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Allogenic hematopoietic stem cell transplantation (allo-HSCT) represents a potent and
potentially curative treatment for many hematopoietic malignancies and hematologic
disorders in adults and children. The donor-derived immunity, elicited by the stem cell
transplant, can prevent disease relapse but is also responsible for the induction of graft-
versus-host disease (GVHD). The pathophysiology of acute GVHD is not completely
understood yet. In general, acute GVHD is driven by the inflammatory and cytotoxic effect
of alloreactive donor T cells. Since several experimental approaches indicate that CD4 T
cells play an important role in initiation and progression of acute GVHD, the contribution of
the different CD4 T helper (Th) cell subtypes in the pathomechanism and regulation of the
disease is a central point of current research. Th lineages derive from naïve CD4 T cell
progenitors and lineage commitment is initiated by the surrounding cytokine milieu and
subsequent changes in the transcription factor (TF) profile. Each T cell subtype has its own
effector characteristics, immunologic function, and lineage specific cytokine profile,
leading to the association with different immune responses and diseases. Acute GVHD
is thought to be mainly driven by the Th1/Th17 axis, whereas Treg cells are attributed to
attenuate GVHD effects. As the differentiation of each Th subset highly depends on the
specific composition of activating and repressing TFs, these present a potent target to
alter the Th cell landscape towards a GVHD-ameliorating direction, e.g. by inhibiting Th1
and Th17 differentiation. The finding, that targeting of Th1 and Th17 differentiation appears
more effective for GVHD-prevention than a strategy to inhibit Th1 and Th17 cytokines
supports this concept. In this review, we shed light on the current advances of potent TF
inhibitors to alter Th cell differentiation and consecutively attenuate GVHD. We will focus
especially on preclinical studies and outcomes of TF inhibition in murine GVHD models.
Finally, we will point out the possible impact of a Th cell subset-specific immune
modulation in context of GVHD.
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INTRODUCTION

Allogenic hematopoietic stem cell transplantation (allo-HSCT)
represents a potent and potentially curative treatment for many
hematopoietic malignancies and hematologic disorders in adults
and children. Its success is based on a complete replacement of
the patients’ immune system by a myeloablative conditioning
regimen and reconstitution from a healthy donor stem cell graft.
The donor derived immunity can prevent disease relapse but is
also responsible for the main complication of allo-HSCT, the
graft-versus-host disease (GVHD).

Acute GVHD pathophysiology is not completely understood
yet. In general, acute GVHD is driven by the inflammatory effect
of donor T cells upon antigen-recognition of allo-antigens
presented by host antigen-presenting cells (APCs). The
subsequent alloreactive cytotoxicity of activated T cells effects
the GVHD target organs (gastrointestinal tract, skin, and liver)
and leads to an amplification loop of inflammation there.

Since several experimental approaches indicate that CD4 T
cells play a key role in initiation and progression of acute GVHD,
the contribution of the different CD4 T helper (Th) cell subtypes
in the pathomechanism and regulation of the disease is a central
point of current research. Acute GVHD is thought to be driven
by a Th1/Th17/Th22 axis whereas Treg cells are attributed to
attenuate GVHD effects. As the differentiation of each Th subset
highly depends on the specific composition of activating and
repressing transcription factors (TFs), these present a potent
target to alter the Th cell landscape towards a GVHD-
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ameliorating direction by the inhibition of Th1 and Th17
differentiation. In this review, we discuss the current advances
of potent of potent TF inhibitors in order to alter Th cell
differentiation and attenuate GVHD in murine models.
T HELPER CELL SUBSETS AND
DIFFERENTIATION

To date, eight different T helper cell types are known: Th1, Th2,
Th9, Th10, Th17, Th22, follicular T helper cells (Tfh) and
regulatory T cells (Treg). Th cell lineages derive from naïve
CD4 T cell progenitors and lineage commitment is initiated by
the surrounding cytokine milieu and subsequent changes in the
TF profile. Each T cell subtype has its own effector
characteristics, immunologic function, and lineage specific
cytokine profile, leading to the association with different
immune responses (Figure 1). In this review we will focus on
the Th1, Th2, Th17 and Treg subsets, the involved TFs in their
differentiation as well as their impact on GVHD.

Th1 and Th2 Cells
In 1986, Mosmann and colleagues identified two distinct classes
of CD4 helper T cells, which exhibited a different cytokine
profile. The differentiation in these two classes, later called Th1
and Th2, was found to be stable and deterministic (1). Th1 cells
differentiate in the presence of interferon (IFN)-g and interleukin
FIGURE 1 | Overview of Th1, Th2, Th17, eTreg and pTreg differentiation, their effector cytokines, roles in the immune system and impact on GVHD. The figure was
created with BioRender.com.
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(IL)-12 to produce their effector cytokine IFN-g, which has high
relevance for anti-viral and anti-microbial immunity (1–3). In
contrast, Th2 cells differentiate in the presence of IL-2 and IL-4
and produce the effector cytokines IL-4, IL-5 and IL-13, which
play an important role in the immune response against
extracellular parasites, bacteria, allergens, and toxins (1, 4–7).

In the early 2000s, Szabo et al. discovered that the underlying
mechanisms of the Th1/Th2 paradigm was the initiation or
repression of distinct genetic programs upon activation,
directed by Th lineage specific master transcription factors (8).
With this regard, T-bet was described as a master regulator of
Th1 cells, which induces IFN-g production by activating Th1
genetic programs while repressing Th2 responses (8–12). A few
years earlier, GATA3 was characterized as a master
transcriptional regulator for Th2 cell differentiation (13, 14).

Further studies on the mechanisms, how T-bet and GATA3
mediate Th1 and Th2 differentiation respectively, revealed the
mutual inhibition of the two master TFs and the involvement of
many more interacting molecules and relevant signaling cascades
(15–17). T−bet was found to be induced by Signal Transducers
and Activators of Transcription Protein 1 (STAT1) and IFN-g
during T cell activation and to induce STAT1 dependent
processes as the induction of Interleukin-12 receptor subunit
beta-2 (IL-12Rb2) (12). Additionally, STAT4 which is activated
by IL-12, and the downstream acting TF c-Rel were identified as
crucial transcriptional regulators for Th1 differentiation (15, 18–
22). In contrast, Th2 differentiation was associated with IL-2
dependent STAT5 signaling and IL-4 dependent STAT6
signaling pathways, which induce the expression of GATA3,
IL-2 receptor (R)a and IL-4Ra as well as IL-2 and IL-4 effector
cytokines (23–25).

Th17 Cells
Th17 cells were first described as an independent and distinct Th
subset from Th1 and Th2 cells, producing IL-17a, IL-17f, IL-22
and IL-21 as effector cytokines in the early 2000s (26, 27). First
thought that IL-23 was the inducing cytokine for Th17 cells,
three groups simultaneously discovered that TGF-b and IL-6
induced Th17 differentiation (28–30), while IL-1b and tumor
necrosis factor (TNF)-a can potentiate Th17 differentiation in
presence of IL-6 and transforming growth factor beta TGF-b
(31–33). The leading role of Th17 cells is the clearance of
extracellular pathogens as fungi and bacteria but dysregulation
of Th17 effects is associated with various autoimmune diseases
like inflammatory bowel disease, rheumatic arthritis,
experimental autoimmune encephalomyelitis (EAE), and
multiple sclerosis [reviewed by Tesmer at al. (34)].

In 2006, the transcription factor retinoid acid-related orphan
receptor (ROR)gt (Rorc) was identified to be uniquely expressed
in mouse Th17 cells and necessary for Th17 differentiation (35).
Besides, RORgt as master transcription factor, several other TFs
were described to be crucial for Th17 differentiation and
function. STAT3 was found to drive the transcription of Th17
specific genes like Il17a, Il17f and Il23r (36, 37) and to suppress
TGF−b-induced forkhead box protein 3 (FoxP3) expression and
hence regulatory T cell differentiation (28). Interferon Regulatory
Factor 4 (IRF4) and Basic Leucin Zipper ATF-Like Transcription
Frontiers in Immunology | www.frontiersin.org 3
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by initiating the transcription of Th17 defining genes as Il17, Il21,
Il23r and Rorc (38–40). IRF4 was also shown to physically
interact with RORgt (38) and STAT3 (36). The transcriptional
regulators c-Rel, p65, nuclear factor of activated T cells (NFAT)
c2 and Runt-related transcription factor 1 (RUNX1) were found
to directly regulate RORgt by binding to the Rorc promotor (41–
43). Additionally, RUNX1 and hypoxia-inducible factor 1-alpha
(HIF1a) physically interact with RORgt to potentiate or co-
activate IL-17a expression (44, 45). Importantly, T-bet and
GATA3 can inhibit RUNX1 expression or binding to DNA
respectively which inhibits Th17 differentiation.

Regulatory T Cells
In contrast to the immune effector function of Th1, Th2 and
Th17 cells, regulatory T cells (Tregs) are characterized by their
immunosuppressive capacity and are essential mediators of self-
tolerance. Already in the 1960’s it was found that a thymus-
derived cell population was mediating immunologic tolerance.
Later on, Sakaguchi and colleagues characterized these cells
further as CD4 T cells expressing the IL-2 receptor alpha chain
(CD25) (46). However, it was unclear if Tregs represent a distinct
cell line until the Treg master transcription factor FoxP3 was
discovered (47, 48). The importance of FoxP3 for Treg
differentiation is well displayed by scurfy mice which lack
FoxP3 expression and suffer from inflammatory autoimmune
syndrome (47, 49). Additionally, the maintenance of FoxP3
expression after differentiation is essential for Treg
immunosuppressive function (50, 51). Besides the expression
of FoxP3, the development, maintenance, and function of Tregs
also highly depends on TGF-b (52–55).

In contrast to other effector T helper cells, regulatory T cells
differentiate in the thymus [thymus-derived Tregs (tTregs)],
dependent on high affinity interaction with complexes of
MHC-II and tissue-restricted self-antigens and IL-2 receptor
signaling (56). However, Tregs can also differentiate from naïve
T cells in the periphery (pTregs), sometimes also referred to as
induced Tregs (iTregs). These cells are induced by non-self-
antigens and are most likely mediating immunologic tolerance of
environmental antigens and commensal microbiota [reviewed by
Lee et al. (57)].

pTreg and tTreg differentiation are implemented on a
transcriptional level by different involvement of regulatory
elements, four conserved non-coding sequences (CNSs) of the
Foxp3 locus (58). CNS1, regulated by the transcription factors
Activator protein 1 (AP-1), NFAT, Small mothers against
decapentaplegic homolog 3 (Smad3) and Forkhead box O
(FOXO) (57, 59–62), was found to be necessary for pTreg but
not for tTreg development, while CNS0, regulated by special AT-
rich sequence-binding protein-1 (Satb1) is essential for tTreg
generation (63). CNS2, which is regulated by the TF Protein C-
ets-1 (Ets-1), cAMP response element-binding protein (CREB),
RUNX, STAT5, NFAT and c-Rel is important for stable FoxP3
expression during differentiation and functionality of Tregs (58,
64–69). In contrast, CNS3 which is regulated by c-Rel and FOXO
TFs influences Treg cell numbers (57, 58, 62). Additionally,
gaining the full suppressor function of tTregs as effector Tregs
January 2022 | Volume 12 | Article 806529
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(eTregs) depends on the transcription factors IRF4 and B
lymphocyte-induced maturation protein-1 (Blimp-1), which
drive the expression of the immunosuppressive cytokine IL-10
(70), while BACH2, a transcriptional repressor, inhibits the
genomic binding of IRF4, and mediates pTreg differentiation
and maintenance (71).

Cross Regulation of T Helper Cell
Differentiation
In general, Th differentiation fates are tightly connected and
regulated. For example, Th1 and Th2 cells inhibit the
development of each other by their lineage specific
transcription factors (72, 73) and by the cytokines IFN-g and
IL-4 (74, 75). The differentiation of Th17 cells can also be
inhibited by these cytokines and by the expression of the TF
T-bet (26, 72, 76). However, fully differentiated Th17 cells are
resistant to IFN-g and IL-4 inhibiting effects in vitro (27).

The T cell fate of Th17 and Tregs is connected especially
tightly, as many factors were shown to have a reciprocal role in
Th17 and Treg development. One reason for that is the response
of both cell types to TGF-b signaling. However, IL-6 regulates the
TGF-b response between both subsets, since it is necessary for
Th17 induction, while it inhibits TGF-b induced Treg
differentiation (77, 78). On the contrary, Tregs can lose their
FoxP3 expression and reprogram to IL-17 secreting cells in the
absence of TGF-b (79). Many more regulatory pathways also
show that contradictive role in Th17 and Treg development. The
activation of mammalian target of rapamycin (mTOR) via
HIF1a promotes Th17 differentiation, whereas the lack of
HIF1a and mTOR drives Treg development (80). As another
example, inhibiting protein kinase CK2 was shown to block Th17
development and promotes Treg cell differentiation in mice due
to a defect in STAT3 phosphorylation (81). FoxP3 itself, can also
associate with RORgt and inhibit RORgt activity (82). GATA3
was shown to play a vital role in Treg differentiation as it binds to
CNS2 elements and represses the development of a Th17
phenotype (83). A similar effect was reported on IL-2 which
promotes Treg development and inhibits Th17 differentiation
dependent on STAT5 (84). In general the opposing regulation of
genes like Il17 through STAT3 and STAT5 seems to be a crucial
mediator of reciprocal Th17/Treg differentiation (85).
THE IMPACT OF TH CELLS IN GVHD

The role of different Th-subsets in GVHD-induction and
progression has been investigated with various approaches and
GVHD-mouse models for quite a long time. First focusing on
Th-subset specific cytokines, these studies mostly provided
paradoxical results regarding the role of Th1, Th2 and Th17
cells in GVHD. However, following experiments with Th-
defining TF knockout T cells improved the understanding of
Th-subset involvement in GVHD. Overall, Th2 and Tregs are
subsets with a protective effect on GVHD while Th1 and Th17
cells promote GVHD induction and progression. The following
paragraph will give more detailed information on the various
Frontiers in Immunology | www.frontiersin.org 4
approaches revealing the role of the different Th subsets
in aGVHD.

Protective T Helper Cell Subsets in GVHD
First studies examined the effect of Th2-associated cytokines in
GVHD in the 1990’s. Injection of the Th2 inducing cytokines IL-
2 and IL-4 led to Th2 polarization and protected recipient mice
from GVHD-associated mortality (86, 87). Comparable results
were observed after the administration of Granulocyte-
macrophage colony-stimulating factor (GM-CSF) to recipient
mice, which induced IL-4 production and inhibited GVHD-
development (88). Another study confirmed the GVHD-
attenuating effect of IL-4 produced by Th2 cells, also having a
skewing effect on Th2 cytokines (89). On the contrary, other
studies showed that the absence or neutralization of IL-4
ameliorated GVHD, implying a detrimental role of Th2 cells
(90, 91). However, these contradicting results regarding the role
of IL-4 in GVHD may be based on different mouse models and
experimental settings (92). Despite the overall protective role of
IL-4 secreting Th2 cells in GVHD, the location of these cells
might define their pathogenic relevance, as they were associated
with pathophysiological changes in the lung, but not in colon,
liver, and skin during GVHD (93). IL-13, another Th2 effector
cytokine, was also shown to have an ameliorating effect on
GVHD. Although one study correlated IL-13 levels with
GVHD severity in patients (94), transplantation experiments of
IL-13-/- cells in an established mouse GVHD model resulted in
increased mortality and decreased Th2 cytokine levels but
elevated serum levels of TNF-a, a critical mediator of GVHD,
in these mice (95). Further studies showed the counteracting role
of IL-13 to TNF-a production and its augmenting role in IL-4
and IL-5 secretion following allo-bone marrow transplantation
(96), supporting the notion that IL-13 has a protective function
in GVHD. In general, the transplantation of Th2 cells to
recipient mice showed beneficial effects on GVHD-survival (97,
98) and an alteration of the Th1/Th2 balance towards the Th2
cells leading to increased IL-4 levels and attenuated GVHD (98–
100). Ultimately, a study investigating IL-4, IL-5, IL-9, and IL-13
quadruple cytokine-deficient T cells in a well-established mouse
model demonstrated that combined Th2 cytokine deficiency
resulted in enhanced T cell proliferation, higher TNF-a, IL-2,
IFN-g and IL-17a serum levels and overall aggravated
GVHD (101).

A few further experiments on Th2 defining TFs gained similar
results in GVHD models. Atorvastatin (AT) treatment was shown
to modulate Th1/Th2 differentiation by inhibiting the production of
the isoprenoid derivates farnesly-pyrophosphate (PP) and
geranylgranyl-PP, of the mevalonate pathway. Inhibition of these
isoprenoid derivates combined by AT or individually by a
farnesyltransferase inhibitor (FTI) or a geranylgeranyltransferase
inhibitor (GGTI) respectively, resulted in an upregulation of
GATA3, and in case of AT and FTI treatment also an
downregulation of T-bet expression in antigen-primed T cells
(102). GGTI and FTIs were also shown to have ameliorating CD4
T cell specific effects on GVHD while sparing CD8 T cells in their
capacity to mediate GVL and protect from viral infections (103). AT
treatment also induced Th2 polarization and cytokine secretion and
January 2022 | Volume 12 | Article 806529
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inhibited GVHD development by partially acting through STAT6, a
transcription factor essential for Th2 differentiation in response to
IL-4 and IL-13 (23, 104, 105). STAT6 was shown to be required for
Th2 involved NKT-cell mediated GVHD prophylaxis (106).
Additionally, transplanted STAT6-/- T cells, unable to differentiate
to Th2 cells skewed towards Th1 cells and mediated aGVHD with
major involvement of the colon. On the contrary, STAT4-/- T cells,
which predominantly differentiated to Th2 cells, showed less severe
signs of GVHD but later involvement in skin pathology (107).
STAT5, another critical TF in Th2 differentiation, was found to have
a dual role in Th2 and Treg differentiation in GVHD, as
overexpression of STAT5 led to increased Treg numbers and
attenuated GVHD, while in the absence of Tregs, anti-
inflammatory Th2-cytokines increased (108).

Tregs are the second CD4 T cell subset which play a protective
role in GVHD. In general, responsible for immune homeostasis and
balanced immune responses, Tregs have an outstanding role in
controlling GVHD development. First experiments on CD4+ CD25
+ Tregs in GVHD showed that depletion of these cells aggravated
GVHD, while supplementation with Tregs had the contrary effect
(109, 110). The capacity of Tregs to attenuate GVHDwas associated
with their expansion-inhibiting effect on allogeneic T cells in the
early phase of GVHD (111). The beneficial effect of Tregs in GVHD
prevention was demonstrated in fully allogeneic, haploidentical and
xenograft mouse models (111–116). FoxP3 expression was
additionally found to negatively correlate with GVHD severity in
patients (117). Importantly, murine, and human Tregs attenuate
allogeneic T cell reactions, without impeding the graft-versus-
leukemia (GVL) effect (111, 118–121). The use of in vitro induced
Tregs (iTregs) as a GVHD therapeutic revealed effective protection
in the early phase after transplantation but unstable FoxP3
expression over time led to aggravation of GVHD, making this
approach less promising as initially thought (122, 123). However,
additional combinatory induction with IL-2 and rapamycin was
shown to stabilize FoxP3 expression in these cells (113, 124), which
enabled the first successful application of iTregs as GVHD-
prophylactic therapy to humans (125).

Despite this broad outline of Treg research in GVHD, many
recent publications have already summarized the role of Tregs in
GVHD in a detailed way (126–128), for which reason we will not
go into further details at this point.

Overall, Th2 and Tregs were shown to have an attenuating
and protective role in GVHD. While Th2 cells can still mediate
local GVHD-associated pathophysiological changes in the lung,
Tregs are an overall protective cell population in GVHD having
crucial homeostatic functions, which are tightly regulated in
balance with other Th-subsets.

Detrimental Th Subsets in GVHD
Contradicting first studies on Th1 cytokines in the 1990’s led to
unconclusive results regarding the role of Th1 cells in GVHD.
The main Th1-inducing and -associated cytokines IL-2, IFN-g
and IL-12 were found to ameliorate GVHD in several early
studies which indicated a protective function of Th1 in GVHD
(129–132). However, other groups showed, that increased IFN-g
levels in serum correlated with GVHD severity (133, 134) and
Frontiers in Immunology | www.frontiersin.org 5
that IFN-g was critical for tissue pathology during GVHD (97).
Besides the beneficial role of IFN-g in the induction of GVHD-
associated effects in the lung (135), it was shown to have adverse
effect in acute GVHD pathology in the GI tract (93, 136–138).
Additionally, the effect of IFN-g in GVHD was found to be
dependent on the irradiation regimen used (139). Overall, the
reciprocal effect of IFN-g in GVHD seems to be highly dependent
on conditioning, location, timing, and the stage of allo-immune
response [reviewed by Lu and Waller, (140)].

Similar to IFN-g, contradicting findings were made, when Th17-
associated cytokines were assessed in GVHD mouse models. One
study suggested a protective role of IL-17a in GVHD, as IL-17-/- T
cells accelerated GVHDwhile the systemic administration of IL-17a
and the neutralization of IFN-g prevented this effect (141). Other
studies reported improved transplantation outcomes when IL-17a-/-

T cells were used (142) and severe GVHD induction when in vitro
generated IL-17+ cells were infused (143). Altogether, these studies
indicated that, similar to IFN-g, the role of IL-17 in GVHD is
dependent on timing and conditioning regimen. IL-17 probably
contributes to early development of GVHD but is dispensable for
overall GVHD induction (142). Neutralization of the IL-17
inducing cytokine TGF-b was shown to increase aGVHD severity
indicating an ameliorating effect of Th17 cells in GVHD (144).
However, TGF-b is also relevant for the differentiation of Tregs
which are GVHD protective, and its absence resulted in enhanced
Th1 cell proliferation indicating Th17-independent mechanisms
that lead to enhanced GVHD (144). IL-6, which induces TGF-b
dependent differentiation of Th17 but not Treg cells, was found to
play a relevant role in GVHD induction, as blocking of the IL-6R led
to reduced GVHD pathology and Th1/Th17 cells in GVHD target
organs, while absolute numbers of Tregs increased (145). However,
another study showed that short-term administration of IL-6 could
not confirm these beneficial effects (146). Differences between the
design of these two studies indicate that the effect of IL-6 on GVHD
development is dependent on conditioning, the usedmodel, and the
duration of therapy.

TNF-a, another Th1-associated cytokine, which also promotes
Th17 differentiation, was shown to drive GVHD pathophysiology
on several stages. For example, TNF-a is responsible for early
intestinal GVHD-related toxicity (147) and TNF-receptor 1
(TNFR1) levels strongly correlate with GVHD severity (148).
Additionally, the attenuating effect of TNF-blocking therapy in
GVHD underlines the detrimental role of TNF-a in GVHD (149).
Similarly, inhibiting the Th17 effector cytokines IL-21 and IL-23
decreased GVHD severity in various mouse models (150–152).

However, cytokines can derive from different cell types and
do not necessarily represent the involvement of respective Th cell
subsets. Hence, experiments examining subset defining TF
knock-out CD4 T cells shed more light on the relevance of
different Th cell subsets in GVHD and identified Th1 and Th17
cells as the relevant subsets promoting GVHD.

First TF-knock-out experiments to investigate the influence of
Th1 differentiation on GVHD were performed with STAT6-/- and
STAT4-/- T cells. STAT6-/- T cells are unable to differentiate to Th2
cells but instead show enhanced Th1 responses (23, 104, 153). In
contrast, lack of STAT4 in T cells leads to impaired Th1
January 2022 | Volume 12 | Article 806529
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differentiation (154). Nikolic and colleagues investigated STAT6-/-

and STAT4-/- T cells in a GVHD mouse model and found that
STAT6-/- T cell recipients showed an earlier and more severe course
of GVHDwith severe inflammation in the GI tract in comparison to
STAT4-/-T cell recipients,while only the latter groupdisplayed severe
skin disorders (107). These results indicate the detrimental role of
Th1cells inGVHDmainlyaffecting theGI tractbutnot liverandskin.
Recipients of T cells with STAT1 KO, another critical STAT TF for
Th1 development, also resulted in the attenuation of GVHD and
increasedTreg expansion (155).Comparable resultswere obtained in
GVHD experiments with c-Rel KO T cells, which showed a
dramatically reduced ability to induce GVHD in various mouse
models, defects in Th1 and Th17 differentiation, enhanced Treg
differentiation and a preserved Graft-versus-leukemia (GvL)
effect (156).

Experiments with T cells deficient for T-bet and RORgt, the
master TFs of Th1 and Th17 cells respectively also confirmed that
these subsets are the most involved Th cells in GVHD induction
and development. Transplanted T-bet deficient T cells screwed to
Th2, Th17 and Treg subsets and led to attenuated GVHD, especially
in the gut (157). The absence of RORgt in T cells only had little
impact and RORgt was dispensable to induce GVHD development
in two independent studies (157, 158), while one study reported an
attenuated effect on GVHD if both isoforms, RORg and RORgt were
absent in CD4 transplanted T cells due to KO of the entire Rorc
locus (159). However, T-bet and RORgt double KO T cells, which
showed a defective differentiation of Th1 and Th17, and increased
Th2 and Treg cells, induced less GVHD than T-bet KO T cells
alone. This finding suggests a synergistic effect of RORgt-induced
Th17 cells on Th1-mediated GVHD induction (157).

In addition, TFs linked to the reciprocal differentiation to Th17
versus Treg cells were also found to play a crucial role in attenuation
of GVHD. For example, recipients of T cells with a STAT3
deficiency, a TF crucial for Th17 development, showed attenuated
GVHD development and increased numbers of pTregs (160).

Summarized, Th1 and Th17 cells synergistically are the main
Th subsets driving GVHD, especially with detrimental
pathological effects on the GI tract. Blocking of Th1 and Th17-
transcription factors was found to be a more effective strategy to
prevent GVHD, than blocking Th1 and Th17-involved
cytokines. Hence, the use of specific TF-blocking agents is a
promising strategy to treat GVHD in the future. The following
paragraph will give deeper insights in recent literature reporting
the effect of a variety of Th-subset specific TF blocking agents in
murine GVHD models.
POTENTIAL STRATEGIES TO TARGET
TRANSCRIPTION FACTORS OF T HELPER
CELL DEVELOPMENT IN GVHD

As described earlier, experiment with various Th-differentiation
associated TF knock-out T cells revealed efficient attenuation of
GVHD in different transplantation models. Hence, inhibition of
these TFs by target-specific inhibitory agents offers a potent
strategy for GVHD prophylaxis and therapy.
Frontiers in Immunology | www.frontiersin.org 6
Several commonly used GVHD therapeutics also rely on the
modulation of TF expression or activity. Calcineurin inhibitors
(CNIs) like Cyclosporine A (CyA) of tacrolimus (FK506) for
example block TCR-proximal signaling by inhibition of NFAT.
Even though CNIs remain standard of care for GVHD
prevention, they also interfere with the valuable GVL-effect by
impairing donor immunity and disruption of Treg function and
survival (161–165). Combinatorial therapy with mTor inhibitors
like Rapamycin (Sirolimus) and/or low-dose IL-2 administration
have already shown to improve Treg reconstitution after allo-
hematopoietic cell transplantation (164, 166–170).

The following section will provide more detailed information
on various new therapeutic agents, divided by substance classes,
which have been successfully evaluated in GVHD alone or in
combination with standard of care therapeutics in the recent
years (Tables 1, 2). Importantly, if not indicated by the respective
clinical trial number or mentioned explicitly, this paragraph
mostly summarizes results from pre-clinical GVHD mouse
models and not from studies in patients. Most of them rely on
the strategy of targeting TFs that mediate the reciprocal effect
between Th17/Th1 and Treg differentiation, hence inducing a
homeostatic effect by skewing CD4 T cell differentiation towards
Tregs while preserving the GVL effect.

Epigenetic Modulators
Epigenetic modulation of transcription is a promising approach
to indirectly inhibit TF expression. The acetylation of histones,
regulated by histone acetyl transferases (HATs) and histone
deacetylases (HDACs), is an epigenetic mark, which influences
chromatin structure and ultimately gene expression. The use of
HDACs and HDAC-inhibitors (HDACi) can modulate this
balance and subsequently alter gene expression.

Valproic acid (VPA), a HDACi of the short-chain fatty acid
category, was shown to indirectly decrease STAT5 phosphorylation
and dampen T-bet expression in NK cells (202). In a mouse model,
the administration of VPA attenuated aGVHD by downregulation
of Th1 and Th17 cells (171). This effect was associated with a direct
inhibition of Akt (171), a kinase which promotes Th1, Th17 and
Tfh but inhibits Treg development by activation of mTOR which in
turn induces T-bet, RORgt and HIF1a and inhibits FOXO1-
dependent FoxP3 transcription (203–205). Importantly, the GVL-
effect was preserved during VAP therapy.

Another HDACi, which showed promising effects on GVHD in
preclinical models is Ex-527, a Sirtuin-1 (Sirt-1) inhibitor. Sirt-1
represses AP-1, Smad3 and FOXO-transcription factors which
regulate pTreg differentiation via the CNS1 regulatory element
(206–209) and was identified as a direct negative regulator of
FoxP3 (210). Pre-clinical experiments in a murine GVHD mode
showed that Sirt1-/- T cells were impaired in inducing aGVHD and
showed an enhanced pTreg differentiation in which FoxP3 stability
was increased. Ex-527 administration induced comparable effects
while preserving GVL effects (172). Stabilization of FoxP3
expression by Ex-527 had already been reported earlier and
associated to increased Treg suppressive function (210, 211).
Another Sirt-1 inhibitor, Sirtinol, was found to decrease RORgt
and IL-17A expression in CD4 T cells in vitro and to screw Th17/
Treg differentiation towards Tregs, leading to a prolonging allograft
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survival in a mouse transplantation model (212). However, the
effects of Sirnotol in GVHD were not reported yet.

Givinostat (ITF2357), a HDACi of the hydroxamic acid
category, was also reported to suppress Th17 polarization and
enhance FoxP3 expression and hence Treg differentiation via
decreased STAT3 phosphorylation and RORgt expression
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downstream of IL-6R signaling. Administration of Givinostat
inhibited experimental colitis development by skewing the Th17/
Treg balance in the lamina propria (213) and reduced release of
inflammatory IFN-g and TNF-a in systemic inflammation (214).
Virinostat (SAHA), another hydroxamic acid HDACi, inhibits
STAT3 and also STAT1 phosphorylation, and was shown to
TABLE 1 | Summary of pre-clinical studies on Th-differentiation targeting TF inhibitors.

Class Sub-class Compound Target murine aGVHD model Effect
GVHD

Effect
GVL

Effect Th
differentiation

Reference

Epigenetic
regulators

HDACi
(short-chain
fatty acid)

Valproic acid
(VPA)

AKT MHC mismatch model: BL/6!BALB/c ameliorated preserved Th1 ↓ Th17 ↓ (171)

HDACi
(sirtuin
inhibitor)

Ex-527 Sirt-1 MHC mismatch model:BL/6!BALB/c ameliorated preserved Th1 ↓ Th17↓
Tregs ↑

(172)

HDACi
(hydroxamic
acid)

Vorinostat
(SAHA)

STAT3/STAT1 MHC mismatch model:BL/6!BALB/c ameliorated - - (173)

HDACi(cyclic
peptides)

Romidepsin STAT3/STAT1 MLR ameliorated - - (174, 175)

Kinase
inhibitors

JAK/STAT
Inhibitors

Ruxolitinib
(INCB018424)

JAK1/2 MHC mismatch model:B6!BALB/c ameliorated preserved Th1 ↓ Th17↓
Tregs↑

(176, 177)

JAK/STAT
Inhibitors

Itacitinib
(INCB039110)

JAK1 MHC mismatch model:B6!BALB/c;
xenogeneic model

ameliorated preserved Tregs ↑ (178–180)

JAK/STAT
Inhibitors

Pacritinib JAK2 minor histocompatibility antigen-
mismatched model BALB/b!BALB/c;MLR
(human);human skin graft rejection model

ameliorated preserved Th1↓ Th17↓
Th2↑

(181)

JAK/STAT
Inhibitors

Pacritinib +S3I-
201
+Rapamycin
(Sirolismus)

JAK2+STAT3
+mTOR

xenograft model ameliorated preserved Th1 ↓only PAC/
SIR or S3I/SIR:
Th17↓ Tregs↑

(166)

JAK/STAT
Inhibitors

Fedratinib
(TG101348)

JAK2/STAT3 axis MLR ameliorated - Th1↓ Th17↓
Tregs↑

(182)

JAK/STAT
Inhibitors

Tofacitinib (CP-
690550)

JAK3 semiallogeneic MHCII-disparate model
B6!(B6xbm12)F1;MLR

ameliorated - Th1↓ (183)

ROCK1/2
Inhibitors

Fausidil Rho kinase
(ROCK1 and
ROCK2)

semiallogeneic MHC-disparate
modelC3H! (B6C3)F1

ameliorated – – (184)

ROCK1/2
Inhibitors

Belomosudil
(KD025)

ROCK2 major MHC mismatch model of multiorgan
cGVHD; minor MHC mismatch model of
sclerodermous GVHD

ameliorated – Tfh ↓ Tfregs↑ (185)

other
Inhibitors

ONO-7790500 ITK semiallogeneic MHC-disparate modelB6!
(B6D2)F1

ameliorated/
delayed

preserved Th1 ↓Th2 ↓
Th17↓

(186)

other
Inhibitors

6-
bromoindirubin
3’-oxime (BIO)

glycogen
synthase kinase 3
(GSK3)
STAT3STAT1

xenograft model prevented preserved Th1 ↓Th2 ↓ (187)

other TF
Inhibitors

peptide
antibiotic

Echinomycin
(NSC-13502)

HIF-1a MHC mismatch model:B6!BALB/c ameliorated preserved Th1 ↓ Th17↓
Tregs↑

(188)

IT-603 c-Rel MHC mismatch model:B6!BALB/c ameliorated preserved - (189)
IT-901 c-Rel MHC mismatch model:B6!BALB/c ameliorated preserved - (190)
syntheticretinoid
(SR11302)

AP-1 MHC mismatch model:B6!BALB/c ameliorated - Th1 ↓ Th17↓
Tregs↑

(191)

S3I-201 STAT3 MLR (human); human skin graft rejection;
xenograft GVHD model; human GVHD

ameliorated preserved Th1↓ Th17↓
iTregs↑

(192–194)

nitrofuran
antibiotic

nifuroxazide STAT3 MHC mismatch model:B6!BALB/c ameliorated - Th1↓ Tregs↑ (195)

bile acid indirectly RORyt MHC mismatch model:B6!BALB/c ameliorated preserved Th17 ↓ Treg↑ (196)
3-OxoLC(bile
acid)

(197)
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attenuate GVHD and inhibit proinflammatory cytokine production
during the initiation phase of GVHD (173). Additionally, blocking
of STAT3 by both Givinostat and Virinostat, was shown to enhance
indoleamine 2,3-dioxygenase (IDO) expression in APCs which
suppresses APC allo-stimulatory functions and reduced GVHD in
a murine allogeneic BM-transplantation model (215). Hence,
Givinostat and Virinostat attenuate GVHD via multiple
mechanisms, targeting inflammatory cytokine release, antigen
presentation and T cell differentiation (216).

Romidepsin (Istodax), a cyclic peptide class HDACi, was
shown to effectively suppress allo-responses in a mixed
lymphocyte reaction (MLR) (174). Recently, Romidepsin was
also shown to inhibit the activation of STAT1 and STAT3 via
induction of suppressor of cytokine signaling 1 (SOCS1) (175).
However, its effect in GVHD has not been fully assessed yet as a
first study in patients was terminated due to slow accrual (clinical
trail.gov, NCT02203578).

Overall, epigenetic modulators like the describes HDACi,
were shown to efficiently inhibit GVHD by altering Th
polarization via TF modulation. The success of HDACi in
preventing GVHD is also displayed by multiple clinical studies
validating their beneficial effect often in combinatory therapy in
patients [reviewed by Xu et al., (217)].

Kinase Inhibitors
Another indirect way to target TFs is the inhibition of Kinases,
which catalyze the transfer of activating phosphate from ATP to
substrates withing signaling pathways. Hence, kinase inhibitors
can indirectly block activation of the respective kinase substate
like TFs and hence modulate transcription.

The most prominent examples in GVHD therapy are Janus-
Kinase (JAK) inhibitors. These inhibitors block JAK/STAT
signaling pathways, which have a crucial function of
transmitting cytokine-receptor signals intracellularly. Early
expression profiling studies and the detection of activated
STAT1 and STAT3 in GHVD target organs and alloreactive
donor T cells already indicated a link between GVHD and
cytokine signaling through the JAK/STAT pathway (218–220).

Subsequent experiments, disrupting JAK/STAT1 signaling by
the use of T cells lacking STAT1, a Th1 specific TF responding to
IFN-g Receptor (IFNgR) signaling, reported ameliorated GVHD
outcomes in a minor antigen-mismatched and fully-MHC
mismatched GVHD model (155). Shortly after, Ruxolitinib
(INCB018424), a bioavailable JAK1/2 inhibitor, was reported
to have similar mitigating effects on GVHD as IFNgR-/- T cells
while the GvL effect was preserved (176, 177, 221, 222). Further
Frontiers in Immunology | www.frontiersin.org 8
mechanistical analyses revealed, that Ruxolitinib ameliorates
GVHD by disrupting Th1 and Th17 differentiation but
promoting Treg differentiation via indirect STAT1 and STAT3
inhibition (223). Overall, these pre-clinical data suggested
Ruxolitinib as a promising candidate for GVHD treatment,
which indeed has shown remarkable results in the application
for steroid refractory GVHD in various clinical studies (224).

Bes ides Ruxol i t in ib inhib i t ing JAK1 and JAK2
simultaneously, selective JAK1, JAK2 and JAK3 inhibitors have
also been investigated as potent treatment options in GVHD.
The JAK3 inhibitor Tofacitinib (CP-690550) was reported to
ameliorate GVHD in vivo and in vitro by selectively inhibiting
Th1 differentiation but not Th17 polarization or CD4 T cell
proliferation (183). Itacitinib (INCB039110), a selective JAK1
inhibitor, disrupts the JAK1/STAT3 signaling pathway and was
shown to improve GVHD outcomes and survival in various
mouse models, partially by reduction of CD4 and CD8 T cell
numbers in the inflamed colon tissue, indicating a loss of Th17
phenotype (178–180). Itacitinib also showed promising
efficiencies in the treatment of steroid-naïve and steroid-
refractory GVHD in a first clinical study (201). Selective
inhibition of the JAK2/STAT3 axis, an IFN-g, IL-6 and IL-23
receptor signaling response element, by Pacritinib (SB1518) was
also shown to significantly reduce GVHD in murine models
(181, 225). Similar to the effects of the JAK/STAT3 inhibitor
Fedratinib in early MLR experiments; Pacritinib, led to impaired
expansion of Th1 and Th17 cells while Treg and Th2 responses
were sustained (181, 182). A recent study also reported a
successful combinatory therapy of acute GVHD with Pacritinib
the STAT3 inhibitor S31-201 and the mTOR inhibitor
Rapamycin in a xenogeneic mouse model and with Rapamycin
and the calcineurin inhibitor Tacrolismus in patients (166).

Despite the advanced clinical validation of JAK/STAT
inhibitors in GVHD [reviewed by Assal and Mapara, (224)],
few other agents of the Kinase-inhibitor group have also shown
beneficial effect on GVHD in pre-clinical studies. Inhibition of
the glycogen synthase kinase 3 (GSK3) by the small molecule 6-
bromoindirubin 3’-oxime (BIO), prevented mice from lethal
GVHD in a xenogeneic model by STAT1/3 suppression and
subsequent decrease of Th1 effector cytokines (187). Recent
studies suggested the IL-2 inducible kinase (ITK) inhibitor
ONO-7790500 as another potent therapeutic in GVHD, as
administration inhibited Th1, Th2 and Th17 differentiation,
inflammatory cytokine production and alloreactive T cell
proliferation and significantly delayed GVHD onset and
mortality (186). An earlier study with ITK-/- donor T cells in
TABLE 2 | Summary of clinical trials on Th defining TF inhibitors.

Class Sub-class Compound Target Clinical trial
number

Indication Co-medication Effect
GVHD

Reference

Kinase
inhibitors

JAK/STAT
Inhibitors

Ruxolitinib
(INCB018424)

JAK1/
2

NCT02953678
NCT02913261

Steroid- refractory aGVHD Corticosteroids,
BAT

Ameliorated (198–200)

Kinase
inhibitors

JAK/STAT
Inhibitors

Itacitinib
(INCB039110)

JAK1 NCT02614612 Steroid-naïve & steroid-
refractory GVHD

Corticosteroids ameliorated (201)

Kinase
inhibitors

JAK/STAT
Inhibitors

Pacritinib JAK2 NCT02891603 aGVHD Rapamycin (Sirolismus),
Tacrolismus

ameliorated (166)
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an allo-HSCT mouse model has already reported comparable
beneficial effects on GVHD and observed reduced expression of
IRF4, JAK1, JAK2, and STAT3 as well as phosphorylated forms
of JAK1, JAK2 and STAT3 if ITK was absent in T cells, which
might explain impaired differentiation capacities observed in the
ITK inhibitor study (226). Rho-Kinase (ROCK) inhibitors
represent a further group evaluated in pre-clinical GVHD
settings. While Fausidil, a small molecule inhibiting ROCK1
and ROCK2 only had moderate ameliorating effects on GVHD-
associated colitis (184), the ROCK2 inhibitor Belomosudil
(KD025), which shifts the Th17/Treg balance towards
homeostasis via an STAT3/STAT5-dependent mechanism,
efficiently ameliorated chronic GVHD in multiple models and
first clinical studies (185, 227). However, the effect of
Belomosudil on aGVHD remains to be determined.

Other Direct and Indirect Transcription
Factor Inhibitors
Besides epigenetic regulators and kinase inhibitors other small
molecules targeting TFs in a direct or indirect manner have been
assessed in pre-clinical GVHD models in the last decade.

As already implicated by the successful use of JAK/STAT
inhibitors, the repression or STAT3, an important activator of
RORgt during Th17 differentiation, was investigated as potent
strategy to prevent severe GVHD. Betts at al. reported, that the
small molecule S3I-201 efficiently inhibits STAT3 expression,
leading to suppressed proliferation of allo-sensitized T cells and
impaired Th17 differentiation while iTreg polarization was
enhanced. Mechanistically, the group uncovered that S3I-201
polarized the phosphorylation of STAT5 over STAT3 and led to
activation of FoxP3 in iTregs (192). Hence, S3I-201 shifts the Th17/
Treg balance towards regulatory T cells, as already reported for
other STAT3 inhibitors in this review earlier. A later study of the
group connected increased pSTAT3 and RORgt levels with severe
aGVHD. They found that RORgt suppression was enhanced by
combinatory treatment with Rapamycin and S3I-201, which
abrogated the proliferation of Rapamycin-resistant T cells upon
allo-sensitization in aMLRmodel (193). Additionally, they reported
successful prevention of acute GVHD in a xenogeneic mouse
model, using a combinatory treatment with S31-201, the JAK2
inhibitor Pacritinib and Rapamycin in a recently published study, as
referred to earlier (166). Moreover, S3I-201 treated iTregs were
found to efficiently reduce skin graft rejection and GVHD in a
xenograft mouse model by reducing Th1- and Th17-mediated
allorectivity, while preserving the GVL effect (194). Similarly, the
STAT3 inhibitor nifuroxazide also attenuated GVHD symptoms in
skin, liver and GI-tract and efficiently delayed aGVHD-associated
lethality (195). Blocking of the TF AP-1 by the synthetic retinoid
SR11302 also inhibited Th1/Th17 proliferation and enhanced Treg
expansion by indirectly pSTAT3 blockage and STAT5 dependent
FoxP3 expression, leading to diminished GVHD-associated
pathology and lethality (191). Another study, which investigated
the effect of GRIM19 overexpressing donor BM and T cells in
GVHD, also found decreased disease-severity, Th17 polarization,
and alloreactive activation due to diminished STAT3 expression.
Comparable to the effect of other STAT3 inhibitors, GRIM19
Frontiers in Immunology | www.frontiersin.org 9
overexpression also led to enhanced STAT5 expression and Treg
differentiation suggesting GRIM19 induction as another potent
strategy for STAT3 inhibition in the future (228).

Alongside STAT3, the inhibition of other Th1 and Th17-
differentiation inducing TFs was shown to efficiently ameliorate
GVHD. Inhibition of HIF1a, a key TF in Th17/Treg reciprocal
differentiation, by Echinomycin (NSC-13502) was shown to
efficiently attenuate GVHD and preserve anti-leukemic activity by
inducing Treg expansion while diminishing Th17 responses (229).
The TF c-Rel plays a role in differentiation of Th1, Th17 and Treg
cells. Studies on the c-Rel inhibitor IT-603 showed ameliorating
effects onGVHD,mediated through reduced alloreactivity, defective
gut homing and impaired negative feedback on IL-2 production by
effector T cells leading to an expansion of regulatory T cells. The
attenuating effects on GVHD were additionally accompanied by a
preserved graft-versus-tumor (GVT) effect and promising effects
against lymphomas (189, 190). Bile acid synthesized form
cholesterol, called 3-oxoLC was discovered as an inhibitory ligand
of the RORgt. It efficiently altered Th17/Treg polarization towards
regulatory T cells in the lamina propria suggesting a beneficial effect
of bile acid metabolites in controlling intestinal-microbiome
tolerance but also immune responses in GI-associated GVHD
(197). Indeed, a shortly later published study reported, that the
bile acid pool was reduced in patients with GVHD, and that
application of bile acids reduced GVHD in several transplantation
mouse models but was rather associated to alterations in antigen
presentation that in Th17 differentiation (196). However, these
studies suggest bile acids as potent immune modulators in the
GI-tract during GVHD, partially acting through Th-subset
determining TF inhibition.
CONCLUSION

Summarized, these data show that specific targeting of Th cell-
differentiation involved transcription factors might represent a
potent therapeutic strategy to prevent or ameliorate GVHD in
addition to standard of care medication. However, most of the
presented therapeutics have only been assessed in pre-clinical
models yet and beneficial effects for patients remain to be proven.
In addition, the immune modulatory effect of the presented
therapeutic strategies may lead to a higher susceptibility for
infections. This includes the re-activation of latent viral infections
[e.g. cytomegalovirus (CMV)] but also the predisposition for newly
acquired infections due to major immune suppression of especially
Th1 T cells but also other immune cell populations required for viral
clearance. First clinical trials with the HDACi Vorinostat and
Panobinostat in GVHD patients did not show an augmentation
for risk of infections while Romidepsin treated patients with T cell
lymphoma more often experiences infections (230–232). Studies on
the JAK1/JAK2 inhibitor Ruxolitinib also reported an increased
susceptibility for viral re-activation of Hepatitis-B and varicella
zoster virus in treated patients with myeloproliferative neoplasm
and polycythemia vera, but also a modestly higher incidence of
infection and reactivated CMV infection in patients with steroid-
refractory GVHD (198, 233, 234). However, first line and second
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line therapies in GVHD also harbor the risk of viral re-activation
and overall significant improvement in efficacy outcomes by more
target specific TF inhibitors probably weights more than a moderate
elevated risk for infection (198, 235). Additionally, the above-
mentioned examples from clinical trials show that the risk of an
enhanced susceptibility towards infections under TF inhibitor
treatment is highly dependent on the drug target and specificity
so that these more specific TF inhibitors might exhibit
superior protection from infections that other commonly
used therapeutics.

Together, given the promising results of some TF-modulators
in clinical studies, we expect a fundamental contribution of TF-
inhibitors to improve GVHD therapy in the future.
Frontiers in Immunology | www.frontiersin.org 10
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