statement remains true, as is shown in figure 5.17. In
this latter case we can see that the late category III transition will not generate a second
branch for ∆ε < 200 MeV/fm3 at all, which is why we find a horizontal orange line at
about two solar masses, where the transition takes place.
We can summarize these findings in table 5.2, as was done in [Christian and Schaffner-
Bielich, 2022], where the table as well as figures 5.13 and 5.15 were published. To
increase the tables readability the effective masses are listed as "a", "b", "c", "d" and "e"
in ascending order. Brackets indicate that a constraint is only met for some parameter
set in the respective section. Note that the connected branch in table 5.2 refers only to
parameter sets with ∆ε > 180 MeV/fm3. Smaller jumps in energy density will increase
the maximal mass enough to satisfy the GW190814 constraint. However, such small
jumps would lead to a hybrid star section in the mass radius relation that not only
connects to the hadronic branch, but does so without creating a noticeable difference
in radius between stars with similar masses. Therefore, it would be nearly impossi-
ble to detect them. The NICER constraint will be discussed in the next subsection
5.3.2 and the GW170817 constraint in the subsection 5.3.3 following that. They are
already listed, due to them being present in [Christian and Schaffner-Bielich, 2022].
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CI CII CIII CIV Connected
NICER abcd abcd abcd (abcde) abcde

GW170817 cd cd (a)bcd abcde abcde
2.05 M� abcd abc abc abcde abcde
2.50 M� / / / / abcde

Table 5.2.: Effective masses 0.55, 0.60, 0.65, 0.70 and 0.75 correspond to the letters
a,b,c,d and e. Instead of the estimated mean value stated by Cromartie
et al. [Cromartie et al., 2019] the 1σ lower limit is used (2.05 M�).
Likewise, the lower estimate of the GW190814 companion is used
(2.5 M�) [Abbott et al., 2020]. A connected branch with a sufficiently
small jump in energy density can fulfill all constraints.

5.3.2. Radius Constraints on Hybrid Stars

In this subsection we will investigate the constraints put on equations of state with
phase transitions by the NICER radius constraints for the pulsars J0030+0451 [Miller
et al., 2019, Riley et al., 2019, Raaijmakers et al., 2019] and J0740+6620 [Miller et al.,
2021, Riley et al., 2021, Raaijmakers et al., 2021]. Shortly after the first NICER measure-
ment [Miller et al., 2019, Riley et al., 2019, Raaijmakers et al., 2019] we published an
article in which we discussed the possibility to constrain the onset of a phase transition
in neutron stars using their radius constraint [Christian and Schaffner-Bielich, 2020].
Under the assumption that a phase transition leading to a ∆M = 0.1M� is present
we found that the phase transition cannot take place before a central density of 1.4n0

is reached. The argument for this statement stems from the behavior of the second
branch under increased jumps in energy density discussed extensively in the previous
subsections. High values of ∆ε move the second branch to lower masses and radii,
which are not compatible with the NICER data. To demonstrate this a selection of
mass radius relations for a m∗/m = 0.65 EoS is plotted in figure 5.18. The transition
parameters are stated in units of MeV/fm3 in brackets following the scheme (ptrans/∆ε).
The coloring of the NICER ellipses and mass constraints is identical to the colors chosen
in subsection 4.4.2.
Of particular interest is the category IV transition in yellow, which features a transition
at central densities slightly larger than 1.4n0. As claimed in [Christian and Schaffner-
Bielich, 2020] it is just barely inside the first NICER 2σ error ellipse from Riley et al.
[Riley et al., 2019]. Its connected counterpart is shown as the dashed blue line and,
due to the decreases discontinuity in energy density, easily inside the ellipse. It is clear,

83



5. Hybrid Stars

8 9 10 11 12 13 14 15
Radius [km]

0.0

0.5

1.0

1.5

2.0

2.5

M
as

s /
 S

ol
ar

 M
as

s

GW190814

J0740+6620

Compactness J0030+0451

Pure Hadronic
Category IV (14/350)
Connected Hybrids (14/180)
Category III (24/350)
Category III (62/300)
Category III (103/350)
Category II (120/700)
Category I (130/350)
Riley et al.
Miller et al.

Figure 5.18.: Examples of category I-IV are shown, as well as a connected branch
(dashed blue line). Notice that all values of ∆ε > 350MeV/fm3 lead
to mass gaps larger than 0.1M�. The category III example in the
middle has a jump in energy density of 300MeV/fm3, which in this
case does not generate a mass gap of 0.1M�. The constraints from
NICER are shaded red (Riley et al. [Riley et al., 2019, Riley et al.,
2021] ) and green (Miller et a. [Miller et al., 2019, Miller et al., 2021]),
and the mass constraints are shaded blue [Cromartie et al., 2019]
and purple [Abbott et al., 2020].

84



5. Hybrid Stars

9 10 11 12 13 14
Radius [km]

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
as

s/
So

la
r M

as
s

Hybrids
Riley et al.
Miller et al.
ptrans = 130; 100 MeV/fm3

Pure Hadronic Case

9 10 11 12 13 14
Radius [km]

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
as

s/
So

la
r M

as
s

Hybrids
Riley et al.
Miller et al.
ptrans = 160; 150 MeV/fm3

Pure Hadronic Case

Figure 5.19.: The black continuous line is the pure hadronic case, which satisfies
the NICER constraints. If the phase transition takes place after the
constraint is met, the mass radius relations will resemble category I
and II solutions. On the left side the hadronic equation of state has
an effective mass of m∗/m = 0.65 and on the right side m∗/m = 0.70.
These are the only two effective masses, that meet the GW170817
constraint without a phase transition, but still allow for one. At
low radii category II solutions populate an area in the mass radius
diagram that is inaccessible by pure hadronic EoSs, which is (R <
RNICER and M < 2M�). This figure was published in [Christian
and Schaffner-Bielich, 2022].
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Figure 5.20.: Category III transitions are not compatible with the NICER data of
J0740+6620 (upper ellipsis), if a sizable mass gap is demanded, even
if the 2M� constraint and the GW170817 constraint are met. This
figure was published in: [Christian and Schaffner-Bielich, 2022].

that the sensitivity of NICER would not be high enough to differentiate between two
similarly massive stars in this case. Category III cases, as shown in blue have a higher
transitional pressure and are therefore compatible with the first NICER measurement
as well.
The assumption that high transitional pressures are favored is reinforced by the second
NICER measurement, which is not only located at higher masses, but larger radii as
well [Miller et al., 2021, Riley et al., 2021, Raaijmakers et al., 2021]. Even the category
III cases that are compatible with this new measurement have their transition close to
2M� (upper blue continuous line) or feature only a small ∆ε leading to a small mass
gap (middle blue continuous line). Only the category I and II cases (black and red)
satisfy both constraints no matter the parameter set. This latter point is highlighted
in figure 5.19. In this figure, all mass radius relations resulting from parameter sets
belonging to category I and II are shown with the hadronic base EoSs m∗/m = 0.65
(left) and m∗/m = 0.70 (right). Note that the jump in energy density is also limited to
1000MeV/fm3 > ∆ε > 350MeV/fm3. It is clear that all category I and II parameter sets
(shaded blue) are within the 1σ NICER constraints4 .This is because the pure hadronic

4 Here only the 1σ constraint is shown, but this would obviously extend to 2σ confidence as well.
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Figure 5.21.: For small jumps in energy density all constraints can be met. How-
ever, this will mean that no significant mass gap is present. The
boundaries of the mass radius space populated by hybrid stars is
formed by a parameter set with a transition at 1M�, i.e. the lower
limit of category III, and a jump in energy density of 340MeV/fm3

as the lower bound and 0MeV/fm3 as the upper bound, they are
marked by purple lines. An additional purple line in the middle
shows the largest value of ∆ε that is required to grant compliance
with the NICER data. For this value, the mass gap is small. The
red lines indicate a transition at 2M� with a jump in energy den-
sity of 340MeV/fm3 and a jump equal to the one present in the
middle purple line. This figure was published in: [Christian and
Schaffner-Bielich, 2022].
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case (black) already satisfies the constraints. As a result the hybrid star branch can be
located at very small radii, which demonstrates that contrary to what is claimed about
models without a transition [Pang et al., 2021, Annala et al., 2022, Huth et al., 2022], the
radii of hybrid stars cannot be constrained to radii larger than 11km. If a star with a
radius smaller than 11km were to be found, it would point towards a phase transition.
The area left of the NICER constraints can only be populated by an EoS compatible with
the NICER data if a phase transition occurs or other exotic matter is present.
Category III phase transitions do not have a hadronic branch that complies to the mass
constraint. They need to achieve it in the hybrid star branch. As can be seen in figure
5.20 this makes them incompatible with the newest NICER constraint, as long as the
parameter space for the jump in energy density is limited to 1000MeV/fm3 > ∆ε >

350MeV/fm3. Even higher values of ptrans result in second branches that reach the
mass constraint at radii that are outside the NICER constraints. If we keep the val-
ues of transitional pressure from category III and exchange the limitations on ∆ε to
350MeV/fm3 > ∆ε ≥ 0MeV/fm3 we find figure 5.21. Some limiting cases are high-
lighted in red and purple. The purple lines show phase transitions with the lowest
transitional pressure of category III combined with the highest ∆ε, the last value of
∆ε that places the mass radius relation outside the NICER constraint and the smallest
possible value of ∆ε.
It is abundantly clear, that neither the radius measurement of J0030+0451 [Miller et al.,
2019, Riley et al., 2019, Raaijmakers et al., 2019] nor J0740+6620 [Miller et al., 2021, Riley
et al., 2021, Raaijmakers et al., 2021] can be used to invalidate the possibility of phase
transitions inside neutron stars. However, as demonstrated by the purple line barely
reaching the NICER ellipse in 5.21, the jump in energy density is constrained to low
values. Despite the purple line representing the largest ∆ε that is allowed by this tran-
sitional pressure the parameter set only results in a radius difference of about 0.5 km
between its hadronic maximum and hybrid star minimum. If the transition were to take
place at higher values a significant difference in radius might be observable, even if no
mass gap is present. This is shown with the red lines in figure 5.21. The discontinuities
in energy density correspond to the highest value considered here and the value of the
purple line in the middle. Due to the high transitional pressures we find a very flat
hybrid star section in the mass radius relation. This leads to a significant amount of
stars with similar masses and different radii, despite the small value of ∆ε. This is even
true if the branches are connected. An example for this is shown on the right side of
figure 5.21, where the point of transition and the maximum of the mass radius relation
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are only apart by about ∆M = 0.2M� but nearly ∆R = 3 km. The underlying EoSs of
such cases would be indistinguishable from category I or II phase transitions, but have
the potential to be observed.

Before we move on to the constraints on hybrid star EoSs from tidal deformability
one might question, why we only considered the cases m∗/m = 0.65 and m∗/m = 0.70
in the examination of the radius constraints in this subsection. This is because, as
we will see, a category I or II phase transition compatible with GW170817 requires
that m∗/m ≥ 0.65 holds true [Christian et al., 2019]. Furthermore, effective masses
m∗/m > 0.70 cannot generate a second branch outside of category IV [Christian and
Schaffner-Bielich, 2021]. We demonstrated in figure 5.21 that phase transitions at such
low transition thresholds generate a second branch at radii too small to comply with
the J0740+6620 NICER measurement [Miller et al., 2021, Riley et al., 2021, Raaijmakers
et al., 2021] unless the jump in energy density is reduced to such a small value, that the
branches nearly connect. A parameter set with small ptrans and small ∆ε implies a stiff
hybrid branch and thus only small differences in radii between stars of similar mass.
Current technology would not be able to detect those differences, therefore it cannot
be used to determine if a phase transition is present in neutron stars and we will not
include a detailed discussion in this work.

5.3.3. Tidal Deformability Constraints on Hybrid Stars

In this subsection, we will apply the constraints from gravitational wave data to our
hybrid star models. This is currently limited to the GW170817 event [Abbott et al.,
2018, Abbott et al., 2019]. However, in the near future, tidal deformability might prove
to be the most important observable when it comes to confirming or falsifying the
existence of twin stars. Landry and Chakravarti [Landry and Chakravarti, 2022] predict
that within a week of observation using next generation gravitational wave detectors
[Maggiore et al., 2020, Evans et al., 2021] the mass range at which twins occur can be
determined within a few percent. Even if no twin stars are found, this would put a
strong bound on the upper limit of tidal deformability difference between two stars
with nearly identical mass. This could therefore be used to constrain the parameter
space of hybrid star equations of state that are not twin stars.
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Figure 5.22.: Left: Mass radius relations for category II with varied effective
masses. Right: Λ1 −Λ2 plot for the category II cases. The compat-
ibility of an EoS with GW170817 is not improved with a category
II phase transition. This figure was published in [Christian and
Schaffner-Bielich, 2020].
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Figure 5.23.: Category III phase transition can generate more compact solutions,
which can be seen on the left. This leads to better compatibility with
the LIGO data (right). This figure was published in [Christian and
Schaffner-Bielich, 2020].
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HH

Figure 5.24.: All category IV phase transitions are inside the LIGO credibility
limit. This is because the EoS is dominated by the quark phase. This
figure was published in [Christian and Schaffner-Bielich, 2020].
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Figure 5.25.: If the parameters of the phase transition are chosen in such a way
that twin stars can add up to the total mass all combinations of
merger, i.e. hybrid-hybrid, neutron-hybrid and neutron-neutron star
mergers, are possible with a single EoS. This figure was published
in [Christian and Schaffner-Bielich, 2020].
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As discussed in subsection 4.4.3 the GW170817 LIGO/Virgo measurement [Abbott et al.,
2018, Abbott et al., 2019] favors compact stars. Usually one has to rely on softer EoSs to
find more compact stars, which creates conflict with the mass constraints, since it favors
stiff equations of state, which generate higher masses and radii. It has been found, that
hybrid stars fit the GW170817 event particularly well [Paschalidis et al., 2018, Alvarez-
Castillo et al., 2019, Christian et al., 2019, Montana et al., 2019, Sieniawska et al., 2019],
due to the possibility of using two EoSs in one. We established in section 5.2 that in a
Λ1 −Λ2 plot with the GW170817 credibility limits, multiple lines can appear for hybrid
star equations of state. The lines containing hybrid stars contain more compact stars
and are therefore more compatible with the gravitational wave data. In the following,
we will analyze the category II-IV cases for the effective masses m∗/m = 0.55− 0.70
in detail. We leave out the category I case, as it is identical to the purely hadronic case
outlined in subsection 4.4.3, due to category I hybrids being too massive to fit the data.
The parameter sets for the transition will be chosen to be as close together as possible.
This way, we can be sure that the stiffness of the hadronic EoS will be the determining
factor in the differences between the results. If the parameter set is not exactly identical
for all cases, the values will be stated in brackets following the scheme (ptrans/∆ε).
Figures 5.22-5.25 follow the same structure as 4.2 by showing the mass radius relation
on the left side and the corresponding Λ1−Λ2 plot on the right side. The EoSs of figure
5.22 feature a reasonably high jump in energy density, placing them unmistakably in
category II. As we have discussed in section 5.2 this kind of phase transition generates a
neutron-hybrid line close to the y-axis. However, the neutron stars that form this line
are not compact enough to meet the constraints. This means, that category II phase
transitions are only compatible with the GW170817 data point if their base hadronic
EoS already is, like is the case for m∗/m ≥ 0.65. If we were to increase the value of ∆ε

the hybrid star masses would decrease, allowing us to pair them with more compact
neutron stars. It might be possible for the stiffer EoSs to meet the LIGO/Virgo con-
straint under such conditions, but the values of ∆ε would have to be enormous and the
resulting signature in the tidal deformability would not be observable.
Figure 5.23 is more interesting, because for this case the m∗/m = 0.60 EoS becomes
viable. The parameter set for it generates a twin star mass of about 1.5 M� for the
m∗/m = 0.60 case, which makes it possible to form a neutron-hybrid line inside the
credibility limit. The transitional pressure could be increased to find more massive twin
stars that are still compatible with GW170817 for this case. However, this would only
work for category III phase transitions up to a hadronic maximal mass of about 1.8M�.
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The cases m∗/m = 0.65 and m∗/m = 0.70 have not only a neutron-hybrid line inside
of the credibility limit, but a hybrid-hybrid line as well, reaching even the 50% limit
instead and not only the 90% limit. The m∗/m = 0.55 EoS is still too stiff to satisfy the
constraint. However, if we decrease ptrans further we move into category IV solutions
shown in figure 5.24.
These equations of state generate only hybrid-hybrid solutions, since category IV is
defined by the fact, that only hybrid stars can be observed. The resulting lines in the
Λ1 − Λ2 plot are clearly inside the LIGO/Virgo constraint and nearly congruent for
all hadronic EoSs. This is because the equation of state is dominated by the quark
phase, due to the early transition. It is even possible to find a suitable phase transition
for the m∗/m = 0.75 case (yellow), which usually cannot feature twin stars, due to
its softness. To demonstrate this point, the m∗/m = 0.75 case has a significant higher
transitional pressure than the other EoSs and still is clearly inside the credibility limit.
It is somewhat surprising that the hybrid-hybrid line of the m∗/m = 0.75 case is still
nearly congruent with the remaining EoS, even though the corresponding mass radius
relation is vastly different. This might be because the tidal deformability is strongly
influenced by the crust equation of state, which is identical for all cases, while the rest
of the EoS is dominated by the quark phase, which, again, is identical with cQM = 1.
Note that it is possible to make any hadronic EoS fit the LIGO/Virgo data of GW170817,
if a phase transition is included and placed suitably early. This is of course not a very
helpful finding for particularly early phase transitions, where it becomes a statement
about the suitability of the quark matter EoS instead of the hadronic one.
The compatibility of the EoSs and categories with GW170817 is summarized in table 5.3,
where y indicated, that a case is compatible, o indicates that a case is partially compati-
ble and x indicates, that it is not compatible. Figure 5.25 serves as a demonstration, that
it is always possible to generate four lines in the Λ1 −Λ2 plot, if the twin star masses
contain 0.5Mtotal, as stated by equation (5.17). The total mass of GW170817 is about
2.7M�, therefore the maximal hadronic star in figure 5.25 was chosen to be 1.35M�.
This of course means, that all EoSs shown there are compatible with GW170817, as all
hybrid-hybrid lines are.

What makes this analysis particularly interesting is its interplay with the NICER find-
ings and mass constraints discussed in the previous subsections (see also table 5.2),
because the results point in different directions. In order to make EoSs that struggle
to satisfy the NICER and mass constraints viable, we usually need to increase the

93



5. Hybrid Stars

Category 0.55 0.60 0.65 0.70 0.75
I x x o y n.a.
II x x o y n.a.
III y y y y n.a.
IV y y y y y

Table 5.3.: This table shows which categories of twin stars are compatible with
the gravitational wave event GW170817 based on the effective masses
m∗/m of their hadronic EoS. We consider the 90% credibility limit,
where y indicates that the category matches the constraint, x indicates
that it does not and o is used when the EoS generates a line directly at
the credibility limit.

transitional pressure and reduce the jump in energy density. EoSs that are outside the
GW170817 credibility limit require the opposite treatment. New data points from both
sources might shift this dynamic in the near future.

5.4. Additional Considerations

In this section we will discuss a few topics related to hybrid and twin stars that did not
fit within the other sections, such as production scenarios 5.4.1, the recent HESS J1731-
347 [Doroshenko et al., 2022] measurement and alternative explanations for potential
data points 5.4.2.

5.4.1. Production Scenarios of Hybrid Stars

This work is focused on determining what observables can be reliably used to determine
if a phase transition is present in neutron stars, and how the parameter space of such
a phase transition could be constrained from simple astrophysical data points. For
this purpose, the way in which hybrid stars themselves are produced is secondary.
Nevertheless, if it were to be demonstrated that hybrid stars have no way to be produced
in the first place, the search for observables marking their existence would be pointless.
For this reason we take some time to discuss some possible production scenarios in this
subsection.
Since the phase transition happens at a critical pressure ptrans, the easiest way to explain
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Figure 5.26.: Baryonic mass in red, gravitational mass in black of a category II
phase transition.
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Figure 5.27.: Baryonic mass in red, gravitational mass in black. This typical cate-
gory III case suggests that the baryon mass in the hybrid star branch
can be significantly bigger than in the hadronic branch. However,
category III phase transitions with sizable mass gaps are not com-
patible with NICER data.
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Figure 5.28.: Category I phase transition, which are allowed by NICER data, have
larger baryonic masses in their hybrid star branch than the maxi-
mum of the hadronic branch. This implies a bigger baryon number
and thus that the hybrid star could be generated by accretion.

97



5. Hybrid Stars

the creation of a hybrid star would be to find a scenario in which the central pressure of
a star is increased to a critical pressure. This could be done by the accretion of mass from
a companion star onto the neutron star. However, in this process the baryon number of
the star would increase, which in turn means that a star in the hybrid branch would
need a larger baryonic mass than a star in the hadronic branch. In order to check if this
is the case, let us take a look at how to approximate the baryon density in the quark
phase of our model5:

nB = nQM
trans

√
ε + p

εtrans + ptrans
, (5.18)

where nQM
trans is the baryon density at the point of transition in the quark phase [Drischler

et al., 2021]. Note that unlike the baryon number nB the baryon chemical potential µB

has the same value in the hadronic and the quark phase at the point of transition, due
to the nature of the Maxwell construction. With this information, we can determine the
value of nQM

trans. We use:

µtrans =
ptrans + εtrans

nHM
trans

=
ptrans + (εtrans + ∆ε)

nQM
trans

, (5.19)

which leads us to:

nQM
trans =

ptrans + (εtrans + ∆ε)

µtrans
. (5.20)

This allows us to find the baryonic mass of hybrid stars. In figures 5.26 - 5.28 the
baryonic mass MB (red) is compared to the gravitational mass MG (black) for three
different equations of state. A trend for all three figures is that MB and MG are nearly
perfectly parallel, with the exception of particularly high central pressure stars. This
means that accretion is only a suitable production scenario for hybrid stars that are more
massive than their hadronic counterparts. In figure 5.26 a category II phase transition
is shown. Definitionally, category II phase transition feature smaller masses in the
hybrid branch than at the hadronic maximum. It is particularly disappointing that
this category cannot be produced by accretion, since we noted in subsection 5.3.2 that
this category populates an area in the mass radius diagram that can only be achieved

5 A special thanks goes to Giuseppe Pagliara and Alessandro Drago who pointed out the necessity of
this consideration and helped with some caveats.
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with a phase transition. However, category II is the only category where the hadronic
maximum is always more massive than the hybrid branches maximum. In a category
III phase transition, for example, accretion would be a plausible production scenario,
as is showcased in figure 5.27. Here the baryonic mass clearly is much larger in the
hybrid branch than in the hadronic branch. However, in order to be compatible with
NICER data, a category III phase transition requires very small values of ∆ε, which
might fall shy of generating a sizable mass or radius gap making them much harder to
detect and thus less interesting for our particular purposes. Finally, figure 5.28 shows
an example of a category I phase transition. The hybrid branch has similar masses to
the hadronic branch, with just enough increase in mass to allow accretion as a possible
creation process. This is interesting because, like category II, an unique area in the mass
radius diagram can be populated by category I phase transitions. In particular, radius
values smaller than the smallest possible radius for a 2 M� star with a continuous mass
radius relation [Pang et al., 2021, Annala et al., 2022, Huth et al., 2022] predicted to be
about 11 km, as noted in section 5.3.2.

This makes it clear that apart from category II phase transitions, accretion cannot
be ruled out as a production scenario for hybrid stars. Regardless, there are other
possible, less intuitive production scenarios that might apply to category II cases as
well. It is beyond the scope of this work to go into greater detail about these production
scenarios. The underlying idea behind most scenarios is the existence of a barrier that
depending on initial conditions separates neutron and hybrid stars. The main causes
proposed for such a barrier are:

• A barrier in the thermal evolution directly after the core collapse supernova [Sagert
et al., 2009, Fischer et al., 2011, Hempel et al., 2016, Fischer et al., 2018]. This barrier
could be overcome through the process of bubble nucleation [Berezhiani et al.,
2003, Bombaci et al., 2004, Bombaci et al., 2007, Bombaci et al., 2008, Bombaci et al.,
2009, Mintz et al., 2010, Bombaci et al., 2016, Bhattacharyya et al., 2017].

• The rotation of the protoneutron star could determine if it becomes hadronic or a
hybrid star. Fast rotating stars would not allow for hybrid stars [Bhattacharyya
et al., 2005, Pili et al., 2016, Bejger et al., 2017], whereas slower rotating stars might.

• The strength of the magnetic field [Gomes et al., 2019] could influence whether or
not a protoneutron star becomes a hybrid or hadronic star.
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• Hybrid stars might be produced in neutron star mergers [Most et al., 2019,
Bauswein et al., 2019, Weih et al., 2020].

5.4.2. Alternative Explanations for Potential Data

In this subsection, we will shortly highlight an alternative to hybrid stars. We noted
earlier that there is some area in the mass radius diagram that can only be populated by
hybrid stars, if all other astrophysical constraints are to be satisfied. This is, however,
not entirely correct. An extremely soft hadronic equation of state could satisfy the
GW170817 constraints, as well as populate the area described as "unique" to our category
II cases. However, to do so it would need to be so soft that it could not satisfy the 2 M�
constraint. The constraints posed by a stiff equation of state would have to be fulfilled
by a second equation of state that coexists to the soft hadronic one. This equation of
state could of course not be hadronic itself. Instead, it would be a quark matter equation
of state that describes pure quark stars. Since the GW170817 constraint is fulfilled by
the hadronic EoS, the quark matter EoS is less constricted by the usually high values
of Λ found for quark stars. These two families of compact stars would dissolve the
tension between the astrophysical constraints demanding a soft EoS and those pointing
towards a stiff EoS. This is a short summary of the model that is referred to as the "two
family" scenario introduced by Drago et al. [Drago et al., 2016, Drago and Pagliara,
2016, Drago and Pagliara, 2018]. The indicators for this two family scenario are very
similar to the twin star configurations explored in this work, especially for category II
phase transitions. In fact, if one were to only consider twin star mass radius relations
with a sizable mass gap, implying only category I and II fit the data (compare subsection
5.3.2), there would only be a clear difference between the two scenarios at about 2 M�,
where category I reaches small radii at high masses that cannot be reached by a hadronic
EoS. Another important note is that the two family scenario can be achieved through
accretion and neutron star mergers, where a hadronic star would be conversed to a
quark star.
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Figure 5.29.: Here the areas in the parameter space are shown that satisfy the
2 M� constraint (red), the new HESS constraint (green) and the pre-
viously discussed NICER constraint (blue) respectively. There is
a small overlapping section starting at about ∆ε ' 30 MeV/fm3,
extending to about ∆ε ' 180 MeV/fm3 at very small transitional
pressures. This implies only category IV type hybrid stars are possi-
ble with these constraints.
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5.4.3. Influence of HESS J1731-347 on Hybrid stars

During the writing of this work a surprisingly light neutron star mass was reported,
HESS J1731-347 [Doroshenko et al., 2022]. Its mass was reported to be M = 0.77+0.20

−0.17 M�,
which is significantly below estimates from core collapse supernovae simulation [Ozel
et al., 2012, Ozel and Freire, 2016, Müller et al., 2019, Suwa et al., 2018], making a
discovery of significant interest. However, since the minimal mass of neutron stars has
no significant influence on the behavior of hybrid or twin stars, it is not a high priority
in this work. In addition to the mass, a radius of 10.4+0.86

−0.78 km estimate was reported.
This would be of much more consequence regarding our considerations, as such a small
radius would put significant constraints on the hadronic equation of state. However,
this estimate is highly optimistic and a more realistic estimate given by Doroshenko et al.
[Doroshenko et al., 2022] is noticeably less restrictive with an uncertainty of more than
4 km in the 2σ interval. If different atmosphere models are used, the radius changes
significantly as well.
Nevertheless, the surprisingly light star that cannot be generated by conventional means
is intriguing and despite the report being very recent some works have been produced
to investigate its implications [Tsaloukidis et al., 2022, Di Clemente et al., 2022, Jiang
et al., 2022]. Notably, the involvement of exotic matter has been suggested as the cause
for this strange behavior, either in the form of quark stars [Di Clemente et al., 2022]
or hybrid stars [Tsaloukidis et al., 2022]. However, both cases are made utilizing the
surprisingly small radius as well as the small mass.
If one were to apply the stated radius constraint of 10.4+0.86

−0.78 km not even the softest
hadronic equation of state still reaching 2 M�, which was constructed by Kurkela et
al. [Kurkela et al., 2014] would reach radii low enough in the required mass range.
This EoS1 reaches radii of about 11.4 km in the mass range of HESS J1731-347 and is
therefore off by about 200 m. If we now employ this softest possible hadronic equation
of state and include a phase transition, we can move the mass radius relation containing
hybrids to smaller radii and therefore meet the radius constraint. However, this requires
an early phase transition limiting us to category IV scenarios as well as small values
in ∆ε, because if the jump in energy density becomes too large the NICER constraint
will not be met. In figure 5.29 the parameter space is plotted and the areas complying
with the NICER (blue) [Raaijmakers et al., 2021, Miller et al., 2021, Riley et al., 2021],
HESS (green) [Doroshenko et al., 2022] and the 2 M� (red) constraint are shaded. While
the HESS constraint can be met by any phase transition with a transitional pressure
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that generates a hadronic maximum below the mass of HESS J1731-347 and a jump
of ∆ε & 30 MeV/fm3, the NICER criterion is much more restrictive. It sets an upper
limit of about ∆ε ' 180 MeV/fm3, where the maximal transition pressure a ∆ε can
be combined with, decreases with an increase in the discontinuity. On one hand this
HESS data would imply that a phase transition is necessary to achieve the mass radius
constraint, on the other hand it would make the appearance of twin stars impossible,
relegating the possibility of finding a mass radius indicator for a phase transition to
cases like itself, where measurements deviate from the expectation.
If one were to ignore the radius constraint from HESS J1731-347 and only apply the
mass constraint, the equation of state could not be improved upon using the methods
discussed in this work.
Another interpretation of the HESS data point could be dark matter. We will discuss
this possibility in an upcoming work with Nibras Suleman, Sarah L. Pitz, Laura Tolos
and Jürgen Schaffner-Bielich as well as touch upon it in a collaboration with the group
of Laura Sagunski.

5.4.4. Parameter Space for Increased Slope Parameter L

Previously we constrained the slope parameter L to values of about L = 40− 60 MeV.
This ensured compatibility with χEFT results and is in line with multiple experiments,
most recently the CREX neutron skin experiments for 48Ca [Adhikari et al., 2022, Zhang
and Chen, 2022, Lattimer, 2023] from Jefferson Lab. However, the PREX collaboration,
which investigated 208Pb estimates much larger values of L = 121± 47 MeV [Adhikari
et al., 2021, Zhang and Chen, 2022, Lattimer, 2023]. This is disfavored by astrophysical
constraints, as we discussed in section 4.4, mostly because increased values of L move
the mass radius relation to larger radii causing the EoS to be incompatible with the tidal
deformability constraint from GW170817 [Abbott et al., 2019]. Even if the relativistic
mean field equation of state undergoes a softening at moderate densities by including a
non-zero ζ term, a value of L = 90 MeV cannot generate stars with the required com-
pactness, as can be seen on the right side of figure 4.1. However, as discussed in chapter
5, a phase transition could create a hybrid star branch that is located at significantly
lower radii than the hadronic branch, making the EoS compatible with GW170817
(see subsection 5.3.3 in particular). Using the equations of state featuring L = 90 MeV
provided by Farruhk Fattoyev [Fattoyev, 2022], which are fitted to finite nuclei, we can
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calculate all possible phase transitions and apply the astrophysical constraints discussed
before. The phase transition is applied like in chapter 5. The results are summarized as
figures 5.30 - 5.33, where only m∗/m and ζ are varied. On the left side of these figures,
the absolute values of ptrans and ∆ε are displayed and the areas in which a constraint is
met is shaded accordingly. On the right side, the relative values are shown, where ptrans

and ∆ε are divided by εtrans. Due to the location of the purely hadronic mass radius
relation at large radii, the strongest constraint on the equation of state by far is the tidal
deformability. It is indicated by a dark green shade in figures 5.30 - 5.33. In contrast,
the NICER constraint [Miller et al., 2021, Riley et al., 2021, Raaijmakers et al., 2021]
and the 2 M� constraint [Demorest et al., 2010, Antoniadis et al., 2013, Fonseca et al.,
2016, Cromartie et al., 2019, Romani et al., 2022, Doroshenko et al., 2022] are fulfilled
easily and barely constrain the EoS. The areas corresponding to these constraints are
shaded red and light green, resulting in a brown color where they coincide, which is
nearly everywhere.
The stiffest EoS is the one in figure 5.30, consequentially it has the smallest parameter
space compatible with GW170817 but reaches 2 M� the easiest. The parameters for
this EoS are m∗/m = 0.55 and ζ = 0.00. If we increase ζ to ζ = 0.02 (figure 5.31) the
parameter space compatible with GW170817 increases, but fewer combinations of ptrans

and ∆ε reach 2 M�. The same behavior can be seen for the m∗/m = 0.60 cases in figures
5.32 and 5.33. However, since the equation of state becomes slightly softer with the
increase of the effective mass, the differences are even more pronounced.
All figures also include a small blue shaded area that represents the HESS constraint dis-
cussed in the previous subsection. It is possible to match the HESS data in all cases, but
the corresponding parameter space is exceedingly small. Finally, the area that generates
twin stars is shaded black. Like Alford et al. [Alford et al., 2013] we find this twin star
area is very similar for every hadronic EoS. Note that the appearance of twin stars is not a
constraint on the equation of state itself, but can be used as an indicator for the presence
of a phase transition using mass and radius observation.
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Figure 5.30.: Parameter space for an RMF EoS with L = 90 MeV, m∗/m = 0.55
and ζ = 0.00 provided by Farruhk Fattoyev [Fattoyev, 2022].
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Figure 5.31.: Parameter space for an RMF EoS with L = 90 MeV, m∗/m = 0.55
and ζ = 0.02 provided by Farruhk Fattoyev [Fattoyev, 2022].
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Figure 5.32.: Parameter space for an RMF EoS with L = 90 MeV, m∗/m = 0.60
and ζ = 0.00 provided by Farruhk Fattoyev [Fattoyev, 2022].
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Figure 5.33.: Parameter space for an RMF EoS with L = 90 MeV, m∗/m = 0.60
and ζ = 0.02 provided by Farruhk Fattoyev [Fattoyev, 2022].
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6. Conclusion

In this work, we examined the influence of a first order phase transition on the ob-
servable properties of neutron stars. This is done with a setup that allows as much
flexibility as possible, within a physically motivated framework. As a result, we can
make generalized statements about phase transition in neutron stars with some level of
independence from the specific model. We started by introducing a relativistic mean
field approach that we use to describe the hadronic part of the neutron stars. The
purpose of using this particular equation of state is to allow for a large amount of
variability. We assume that the matter in a neutron star is only composed of neutrons,
protons, electron and muons. The equation of state is constructed in a way where
the coupling parameters are fitted to bulk matter properties, leaving some parameters
to be freely chosen within certain constraints. Most notably these parameters are the
symmetry energy at saturation density J = 30− 32 MeV, its slope L = 40− 60 MeV and
the effective mass at saturation density m∗/m = 0.55− 0.75 [Li and Han, 2013, Lattimer
and Lim, 2013, Roca-Maza et al., 2015, Hagen et al., 2015, Oertel et al., 2017, Birkhan
et al., 2017]. We varied these three parameters and found that only some parameter sets
are compatible with chiral effective field theory predictions for nuclear matter [Drischler
et al., 2016, Hornick et al., 2018]. We noted that small effective masses and small values
of L are particularly difficult to combine. Of the three varied parameters, the effective
mass has the largest influence on the high density behavior of the equation of state,
where it governs the stiffness of the EoS. Here, small effective masses lead to stiffer
equations of state [Boguta and Stöcker, 1983]. The other two parameters were therefore
fixed in a way that allows the greatest variation of m∗/m still compatible with χEFT.
This means setting J = 32 MeV and L = 60 MeV. We then expanded the equation of
state to finite temperatures for future use. The thermal index was shown to be related to
the effective mass, where high values of m∗/m leads to high values in the thermal index
at intermediate densities. As one would expect, the high density behavior tends to 4/3.
After we established the equation of state, we used it to calculate the mass, radius and

107



6. Conclusion

tidal deformability of neutron stars that would be described by it. These quantities are
known for some neutron stars, allowing us to constrain our equation of state at high
densities. The mass constraint of about 2 M� [Demorest et al., 2010, Antoniadis et al.,
2013, Fonseca et al., 2016, Cromartie et al., 2019, Romani et al., 2022, Doroshenko et al.,
2022] slightly favors stiff equations of state, which puts pressure on the highest effective
mass equation of state under investigation. Contrary to this, the gravitational wave
event GW170817 provides a tidal deformability estimate that favors soft equations of
state excluding effective masses of m∗/m < 0.65. The radius cannot be used to solve this
tension, as it is not known to a degree sufficient enough to exclude any of the effective
masses. We therefore constrained effective masses for pure neutron stars in our model
to m∗/m = 0.65− 0.70.
This constraint was somewhat weakened by the introduction of a first order phase
transition to deconfined quark matter [Christian and Schaffner-Bielich, 2020]. We con-
structed this phase transition as a jump in the energy density ∆ε at a critical pressure
ptrans and employed a constant speed of sound approach to describe the quark phase.
Again, this gives us three parameters to consider, the discontinuity ∆ε, the transitional
pressure ptrans and the speed of sound cQM. We set the speed of sound to cQM = 1
giving us the stiffest possible case and thus the greatest possible parameter space for
the other two parameters. With this construction, mass, radius and tidal deformability
can be calculated for hybrid stars, which are stars composed partially from quark and
hadronic matter. Some indicators for the presence of a phase transition in neutron stars
were outlined, including so-called twin stars, where two stars with the same mass,
but different radii are observed. We went on to define four distinct categories of twin
stars, as was done in [Christian et al., 2018], which makes it far easier to discuss this
topic. A particular advantage of this categorization is its applicability to any twin star
configuration, not only our model. It is reasonable to assume that stars with the same
mass, but different radii would also lead to two stars with the same mass but different
tidal deformabilities. We find that hybrid stars are much more compact than purely
hadronic stars. Applying the same astrophysical constraints as we did for neutron stars
this became particularly important, as the stiff equations of state ruled out by GW170817
gained access to much more compact hybrid stars, making them compatible with the
tidal deformability constraint. However, this requires that the phase transition takes
place at small central densities [Christian and Schaffner-Bielich, 2020]. Unlike for the
purely hadronic stars, the radius constraints from NICER effect the parameter space
noticeably. We found that the NICER constraints require small jumps in energy density
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if the phase transition takes place at small central densities. This is because ∆ε effects the
position of the hybrid stars in the mass radius diagram, where small ∆ε lead to larger
radii. Small jumps in energy density imply that the mass and radius differences between
hadronic and hybrid stars are small, making them hard to detect and unsuitable as
possible indicators for a phase transition. The mass constraint points towards small
values of ∆ε as well, if the phase transition happens early. This is because small ∆ε

increase the mass of the hybrid star maximum, which for early phase transitions is
always more massive than the hadronic maximum.
However, the NICER constraints do not rule out larger ∆ε entirely, but restrict them to
high values of ptrans, where the constraints can be met by the hadronic mantle. In such
a case, all hybrid stars would have a similar mass determined by ∆ε.

To summarize: Using a versatile equation of state, we conducted a parameter study on
hybrid stars using most current astrophysical constraints. We find that phase transi-
tions in neutron stars are not required to fit the data but are not excluded either. The
parameter space that allows for hybrid stars seems to be pushed to its edges, where
some measurements like NICER [Miller et al., 2019, Riley et al., 2019, Raaijmakers
et al., 2019, Miller et al., 2021, Riley et al., 2021, Raaijmakers et al., 2021] favor high
transitional pressures [Christian et al., 2019, Christian and Schaffner-Bielich, 2022] and
others like GW170817 [Abbott et al., 2017, Abbott et al., 2019] and the new HESS J1731-
347 [Doroshenko et al., 2022] measurement point towards extremely small values of
ptrans [Christian and Schaffner-Bielich, 2020, Christian and Schaffner-Bielich, 2021]. We
provide an overview over some methods with which the existence of a phase transition
could be verified in the near future. Due to the generalized approach taken, these results
should hold for different models as well.
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Finally, we take a moment to look into the future. Our equation of state is matched
to describe high density matter constraints, while still providing a large amount of
parameterizability, making it well suited to investigate extremely soft and extremely
stiff cases in a consistent framework. Within this framework, we can already complete
multiple new projects. Like mentioned in subsection 5.4.3 a closer look at the HESS
J1731-347 [Doroshenko et al., 2022] data point and is in order, as it is nearly impossi-
ble to reconcile with a purely hadronic equation of state. The possible influences of
quark matter on the compatibility with HESS will be compared to possible influences
from dark matter with the framework presented here as a basis for the quark matter
description in an upcoming work. The hadronic equation of state described here will be
used to research the interplay between a hadronic equation of state and dark matter
in an upcoming project. This will be done in collaboration with the group of Laura
Sagunski under the B09 project of the CRC TR 211, which would eventually open up
the possibility to use the resulting matter description for merger simulations. Mass,
radius and tidal deformability provide the best determined constraints on the equation
of state. However, another helpful observable might be the luminosity of neutron stars.
Starting from their previous work, we collaborate with Melissa Mendes et al. [Mendes
et al., 2022] to investigate the effect a quark core would have on the cooling behavior
of a hybrid star. It might, for example, be possible to determine the presence of a
phase transition by comparing two stars with similar masses that show different cooling
behavior.
While determining the existence of a phase transition took precedence in this work, the
specificities of the phase transition itself will require more work in the future. There
is a multitude of more sophisticated quark matter descriptions that could be imple-
mented into the framework presented here, if the presence of a phase transition in
neutron stars is more certain. Even our very simplistic model offers more potential
for investigation. One could for example assume that the energy density at the point
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of transition drops, instead of jumping up and investigate the thermal consistency of
such a construction along with the mass radius implications. With the expansion of the
EoS to finite temperatures and the possibility to set a specific proton fraction, it is easy
to adjust the equation of state to be used for various purposes, such as core collapse
supernova simulations as well as binary neutron star mergers and protoneutron stars.
The greatest challenge in making the EoS used here suitable for such purposes would
be the crust equation of state, that cannot be used at non-zero temperatures. However,
there are already solutions for similar equations of state that could be used if a more
involved approach is too time sensitive. A more in depth investigation of the thermal
behavior of the hadronic EoS described here is the logical next step. This could include
determining if the behavior of Γth in β equilibrium being smaller than for fixed Yp EoSs
is universal or not. Once this step is taken and the aforementioned simulations become
achievable the possibility opens up to investigate production scenarios for hybrid stars
in much greater detail, as was alluded to in subsection 5.4.1, where a barrier in the
thermal evolution that separates hybrid and non-hybrid stars was suggested.
Possible further steps could be the inclusion of more exotic particles in addition to the
neutrons, protons, electrons and muons, like for example hyperons. Another interesting
avenue might be the inclusion of the ω mesons quadratic self coupling ζ in order to
compare the possible methods of controlling the EoSs stiffness more thoroughly.
Apart from the projects described above, there are great strides expected in the field
of gravitational wave observations. Later this year, LIGO/Virgo will start its fourth
observational run [LIGO Collaboration, 2023], with much increased sensitivity, which
should enable the detection of more neutron star mergers similar to the highly influen-
tial GW170817 event. The future of constraining the (hybrid star) equation of state is in
gravitational wave data. Not only is it likely that the sizable differences in tidal deforma-
bilities between hybrids and non hybrids are detectable [Landry and Chakravarti, 2022]
in gravitational wave events, there might even be some signals for a phase transition
in the post merger frequency [Most et al., 2019, Bauswein et al., 2019, Tootle et al.,
2022] itself that can be detected with next generation observatories [Maggiore et al.,
2020, Evans et al., 2021].

111



8. Zusammenfassung

In dieser Arbeit wurde der Einfluss eines Phasenübergangs erster Ordnung auf die
beobachtbaren Eigenschaften von Neutronensternen untersucht. Weiterhin wurde die
verwendete Zustandsgleichung auf endliche Temperaturen erweitert. Hierbei lag ein
besonderer Fokus darauf, unsere Ergebnisse so universell anwendbar wie möglich
zu halten, was wir mit einem generischen Ansatz gewährleisten. In Kapitel 3 began-
nen wir mit der Einführung eines relativistischen Mean Feld (RMF) Ansatzes, den
wir zur Beschreibung des hadronischen Teils der Neutronensterne verwenden. Hier-
bei handelt es sich um eine effektive Zustandsgleichung, bei der die Interaktion der
Nukleonen durch Mesonen modelliert wird. Ihr Name kommt daher, dass bei hoher
Baryonendichte die Mittelwerte der entsprechenden Felder im Lagrangian verwendet
werden können, was die Rechnung erheblich vereinfacht. Weiterhin ist der RMF Ansatz
stark parametrisierbar, wodurch eine große Variabilität gewährleistet werden kann und
dennoch ein physikalisch motiviertes Modell verwendet wird. Wir nehmen an, dass
die Materie in einem Neutronenstern nur aus Neutronen, Protonen, Elektronen und
Myonen besteht. Die Zustandsgleichung ist so konstruiert, dass die Kopplungskon-
stanten durch Kernmaterieeigenschaften vorgegeben werden können, indem einige
Parameter innerhalb bestimmter Grenzen gewählt werden. Für unsere Zwecke sind
die wichtigsten dieser Parameter die Symmetrieenergie J = 30− 32 MeV, ihre Steigung
L = 40− 60 MeV und die effektive Masse m∗/m = 0.55− 0.75 bei Sättigungsdichte
n0 [Li and Han, 2013, Lattimer and Lim, 2013, Roca-Maza et al., 2015, Hagen et al.,
2015, Oertel et al., 2017, Birkhan et al., 2017]. Beim Variieren dieser drei Parameter
stellten wir fest, dass nur einige Parametersätze mit den Vorhersagen der chiralen ef-
fektiven Feldtheorie (χEFT) [Drischler et al., 2016, Hornick et al., 2018] kompatibel sind.
Diese Theorie stellt einen ab initio Ansatz zur Beschreibung von Neutronenmaterie
bei geringen Energien basierend auf dem Brechen der chiralen Symmetrie von Up-
und Down-Quarks im QCD Lagrangian zur Verfügung. Wir stellten fest, dass kleine
effektive Massen und kleine Werte von L besonders schwierig zu kombinieren sind. Das
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liegt daran, dass geringe effektive Massen für eine steilere Zustandsgleichung sorgen,
während kleinere L zu einer weicheren Zustandsgleichung führen. Die Konkurrenz
dieser Effekte führt zu unphysikalischen Lösungen. Bei hohen Dichten hat die effektive
Masse den größten Einfluss auf das Verhalten der Zustandsgleichung unter den drei
variierten Parametern. Sie bestimmt, wie schnell der Druck mit der Energiedichte steigt,
also die sogenannte Steilheit der Zustandsgleichung. Kleine effektive Massen führen
zu steileren Zustandsgleichungen [Boguta and Stöcker, 1983]. Da diese Arbeit sich
vor allem mit astrophysikalischen Einschränkungen beschäftigt, die bei hohen Dichten
auftreten, wählten wir die beiden anderen Parameter so, dass die größte Variation von
m∗/m gegeben ist, die noch mit χEFT vereinbar ist. Auf dieser Überlegung basierend
wählten wir J = 32 MeV und L = 60 MeV. Auf diese Weise konnten wir sowohl sehr
weiche als auch sehr steile Zustandsgleichungen mit einem konsistenten Ansatz unter-
suchen. Anschließend wurde die Zustandsgleichung für zukünftige Verwendungen auf
endliche Temperaturen erweitert. Hierbei wurde gezeigt, dass der thermische Index
Γth, der im Fall des idealen Gases mit dem adiabatischen Index identifiziert werden
kann, mit der effektiven Masse zusammenhängt, wobei hohe Werte von m∗/m zu hohen
Werten des thermischen Indexes bei mittleren Dichten führen. Wie zu erwarten, nähert
sich Γth bei hoher Dichte an den ultra-relativistischen Fall des adiabatischen Indexes,
4/3, an. Weiterhin stellten wir fest, dass der thermische Index im β Gleichgewicht gerin-
gere Werte aufweist als für festgelegte Protonenanteile. Obwohl geringere festgelegte
Protonenanteile zu höheren Werten des thermischen Index führen, ist dies trotzdem
der Fall, wenn der Protonenanteil im β Gleichgewicht deutlich unter den festgelegten
Werten liegt.
Nachdem wir uns mit der Zustandsgleichung intensiv beschäftigt haben und Werte
für Symmetrieenergie und Steigungsparameter gewählt haben, konnten wir in Kapitel
4 die Zustandsgleichung verwenden, um die Masse, den Radius und die gezeitliche
Verformbarkeit von Neutronensternen damit zu berechnen. Diese Größen sind durch
aktuelle Messinstrumente ermittelbar und für einige Neutronensterne bekannt, was wir
nutzen können, um unsere Zustandsgleichung bei hohen Dichten einzuschränken. Die
maximale Neutronensternmasse von etwa 2 M� [Demorest et al., 2010, Antoniadis et al.,
2013, Fonseca et al., 2016, Cromartie et al., 2019, Romani et al., 2022, Doroshenko et al.,
2022] muss durch eine Zustandsgleichung reproduzierbar sein. Dadurch sind steilere
Zustandsgleichungen leicht begünstigt, die zu massereicheren, aber auch weniger kom-
pakten Neutronensternen führen. Dieser Umstand bringt die Zustandsgleichung mit
den größten effektiven Massen in Bedrängnis. Im Gegensatz dazu liefert das Gravita-
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tionswellenereignis GW170817 [Abbott et al., 2017] eine Abschätzung der gezeitlichen
Verformbarkeit, die weiche Zustandsgleichungen begünstigt, die kompaktere Sterne
generieren. Dadurch konnten effektive Massen von m∗/m < 0, 65 ausgeschlossen wer-
den. Bedauerlicherweise kann der Radius nicht verwendet werden, um diese Spannung
zu lösen, da es bisher nicht möglich ist ihn ausreichend genau zu bestimmen. Mit der
Einschränkung durch die Masse und die gezeitliche Verformbarkeit konnten wir die ef-
fektiven Massen für reine Neutronensterne in unserem Modell auf m∗/m = 0, 65− 0, 70
beschränken.
Allerdings ist es möglich diese Einschränkung durch die Einführung eines Phasenüber-
gangs erster Ordnung zu einem Quark-Gluon Plasma etwas abzuschwächen, wie
in Kapitel 5 gezeigt wird. Dieser Phasenübergang wurde durch eine Maxwell Kon-
struktion in unser Modell eingefügt, wobei bei einem kritischen Druck von ptrans die
Energiedichte eine Diskontinuität ∆ε erfährt. Alle höheren Drücke wurden dann durch
eine Quarkphase mit konstanter Schallgeschwindigkeit beschrieben. Das bedeutet
es sind drei Parameter zu berücksichtigen: die Unstetigkeit ∆ε, der Übergangsdruck
ptrans und die Schallgeschwindigkeit cQM. Wir setzten die Schallgeschwindigkeit auf
cQM = 1, was den steilst möglichen Fall darstellt und damit den größtmöglichen Pa-
rameterraum für die beiden anderen Parameter bietet. Mit dieser Konstruktion konnten
Masse, Radius und gezeitliche Verformbarkeit für Hybridsterne berechnet werden, die
im Kern aus Quarkmaterie und im Mantel aus hadronischer Materie bestehen. Diese
Rechnungen ermöglichen es, einige Indikatoren für die Präsenz eines Phasenübergangs
zu ermitteln, darunter sogenannte Zwillingssterne, bei denen zwei Sterne mit genau
gleicher Masse unterschiedliche Radien aufweisen. Diese Konfiguration ist dann zu
finden, wenn die Masse-Radius Beziehung unterbrochen wird und erst nach einer
Unstetigkeit in der Masse wieder fortgesetzt wird. Dieses Phänomen tritt auf, da ein
kleiner Quarkkern den Neutronenstern destabilisiert, doch bei hohen Zentraldichten
und größeren Kernen besteht die Möglichkeit erneut Stabilität zu erlangen. Es ist allerd-
ings darauf hinzuweisen, dass eine große Differenz zwischen diesen Radien bestehen
muss, wenn man hofft diesen Indikator mit aktuellen Messmethoden zu verwenden,
was nicht immer der Fall ist. Wir haben gezeigt, dass solche Unterschiede in den
Radien grundsätzlich möglich sind, aber nur in einem deutlich kleinerem Parameter-
raum. Diese Zwillingssternkonfiguration würde offensichtlich auch zu zwei Sternen
mit gleicher Masse, aber unterschiedlicher gezeitliche Verformbarkeit führen, wobei
Hybridsterne viel kompakter sind als rein hadronische Sterne. Als wir die gleichen
astrophysikalischen Einschränkungen anwendet haben wie zuvor bei den reinen Neu-
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tronensternen, wurde dies besonders wichtig, da die steileren Zustandsgleichungen,
die durch GW170817 auszuschließen sind, zu viel kompakteren Hybridsternen führen
als ihre puren Neutronensterngegenstücke. Diese kompakteren Sterne können mit
GW170817 kompatibel sein. Das setzt jedoch voraus, dass der Phasenübergang bei
kleinen zentralen Dichten stattfindet [Christian and Schaffner-Bielich, 2020]. Anders
als bei den rein hadronischen Sternen wirkten sich die Radiusbeschränkungen durch
NICER [Miller et al., 2019, Riley et al., 2019, Miller et al., 2021, Riley et al., 2021] deut-
lich auf den Parameterraum aus. So erfordern die NICER-Beschränkungen kleine
Sprünge in der Energiedichte, wenn der Phasenübergang bei kleinen zentralen Dichten
stattfindet. Das liegt daran, dass ∆ε die Position der Hybridsterne im Massenradiusdi-
agramm beeinflusst, wo kleine ∆ε zu größeren Radien führen. Kleine Sprünge in der
Energiedichte bedeuten, dass die Massen- und Radiusunterschiede zwischen hadronis-
chen und hybriden Sternen klein sind, was sie schwer nachweisbar und als mögliche
Indikatoren für einen Phasenübergang ungeeignet macht. Das Massenkriterium deutet
ebenfalls auf kleine Werte von ∆ε hin, wenn der Phasenübergang früh stattfindet. Das
liegt daran, dass kleine ∆ε die Masse des Hybridstern-Maximums erhöhen und dieses
ist bei frühen Phasenübergängen immer massereicher ist als das hadronische Maximum.
Dennoch stellten wir fest, dass die NICER-Einschränkungen große ∆ε nicht völlig auss-
chließen, sondern sie lediglich auf hohe Werte von ptrans beschränken, bei denen die
Einschränkungen bereits durch den hadronischen Mantel erfüllt werden können. In
einem solchen Fall haben alle Hybridsterne eine ähnliche Masse, die durch ∆ε bestimmt
wird. Das liegt daran, dass hohe kritische Drücke einen sehr flachen Hybridsternast
zur Folge haben. Wie der Parameterbereich eingeschränkt werden kann ist beispielhaft
in Abbildung 8.1 skizziert. Auf der linken Seite des Bildes sind die absoluten Werte
der Parameter ptrans und ∆ε schattiert, die gewissen Einschränkungen genügen, auf
der rechten Seite sind die gleichen Werte um die Energiedichte in der hadronischen
Phase an der Stelle des Phasenübergangs normiert. Da in diesem Fall das Kriterium
durch GW170817 bereits durch die hadronische Zustandsgleichung bedient ist, wird
für diese Einschränkung kein Bereich schattiert. Wo der Parameterraum braun gefärbt
ist überschneiden sich NICER (grün schattiert) und die Einschränkung durch die Max-
imalmasse (rot schattiert). Da noch ein rot schattierter Bereich zu sehen ist, wird
deutlich, dass die Radiusangabe von NICER die deutlichste Einschränkung an diese
Zustandsgleichung darstellt. Der grau schattierte Bereich steht für Zwillingssterne,
wobei Parametersätze gemeint sind, die zwei Sterne mit exakt der gleichen Masse,
aber einem unterschiedlichen Radius aufweisen. Dies ist nicht zu verwechseln mit
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dem grün gefärbten Bereich, der das Gebiet darstellt, in dem es realistisch möglich
ist durch Messungen von Masse und Radius zu überprüfen, ob ein Phasenübergang
in Neutronensternen stattfindet. Hier wird davon ausgegangen, dass zwei Sterne
vorliegen, deren Masse sich maximal um 0.05 M� unterscheidet, aber deren Radien
mindestens 1 km auseinander liegen. Dieses Szenario kann nur mit einem Phasenüber-
gang gewährleistet werden, aber erfordert nicht zwangsläufig, dass die Masse-Radius
Beziehung unterbrochen wird. Insbesondere wenn hohe Werte von ptrans vorliegen
wird der Massezuwachs bei steigenden Zentraldrücken geringer und solche "Pseu-
dozwillinge" können auftreten.
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Figure 8.1.: Einschränkungen an den Parameterraum durch astrophysikalische
Beobachtungen am Beispiel unserer Zustandsgleichung für eine ef-
fektive Masse von m∗/m = 0.65.

Zusammenfassend haben wir unter Verwendung einer vielseitigen Zustandsgleichung
eine Parameterstudie über Hybridsterne durchgeführt, die alle aktuellen astrophysikalis-
chen Einschränkungen berücksichtigt. Wir stellen fest, dass Phasenübergänge in Neu-
tronensternen nicht zwangsläufig erforderlich sind, um mit den beobachteten Daten
überein zu stimmen, aber auch nicht ausgeschlossen werden können. Der Parame-
terraum, der Hybridsterne zulässt, wird durch Messungen wie NICER [Miller et al.,
2019, Riley et al., 2019, Raaijmakers et al., 2019, Miller et al., 2021, Riley et al., 2021, Raaij-
makers et al., 2021] auf hohe Übergangsdrücke begrenzt [Christian et al., 2019, Christian
and Schaffner-Bielich, 2022], doch andere Ergebnisse wie GW170817 [Abbott et al.,
2017, Abbott et al., 2019] und die neue HESS J1731-347 [Doroshenko et al., 2022] Messung
deuten auf extrem kleine Werte von ptrans [Christian and Schaffner-Bielich, 2020, Chris-
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tian and Schaffner-Bielich, 2021] hin. Mithilfe von genaueren Masse-, Radius- und
gezeitlichen Verformbarkeitsbestimmungen sollte es in naher Zukunft möglich sein
starke Indikatoren wie Zwillingssterne für Phasenübergänge zu finden oder die Präsenz
von Phasenübergängen in Neutronensternen auszuschließen.
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