
Introduction

Traditionally, relational databases are required

to explicitly capture the reality of a particular

domain, meaning that all relevant facts need to

be stored in the database in order to be queried

by the user. However, this so-called closed-world

assumption significantly limits the ways in which

the information in a database can be used.

For example, think of a database that stores

information about movies and their revenues.

While a breakdown of the revenue by director

might be an interesting query a user wants to

issue, this information might not be stored in

the database. Today, the only way to make addi-

tional information available for querying or

other downstream tasks (e.g., training a

Machine Learning (ML) model) is to explicitly

integrate additional data sources into the data-

base, which requires extensive manual efforts

for every data source.

Idea and Simple Example

In this paper, we thus present our vision of

OmniscientDB, an open-world Data Base Mana -

gement System (DBMS) that can automatically

augment existing databases with world knowl-

edge for the execution of Structured Query

Language (SQL) queries. To do so, Omni scient -

DB can not only generate additional tables on-

the-fly but also complete existing tables with

user-requested rows or columns. To enable

this, OmniscientDB makes use of the world

knowledge that is implicitly stored in large lan-

guage models (LLMs, e.g. GPT-3 (Brown et al.,

2020)).

To illustrate the benefits of OmniscientDB by an

example, imagine a data scientist trying to ana-

lyze the revenues of recent movies as mentioned

before. For the questions of the data scientist,

important information like the starring actors or

directors, however, is not contained in the data

set, despite their potentially large impact on the

movies’ revenues. While traditionally such infor-

mation would need to be explicitly integrated

first, with OmniscientDB the data scientist could

simply use the knowledge stored in the LLM

for augmentation. For instance, OmniscientDB

could automatically generate the missing infor-

mation about the actors starring in the movies,

allowing a more extensive analysis.

Virtual Tables

OmniscientDB leverages the knowledge im -

plicitly stored in the parameters of LLMs for

augmentation and makes it available for query-

ing via SQL using so-called virtual tables. Virtual

tables can be treated by users just like tradi-

tional tables in relational databases, e.g. they

can be used as operands in traditional query

operators.

However, they are not explicitly stored in the

database but instead act as a proxy for the

knowledge stored in LLMs. For instance, in the

example above, the user is able to join the

movies table with the virtual actors table to gen-

06 efl | insights 02 | 2023

OmniscientDB: A Large Language
Model-Augmented DBMS That Knows
What Other DBMSs Do Not Know
WE PRESENT OUR VISION OF OMNISCIENTDB, A NOVEL DATABASE THAT LEVERAGES

THE IMPLICITLY STORED KNOWLEDGE IN LARGE LANGUAGE MODELS TO AUGMENT

DATA SETS FOR ANALYTICAL QUERIES OR MACHINE LEARNING TASKS. OMNISCIENTDB

EMPOWERS USERS TO AUGMENT DATA SETS BY MEANS OF SIMPLE SQL QUERIES AND

THUS HAS THE POTENTIAL TO DRAMATICALLY REDUCE THE MANUAL OVERHEAD

ASSOCIATED WITH DATA INTEGRATION. IT USES AUTOMATIC PROMPT ENGINEERING

TO CONSTRUCT APPROPRIATE PROMPTS FOR GIVEN SQL QUERIES AND PASSES THEM

TO A LARGE LANGUAGE MODEL LIKE GPT-3 TO CONTRIBUTE ADDITIONAL DATA, AUG-

MENTING THE EXPLICITLY STORED DATA. OUR INITIAL EVALUATION DEMONSTRATES

THE GENERAL FEASIBILITY OF OUR VISION, EXPLORES DIFFERENT PROMPTING

TECHNIQUES IN GREATER DETAIL, AND POINTS TOWARDS FUTURE RESEARCH.

Matthias Urban Duc Dat Nguyen

Carsten Binnig

Research Report

Figure 1: SQL Query That Joins a Movies Table Stored in the Database with an Actors Table Implicitly Stored in

the Weights of a LLM (e.g., GPT-3).

SELECT movies . revenue, actors . actor FROM movies JOIN actors

Virtual tables stored in
GPT-3 / PaLM / ...Tables stored in DB

Actors

Directors
Revenue

Result

Actor

USD 2.74 billion Zoe S

USD 2.74 billion Sam W

... ...

Movie

Movies

Genre

Avatar Sci-Fi

Revenue

USD 2.74 billion

...

=

Q-02_2023_efl-News_15 23.06.23 22:55 Seite 6

erate additional information about actors, as

shown in Figure 1. The information about actors

is materialized on-the-fly during the execution

of the query.

Virtual tables are an easy way for the data

scientist to also take actor information into

account to perform the analysis.

In particular, it is important to mention that

this way of augmenting data sets comes with

almost zero manual overhead. The data scien-

tist just has to formulate a SQL query involving

virtual tables, and the database will automati-

cally generate the necessary information to per-

form the join.

The knowledge available in OmniscientDB via

virtual tables is obviously bound by the knowl-

edge stored in LLMs. However, recent LLMs

have been trained on huge data sets and by now

scale to hundreds of billions of parameters

(Brown et al., 2020; Chowdhery et al., 2023),

leading to tremendous amounts of knowledge

stored in their parameters. In the Challenges

Section, we will discuss further opportunities

how LLMs can tap into knowledge not stored in

their parameters.

Case Study

To show the general feasibility of OmniscientDB,

we present a case study in which we examine

the quality of materialized LLM knowledge for

virtual tables. To materialize knowledge from

LLMs, we automatically generate so-called

prompts, which are short strings we provide as

input to the LLM. The LLM is trained to com-

plete such prompts and thereby reveal the

knowledge stored inside of it. In the case study,

we examine different variations on how prompts

for virtual tables can be generated on different

real-world data sets. All experiments for the

case study are performed with the GPT-3

davinci model by OpenAI.

Structured Prompts vs. NL Prompts

Our default way of creating prompts to extract

data for columns of a virtual table is to linearize

entire table rows to obtain a (structured)

prompt as follows:

Title: Ant man | Year: 2017 | ... | Actors:
This prompt would let the LLM generate all

main actors appearing in Ant man. However,

since LLMs are pre-trained on natural lan-

guage, we might obtain better results by using

prompts that are the beginning of natural lan-

guage sentences (NL prompts). Prompts in NL

for database operations are hard to obtain

though since they require formulating the infor-

mation in the table as NL sentences. They

either have to be created manually, or by using

templates, or they could be the output of a

sequence-to-sequence ML model. On the other

hand, they might result in gener ated values of

higher quality.

To find out if it makes sense to put the effort

into constructing good NL prompts, we com-

pare structured prompts with NL prompts in a

simplified setting. We consider a table with a

single explicitly stored column and would like to

add more columns using LLM knowledge. For

data sets, we use the cities data set (1,000

largest cities; Kaggle, 2017), where the single

column is the City Name and we want to add

columns for Longitude and Latitude.

Additionally, we use the IMDB Movies data set

(first 1,000 movies; OpenML, 2022), where the

single column is the movie Title, and the LLM

should generate values for the Release Year,

Genre, Runtime, Actors and Director. Hence,

we cover two wildly different domains and a

variety of data formats such as text, float num-

bers, and dates. In this case, the structured

prompts, as introduced before, result in

prompts like Title: Avatar | Runtime:, while the

NL prompt is The runtime of Avatar is. For this

initial evaluation, we measure how many cells

are filled correctly and report an accuracy value

averaged over all cells. Longitude and Latitude

(for the city data set) are considered correct if

the difference to the ground truth value is below

0.1 and for columns where we expect multiple

values (e.g., Genre) cells are considered cor-

rectly filled if the model predicts at least one

correct value.

The result (Table 1) shows that, perhaps sur-

prisingly, structured prompts perform better

than NL prompts. For the movies table the dif-

ference is almost 20% in accuracy. Hence, we

decide to use structured prompts, since they

are easier to generate and yield more accurate

generated values.

Variants of Structured Prompts

Next, we investigate what information should be

part of the prompt to obtain generated values of

high quality. We fix the type of prompt to struc-

tured prompts and consider two kinds of in -

formation to add to the prompt: row information

and example values. In our prompt, as described

in the beginning of this section, we linearize

entire rows to obtain the prompts and thus

already include the full row information in the

prompt (Prompt: Title: Ant man | Year: 2017 | ...
| Runtime:).

We compare this prompt with a minimal prompt

that only includes the value for the first attribute

(Prompt: Title: Ant man | Runtime:). On top of

that, we explore how additional example values

(e.g., runtimes of other movies) affect the qual -

ity of the extraction. Hence, we construct

prompts that always begin with two example

rows that contain a value for the column to be

materialized. For the movies data set, a prompt

might look like this:

07efl | insights 02 | 2023

Table 1: Accuracy of Natural Language Prompts and

Structured Prompts on the Two Data Sets Cities and

Movies.

Cities Movies

Natural Language
Prompt 64.65% 51.70%

Structured
Prompt 71.65% 71.58%

Q-02_2023_efl-News_15 23.06.23 22:55 Seite 7

Title: Avengers: Endgame | ... | Runtime: 2h 23m
Title: Spiderman: Homecoming | ... | Runtime:
2h 13m
Title: Avatar | Runtime:

Table 2 shows that prompts including row infor-

mation help the model identify the piece of

knowledge that it should generate and provide

example values whenever they are available.

Challenges

Due to the vast amount of knowledge stored in

the parameters of LLMs, they present ample

opportunities to augment existing data sets as

presented in our case study. However, they also

pose unique challenges as we explore in the fol-

lowing:

External Knowledge

While large LLMs store large amounts of pub-

licly available knowledge, they are still far from

being omniscient. In particular, knowledge has

to be present sufficiently often in the pre-train-

ing data set such that the LLM is able to recall

it. To make OmniscientDB live up to its name, it

has to be able to also tap into external knowl-

edge not stored in its weights. For instance, if

LLMs are able to access open data sets on the

Web or private data sets in data lakes, they

would be able to augment the data sets at hand

much more effectively. Fortunately, work on

retrieval-augmented language models (Guu et

al., 2020) has shown that it is in principle pos -

sible to let LLMs utilize external knowledge.

More recently, researchers have even proposed

language models that search the Web (Nakano

et al., 2023). However, it is not yet clear how

LLM can be used to retrieve structured data

sets (i.e., tables) and not only NL passages from

external corpora.

Trust & Hallucination

Probably the most critical challenge is that

LLMs are known to suffer from hallucination, a

phenomenon where LLMs generate non-factual

statements. In the context of OmniscientDB,

this means that it might generate values during

the materialization of virtual tables that sound

plausible but are not actually correct. This not

only reduces users’ trust in the augmentation of

OmniscientDB but might also negatively affect

downstream analytical queries or ML applica-

tions. However, it is already possible to extract

well-calibrated certainty scores from LLMs

(Kadavath et al., 2023), which could be used to

detect hallucinations. As such, there already

exist techniques to mitigate the risks of LLMs

and future research will further reduce the

amount of generated values that are factually

wrong. For applying these trends to the genera-

tion of structured data like table rows or

columns, as considered here, again additional

research will be needed.

Conclusion

OmniscientDB is our vision of how the knowl-

edge stored in the parameters of LLMs can be

integrated into databases. The concept of virtu-

al tables allows users to seamlessly integrate

such knowledge into their existing data sets

with just a few SQL queries and without any

manual overhead. In our case study, we showed

the general feasibility of our ideas by experi-

menting with different automatically-generated

prompts to materialize virtual tables and

columns. However, several interesting research

challenges lie ahead to further enhance the

usefulness of OmniscientDB. In particular, we

are interested in how language models that are

able to independently search the Web could

enable an entirely automated data augmenta-

tion process, where materialized columns and

tables are not bound by the knowledge that can

be stored in model parameters, but by knowl-

edge accessible via the Internet.

References

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.;

Kaplan, J. D.; et al.:

Language Models Are Few-Shot Learners.

In: Proceedings of the 34th International Con -

ference on Neural Information Processing

Systems (NeurIPS); Vancouver, Canada, 2020.

Chowdhery, A.; Narang, S.; Devlin, J.; Bosma,

M.; Mishra, G.; et al.:

Palm: Scaling Language Modeling with Path ways.

Working Paper, 2023.

Guu, K.; Lee, K.; Tung, Z.; Pasupat, P.; Chang, M.:

Retrieval Augmented Language Model Pre -

training.

In: Proceedings of the 37th International Confe -

rence on Machine Learning (ICML); Vienna,

Austria, 2020.

Kadavath, S.; Conerly, T.; Askell, A.; Henighan,

T.; Drain, D.; et al.:

Language Models (Mostly) Know What They Know.

Working Paper, 2023.

Kaggle:

World Cities Database, https://www.kaggle.

com/datasets/max-mind/world-cities-data-

base?resource=download, 2017.

Nakano, R.; Hilton, J.; Balaji, S.; Wu, J.;

Ouyang, L.; et al.:

Webgpt: Browser-Assisted Question-Answering

with Human Feedback.

Working Paper, 2023.

OpenML:

IMDB Movies Dataset, https://www.openml.

org/search?type=data&status=active&id=43603

&sort=runs, 2022.

08 efl | insights 02 | 2023

Table 2: Accuracy of Different Structured Prompts on

the Two Data Sets Cities and Movies (+ Row Info

Includes Additional Information from the Same Row;

+ Examples Includes Example Values for the Column

to Be Materialized).

Cities Movies

minimal 71.65% 71.58%

+ row info 75.00% 80.18%

+ examples 73.65% 79.78%

Q-02_2023_efl-News_15 23.06.23 22:55 Seite 8

