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Abstract 
 

Control of cell proliferation is critical for the lymphocyte life cycle. However, little is known on 

how stage-specific alterations in cell-cycle behavior drive proliferation dynamics during T-cell 

development. Here, we employed in vivo dual-nucleoside pulse labeling combined with 

determination of DNA replication over time as well as fluorescent ubiquitination-based cell-

cycle indicator mice to establish a quantitative high-resolution map of cell-cycle kinetics of 

thymocytes. We developed an agent-based mathematical model of T-cell developmental 

dynamics. To generate the capacity for proliferative bursts, cell-cycle acceleration followed a 

‘stretch model’, characterized by simultaneous and proportional contraction of both G1 and S 

phase. Analysis of cell-cycle phase dynamics during regeneration showed tailored 

adjustments of cell-cycle phase dynamics. Taken together, our results highlight intrathymic 

cell-cycle regulation as an adjustable system to maintain physiologic tissue homeostasis and 

foster our understanding of dysregulation of the T-cell developmental program. 
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Main 
 

Control of cell division is pivotal for development and function of the adaptive immune system. 

Effective B-cell responses in the germinal center as well as cytotoxic T-cell responses rely on 

rapid and massive clonal expansion of activated antigen-specific clones, which is mediated 

through alterations of the cell cycle1–3. However, substantially less is known about cell-cycle 

control during developmentally programmed proliferation of lymphocytes. 

The thymus produces naive T cells with a diverse T-cell receptor (TCR) to fuel the adaptive 

immune system of jawed vertebrates over extended periods of life. In order to produce and 

select such a repertoire a large number of selectable precursor cells are generated during the 

course of T-cell development. Accordingly, it is characterized by a defined sequence of 

differentiation events interspersed by proliferative bursts. At steady-state the thymus is 

periodically colonized by bone-marrow (BM) derived thymus seeding progenitors (TSPs) filling 

a small number of niches in a CC chemokine-receptor (CCR)7 and 9 dependent manner4–6. 

TSPs give rise to early T lineage progenitors (ETPs), the most immature among CD4 and CD8 

double-negative (DN) thymocytes7,8. ETPs progressively lose multi-lineage potential until T-

lineage commitment is completed at the DN2b stage9–11. Subsequently, thymocytes rearrange 

their Trb, Trg, Trd loci to produce pre-TCRs or γδTCRs. Thymocytes expressing a pre-TCR 

enter the αβT-cell lineage marked by β-selection and transition from the DN3a to the DN3b 

stage. Following upregulation of the CD4 and CD8 co-receptors, double-positive (DP) 

thymocytes rearrange their Tra loci and undergo positive and negative selection to eliminate 

clones with signaling incompetent or potentially autoreactive T-cell receptors. 

Studies on the turnover of thymocytes in vivo have determined the average residence time of 

thymocytes within phenotypically distinct populations12–14 and provided estimates of the 

number of cell divisions within populations15,16. After colonization, approximately 160 TSPs 

give rise to a population of 20,000 ETPs and 25,000 DN2 cells over a period of up to 14 

days4,13,17. DN2 cells rapidly expand before proliferation ceases in DN3a cells to allow for TCR 

gene rearrangement. Proliferation then resumes after β-selection. At this stage, population 

size increases several hundred-fold to generate a sufficiently large pool of precursors for Tra 

rearrangement and subsequent selection events, which are accompanied by substantial 

amounts of cell death18.  

 

The exact nature of how thymocytes adjust cell-cycle length in a developmentally controlled 

manner or as a consequence of instructive signals, such as pre-TCR signaling remains 

unclear. In order to better understand cell-cycle dynamics in developing thymocytes at steady-

state and upon perturbation, we sought to generate a high-resolution map of cell-cycle phase 
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duration in vivo. To this end, we employed cell-cycle indicator transgenic mice as well as dual-

nucleoside pulse labeling combined with determination of DNA replication over time. The latter 

approach allowed us to discriminate cells almost immediately after entry into S phase as well 

as just prior to exit of S phase generating two virtually synchronized subsets within each 

thymocyte population. Thus, we determined exact cell-cycle lengths at the level of individual 

cell-cycle phases revealing proliferative heterogeneity directly in vivo. High-resolution data 

helped to establish a broadly applicable agent-based mathematical model (ABM) for cell-cycle 

analysis, taking into account heterogeneous cell phases as well as bona-fide bystander cells. 

The model allowed us to extract the duration of all phases while consistently explaining the 

dynamics of all labeled populations, and assign heterogeneous behavior to distinct cell-cycle 

phases. Finally, we applied our method to a model of thymus regeneration and showed that 

different thymocyte populations modulate both S-phase and G1-phase duration with distinct 

patterns.  
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Results 
 

Single-nucleoside pulse labeling and cell-cycle reporter mice reveal composition and 

heterogeneity of cell-cycle stages in thymocyte populations 

 

We employed BrdU single-pulse labeling combined with analysis of DNA content to determine 

the steady-state proportions of wild-type (WT) thymocytes at distinct cell-cycle states (Fig. 

1a,b). In all subpopulations the majority of cells were in the G0/G1 phase of the cell cycle 

(BrdU-, 2N DNA) and a small fraction of cells was in G2/M phases (BrdU-, 4N DNA) (Fig. 1c). 

The largest proportion of DNA replicating cells (S phase, incorporation of BrdU and 2N < DNA 

content < 4N) were found in the DN2, DN3b and DN4 subsets (Fig. 1c), whereas the lowest 

proportions were found in DN3a and pre-selection DP cells as well as post-selection DP and 

SP thymocytes (Fig. 1c). 

Next, we analyzed a transgenic mouse model with fluorescent reporters linked to cell-cycle 

progression (FUCCI mice)19. These mice express a green fluorescent reporter (mAG) during 

S phase, whose frequencies in thymocytes correlated well with S-phase frequencies 

determined by single BrdU pulse and DNA content analysis, indicating faithful reporting of cell-

cycle stages in the FUCCI system (Fig. 1d,e). Upon transition through G2/M phases back to 

G1 phase, cells rapidly lose mAG expression through proteolytic degradation followed by a 

continual increase in expression of an orange fluorescent reporter (mKO). High levels of mKO 

are therefore indicative of an extended G1 phase or even quiescence19. By assuming that 

mKO expression increases at the same speed in all populations, the fraction of cells with low 

or intermediate mKO levels (early in the G1 phase) provide qualitative information on G1-

phase duration and heterogeneity. We subdivided mAG-negative thymocyte populations 

according to mKO levels into three subsets, mKO-negative/low, mKO-intermediate, and mKO-

high, representing cells in G2/M/early G1 (G1early), intermediate time spent in G1 (G1int), and 

late G1/G0, respectively. ETPs and downstream populations up to DN3a thymocytes 

contained between 20 to 40 % of cells in G1int, while DN3b and DN4 showed lower amounts 

of G1int cells, 3% and 15% respectively, indicating that DN3b and DN4 exhibit shorter G1 

phases compared to the former populations. Thus, FUCCI reporter expression suggests that 

rapidly cycling DN3b and DN4 thymocytes are characterized by a higher frequency of cells in 

S phase as well as reduced time spent in G1 phase (Fig 1d,e). Post-selection thymocytes 

progressively acquired high and discrete levels of mKO, suggesting that these cells ultimately 

exit from the cell cycle on the path of maturation towards naive T cells (Fig. 1d,e). Taken 

together, steady-state analysis confirmed previously established switches between non-

cycling phases of T-cell development. Different expression levels of the G1 reporter in FUCCI 
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cells suggested that similarly replicating populations, such as DN2 and DN3b cells, are 

nevertheless likely to exhibit distinctive cell-cycle behavior.  

 

Dual-nucleoside pulse labeling reveals rates of entry in S phase 

 

Next, we employed dual-nucleoside pulse labeling to study dynamic cell-cycle behavior. Cells 

were sequentially labeled in vivo with EdU and BrdU at 1 h apart followed by analysis 1 h after 

the second pulse (Fig. 2a). The window of action of EdU or BrdU labeling over detection 

threshold has been estimated to be 45-60 min after label administration, with EdU displaying 

a somewhat shorter bioavailability than BrdU20. Thus, labeling at a 1 h interval creates single-

nucleoside positive EdU+BrdU- and EdU-BrdU+ populations, representing cells that have 

ceased DNA replication within 1 h after label administration (post S) and cells having initiated 

DNA replication within less than 1 h after BrdU administration (early S), respectively (Fig. 2b). 

Thus, single-nucleoside positive populations provide information on rates of entry into and exit 

from S phase. Cells without label (EdU-BrdU-) did not go through DNA replication during the 

period of EdU and BrdU labeling, and were either in G1, G2/M or potentially quiescent.  

Analysis of EdU-BrdU+ thymocytes showed that DN2, DN3b, and DN4 had rates of S-phase 

entry of 5-7% in <1 h (Fig. 2c). DN1, DN3a, pre-selection DP cells had rates of S-phase entry 

around 2% and those of post-selection DP and CD8SP cells were even lower (Fig. 2c). Virtually 

no CD4SP cells started DNA replication within this time frame (Fig. 2e). Taken together, the 

rate of thymocytes starting DNA replication corresponds well with the steady-state analysis 

(Fig. 1c) in that cells with higher frequency of DNA replication also show higher hourly rates of 

S-phase entry.  

Rates of exit from the S phase (derived from EdU+BrdU- cells) were largely similar as the entry 

rates measured for each population, with two exceptions (Fig. 1d). In theory, the amount of 

cells entering and exiting the S phase should be equal, except if cells differentiate, die or exit 

within the S phase. DN1 and CD4SP cells displayed considerably higher exit than entry rates. 

However, due to the low cell numbers within the EdU+ subsets, definitive conclusions for 

possible underlying mechanisms are difficult to draw. One may speculate that in the case of 

CD4SP cells, EdU+ cells represent the final cycle before cells enter final maturation and the 

frequency of quiescent cells increases.  

Assuming that in all thymocyte populations progression through the cell cycle is homogeneous, 

i. e., times between each round of DNA replication are identical within a thymocyte population, 

rates of S-phase entry can be converted into cell-cycle duration: the percent of cells entering 

the S phase in 1 h informs how many hours are necessary for 100% of the initial cycling cells 

to have entered the S phase and therefore provides an estimate of the full cycle (Fig. 2c). Due 
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to the virtual lack of quiescent cells identified in G0 in all subsets except SP thymocytes (Fig. 

1d), it can be first assumed that all cells within one subset are cycling, although in part a 

substantial fraction of cells does not acquire any label with two sequential pulses. Under this 

assumption, DN2, DN3b and DN4 cells would complete one full cycle within 12, 8, and 9.5 h, 

respectively, and thus represent the subsets with the shortest cycling periods. Longer cell-

cycle periods were estimated for DN1, DN3a, as well as pre-selection DP with average cell-

cycle durations of 47, 36, 34 h, respectively. Post-selection DP and CD4SP thymocytes had 

estimated cell-cycle durations that extended well beyond their estimated life times, while 

CD8SP were estimated to cycle in 52 h, consistent with their progression to quiescence and 

showing that the rate of S-phase entry cannot directly be translated into cell-cycle duration due 

to presence of quiescent cells17. 

Taken together, steady-state analysis of cell cycle using single-pulse and dual-pulse 

nucleoside labeling revealed substantial differences between thymocyte populations with slow 

and rapid turnover, consistent with previous studies15. They also provided initial quantitative 

information about total cell-cycle duration based on the determination of the rate of cells 

starting DNA replication. Furthermore, dual-pulse labeling provided qualitative information on 

the relative contribution of the S phase to the overall cell cycle. Nevertheless, it remains unclear 

to what extent cells perform the cell cycle in a homogeneous and synchronized manner and 

therefore whether direct estimation of cell cycle from steady-state and rates of entry or exit is 

possible.  

 

High resolution tracking of virtually synchronized cells using dual-pulse labeling combined with 

DNA content analysis over time informs on the duration of individual cycle phases 

 

Next, we sought to quantitatively determine the duration of cell-cycle stages in each thymocyte 

subset. Dual-nucleoside pulse labeling at 1 h apart as described above creates virtually 

synchronized populations at the start of S phase (EdU-BrdU+) and at its end (EdU+BrdU-). DNA 

content analysis was performed to trace S-phase progression of virtually synchronized cells 

from 1 hour to 20 hours post BrdU injection (Fig. 3a). Due to limitations in cell numbers and 

few nucleoside incorporating cells, DN1 and both SP subsets were omitted from this analysis.  

The dynamics of DNA incorporation of cells that started (green), exited (blue) or stayed 

(orange) in S phase during the interval of the first labeling is shown for a representative fast- 

and slow-proliferating population, DN3a and DN4, respectively (Fig. 3b, Fig. S1a). 

We determined S-phase duration in virtually synchronized cells at S-phase entry (EdU-BrdU+, 

green) by monitoring the increase of DNA content from 2N to 4N towards a complete round of 

DNA duplication (Fig. 2c). A similar analysis with dual-labeled cells (EdU+BrdU+, orange), 
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which are non-synchronized and hence cover a broad range of S-phase states, yielded similar 

results (Fig. S1b)21. We determined S phases of 6-7 h for DN3b and DN4 cells, consistent with 

rapid turnover of these populations (Fig. 3c). Longer S-phase duration of 8-9.5 h was observed 

for DN2, DN3a and pre-selection DP cells, although DN2 cells displayed higher rates of cell-

cycle entry compared to DN3a and DP, and were therefore cycling substantially faster than 

the latter two populations (Fig. 2c). These data suggest that S phase shortening below a certain 

limit is a feature restricted to extremely fast proliferating DN3b and DN4 subsets. Curiously, 

post-selection DP cells contained more DNA already at early time points of analysis and cells 

remained in S phase for considerably longer than other populations. The underlying 

mechanism of this peculiarity remains unknown.  

Virtually synchronized cells at S-phase exit (EdU+BrdU-) had mostly reached G1 already at the 

1 h time point of analysis, corresponding to 1.25 - 1.5 h after exiting S phase (Fig. 3b, Fig. S1a, 

blue histograms). We conclude that for all analyzed thymocyte populations G2/M duration is 

less than 1.5 h. Pre-selection and post-selection DP cells had somewhat higher frequencies 

of cells remaining in G2/M at this point in time, suggesting that the distribution of G2/M may be 

broader or that the transition between S and G2/M phases is prolonged (Fig. S1a). G1 phase 

duration can be derived from determining the time point of the onset of DNA replication (DNA 

content >2N) of cells virtually synchronized at S-phase exit (Fig. 3b, Fig. S1a, blue histograms). 

DN3b and DN4 populations displayed a minimal G1-phase duration of 3.1 and 2.8 h, 

respectively (Fig. 3d). DN3a and pre-selection DP cells had minimal G1 phase durations of 

5.25 and 5.1 h (Fig. 3d). Surprisingly, G1 phase duration in DN2 cells extended beyond this 

type of analysis. DNA content analysis after 16 and 20 h revealed plateaus of DNA content at 

approximately 50% for DN4 and post-selection DP cells and 30% for pre-selection DP cells. 

Apparent stable frequencies of G1 cells at later time points can be explained by de-

synchronization of cell cycles over extended periods of time, transitions to the subsequent 

developmental stage or both. 

We tested whether label-negative cells provided some indication of population heterogeneity. 

Consistent with estimated cell-cycle durations, cell-cycle entry in at least some label-negative 

cells was detected already at 2 h in fast cycling populations (DN3b and DN4) and at 4 h in DN2 

cells. In contrast, no cell-cycle entry was observed in pre-selection DP cells, consistent with 

these cells ceasing proliferation in order to start TCR gene rearrangements (Fig. S2).  

Taken together, combination of dual-pulse labeling with analysis of temporally resolved DNA 

replication provided accurate information on the duration of individual cell-cycle phases for 

thymocytes (Fig. 3e). Partially overlapping information obtained from different experiments 

allowed us to more precisely define boundaries of cell-cycle duration for most subsets. 

Comparing the different approaches of cell-cycle mapping, we identified cell populations with 
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highly congruent quantitative data across setups, such as DN3b and DN4 thymocytes. For 

other populations, cell-cycle phase level data generally indicated shorter cycle durations, when 

compared to inferred cell-cycle durations from steady-state data. These apparent 

discrepancies point towards intra-population heterogeneity, which was further explored 

through mathematical modeling and experimental validation. 

 

Modeling thymocyte population dynamics based on high-resolution cell-cycle analysis 

 

To integrate apparent quantitative discrepancies and to accurately estimate the duration of the 

cell-cycle phases from dual-labeling experiments combined with DNA content analysis, we 

developed an ABM of cell division and labeling. The model simulates a population of cells 

progressing through the G1, S and G2/M phase that includes both the G2 phase and mitosis 

(Fig. 4a, left). Inspired by the Cyton model22, the duration of each phase follows a lognormal 

time distribution whose average and width are to be estimated from experimental data (the 

unknown parameters). When a cell divides, two new daughters are created at G1, and a time 

is picked from these distributions for the ending of G1, S and G2/M phases. A death time is 

also sampled at birth from an exponential time distribution, and death is triggered if it happens 

before the end of G2/M. We incorporate a separate pool of cells whose cycle is stopped for a 

long time (either in G0 or G1), that we call ‘long G1’ cells.  

We reproduce the dual pulse EdU and BrdU labeling as in the experimental settings (Fig. 4a, 

center). Cells are gated in silico as in flow cytometry into four populations: unstained, 

EdU+BrdU-, EdU-BrdU+ and EdU+BrdU+ populations. Cells from each gate are assessed for 

their cell-cycle phase. A cost is calculated between a simulation and the experimental data 

(Fig. 4a, right). Automated parameter estimation iteratively simulates labeling for many 

possible hypothetical durations of each cell phase, and identifies the most likely cell-cycle 

durations by minimizing the cost. For each population, we separated the experimental data in 

a training dataset containing the first four analysis time points for parameter estimation for all 

variables except DNA levels, and kept DNA levels and the remaining time points for validation. 

To avoid over-fitting, we devised five different hypotheses based on heterogeneity of the cell-

cycle phases between cells of the same population (Fig. 4b) and performed parameter 

estimation 10 independent times on the training dataset. The simplest hypothesis (‘non-

variable’), assumes a fixed duration of each phase. Intermediate hypotheses (‘G1 or S or G2/M 

variable’) consider only one phase to be variable between cells, while the most complex (‘all 

variable’) allows each phase to have its own width. For each population, we compared the 

quality (cost) of each strategy, as well as the presence of ‘long G1’ cells. In the example of the 

DN3b population, the hypotheses ‘variable G1’ and ‘all variable’ showed a lower cost than the 
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other hypotheses (Fig. 4b). This suggests that a variable G1 phase explains the data better. 

Interestingly, the hypothesis ‘variable S’ did not perform better than ‘variable G1’, suggesting 

that variable S phase durations are not required to explain the data. Accordingly, the curves 

for the ‘variable G1’ hypothesis explained best the data including validation data-points (Fig. 

4b, Fig. S3_1, Fig. S3_2), while the alternative ‘variable S’ or ‘variable G2/M’ could not explain 

the validation dataset. The ‘all variable’ hypothesis did not improve the quality of the curves 

nor the cost, and we concluded that a variable G1 phase only provides the best explanation 

for the data with minimal model complexity in DN3b cells.  

We confirmed that cell-cycle phase durations can confidently be identified using a profile 

likelihood analysis, which compares the cost of parameter estimations after fixing a phase 

duration to different possible values on the training dataset (Fig. 4c, blue curves). The 

existence of a minimum cost means that only one value for this phase duration best explains 

the data, in which case the parameter is ‘identifiable’ from the dataset. Alternatively, a flat 

curve would mean that different durations would explain the dataset equally well. We conclude 

that the duration of all three phases is accurately identified by our approach. Furthermore, the 

identified minima were the same after including the validation dataset (Fig. 4c, red curves), 

showing that the training dataset with four time points is rich enough to accurately infer the 

phase durations. 

We compared the model complexities and performed identifiability analysis for each population 

and could identify the cell-cycle phase durations for each population (Fig. 4d, Table S1, Table 

S5). The DN2 labeling kinetics could be explained without phase variation, while all other 

populations benefited from variation of the G1 phase (Fig. S3_3). The cycle durations ranged 

between 12.8 h for DN4 to 27.4 h in the DN2 population, showing a gradual increase in cell-

cycle speed from the DN2 to the DN4 population, not considering cells in ‘long G1’ (see below). 

The S phases ranged between 5.7 h in the DN4 population to 9.3 h in the pre-selection DP 

population. The DN2 and DN3b datasets could be explained without ‘long G1’ cells, which is 

expected for these populations, while other populations needed a substantial amount of such 

cells. The DN3a population required 89% of ‘long G1’ cells, consistent with the need for TCR 

rearrangement and β-selection at this stage. The pre-selection DP population was best 

explained including 92% of ‘long G1’ cells, consistent with proliferation arrest TCRα gene 

rearrangement and onset of thymic selection at this stage. Surprisingly, the DN4 population 

required ~40% of ‘long G1 cells’, which was necessary to explain the re-entry of unlabeled 

cells into the S phase, suggesting the existence of a subpopulation of cells with different cell-

cycle kinetics. On a technical note, the training dataset was sufficient to identify the cycle 

phase durations for all populations except DN2s, due to a longer G1 phase in DN2 compared 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2023. ; https://doi.org/10.1101/2023.06.14.544919doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.14.544919
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kunze-Schumacher et al. 

11 
 

to other subsets, and therefore cell-cycle identification in DN2 required incorporation of all 6 

experimental time points. 

Decision to re-enter S phase after one round of cycling defines cell-cycle heterogeneity  

To experimentally validate heterogeneous behavior of cells we first subjected sorted DN3a 

thymocytes at defined stages of the cell cycle to short-term in vitro differentiation on OP9-DL1 

co-cultures (Fig. 5a). FUCCI negative (corresponding to early G1) cells progressively acquired 

mKO2 fluorescence over time, in line with prolonged time spent in G1 (Fig. 5b,c). A subset of 

cells (2 - 4%) in S phase (mAG positive) was detected already after 2 h of culture and the 

frequency of this population remained virtually constant throughout the period of culture, 

suggesting that this population is not continually fueled by cells from mid/late G1 phase. Sorted 

mKO2-positive cells (mid/late G1) gave rise to a larger proportion of S phase cells over time 

when compared to early G1 cells, increasing over a period of 12 h, but remaining constant 

thereafter (Fig. 5d). Early G1 cells appeared after 14 to 16 h of culture, consistent with the S-

phase duration of 7.5 to 9 h determined in vivo, and reached a plateau after 20 h. Starting from 

sorted mAG-positive (S phase) cells, frequencies of early G1 cells steadily increased between 

2 and 12 h, followed by an expansion of intermediate G1 cells, indicating that intermediate G1 

cells emerge from FUCCI negative cells after approximately 10 h (Fig. 5e). In contrast, no de 

novo increase in S phase cells was observed during the culture period. Taken together, these 

data indicate that the transition from S phase through division into G1 is kinetically fixed, 

whereas re-entry into S phase is independent from a predetermined G1 phase duration.  

Next, we assessed virtually synchronized thymocytes from dual-pulse labeling experiments for 

evidence of intra-population heterogeneity. Experiments described above allowed us to 

faithfully quantitate the duration of one round of cycling, but did not provide information about 

multiple division cycles. Here, we analyzed the onset of a second round of DNA replication in 

virtually synchronized fast cycling DN3b and DN4 cells at S-phase exit (Fig. 5f). Both 

populations displayed a bimodal distribution of DNA amounts detectable at 4-5 h after 

completion of the previous S phase. Whereas approximately 70 and 60 % of DN3b and DN4 

cells, respectively, had passed G1 and re-initiated DNA replication at that time point, the 

remainder of cells were in G1 phase. Of note, this bimodal distribution remained essentially 

constant for at least an additional 2 h. 

Taken together, in vitro and in vivo data validated cell-cycle heterogeneity predicted by our 

mathematical model and show that, at least for DN3a, DN3b and DN4 cells, this heterogeneity 

predominantly manifests itself prior to or at the G1 to S phase transition. 
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Population-specific cell-cycle phase alterations determine thymus regeneration 

 

Restoration of thymus size after pre-conditioning constitutes a major bottleneck for 

regeneration of the immune system after hematopoietic stem cell transplantation23. We 

determined cell-cycle dynamics during regeneration of thymus size at 6 days after sublethal 

irradiation, when most populations have recovered to at least 50% of steady-state (Fig. 6a, 

Fig. S5_1a). First, we performed dual-pulse labeling to determine frequencies of cells in S 

phase as well as rates of S-phase entry as a measure of total cell-cycle length. At 6 days post-

irradiation, all populations with the exception of DN3a cells displayed substantial frequencies 

of cells in S phase, ranging from 27 - 69% (Fig. 6b). When compared to the corresponding 

populations at steady-state in non-manipulated mice, DN2 and DN3a cells had 1.5 - 2.5-fold 

higher frequencies in S phase, whereas these frequencies were unaltered in DN3b and DN4 

cells (Fig. 6b). Most notably, both subsets of DP thymocytes displayed a 4.6 - 26-fold increase 

of S phase cells when compared to the steady state. Entry rates into S phase during 

regeneration were similar in DN2 and DN3b cells, when compared to steady-state, but 

markedly increased in DN3a, DN4 and pre-selection DP thymocytes, indicating shorter overall 

cell-cycle duration in these populations (Fig. 6c). Whereas at steady-state S-phase exit rates 

largely corresponded to S-phase entry rates (Fig. 2d), we noted that during regeneration, S-

phase exit rates were mostly smaller than entry rates (Fig. 6d). Taken together, dual pulse 

labeling revealed a complex pattern of alterations in cell-cycle progression with a notable 

uncoupling of S-phase entry and exit. Lower exit rates are consistent with an overall increase 

in cells residing in S phase during regeneration. These observations underscore that S-phase 

frequencies, commonly used as a marker for proliferation at steady-state, only partially reflect 

proliferation speed. 

Lower exit than entry rates may be indicative of extended S-phase duration. To test this 

possibility, we analyzed dynamic cell-cycle behavior in vivo using the previously established 

dual-pulse labeling approach in conjunction with DNA labeling to reveal S-phase progression 

of virtually synchronized cells over time. Estimated S-phase lengths in DN2 and DN3a 

thymocytes were similar with a trend towards longer duration during regeneration when 

compared to the steady-state (Fig. 6e). In DN3b, DN4 and pre-selection thymocytes S-phase 

duration was approximately 45 min longer upon regeneration. Thus, direct analysis of S-phase 

lengths supports the notion that, despite overall reduced cycling times, S-phase duration is 

increased in a model of post-irradiation thymus regeneration. Frequencies of single labeled 

cells within the post-selection DP subset were too low for a robust quantitative analysis. Next, 

we applied the ABM described above to model alterations in cycling behavior at the individual 

stage level. Consistent with the experimental observations, mathematical modeling revealed 

shorter overall cell-cycle durations for DN2, DN3a, DN4 and pre-selection DP cells upon 
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regeneration, with DN4 cell-cycle duration being close to the steady-state situation (Fig. 6f). 

Cell-cycle length of DN3b was unaltered in regenerating thymi when compared to the steady-

state. Decreases in cell-cycle length could be completely attributed to a reduction in G1-phase 

duration for all populations, whereas S-phase duration was modestly increased in DN2, DN3b 

and DN4 thymocytes and remained unaltered in DN3a and pre-selection DP cells (Fig. 6g). 

We conclude that thymic regeneration post sublethal irradiation at cell-cycle phase resolution 

is predominantly driven by increased rates of entry into cycle and shortening of the G1 phase, 

but not the S phase, predominantly in thymocyte subsets characterized by slow turnover at 

steady-state. 

Thus, our studies reveal fundamental differences in how thymocytes adopt developmental 

stage dependent modulation of cell-cycle length during steady-state T-cell development and 

perturbation-induced adaptation of cell-cycle speed within populations during the regenerative 

process. 
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Discussion 
 

Studies on T-cell developmental dynamics in the thymus over the past decades have provided 

information on residence times, proliferation rates, and death during phases of selection, within 

individual thymocyte populations12,13,15, for review see17. Together, these data help to draw 

conclusions about division rates and overall cell-cycle durations, but not about the duration of 

individual cell-cycle phases. Such knowledge would constitute critical information to better 

understand regulatory principles of proliferation dynamics at steady-state and during therapy-

induced regeneration. Thus far, analyses at cell-cycle phase resolution were largely restricted 

to in vitro models e.g., employing FUCCI-transgenic systems in conjunction with time-lapse 

microscopy. Here, we have overcome this knowledge gap by devising experimental tools that 

allowed us to quantitate T-cell developmental dynamics at the cell-cycle phase level. 

Furthermore, we have created an ABM to integrate all experimental information in order to 

generate testable hypotheses on cell-cycle heterogeneity. 

We accurately determined cell-cycle phase durations in thymocytes of many distinct 

developmental stages at steady-state. Transition between slowly and rapidly cycling 

thymocyte populations was characterized by simultaneous contraction or expansion of G1 and 

S phases, supporting a so-called ‘stretch model’ of cell-cycle regulation. This type of cycling 

behavior was first described to explain acceleration of B- and T-cell proliferation upon 

activation24. Similar to the situation of lymphocyte activation, thymocytes rapidly expand 

following β-selection from 4 x 105 to 108 cells, corresponding to 7 divisions within a period of 

only 2 - 4 days15,17. Contraction of both G1 and S phase might constitute the optimal solution 

to accommodate faithful DNA replication along with a minimal G1 phase. Indeed, in some 

DN3b cells our data and the ABM suggested a bona-fide absence of a G1 phase, similar to 

cell-cycle patterns observed in embryonic stem cells25. In line with a previous study, the G2/M 

phase duration was uncoupled from stretching and contraction26. It remained essentially 

constant and its short duration of less than 1.5 h indicated that thymocytes immediately transit 

from DNA replication to mitosis without going through a sizable G2 phase. 

Despite substantial numbers of cells in a prolonged state of cell-cycle pause, especially in 

populations rearranging TCR loci (DN3a and pre-selection DP), FUCCI G1 reporter protein 

levels suggested that these cells did not adopt a state of quiescence (G0) comparable to 

hematopoietic stem cells. In line with an earlier study, a FUCCI-based quiescent state first 

emerged in DP thymocytes following selection, with quiescent cells accumulating in single-

positive populations prior to thymic egress19,27. Although quiescence remains incompletely 

defined molecularly, a reduction in the expression of licensing factors, such as Cdc6 and Mcm2 

and an increase in p27kip1 in DP thymocytes, supports our conclusion28. Re-entry into the cell 
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cycle requires longer intervals than passing through a prolonged G1 phase. We suggest that 

a prolonged G1 duration is more compatible with a developmentally programmed trajectory, 

whereas quiescence is likely to be more compatible with naive cells lying in wait for cognate 

antigen for undefined periods of time. 

We noted distinct patterns of cell-cycle heterogeneity with the exception of DN2 cells. 

Heterogeneity in DN3b cells was best explained by varying G1-phase durations. In contrast, 

DN3a and pre-selection DP cell cycles were best explained including a subpopulation with a 

prolonged G1 phase. It is plausible that these subpopulations comprise cells undergoing TCR 

gene rearrangements, whereas actively cycling populations may comprise cells transitioning 

into or out of the respective subsets. In fact, a recent scRNAseq study has demonstrated that 

upon entry into the DP stage, thymocytes complete exactly one round of division before cycling 

ceases29. Cell-cycle heterogeneity was also apparent during longitudinal follow-up of cells and 

upon in vitro differentiation, substantiating the predictions derived from the ABM that variation 

is largely situated in G1 phase, whereas the transition from S to G1 is kinetically fixed in 

accordance with virtually constant durations of G2 and M phases. As the experimental system 

described in this study permits tracking of little more than one full cell cycle, it remains an open 

question whether the observed heterogeneity is a consequence of functional heterogeneity 

within phenotypically identical populations, in particular when cells undergo transitions 

between populations. Alternatively, cells may have unequal access to growth factors, such as 

IL-7 or display intrinsic stochasticity30,31. 

To our surprise, thymocytes did not further increase cell-cycle speed according to the stretch 

model during thymus regeneration. Rather, we observed substantially shorter G1 phases, 

whereas S phases remained constant or were even slightly extended. These findings are 

consistent with the possibility that feedback mechanisms controlling regeneration depend on 

extrinsic signals, to which cells preferentially respond during G1 phase. In contrast, our data 

suggest that S-phase duration is developmentally programmed at the population level. 

Furthermore, the activation of DNA damage checkpoints following irradiation may also 

counteract further contraction of S phases32. 

Mathematical modeling has been previously used to extract complex quantitative properties of 

T-cell development from experimental data16,33. We have used an ABM approach comparable 

to a model capable of reproducing the proliferation speed of lymphocytes22. The ABM allowed 

us to control the heterogeneity of phase durations within each cell, at the expense of 

computationally expensive simulations. Other mathematical models created to study 

thymocyte proliferation have used Ordinary Differential Equations (ODEs), which simulate the 

number of cells in each phase over time16. ODEs (sometimes modeled as Markov Chains34) 

structurally impose heterogeneity for all cycle phases with an exponential time distribution 
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whose standard deviation is not tunable and also permit some cells to stay for implausible 

short times in a phase. In consequence, it is not possible to compare synchronous or 

heterogeneous phase durations with those models. Interpretation of ODE-based models has 

been challenging, as they sometimes predicted extremely short and sometimes extremely long 

cell cycles, which are difficult to align with experimental data34,35. These inconsistencies may 

be attributed to limited sets of experimental data as well as limitations in permitting intra-

population heterogeneity. A recent study employed an ODE model focusing on total DP 

thymocytes only, which considered multiple progression steps through cycle phases, limiting 

the possibility for cells to complete a cycle in a few seconds, and incorporated a final step of 

quiescent cells36. Separation of DP thymocytes into pre-selection (undergoing somatic 

recombination) and post-selection subsets in our study makes it difficult to directly compare 

both approaches. 

Taken together, our studies provide a combined experimental and computational framework 

to accurately determine cell-cycle phase durations in vivo, integrating intra-population 

heterogeneity. We propose that this combination is widely applicable across organ systems 

and disease conditions. Applying this setup to study intrathymic T-cell development at steady-

state and during regeneration, our studies have revealed a broad and population-specific 

spectrum of cell-cycle adaptation to proliferative requirements. These findings illustrate the 

need for refined cell-cycle analysis in situations of loss of proliferation control, such as cancer, 

or regenerative processes, which warrant preferential recovery of select cell types.   
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Methods 

Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

FACS antibodies (clone) 

Monoclonal anti-BrdU antibody 
(3D4), FITC 

BioLegend Cat#364104; 
RRID: AB_2564481 

Monoclonal anti-mouse CD4 
(GK1.5), PE-Cy7 

BioLegend Cat#100422; 
RRID: AB_312707 

Monoclonal anti-mouse CD4 
(GK1.5), PerCP-Cy5.5 

BioLegend Cat#100434; 
RRID: AB_893324 

IgM anti-mouse CD4 (RL1.72) Own production 37 

Monoclonal anti-mouse CD8α (53-
6.7), BV510 

BioLegend Cat#100751; 
RRID: AB_2561389 

Monoclonal anti-mouse CD8α (53-
6.7), PE-Cy7 

BioLegend Cat#100722; 
RRID: AB_312761 

IgM anti-mouse CD8 (M31) Own production 38 

Monoclonal anti-mouse CD25 
(PC61), BV421 

BioLegend Cat#102034;  
RRID: AB_11203373 

Monoclonal anti-mouse CD25 
(PC61), PerCP-Cy5.5 

BioLegend Cat#102030; 
RRID: AB_893288 

Monoclonal anti-mouse CD28 
(E18), PE 

BioLegend Cat#122010; 
RRID: AB_604078 
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Monoclonal anti-mouse CD44 
(IM7), APC-Cy7 

BioLegend Cat#103028; 
RRID: AB_830785 

Monoclonal anti-mouse CD44 
(IM7), PerCP-Cy5.5 

BioLegend Cat#103032; 
RRID: AB_2076204 

Monoclonal anti-mouse CD69 
(H1.2F3), PE 

BioLegend Cat#104508; 
RRID: AB_313111 

Monoclonal anti-mouse CD69 
(H1.2F3), APC 

BioLegend Cat#104514; 
RRID: AB_492843 

Monoclonal anti-mouse CD71 
(RI7217), APC 

BioLegend Cat#113819; 
RRID: AB_2728134 

Monoclonal anti-mouse CD117 
(2B8), APC-Cy7 

BioLegend Cat#105826; 
RRID: AB_1626278 

Monoclonal anti-mouse TCRβ 
(H57-597), BV421 

Biolegend Cat#109230; 
RRID: AB_ 2562562 

Monoclonal anti-mouse TCRβ 
(H57-597), APC-Cy7 

BioLegend Cat#109220; 
RRID: AB_893624 

Monoclonal anti-mouse TCRβ 
(H57-597), PE-Cy7 

BioLegend Cat# 109222; 
RRID: AB_ 893625 

Chemicals 

DAPI (4',6-Diamidino-2-
Phenylindole, Dilactate) 

BioLegend Cat#422801 

Bromodeoxyuridine (BrdU) BioLegend Cat#423401 

DNase I from bovine pancreas Sigma-Aldrich Cat#D4513 
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EdU Thermo Fisher 
Scientific 

Cat#A10044 

Low-Tox®-M Rabbit Complement Cedarlane Cat#CL3051 

Lympholyte-M Cedarlane Cat#CL5031 

Permeabilization Buffer Plus BD Biosciences Cat#561654 

Critical Commercial Assays 

Click-iT™ Plus EdU Alexa 
Fluor™647 Flow Cytometry Assay 
Kit 

Thermo Fisher 
Scientific 

Cat#C10635 

Fixation/Permeabilization Solution 
Kit 

BD Biosciences Cat#554714 

Experimental Models: Organisms/Strains  

Mouse: C57BL/6J (WT) Janvier Labs/ 
 Charles River 

N/A 

Mouse: FUCCI (B6;Cg-
Tg(FucciSG2M)#474Bsi-
Tg(FucciG1)#639Bsi) 

RIKEN RBRC02704, RBRC02709 

Software and Algorithms 

GraphPad Prism 7 GraphPad 
Software 

https://www.graphpad.com/ 
RRID: SCR_002798 

FlowJo 10™ BD Biosciences https://www.flowjo.com/solutions/flo
wjo RRID: SCR_008520 
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Resource availability 
Lead contact  
Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contacts, A. K. (Andreas.Krueger@immu.bio.uni-giessen.de) or P. A. R. 

(philippe.robert@ens-lyon.org). 

 

Materials availability 
This study did not generate new unique reagents. 

 

Data and code availability 

The code for the mathematical model is available at https://gitlab.com/haumeapoho/thypouille 

provided together with the Moonfit package39. The raw data used for simulations is provided 

within the code repository above. 

 

Experimental model and subject details 
In vivo animal studies 
C57BL/6J (WT) mice were purchased from Janvier Labs or Charles River. FUCCI mice were 

bred at the ZFE, Goethe University Frankfurt and at the ZVTH, Justus-Liebig-University 

Giessen. For all experiments, male and female mice were used between 8-12 weeks of age. 

All animal experiments were performed in accordance with local and institutional guidelines.  

 
Method details 
Flow cytometry 
Monoclonal antibodies specific for CD4 (GK1.5), CD8α (53-6.7), CD25 (PC61.5), CD28 (E18), 

CD44 (IM7), CD69 (H1.2F3), CD71 (RI7217), CD117 (2B8) and TCRβ (H57-597) were used 

conjugated to Brilliant Violet (BV) 421, phycoerythrin (PE), peridinin chlorophyll protein-Cy5.5 

(PerCP-Cy5.5), PE-Cy7, Allophycocyanin (APC) or APC-Cy7 and were purchased from 

BioLegend. Cells were acquired using a BD FACSCanto II (BD Biosciences) and data was 

processed using FlowJo software (BD Biosciences). For data analysis, doublets and cells in 

sub-G0/G1 phase were excluded. For all panels, cells were defined as ETPs (CD117hiCD25-

CD44+), DN1 (CD25-CD44+), DN2 (CD25+CD44+), DN2a (CD117hiCD25+CD44+), DN2b 

(CD117loCD25+CD44+), DN3a (CD25+CD44-CD28- or CD25+CD44-CD71-), DN3b 

(CD25+CD44-CD28+ or CD25+CD44-CD71+), DN4 CD25-CD44-CD28+, pre-selection DP 

(CD4+CD8+CD69-TCRβ-), post-selection DP (CD4+CD8+CD69+TCRβ+), SP4 (TCRβ+, CD4+) 

and SP8 (TCRβ+, CD8+). 
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Cell preparations 
Thymi were meshed through a 70 µm cell strainer (Corning) to obtain single-cell suspensions. 

Cell numbers were determined using a CASY Cell Counter and Analyzer Model TT (Innovatis). 

 
Dual pulse labeling using EdU and BrdU 
For analysis of nucleoside analogue incorporation, mice were first intravenously injected with 

1 mg EdU (Thermo Fisher Scientific) followed by 2 mg BrdU (BioLegend) 60 min later. Then, 

thymi were harvested at indicated time points. Single-cell suspensions were stained with 

monoclonal antibodies followed by EdU and BrdU staining procedures according to the 

manufacturer’s instructions using the Click-iT™ Plus EdU Alexa Fluor™ 647 Flow Cytometry 

Assay Kit (Thermo Fisher Scientific), BD Cytofix/Cytoperm™ (BD Biosciences), 

Permeabilization Buffer Plus (BD Biosciences) and treatment with DNase I from bovine 

pancreas (Sigma-Aldrich). To detect BrdU, samples were subsequently stained with FITC-

conjugated anti-BrdU antibody (3D4, BioLegend). DNA content was analyzed by staining cells 

with DAPI (BioLegend). 

 
Thymus regeneration 
WT mice were sublethally irradiated (5.5 Gy). 6 days post irradiation, EdU/BrdU dual pulse 

labeling was performed as described before. 

 

Quantification and statistical analysis 
All statistical analysis was performed using GraphPad Prism 7 software. Statistical parameters 

including number of mice (n) and number of replicates are described in the figure legends. 

Data are represented as mean plus or minus SEM. To compare ratios of two groups, data is 

presented as % of control and error bars indicate SE of ratios calculated as 

. Analysis of significance between 2 groups of mice was performed 

using unpaired t-tests unless otherwise specified in the figure legends. For comparison 

between more than two groups, ordinary one-way analysis of variance (ANOVA) followed by 

Tukey’s test was used unless otherwise specified in the figure legends. P<0.05 was considered 

as significant. 

 
Agent-based model  
General Strategy: in vivo EdU and BrdU labeling is a complex process since cells only receive 

labeling during the S phase, whose intensity depends on the speed of DNA incorporation (i.e., 

speed of the S-phase) and the duration of bioactive labeling. Further, mitosis causes a 

decrease of label intensity and doubles the amount of labeled cells. Therefore, a quantitative 
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mathematical analysis is required. We designed a mathematical model to assess the likelihood 

(cost) of cycle phase durations (parameters) to reproduce the experimental kinetics of 

EdU/BrdU labeling (observed variables) as in the presented workflow (Fig. 4a). The model 

simulates a population of dividing cells (agents) and returns the expected labeling kinetics 

under a set of parameter values (in particular, the duration of cell-cycle phases). The extent of 

deviation between simulation and the experimental data-points defines the objective ‘cost 

value’ to be minimized. Search heuristics that test large numbers of parameter values, allow 

finding cell-cycle durations generating the minimal cost (parameter optimization), and return 

the most likely phase durations to explain the experimental dataset. In the model, we simulate 

a population of dividing cells (the agents). We simulate separately the DN2, DN3a, DN3b, DN4 

and pre-selection DPs with their own set of parameters (see Table S2). We explain how a 

simulation is performed from a hypothetical set of parameter values and how cells are updated 

over time for cell cycling, death and exit. 
Cycle phases: The time evolution of the cell cycle is defined by a time-distribution for each 

possible event. The duration of the G1, S and G2/M phase are defined by three lognormal 

laws, with mean and standard deviations named μG1, σG1, μS, σS, μG2/M, σG2/M. Phases 

that are assumed non-variable are modeled with null standard deviation. Death is assumed to 

happen with a constant probability over time and therefore follows an exponential distribution 

of parameter λ, meaning death can happen at any time with a constant probability. λ can be 

converted into a death rate δ per hour using δ = 1 / λ. A cell dies only if its time of death falls 

before it would perform mitosis. 

Cells: Two types of cells are considered. Non-cycling cells contain either quiescent cells that 

stay in the G0 phase or bystander ‘long G1’ cells that do not cycle during the time of 

experiment, while cycling cells can be in G1, S and G2/M phases. Mitosis is included inside 

the G2 phase because it is fast and hardly distinguishable from G2. During a simulation, each 

cell carries information about the timing of its own past and future events (Table S3): time of 

birth (in G1 phase), ending time of each cycle phase, and time of death. A cell is also tagged 

with its generation and its instant DNA amount (labeled or unlabeled with EdU or BrdU).  

Initialization of new cells: When a cell is created (Algorithm 1), all its events are sampled 

according to the time-distributions for the cycle phases and death. This assumes 

independence between cells: that their cell cycle is predefined at birth and is not influenced by 

dynamical factors such as changes in population size. When daughter cells are created by 

mitosis, the current time becomes their time of birth, and each following event for both cells 

are sampled once for all, from the respective death or phase duration distributions. At the start 

of a simulation, in order to start with a steady-state population of cells in each stages of the 

cell cycle, cells are generated in the middle of the cell cycle: each event is sampled and shifted 
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to the past, such that the current time falls randomly inside one of the phases proportionally to 

their duration. Finally, a quiescent cell is created by setting its state to G0 and giving ‘+∞’ as 

a time point for all phase progression events so they never happen. 

Population initialization: A population of size Ncells is simulated, with a fraction of non-

cycling cells noted q0. We assume that EdU or BrdU injections do not significantly alter 

proliferation during the time-frame of the experiment, meaning non-cycling cells are constant 

over time. Previous mathematical models for EdU labeling assumed an exponential population 

growth without exit34–36,40, which is a valid assumption in cell cultures and simplifies the 

mathematical formulation but might introduce biases in the present case. As in some 

population models of thymic development41–43, we instead assume the cells stay in a 

population for an average number of divisions Ndiv before they exit, coupled with an inflow of 

unlabelled progenitors to maintain population time. For instance, a value of Ndiv = 1.6 means 

that 40% of cells will perform one division whereas 60% perform two divisions, and Ndiv – 
floor(Ndiv) defines the fraction of cells performing one more division. 

At equilibrium, each generation contains more cells than the previous generation (provided 

death is low and the population is expanding between inflow and outflow). Therefore, if a 

population of cells would be generated by uniformly sampling generations among cells, this 

population is not stable over time. Algorithm 2 shows how to generate an initial pool of cells 

with appropriate generations. The function equilibriumGenerations calculates the 

distribution between generations at equilibrium. The average time to complete a full cycle T is 

derived from each cycle phase time distribution, and the death rate δ from the death time 

distribution. During a period of time T, the cells will expand on average 2 times by proliferation 

and die T.δ (approximation of 1 – exp(-t. δ), provided death is low). Therefore, the average 

expansion rate of the population is X = 2(1- T δ). The fraction of cells in each generation is 

calculated knowing that each generation is X times bigger than the previous one, and only a 

fraction of cells enter the last generation. The function GenerateCells then generates a 

population of Ncells cells, either non-cycling (fraction q0) or at a random phase of the cycling 

from Algorithm 1, with appropriate generations. 

Simulation of a dual pulse labeling: Algorithm 3 explains how the population of cells are 

updated at each time-step at time time, updated every dt, and assuming an instant level of 

bioavailability of EdU and BrdU. Since each cell contains the information of its future event, 

each cell t is checked for its events happening between time - dt/2 and time + dt/2. Death is 

checked first and leads to cell removal. Alive cells are updated for their DNA level depending 

on their phase (DNA levels increase linearly from 1 to 2 during the S-phase, Figure 4B). The 

newly synthetized DNA during this dt time is labeled proportionally to the current levels of EdU 
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and BrdU (! [0,1] each). Phase completion events are performed by changing the cycle state. 

At the end of the G2/M phase, if"t was not completing its last division, two new daughters are 

created at G1 with their own new events and an incremented generation compared to the 

mother cell, t, which is then removed from the simulation. If the two cells are reaching the last 

possible generation, only with chance Ndiv – floor(Ndiv) they will stay and be tagged for exit 

after the next mitosis, or exit directly (be removed). Finally, a constant inflow of unlabelled cells 

is calculated as needed to maintain the ‘generation 0’ constant, ensuring the full population to 

be constant over time. 

Identification of cell phase durations: All parameters necessary to define and perform a 

simulation are listed in Table S2. Phase durations and width are unknown and ‘fitted’ by 

parameter estimation within the given minimum and maximum boundaries, depending on the 

chosen hypothesis of phase heterogeneity (Fig. 4b). The list of fitted variables is shown in 

Table S4. The fraction of non-cycling cells q0 is either fitted (simulations with long G1 cells) or 

taken as a background value of 4% taken as an average value from experimental data. Finally, 

we chose to simulate 10,000 cells per population for the sake of computational complexity. 

EdU+ or BrdU+ cells were defined as cells with more than 0.01 of labeled DNA (on a scale from 

0 to 2). We assumed each pulse to be efficient for a duration of 45 minutes44,45.  

Each time a simulation is performed (Algorithm 4), the cost function between simulation and 

data is the Mean Standard Error (MSE) normalized for each curve separately by its average 

value along all time points, such that each curve has a balanced contribution to the total cost. 

Due to the low number of mice per time point, we did not include experimental standard 

deviations inside the cost calculation, as it was putting the weight only on points with low 

standard deviation by chance, and the fittings were not of good quality. 

We have used an evolutionary strategy algorithm as a search heuristic for parameter 

estimation, using the Moonfit framework in C++39. A population of possible parameter sets 

(individuals) is generated with uniform values within the given unknown parameter boundaries. 

Each individual also carries a mutation speed on its own for each parameter, and is associated 

with a fitness, that is, the cost of a labeling simulation performed with its parameters. New 

individuals are generated by mutation (changing parameter values) or recombination between 

two parents. Mutation followed a normal distribution sampled for all the parameters 

independently at the same time. The SBX crossover was used for recombination39, sampling 

of parents was made proportional to their fitness, defined as the competitive advantage relative 

to the current worst individual fitness. Offspring did not replace the parents, but only the best 

individuals (including parents and progeny) were kept after each round of mutations and 

recombination, to maintain the number of individuals. Each optimization was performed ten 
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times separately, using a population of 250 individuals along 100 rounds of 

generation/selection. Every round, 20 % of the population was generated as new individuals 

by cross-over, while 50 % of the population size was generated by mutation. Therefore, one 

optimization tests 25,000 possible parameter sets, each simulating the labeling of a population 

of 10,000 cells.  

Obtention of confidence intervals by bootstrapping: To estimate the uncertainty of 

identified parameters, we independently performed 10 bootstraps on the experimental dataset 

followed by parameter estimation each time. For each variable and time point, the 

experimental time points were re-sampled according to a gaussian distribution following the 

same mean and standard deviation as the experimental data. This represents how different 

would have been the experimental data if we would have repeated the full experimental 

dataset 10 times. The 95% confidence interval is shown using the average and standard 

deviation of each parameter with n = 10 using the formula: 

 

Prediction of cell-cycle modulation after irradiation: To estimate if irradiation had an 

impact on different phases of the cell cycle, we simulated side-by-side the dual-pulse labeling 

of control (CTRL) and irradiated (IRR) mice, and optimized the summed cost of both 

simulations to the respective datasets. Of note, the CTRL dataset was generated together with 

the IRR dataset and comes from distinct experiments than the kinetic labeling used in the 

previous figures (WT dataset, see supplementary data). Different hypotheses for which cycle 

phase is impacted by irradiation are considered (Fig. S5_1). The null hypothesis (‘none’) 

assumes that CTRL and IRR mice have the same cell-cycle phase durations and both 

simulations share all parameters. The ‘diff G1’, ‘diff S’, ‘diff G2/M’ assume only one phase is 

modulated by irradiation, and both CTRL and IRR simulations share all parameters except the 

duration of the respective phase. Finally, the ‘diff All’ condition assumes that all phase 

durations are impacted by irradiation and the two simulations have independent parameters. 

The condition in green boxes (Fig. S5_1) shows the minimum model complexity that explains 

the CTRL and IRR datasets with the best cost. In DN3a and pre-selection DPs, a different G1 

duration between CTRL and IRR was necessary to explain the data, but not any other phase, 

suggesting that irradiation only modulated the G1 phase. In other populations, a modulation 

of each phase was necessary to explain the data. 

Comparison of model hypotheses using AICc: For each model hypothesis (which cell 

cycle-phase is variable between cells and whether long G1 cells are allowed), we calculated 

the corrected Akaike Information Criterion (AICc) which compares the cost of the best curve 

for each hypothesis, giving a penalty to hypotheses with more parameters. The lowest AICc 
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describes the best hypothesis. The AICc is calculated with the following formula, where 

experimental data is assumed to follow a gaussian distribution, n represents the amount of 

independent fitted points (n = 44 for 4 time-points and n = 62 for 6 time-points), and k is the 

number of unknown parameters. The AICc values are shown in Table S5. 
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Figure legends: 
 
Figure 1. Single-nucleoside pulse labeling and cell cycle-reporter mice reveal 
composition and heterogeneity of cell cycle-stages in thymocyte populations. (a) 
Schematic representation of the performed experiments using in vivo BrdU single-pulse 
labeling in combination with analysis of DNA content. (b) Representative flow cytometric gating 
strategy to identify cells in G0/G1-, S- or G2/M-phase. (c) Frequencies of cells in G0/G1-, S- 
or G2/M-phase of murine WT thymocyte subpopulations, n = 3 mice. (d) FUCCI gating strategy 
and profiles of WT thymocyte subpopulations. Gates were defined as G1early (grey, mAG-

mKO2-), G1int (purple, mAG-mKO2+), G1late/G0 (yellow, mAG-mKO2++), transit (black, 
mAG+mKO2+) and S (green, mAG+mKO2-). (e) Frequencies of FUCCI cell subsets as defined 
in (d) of WT subpopulations, n = 6 mice. 

Figure 2. Dual-nucleoside pulse labeling reveals rates of S-phase entry. (a) Schematic 
overview and representative flow cytometric gating strategy of in vivo dual-pulse labeling. Mice 
received consecutive pulses of EdU and BrdU 1 h apart. Analyses were performed 1 h after 
the second pulse. Thymocytes in S phase during both pulses appear as double positive, 
EdU+BrdU+ (orange, mid/late S phase). EdU- or BrdU-single positive thymocytes represent 
cells which have ceased DNA replication and left S phase (EdU+, blue, post S phase) or newly 
entered S phase during the second pulse (BrdU+, green, early S phase), respectively. (b-e) 
Graphs show frequencies of EdU+BrdU+ cells (b), EdU-BrdU+ cells (c), EdU+BrdU- cells (d) and 
EdU-BrdU- cells (e) of murine WT thymocyte subpopulations, n = 6-20 mice of two independent 
experiments. 

Figure 3. High resolution tracking of virtually synchronized cells using dual-pulse 
labeling combined with DNA content analysis over time informs on the duration of 
individual cycle phases. (a) Schematic overview and representative flow cytometric gating 
strategy of in vivo dual-pulse labeling. Mice received consecutive pulses of EdU and BrdU 1 h 
apart as described in Figure 2. Subsequent analyses were performed 1, 2, 4, 6, 16 or 20 h 
after the second pulse. DNA staining was performed to identify cell cycle-states. (b) 
Representative flow cytometric histograms visualize the DNA content of DN3a and DN4 
thymocytes of WT mice over time. Each plot depicts an overlay of the DNA content of EdU-

BrdU+ (green), EdU+BrdU+ (orange) and EdU+BrdU- (blue) cells. (c) Statistical analysis of WT 
thymocyte subpopulations to assess S-phase duration based on RM values of EdU-BrdU+ cells 
(early S phase) over time (green dots). The green line represents a linear regression. Numbers 
adjacent to linear regression show S-phase time in h calculated based on the linear regression, 
n = 3-5 mice for each time point, data from 2 independent experiments. (d) Quantification of 
S-phase re-entry of EdU+BrdU- WT thymocyte subpopulations over time, n = 4-5 mice for each 
time point, data from 2 independent experiments. (e) Total cell cycle-length and cell cycle-
phase composition of different WT thymocyte subpopulations. For DN3a, DN3b, DN4 and pre-
selection DP thymocytes, length of G1 phase was calculated based on RM values of 
EdU+BrdU- S-phase cells at later time points (dark grey). S-phase length (green) was 
determined as shown in (c). 

Figure 4. Modeling thymocyte population dynamics based on high-resolution cell cycle-
analysis. (a) Workflow for phase duration inference. Left: The agent-based mathematical 
model (ABM) simulates cell cycle-progression using lognormal time distributions for phase 
durations and a constant death rate as an exponential distribution. A fraction of bystander cells 
that do not incorporate EdU nor BrdU, termed ‘long G1 cells’ can be considered. Center: DNA 
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linearly increases during the S phase and is labeled in the presence of EdU or BrdU, whose 
bioactivity is modeled as two step-functions. In silico single-cell profiles for EdU and BrdU 
labeling mirror those generated experimentally by flow cytometry. Right: A cost (likelihood) 
evaluates the quality of a simulation compared to the data. Parameter estimation algorithms 
iteratively find the cell cycle-durations that best explain the data. (b) Comparison of cell cycle-
heterogeneity hypotheses for the DN3b population. ‘none variable’ hypothesis: all cells share 
the same duration for a phase. Under other hypotheses, one or multiple phases are allowed 
to be variable between cells. The cost and curves of 10 independent fittings for each 
hypothesis are shown (see Figure S3_1 and S3_2 for details). Training data-points are 
annotated in light blue (‘learnt’), and those only in the validation dataset are annotated in dark 
blue (‘predicted’). For the DN3b population, a heterogeneity in the G1 (but not other phases) 
is required to explain the curves with minimal cost. The hypothesis ‘all variable’ does not 
improve the quality of the simulation compared to the data. (c) Identifiability analysis of the 
found phase durations by profile likelihood for the DN3b population: the cost of the simulations 
is shown after fixing the value of each cycle phase duration separately (x axis) while other 
cycle phases are estimated. A minimum in a curve shows that there is a unique cell-cycle 
duration that best explains the data, meaning that the dataset was rich enough to identify the 
phase duration. A flat curve would mean that different values for the phase duration (x axis) 
explain the data equally well (same cost), i.e the duration cannot be identified. Blue: training 
dataset only; Red: train and test datasets. The cell-cycle durations (curve minima) found using 
the training dataset are the same as those found with the full dataset. (d) Identified durations 
of cell-cycle phases for each population. The identified percent of ‘long G1’ cells is shown in 
grey. 

Figure 5. Decision to re-enter S phase after one round of cycling defines cell-cycle 
heterogeneity. (a) Schematic representation of experiments. FUCCI DN3a thymocytes were 
sorted based on the presented gating strategy as G1early (grey, mAG-mKO2-), G1int (purple, 
mAG-mKO2+) and S (green, mAG+mKO2-). Target populations were cocultured on OP9-DL1 
feeder cells for up to 24 h and FUCCI cell-cycle profiles were assessed by flow cytometry every 
2 h. (b) Representative dot plots of G1early (grey, mAG-mKO2-), G1int (purple, mAG-mKO2+) and 
S (green, mAG+mKO2-) DN3a thymocytes at indicated time points. (c-e) Graphs show 
frequencies of cells of the indicated target populations and their corresponding FUCCI profiles 
over time with (c) G1early (grey, mAG-mKO2-), (d) G1int (purple, mAG-mKO2+) and (e) S (green, 
mAG+mKO2-). Pooled data from two independent experiments. (f) Identification of speed of 
DNA incorporation in cells re-entering the S phase. The distribution of DNA in the populations 
of interest is shown in logarithmic scale and rescaled between 2N and 4N using 2 h as 
reference for 2N. A mixture of two gaussians of unknown mean and standard deviation were 
fitted to the distribution using the mixdist R package. The percentage of cells as well as the 
average DNA level of cells covered by each gaussian is shown for the displayed data (n = 1-
3).  

Figure 6. Population-specific cell cycle phase alterations determine thymus 
regeneration. (a) Schematic model of experiments. Ctrl and sublethally irradiated WT mice 
were administered EdU and BrdU 6 days post irradiation. Subsequent analysis including DNA 
content analysis was performed 1, 2, 4 or 6 h after the second pulse as described before. (b-
d) Top: Frequencies of EdU+BrdU+ cells (b), EdU-BrdU+ cells (c) and EdU+BrdU- cells (d) of 
thymocyte subpopulations of irradiated mice, n = 14-15. Bottom: data is presented as % of ctrl 
(bottom row) with n = 16 ctrl mice and n = 14-15 irradiated mice. (e) Statistical analysis of 
irradiated WT thymocyte subpopulations to assess S-phase time duration based on RM values 
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of BrdU+ cells (early S phase) over time (green dots). The green line represents a linear 
regression. The black line shows the corresponding ctrl. Numbers adjacent to linear regression 
show the difference in S phase time in h between ctrl and irradiated WT mice, with n = 4 ctrl 
mice and n = 1-4 irradiated WT mice for each time point. Analysis of significance between ctrl 
and irradiated WT mice was performed using unpaired t-test for the latest time point. (f) Box 
plots show total cell cycle length ratio of irradiated vs ctrl WT thymocyte subsets. (g) Box plots 
show G1- (left) or S-phase length (right) ratio of irradiated vs ctrl thymocyte subsets. 
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