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Preface

This thesis deals with several aspects of non-perturbative calculations in low-dimensional quantum
field theories. It is split into two main parts:

The first part focuses on method development and testing. Using exactly integrable QFTs in
zero spacetime dimensions as toy models, the need for non-perturbative methods in QFT is
demonstrated. In particular, we focus on the functional renormalization group (FRG) as a non-
perturbative exact method and present a novel fluid-dynamic reformulation of certain FRG flow
equations. This framework and the application of numerical schemes from the field of compu-
tational fluid dynamics (CFD) to the FRG is tested and benchmarked against exact results for
correlation functions. We also draw several conclusions for the qualitative understanding and
interpretation of renormalization group (RG) flows from this fluid-dynamic reformulation and dis-
cuss the generalization of our findings to realistic higher-dimensional QFTs.

The topics discussed in the second part are also manifold. In general, the second part of this
thesis deals with the Gross-Neveu (GN) model, which is a prototype of a relativistic QFT. Even
though being a model in two spacetime dimensions, it shares many features of realistic models
and theories for high-energy particle physics, but also emerges as a limiting case from systems in
solid state physics. Especially, it is interesting to study the model at non-vanishing temperatures
and densities, thus, its thermodynamic properties and phase structure.

First, we use this model to test and apply our findings of the first part of this thesis in a realistic
environment. We analyze how the fluid-dynamic aspects of the FRG realize themselves in the RG
flow of a full-fledged QFT and how we profit from this numeric framework in actual calculations.
Thereby, however, we also aim at answering a long-standing question: Is there still symmetry
breaking and condensation at non-zero temperatures in the GN model, if one relaxes the commonly
used approximation of an infinite number of fermion species and works with a finite number
of fermions? In short: Is matter (in the GN model) in a single spatial dimension at non-zero
temperature always gas-like?

In general, we also use the GN model to learn about the correct description of QFTs at non-zero
temperatures and densities. This is of utmost relevance for model calculations in low-energy quan-
tum chromodynamics (QCD) or other QFTs in medium and we draw several conclusions for the
requirements for stable calculations at non-zero chemical potential.

In any case, both parts come with thorough motivations, introductions, and conclusions and can
be studied mostly independently of each other. Either way, the first part can be considered as
a standalone work. It is written in a pedagogical manner and may be used as an introduction
into the fluid-dynamic framework to the FRG by readers with FRG knowledge, but also as a first
introduction for novices in QFT and FRG. The style of the second part is different and basic
knowledge about QFT and FRG is required. Nevertheless, especially the second part comes with
multiple appendices, which comprise all details of the explicit calculations. This ensures that QFT
practitioners, who are not experts on the topic, can in principle follow each step of the calculations.
Still, a lot of the numerical calculations are based on the fluid-dynamic framework for FRG, which
was put forward in the first part. However, if one is exclusively interested in the physics and
results, one does not necessarily need to read the first part in advance.
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Zusammenfassung in deutscher
Sprache

Die Vorhersage von makroskopischen (thermodynamischen) Observablen aus mikroskopischen
Theorien ist eine der zentralen Aufgaben in der Quantenfeldtheorie (QFT). Hierbei stellt insbeson-
dere die Berechnung von Observablen in stark wechselwirkenden Systemen noch immer eine sehr
grofle Herausforderung dar. Dies gilt insbesondere fiir Systeme bei nicht-verschwindenden (niedri-
gen) Temperaturen und grofien Nettoteilchendichten, z.B. bei der Berechnung von Phasendiagram-
men. Beispiele fiir solche Systeme finden sich sowohl im Bereich der (nicht-relativistischen) Fes-
tkorperphysik als auch der Hochenergiephysik. In letzterem Bereich ist insbesondere die Beschrei-
bung der starken Kernkraft durch die Quantenchromodynamik (QCD) bei nicht-verschwindenden
chemischen Potentialen und Temperaturen von besonderem experimentellem und theoretischem
Interesse, da diese die Zustédnde von Kernmaterie maflgeblich bestimmt.

In jedem Fall versagen im Kontext von stark wechselwirkenden Systemen bewéhrte storungsthe-
oretische Ansétze. Diese liefern zwar fiir den Fall sehr kleiner Kopplungen herausragende Resul-
tate, lassen sich jedoch nicht auf Systeme mit multiplen (unendlich vielen) Kopplungen beliebiger
Groflenordnung anwenden. In diesem Fall ist es notwendig, auf sogenannte nicht-perturbative
Methoden zuriickzugreifen. Neben der direkten numerischen Berechnung von Erwartungswerten
iiber aufwendige Gitter-Monte-Carlo-Simulationen, welche jedoch hdufig bei hohen chemischen
Potentialen ihre Vorhersagekraft verlieren, bieten sich funktionale Methoden an. In dieser Arbeit
ist die Funktionale Renormierungsgruppe (F(RG)) zur Berechnung von Korrelationsfunktionen
von besonderem Interesse. Diese erlaubt das sukzessive Ausintegrieren von Quantenfluktuationen,
startend bei der mikroskopischen Theorie im ultravioletten Energiebereich und endend bei einer
effektiven makroskopischen Theorie und ihren Observablen im infraroten Energiebereich.
Urspriingliches Ziel dieser Arbeit war die Anwendung der FRG auf Niederenergiemodelle fiir QCD
zur Beschreibung der Phasenstruktur von Kernmaterie bei moderaten Temperaturen und hohen
Dichten, wie sie beispielsweise in kompakten Sternen vorliegen. Wahrend der Arbeit stellte sich je-
doch heraus, dass insbesondere zur Beschreibung von nicht-analytischen Strukturen, welche in den
RG-Flussgleichungen, z.B. bei hohen chemischen Potentialen oder in der Ndhe von Phaseniibergén-
gen, auftreten konnen, Weiterentwicklungen von bislang verwendeten (numerischen) Methoden fiir
diese sehr speziellen, nicht-linearen partiellen Differentialgleichungen (PDGen) notwendig wur-
den. Im Speziellen kann gezeigt werden, dass sich RG-Flussgleichungen (in bestimmten Modellen
und Niaherungen) in echte abstrakte fluiddynamische Gleichungen umformen lassen. So kénnen
z.B. RG-Fliisse von lokalen bosonischen Potentialen durch Advektions-Diffusions-Gleichungen mit
Quellen und Senken beschrieben werden. In direkter Konsequenz kann nicht nur die Dynamik
wahrend des RG-Flusses im Feldraum voll fluiddynamisch interpretiert und analysiert werden,
sondern auch auf die hochentwickelten Methoden aus der numerischen Strémungsmechanik fiir die
Losung der PDGen zuriickgegriffen werden.

FEin zentrales Ziel dieser Arbeit ist es daher, die fluiddynamische Formulierung von RG-Fluss-
gleichungen weiterzuentwickeln und Methoden aus der numerischen Stréomungsmechanik an diese
anzupassen, anzuwenden und zu testen. Da jedoch die praktische Anwendung von FRG auf Quan-
tenfeldtheorien fast immer Trunkierungen der (in der Regel unendlichen) Systeme von PDGen
beinhaltet und héufig fiir realistische QF Ten keine exakten Vergleichswerte berechnet werden kon-
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nen, ist es notwendig, hierfiir Systeme zu betrachten, in welchen sowohl exakte Referenzwerte
berechenbar sind als auch die FRG-Flussgleichungen exakt (untrunkiert) als PDG betrachtet wer-
den konnen. Zugleich ist es fiir realistische Tests notwendig, hinreichend komplizierte Systeme zu
verwenden.

Der erste Teil dieser Arbeit befasst sich daher mit skalaren QFTen mit beliebig komplizierten
,mikroskopischen* Wirkungen in einem einzelnen Raumzeitpunkt. Anhand dieser Theorien wird
zunéchst in der Arbeit die Notwendigkeit von nicht-perturbativen Methoden demonstriert. An-
schlieBend wird die FRG und ihre fluiddynamische Reformulierung prasentiert. Kern der Un-
tersuchung von Teil I ist eine ausgiebige Diskussion der direkten qualitativen Konsequenzen
der fluiddynamischen Formulierung, wie z.B. dem Anwachsen von Entropie wédhrend der RG-
Fliisse sowie der Anpassung einer etablierten Finite-Volumen-Diskretisierung an die spezielle RG-
Flussgleichung. Den Abschluss des ersten Teils der Dissertation bilden ausgiebige numerische
Benchmark-Tests sowie Diskussionen zur Ubertragbarkeit und Anwendbarkeit der entwickelten
Methoden auf hoherdimensionale realistische Systeme.

Der zweite Teil der Dissertation befasst sich mit ebenjener Anwendung von mitunter in Teil I
entwickelten Methoden auf das (141)-dimensionale Gross-Neveu (GN)-Modell im Medium. Das
GN-Modell stellt eine vollwertige Quantenfeldtheorie dar, welche viele Eigenschaften mit QCD
teilt, Ankniipfungspunkte an Modelle der Festkorperphysik bietet und in welcher in verschiedenen
Grenzwerten exakte Losungen bekannt sind. Es eignet sich somit ideal als erster realistischer
Anwendungstest. Im Speziellen boten die neu entwickelten Methoden im Rahmen der FRG die
Chance, zur Beantwortung der lange ungeklarten Frage beizutragen, ob es im GN-Modell abseits
des strikten Limes ,unendlich vieler Fermionen* bei nicht-verschwindenden Temperaturen Kon-
densationseffekte und Phaseniibergénge iiberhaupt geben kann. In Teil IT dieser Arbeit gelang es
(innerhalb der verwendeten Néherungen) zu zeigen, dass die lange bestehende Vermutung, dass
dies nicht moglich sei, korrekt ist. Des Weiteren wurde die Analyse des GN-Modells zur Weiteren-
twicklung der sogenannten Stabilitdtsanalyse zur Detektion rdumlich inhomogener Kondensation
verwendet sowie die Effekte verschiedener Trunkierungen und Néherungen auf die Vorhersage von
Kondensationseffekten diskutiert.
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Chapter 1

Introduction

Abstract This chapter provides an introduction and brief motivation for why we are dealing
with zero-dimensional QFTs to this extent in a Ph.D. thesis. We explain why zero-dimensional
models are on the one hand ideal for pedagogical introductions into methods of statistical physics
and QFT, but — more importantly — are also perfectly suited for benchmark tests of some of these
methods.

Afterwards, we present some works and applications that are (at least partially) built on zero-
dimensional models in QFT.

Disclosure The introduction is based in parts on our own publications [1, 2, 3]. References in
this chapter are mostly exemplary or have the character of reviews and the citations do not aim
to be complete.

1.1. Introduction — the everyday challenges of QFT practi-
tioners

In statistical mechanics and modern QFT we are oftentimes confronted with the problem of com-
puting expectation values or correlation functions for physical observables from a partition of
probabilities among the various microscopic states of system [11, 12, 13]. Mathematically this
is usually realized in terms of an evaluation of nested sums and complicated high-dimensional
integrals over probability distributions.

On the one hand, there are not too many systems where these calculations can be cleverly done by
pen and paperwork. On the other hand, also brute-force numerical evaluation is not always feasible
or comes along with tremendous demand for computer power and the need for modern Monte-
Carlo integration techniques [14, 13]. Usually this is due to the highly involved structure of the
microscopic actions, which enter the probability distributions, as well as the high dimensionality
of the involved integrals.

In QFT another conceptual aspect that complicates calculations significantly is the general imprac-
ticality of Monte-Carlo integration in an infinite volume and in spacetime continuum. However,
restricting the theories and computations to some finite-sized spacetime box and discretizing space-
time by the introduction of a spacetime lattice with a minimal length-scale regulates infinities,
which stem from otherwise arbitrarily large and small momenta and energies of the particles/fields
in Fourier space [15, 14]. This enables numerical Monte-Carlo integration in the first place, but
also modifies the quantitative results directly. Another indirect effect, which goes hand in hand
with lattice regularizations, is usually the breaking of certain properties of a theory (usually sym-
metries), which additionally modifies the outcome of the calculations. Hence, it is required to
repeatedly perform calculations with lattices of different size, shape, and at different lattice spac-
ing, and to carefully extrapolate to infinite volume and the continuum afterwards, in order to
finally obtain reliable predictions for observables, where these artifacts are removed.
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On top of these challenges the mathematical description of some QFTs requires to introduce terms
into the microscopic actions which render the probability distributions complex and completely
impede common statistical integration techniques. This is oftentimes the case for studies of QFT
in medium at non-zero chemical potential and is referred to as the “sign problem”[16, 17]. It occurs
in various contexts from non-relativistic condensed matter systems to QCD. Among other things
these challenges lead to the development of a huge toolbox of (numerical) methods, which eventu-
ally either work around the direct computation of the high-dimensional integrals or significantly
improve or modify the established lattice Monte-Carlo integration techniques.

1.1.1. Solving functional integrals without solving functional integrals

Historically, one of the first approaches was to treat the computation of correlation functions from
path or functional integrals perturbatively [18, 19, 20, 21, 22]. Right from the start this was
restricted to theories with a small number of tiny couplings. Hence, perturbative methods are
completely inappropriate for systems in their strongly coupled regime with a potentially large or
infinite amount of couplings of any scale — which is anyhow repeatedly ignored even in nowadays
research. Additionally it is known that even an expansion in small couplings does ultimately
not converge [23], even though the inclusion of only the lowest orders can lead to remarkable
results as can be seen for example from Quantum Electrodynamics [19, 24, 25]. Also all kinds
of resummation techniques, which structure the summation of perturbative contributions and
overcome the non-convergence of perturbation series, were developed and surely have valid scopes
of application in this context. Otherwise, in the field of modern lattice Monte-Carlo simulations
recent developments comprise so-called reweighting techniques to probe topological ground states
[26] or calculations at imaginary chemical potential with extrapolation to real chemical potential
to tackle the sign problem [27] etc..

Anyhow, also many alternative non-perturbative methods emerged to perform computations in
strongly interacting systems.! These include large-N techniques [28, 29, 30, 31, 32], where the
dimensionless expansion parameter is no longer a coupling, but the inverse number of certain
degrees of freedom of the system. This is also known as the method of Laplace or saddle-point
expansion in statistics [33] and we are dealing with this method several times in this thesis.
Then there are functional methods like Dyson-Schwinger equations (DSE) [34], the Bethe-Salpeter
equation [25] or the FRG [35], but also effective field theories or other systematic frameworks like
chiral perturbation theory [36, 37], QCD sum rules [38], current algebra techniques [39] etc..
Within the last decades so-called holographic methods, such as the AdS/CFT correspondence [31,
40, 41], gained in importance and are in nowadays part of the standard curriculum.

1.1.2. Knowing the limitations

However, all of these methods come with advantages and disadvantages as well as certain limita-
tions. Thus, it is absolutely essential to have estimates on shortcomings, the range of reliability as
well as accuracy of a method, before using it in an unknown and uncontrolled environment. Such
ranges of applicability and estimates for the precision are usually worked out from benchmark
tests with problems and models whose solutions are known exactly. Thereby it is crucial that
these tests encompass, if possible, the hardest plausible scenarios and limiting cases one can think
of. In various areas of engineering, natural and computer science, as well as finance this leads
to minimal specifications that need to be fulfilled by technical solutions to be later on considered
trustworthy for applications in well-defined scopes of application.

Anyhow, in fundamental research, where both, the methods as well as the fields of application,
are oftentimes still in an exploratory status, the above approach is not always strictly practicable.
In consequence, predictions from such studies should usually be taken with a grain of salt. (This
certainly also applies to the work of the author and certain research areas of high-energy particle
physics, which is the author’s profession.)

1Here, the references and methods are mostly from the context of high-energy particle physics.
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Howsoever, this does by no means imply that research in such fields is free from steadily trying to
improve their methods and from searching for reasonable test cases, which is, however, oftentimes
considered as tedious and little productive with respect to (w.r.t.) to new phenomenology. This
is because sometimes one has to take a few steps back, reduce the complexity of the problems to
well-controlled toy models, and reanalyze the seemingly established techniques from a different
perspective.

Exactly this is done in Part I of this thesis and the underlying publications [1, 2, 3]. This thesis is
therefore a minor contribution to the general aim of steadily advancing techniques and methods.
In particular, we are focusing on the FRG method and in parts also on the infinite-IN technique.
Within the next lines, we provide a brief motivation of why we believe that this is necessary for
certain special aspects and applications of the FRG method.

1.2. Motivation

1.2.1. The Functional Renormalization Group and the local potential
approximation

Since its development in the early nineties of the last century [42, 43, 44, 45, 46, 47, 48], the FRG
method in terms of the Wetterich equation (also the exact renormalization group (ERG) equation)
has proven to be a powerful tool for the calculation of so-called vertex functions in various contexts
[35], which are directly related to observables in a QFT and which can also be directly mapped
to correlation functions from functional-integral calculations etc.. Oversimplified, the formal idea
(not to be confused with the physical idea) behind the FRG is to map the problem of solving
high-dimensional complicated integrals and sums for the calculation of correlation functions to
the problem of solving a set of coupled functional partial integro- and/or ordinary differential
equations — the RG flow equations — and extracting the vertex functions from their solution. (A
more detailed introduction follows in later chapters.) One could object already at this point that
this might not necessarily be an advantage, because solving coupled functional partial differential
equations and ordinary differential equations to high precision is by no means a trivial task [49,
50, 51, 52].

Nonetheless, it turns out that in innumerable different contexts the FRG method presents itself
as a powerful qualitative and quantitative tool. It already competes with other well-established
non-perturbative methods and even provides access to regimes of systems where other methods are
currently still doomed to fail, e.g., computations at moderate and high densities or in quantum-
gravity calculations. For more details, we refer to Part II and Appendix C of this thesis and for
example to Refs. [53, 54, 55, 56, 57, 58, 35].

For this motivational section it suffices to know that among others a specific prominent scope of
application of the FRG is the non-perturbative treatment of fluctuations in models for strongly
interacting systems from condensed-matter physics and high-energy particle physics, especially in
medium. A lot of these calculations within effective models are based, at least to lowest-order
approximation, on a truncation of the theoretically infinite number of coupled RG flow equations,
which exclusively incorporates local non-derivative couplings of the fields to arbitrary order, see
e.g., Refs. [59, 60, 61, 62, 53, 63]. This truncation is called the local potential approximation
(LPA). Mathematically it corresponds to a partial differential equation, where a local bosonic po-
tential is evolving in field-space along the RG time from ultra-violet (UV) to infra-red (IR) energy
scales. Also much better truncations oftentimes still include this particular flow equation, which
is then extended by additional coupled PDEs and ODEs [64, 65, 66, 67, 68, 63, 69, 70, 71, 72, 73].
Structurally, the LPA RG flow equation and its extensions are rather similar for a huge class of
these models and problems, such that the following is generic.
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1.2.2. Innovation and thoroughness — a lesson learned from LPA

Because the LPA flow equation is a highly non-linear PDE, which is of first order in the temporal
derivative and (usually) up to second order in the spatial derivatives of the effective potential,
there is little chance to solve it analytically — even though there are a few exactly integrable
examples where additional assumptions and limits slightly simplify the PDE [74, 75, 76, 77, 3]. In
consequence, a numerical solution is usually required.

Therefore several numerical schemes were developed in the last three decades within the FRG
community (in parts specifically for this PDE) and applied to this RG flow equation, see, e.g.,
Refs. [78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 83, 89, 90] for a few examples. Under some circumstances
these methods produce or sometimes seem to produce decent results, which qualitatively and
quantitatively agree with expectations.

As it happens, it appears that much more time was spent on qualitative and phenomenological
new results than on careful testing all the utilized numerical schemes with exact and challenging
reference solutions of standard PDE problems (e.g., the heat equation, Bateman-Burgers equation,
shock-tube problems etc.) and specific exactly solvable FRG problems. Otherwise it is not expli-
cable what some colleagues and I experienced ourselves: A lot of these numerical schemes turned
out to be unstable in certain situations and solutions do not converge against exact reference
solutions. Hereby, we are mostly referring to the breakdown of the numerical time stepping due
to the generation of ill-conditioned input for the next time step. In addition, we experienced that
some of the schemes are not stable against the variation of numerical parameters, like the number
of gridpoints or the artificial size of the computational domain or the choice of time-stepper etc..
Still, in the FRG context there were physical parameter setups for some models where everything
was fine and we could not reproduce the instabilities from other situations. Furthermore, we also
experienced that there are a lot of publications which are not reproducible, because significant
information about the exact numerical setup was simply missing. Certainly, this is not meant as
a blanket critique and there are lots of high-quality publications, but the amount of works that
fall victim to these problems for this very specific class of FRG calculations is striking.

This puzzling unpredictability of reliability was only resolved when my colleagues Grossi and Wink
took the step back and reanalyzed the LPA PDE as a whole, trying to eliminate the bias of the
common FRG perspective and existing approaches to this PDE (which I had myself). Indeed
they were able to reformulate the LPA flow equation (firstly in the infinite-N limit) in terms of
a conservation law for the derivative of the potential [77]. In fact, they (re)discovered, see also
Refs. [75, 76, 91], that the PDE is actually a highly non-linear advection equation with all its
consequences, such as the possible emergence of discontinuities like shock and rarefaction waves.
During these developments it turned out that lifting the infinite- N limit, the LPA flow equation
is for most models indeed a non-linear advection-diffusion-sink/source equation and therefore falls
into the class of classical fluid-dynamical problems. As it happens, this fact and interpretation of
generic RG flow equations had been known in parts already in advance of the modern formulation
of the FRG in terms of the Wetterich equation, Refs. [92, 93, 94, 95, 96, 97, 98, 99, 100], but
seemed to have been partially forgotten. Currently, work on the extension of this reframing of
modern RG flow equations to fluid-dynamical problems is ongoing [101, 4, 102, 103].

After unraveling the true underlying structure of this equation, an explanation for our troublesome
experience with some numerical methods is rather obvious. If a certain parameter setup for the
PDE allows for the occurrence of non-analytical behavior, which is easily produced in non-linear
PDEs [52, 49, 104, 50, 51], all those numerical schemes that are explicitly or implicitly based on
smoothness of the solution are doomed and lack convergence, which is unfortunately the case for
a lot of them. Otherwise, if the solution was smooth, everything could work out without troubles.

Another direct consequence of these discoveries is that the formulation of RG flow equations as
fluid-dynamical problems allows for the direct application or adaption of the methods from the
highly developed toolbox of CFD. Therefore, a “from-scratch development” of own and completely



1.2. Motivation 7

new methods becomes at least questionable, if one is not an absolute expert on non-linear PDEs.

Anyhow, also the application of established methods from the field of CFD to FRG problems needs
to be tested. In particular, the special non-linear structure of the PDEs that emerge in the FRG
formalism is not always explicitly covered even by modern numerical schemes. This is because
most of the schemes are either developed for non-relativistic fluid dynamics — mostly (variants of)
the Navier-Stokes problem — or relativistic fluid dynamics in the context of astrophysical problems
and nuclear collisions. Especially the involved fluxes are of completely different structure than in
the LPA flow equation. Consequently, careful testing is required, when CFD methods are run at
their edge of applicability.

To this end E. Grossi and N. Wink first focused on the infinite-N limit of the O(N') model, where
the LPA RG flow equation is exact (in terms of a truncation) [74] and integrable in three spacetime
dimensions [75, 76, 77]. Besides benchmarking their fluid-dynamical framework, which was based
on Discontinuous Galerkin (DG) (finite element) methods, they also studied the relation between
phase transitions and shock waves in the effective potential, which would not have been possible
to this extent with previously used numerical methods.

1.2.3. Complicated and trivial at once — zero-dimensional toy model
QFTs

This is where research covered by Part I of this thesis sets in. Inspired by their findings, my
colleague M. J. Steil and I decided to also build up a fluid-dynamical framework for the solution
of FRG flows. We went for so-called finite-volume methods in the formulation of A. Kurganov
and E. Tadmor [105] — a well-established scheme for conservation laws in fluid dynamics. After
also testing this framework with the examples of Ref. [77], we searched for a testing ground with
exactly soluble reference solutions beyond the infinite-N limit, but within the FRG framework.
Here, inspired by Refs. [106, 107, 108, 109, 110], we came up with the idea to use zero-dimensional
QFT to benchmark our setup.

The reason is that structurally the FRG flow equation(s) are identical for zero and non-zero
spacetime dimensions. However, in zero dimensions the set of flow equations (PDEs) is finite,
because there are no derivative couplings and all (self-)interaction terms can be collected in field-
and RG-scale-dependent functions. (Details are presented in later chapters.) For certain models
the LPA flow equation is the only existing flow equation and is therefore exact (not a truncation)
without any additional assumptions. On the other hand, the complicated functional integrals
from calculations in higher-dimensional spacetimes reduce to ordinary integrals in zero spacetime
dimensions, such that the computation of reference solutions for correlation or vertex functions to
test the FRG turns out to be straightforward. Hence, zero-dimensional QFT presents itself as the
ideal testing ground for the newly introduced CFD framework for FRG, because it is complicated
within the FRG formalism, but simple(r) from the path-integral perspective — exactly the opposite
of what we hope for in non-zero dimensions.

However, in contrast to earlier FRG tests with zero-dimensional O(N)-models, which mostly fo-
cused on the FRG Taylor expansion of the effective potential for smooth initial potentials, we
mostly? worked with the untruncated PDE for the local potential. Furthermore, in addition to
commonly studied smooth initial potentials, we constructed UV initial potentials which comprise
non-analytical structures of different kind. These present themselves as hard tests for our (numer-
ical) solution scheme of the flow equation, because they can be related to shock and rarefaction
waves in the fluid-dynamical framework.

Another huge advantage of using zero-dimensional QFT for testing and presenting the fluid-
dynamical reformulation is that the main structure of the RG flow equations is no longer buried

2Within our work we also present tests for additional artificially introduced truncations of the LPA flow equation,
i.e., the infinite- N limit in zero dimensions as well as the FRG Taylor expansion of the LPA flow equation.
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under a plethora of additional patterns such as momentum integrals, Matsubara sums, factors
from traces in various spaces etc.. Hence, it is pedagogically much simpler and the interpretation
is easier.

This allowed us to work out further aspects of the FRG, which are rather obvious as soon as one
switches perspectives to the fluid-dynamical framework. For example, it is well known that the
evolution of dissipative fluid dynamics is irreversible and produces entropy [49, 50], which must
therefore also hold true for the FRG flow equations. Hence, irreversibility of the RG seems to be
manifest on the level of the PDEs.

All in all, we found that FRG in zero dimensions is the ideal playground to study all kinds of
effects, which are present in the ERG, such that we ended up with a three-parts series on this
topic, Refs. [1, 2, 3], which M. J. Steil and I worked out with our collaborators and supervisors
N. Wink, E. Grossi, J. Braun, M. Buballa, and D. H. Rischke. This is presented and summarized
in Part 1.

1.3. Some applications of zero-dimensional QFT

The general idea to test and study methods from statistical mechanics and QFT with zero-
dimensional toy models is, as already anticipated, not original to the author and collaborators.
Indeed, there are a lot of works that used zero-dimensional models for this purpose before, but also
tried to describe real-world physical situations or limits with models of this type. In the following,
we therefore present a selection of studies which deal with zero-dimensional (toy) models and their
application to contextualize our own work.

However, before we start, let us explicitly state what we are referring to when we are talking about
zero-dimensional QFT: By zero dimensions, we are always referring to zero spatial and zero tem-
poral dimensions, thus QFT in a single point in space and time. This is to be distinguished from
systems with zero spatial dimensions but time/frequency/energy dependence, which are oftentimes
also referred to as zero-dimensional QFTs, especially in the context of solid-state theory and/or
quantum mechanical systems, cf. Refs. [111, 112, 113]. Anyhow, our work deals with quantum
fields, which do not have any dependence on space and time at all and can therefore be considered
as ultra-localized and maximally interacting.

This is for example realized in Ref. [114]. The authors study grains of superconducting particles.
Effectively they consider the zero-volume limit of a static Ginzburg-Landau approximation for the
action in the partition function and argue that spatial fluctuations are suppressed in super-small
volumes, which allows to ignore derivative contributions in the action. In consequence, their model
reduces to an exactly integrable ¢*-theory with O(2) symmetry.

Also inspired by this work, there are some more technically driven publications, which mainly
focus on large-N techniques. All of these works are based on O(N) models in zero dimensions
with ¢*-interaction and usually positive mass-like term. For example Refs. [115, 107] study the
1

~-approximation and find good convergence against an exact solution of the partition function,

even for low orders in % and rather small N. Similar studies were also performed by Refs. [116,
117, 118, 119, 120, 121, 122]. Some of these works as well as Refs. [123, 124, 125, 126, 127]
also use zero-dimensional scalar field theories to pedagogically introduce, discuss, and analyze
graph-theoretical aspects and methods in QFT.

In this context, it is for example interesting that the dual-graph representation of the connected
Feynman bubble diagrams, which enter the logarithm of the partition function, can be interpreted
as randomly branching polymers or chains. In consequence, zero-dimensional O(N) models can be
used to study this process of randomly branching one-dimensional objects, ¢f. Refs. [117, 118, 119,
120] (also for illustrations). Hence, these works draw connections to general theories of random
surfaces, which play a role for low-dimensional models of topological gravity theories. This is
underlined by the fact that the zero-dimensional analogue of the Dyson-Schwinger equations for
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¢*-theory can be mapped to the Virasoro algebra as is shown by these references.

Another interesting application of zero-dimensional ¢*-theory is that it is perfectly suited to learn
and benchmark perturbation theory [128, 129, 130, 131, 107, 109, 23, 124, 125] and optimized
perturbation theory [132, 125]. With this model it is rather simple to demonstrate that the per-
turbative series in the coupling constant, even if the coupling constant is small, does not converge
w.r.t. conventional convergence criteria. It is only asymptotic to the correct solution, such that the
first summands may form a decent approximation very close to vanishing coupling, even though
the whole series diverges.

In the recent work [133] a zero-dimensional ¢*-theory with additional complex mass parameter
was used to mimic and study the role that is usually played by a chemical potential and thus
mimics the sign problem in calculations using stochastic quantization and the complex Langevin
method.

However, within this work, we are predominantly interested in testing the FRG method with
zero-dimensional QFT. Also this was done partially before. For example, Ref. [106] uses a theory
of a single scalar field in zero dimensions to pedagogically introduce the FRG formalism, though
explicit calculations are not presented. Also Refs. [109, 108, 134, 125] use it as an introduction
to the FRG, but also present tests for the FRG Taylor expansion, where the exact LPA flow
equation is artificially expanded in vertex functions, which form a coupled set of ODEs, that is
solved numerically. For smooth initial potentials of ¢*-theory with positive mass, all these works
find good agreement with exact results. In addition, Refs. [107, 109] also test ¢* potentials with
negative mass, but without benchmarking these results against exact solutions. Also an iterative
approach to solve the LPA flow equation as well as a mixture of iterative scheme and Taylor
expansion are tested and benchmarked for example by Ref. [109] and show good agreement for
positive mass.

The above works are all formulated in the Iparticle irreducible (PI) effective-action functional
formalism for the FRG. Anyhow, it is also possible to work within the 2PI formalism. Also this
formalism was analyzed for zero-dimensional O(N) models, with and without FRG framework
and also in the context of density-functional theory, see Refs. [110, 135, 136, 137, 125, 138].

Recently, after the completion and publication of the results of our own work in the associated
Refs. [1, 2, 3] on solving FRG flow equations in terms of advection-diffusion equations, Ref. [103]
used one of our zero-dimensional test cases for demonstrational purposes and comparison for
their DG scheme. The same scheme and fluid-dynamical framework was applied in Ref. [102] to
various RG flow equations, where RG flows of complex effective actions were studied to ultimately
investigate Lee-Yang singularities and PTs. This was also tested for zero-dimensional toy models.
Lastly, in the context of FRG publications, we would like to mention Ref. [139], where it is
explained for the O(NN) model how zero-dimensional QFT emerges as a limiting case in the high-
temperature and small-volume limit of higher-dimensional theories after appropriate rescaling of
the effective potential.

For reviews concerning zero-dimensional toy models to test and study various (functional) methods
in QFT, we refer the interested reader to Refs. [131, 107, 124, 125].
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Chapter 2

A testing ground in zero
spacetime dimensions — the O(N)
model

Abstract In this chapter we introduce the zero-dimensional O(N) model. We present its for-
mulation as a full-fledged QFT. This comprises the calculation formula for and relation between
correlation and vertex functions and their systematic derivation from generating functionals for
arbitrary O(NV)-symmetric classical actions. The chapter closes with a discussion on the absence
of spontaneous symmetry breaking and PTs in zero dimensions.

Disclosure None of the material in this chapter is new. Nevertheless, its collection and presen-
tation is original to the author and mostly based on our own Refs. [1, 2, 3]. Similar presentations
can be found for example in Refs. [109, 107, 125] and other references from Section 1.3. Thus,
the presentation in this chapter is mainly provided as a pedagogical introduction, to introduce
our notation, and to have reference formula for later chapters. We therefore mostly refrain from
repeatedly citing the “zero-dimensional QFT” literature and instead refer to more generic QFT
literature.

2.1. The zero-dimensional O(N) model in QFT

The zero-dimensional O(N)-model is defined as follows. Consider an N-dimensional vector in
Euclidean space with real components defined w.r.t. to some complete orthonormal basis,

—

¢:(¢17¢27,¢N)€RN5 N e N. (21)

This vector describes N identical neutral scalar (quantum) “fields”. In contrast to other field
theories, these fields do not exhibit any spacetime dependence. As already said, one might simply
assume that the theory is restricted to a single point. A field configuration is therefore given by an
N-dimensional vector of real numbers. Since one is dealing with identical scalar fields permutations
of the components certainly do not change the state of the system. However, one might also
consider continuous rotations in field space, which mix components of the N-dimensional vector.
These are mediated by matrix-vector multiplications,

G ¢ =00, (2.2)

where the (N x N)-dimensional matrix O is an element of the O(N) group in its fundamental
representation. Componentwise this transformation reads

ba = Pl = Oup a,be{1,2,...,N}. (2.3)
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Indeed, these rotations can potentially change the state of the system. This, however, strongly
depends on the theory that describes the (self-)interactions of the N scalars.

Such a description is usually formulated (microscopically) in terms of an action or energy func-
tional, whose extremum singles out the most favorable configurations [12]. In zero spacetime
dimensions concepts like an action, energy functional, Hamiltonian or Lagrangian basically coin-
cide, because there are no spacetime derivatives and spacetime integrals and we are exclusively
dealing with dimensionless quantities. Hence, we will simply refer to this quantity as the action
S (gb) which is an ordinary function of ¢ instead of a functional like in higher dimensions [1 [19, 20].
(By writing S(qb), we mean S(¢1,...,¢n); this also applies to other function(al)s in this or the
following chapters.)

If we think of this field theory in terms of a (quantum) statistical system, one can define a
probability-density function (up to a suitable normalization)

-

p(§)=e 5@, (2.4)

which associates a probability to each micro-state of the system according to its (classical) action.
Configurations at the minimum of & ((5 ) are more likely than configurations far away.

Now, similarly to generic systems from statistics and QFT [11, 19, 12, 140] expectation values are
calculated according to

[ F(@) (@) [, dN6 f(§) e S
2 dNep(d)  [° dNg eS@)

(f(6)) (2.5)

for arbitrary functions/operators f (q_g ), where the denominator ensures appropriate normalization.
Here, the functional integral turns into a standard Lebesgue integral [124].

The last ingredient for the construction of O(NV)-invariant models is to demand O(N) symmetry
of the (microscopic) classical action S(¢ ). (The integral measures in Eq. (2.5) are O(N) invariant
anyhow.) As a direct consequence S is in fact a function of the O(N)-invariant,

¢?, (2.6)

N

rather than all components of qg independently.
If one is also studying expectation values which are exclusively functions of O(N)-invariant oper-
ators, viz. f(¢) = f(p), Eq. (2.5) drastically simplifies,

Jo dpp®  f(p) e S
fO dpp?‘l e—S(p)

(f(p)) = : (2.7)

where we used

/_ V= / déy - / don 2 ay /mdp@p)%—l. (2.8)

Hence, the zero-dimensional QFT of an O(N)-symmetric theory of scalars actually reduces to the
calculation of one-dimensional integrals. This makes this system particularly interesting for test-
ing methods and approximation schemes in QFT, because exact reference values for expectations
values are easily computed to basically arbitrary precision by standard (numerical) integration,
cf. Section 1.3 and references therein.

However, note that up to this point we did not further specify S(p). Indeed for the formulation
of a valid QFT we can basically think of any continuous function of p, which is bounded from
below and asymptotically grows at least like p% to ensure convergence of the integrals. Continuity
is required, because in zero spacetime dimensions the action also coincides with the analogue of
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the effective bosonic potential, U(p) = S(p), which is supposed to be a continuous function of the
fields. Otherwise we would completely lose contact to higher-dimensional QFT. Even though this is
rarely discussed in QFT, we explicitly do not call for analyticity or smoothness of the action S(p),
or the effective potential U(p), respectively. In consequence, the commonly discussed ¢*-theory
with positive or negative mass, which is certainly inspired from higher-dimensional physics, like
the Anderson-Brout-Englert-Guralnik-Hagen-Higgs-Kibble mechanism [141], is only one of many
possible setups one can think of. We will find that from the perspective of the FRG and infinite- IV
methods as well as the study of PTs other initial potentials are much more interesting.

2.1.1. Expectation values — correlation functions

In calculations in QFT one is usually interested in (n-point)!correlation functions of fields. Here,
these particular expectations values are of course spacetime-independent, because there is no
spacetime. Therefore they reduce to correlation functions between components of 45 Due to the
O(N) symmetry all various correlation functions are proportional to expectation values of (powers
of) the O(N)-invariant and it is easy to show, cf. also Refs. [107, 125], that

(6i bs) = % 05 (62), (2.9)
(6 &5 P d1) = Newray (64 Ot + Gk 00 + ia O (622, (2.10)
<¢)z ¢j ¢k ¢l ¢7n ¢n> = m (61_] 6kl 6mn + all permutations) <($2)3> 5 (211)

Correlation functions of an odd number of fields vanish. In consequence by calculating integrals
of the form (2.7), i.e.,

2 [P dop S0

[ dpp T oS

(CH) : (2.12)
one has access to all standard correlation functions between fields. Furthermore, for all f(p) from
Eq. (2.7) that are expandable in polynomials,” one can use the previous result as well as the
expansion coefficients to reconstruct (f(p)).

2.1.2. The generating functional

Usually the calculation and derivation of correlation functions like Egs. (2.9) to (2.11) is formalized
in statistics and quantum field theory by introducing the moment-generating function(al) [140],
the generating function(al) of n-point functions, respectively [20, 142, 19, 124],

Z(J) EN/OO AN eSO+ (2.13)

Oftentimes it is also called the partition function in the presence of sources or “magnetic” fields
J. Formally it is a (multidimensional) two-sided Laplace transform of the probability-density
function (2.4). Note that definition (2.13) also applies to theories of N real scalars without (full)
O(N) symmetry.

IThe term m-point is of course misleading in a “spacetime” which is a single point. Still, we will stick to this
notation to keep contact to the higher-dimensional formalism.

2In general, the function f(p) does not even need to be analytic. However, in QFT we are mostly confronted
with the calculation of expectation values of expandable functions or monomials of fields.
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Correlation functions are derived from this object by taking derivatives w.r.t. the source J and
setting J = 0. However, one usually also introduces correlation functions in the presence of source
fields,

(Din " bi) 7= — 57 = (2.14)

1
Z(J)

N/Oo AN i, ... b e S@HTTG
— 0o

As can be seen from the last line, the normalization factor A/ cancels and Egs. (2.9) to (2.11) are
for example recovered via definition (2.5) for J = 0.

Thus, the entire information about a QFT is either stored in its generating functional (2.13) or
all correlation functions — mathematically: the moments.

2.1.3. The Schwinger functional

Another way of deriving correlation functions and storing information about a QFT or a statistical
system is the Schwinger function(al). It is simply defined via the logarithm of Eq. (2.13) and
therefore directly related to the free energy,

W) =mZ(J). (2.15)

It is also called the cumulant-generating function(al) [140], generating function(al) of connected
n-point functions [19, 20, 142, 24], or Ursell function in the context of statistical mechanics after
Ref. [143).

These cumulants or connected correlation functions (in the presence of sources J) are simply

=

defined by derivatives of W(J ),

(Din - 0i)F = Wj‘n...jl(j)in...il : (2.16)

Explicitly one finds that the one-point function — the expectation value of the probability distri-
bution — is the same for both generating functionals,

(1) =Wy (J)i = Zit)i_ (fi) 5 (2.17)

<¢i2 ¢i1>cj’:Wf2f1(j)i2i1 = (218)

= (P> $ir) 7 — (Din)

~y
—~
-
=
=
.
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Analogously, one proceeds with the three-point function,

<¢ia Piy Giy >cf = Wj:q)fgfl (j)i3i2i1 = (2.19)
_Z;}ﬁl(j) _ Z}(j')lza Z; ﬁl(j‘)hll _ Z;( _')12 Zf?,fl(j)lsll _
Z() Z(J) Z(J) Z(J) Z(J)
2(7)  2() 2(7) zJ) B

= <¢i3 (biz ¢i1>f_ <¢13>_‘<¢12 ¢21>f_ <¢l2>f<¢13 ¢i1>f_ <¢i1>f<¢i3 ¢12>f+

+2(¢is) y {Piz) j(Bir) 5-

Already at this point the advantage of the Schwinger functional in terms of storing information
is obvious and proceeding to higher-order correlation functions is straightforward. Redundant
information, e.g., contributions of two- and one-point functions to the three-point function, are
simply subtracted in the definition of the connected n-point function. The term “connected” hereby
refers and derives from the graphical representation of correlation functions, where products of
correlation functions appear in terms of unconnected graphs [19, 20, 142].

2.1.4. The effective action

However, when it comes to storing information yet another generating functional is more efficient
— the generating functional of 1PI vertex functions. It is directly related to the grand-canonical
potential in statistical mechanics [11] and defined in terms of the Legendre transformation of the
Schwinger functional (2.15) [144, 145, 146, 18, 19, 24],

=

0(@) =sup; {J - G-W(T)} = T(F) -3 -W(I(F)). (2.20)

Usually, we refer to this quantity as the (IR) effective action. Hereby, sup refers to the supremum
and the components of the mean-field vector are defined by

The name 1PI again is due to the diagrammatic representation of correlation functions, which
exclusively contain contributions of diagrams that cannot be separated by cutting a single internal
line [24]. Hence, w.r.t. the connected correlation functions these are even less diagrams, which
are sufficient for encoding all information about a QFT. In addition, the (renormalized) vertex
functions that are derived from Eq. (2.20) by taking derivatives w.r.t. the components of ¢ are
directly related to the observables in a QFT in higher-dimensional spacetimes, e.g., scattering
amplitudes etc., see, e.g., Ref. [72] for a recent application in the FRG framework to pion scattering.
Next, we present certain relations between the 1PI vertex functions,
33 - oI (@
e Ma (2.22)

and the previously defined correlation functions. From Eq. (2.20) it is directly found that
I%(3); = Ji() - (2.23)

As long as this equation is not evaluated at the minimum of I'(#) the right-hand side (r.h.s.) keeps
its dependence on .
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Furthermore, from Eqs. (2.21) and (2.23) one easily finds,

_ 5‘]3(95) _ 5Jj(<15) Sk @@= T
9= 5hE) - g sa(g) L Pl (@)) (2.24)
iy &Pj(j) _ 5<Ple(j) 0Jj PN @G = TV
BT Sad) 0 sy e A (2:25)

which implies that the two-point vertex function and the variance are inverse to each other. We
further define
GP(3)ig = (TP (B(T)i) = Wi Tis s (2.26)

which is called the full field-dependent propagator in higher dimensions. In zero dimensions this
name is of course absurd in its literal sense but used anyhow.

For more general relations we have to work harder. We need the chain-rule relation between J;
and ¢; derivatives,

5 bp; § - 5

5 ol by IO 5

(2.27)

Now, by backwards engineering, we obtain an algorithm which relates correlation functions (2.14)
with quantities in the framework of the effective action,

Z- - (j) .
e Tp 11
i i) j = e = 2.28
e 2(7) (2.28)
= ( 6 —+ @, > Zjﬂ—l _‘1 (j)ln—l 11 _
6, T 2(J)
y 5J,L SOZJ Pin, =
j=1 :
n—1 . 5
= H <G99‘P (SB)Hk — + ngJ> Y, -
=1 Sk

Ultimately, this is done by evaluation of the product and the derivatives w.r.t. ; in the last line.
For an explicit calculation the following identity for the derivative of the propagator (2.26) turns
out to be useful,

1) o 1) 22 —1 33 333 33
=GB = — (TP(3)) . = —G??(3)in T?%%(B) korm GEE (B )i - 2.9
5o O (@) = 5 (099(@))}) =GP0 D9 (3 ) G72(5) (2:29)

In the same fashion as for Eq. (2.28), one derives an algorithm that relates connected correlation
functions (2.16) to vertex functions (2.22),

n—1
c pp (= 0
(in "'%‘Ji = [H (Gw(w)ijk 5%)] Piy - (2.30)
j=1
For more details on this formalism in the context of the FRG, see also Ref. [54].

Explicitly, from Eqgs. (2.28) and (2.30) one obtains the following identities for the lowest three
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orders,
(90)5 = (di) 7 = i, (2.31)

(05 00)5 =G(3)ji+ (2.32)

(65 bi) 7 =GP(B)ji + 05 i (2.33)

(0 65 i) = — GP2(B) s G2 (B) jm G2 (B) i TP7P (B )i (2.34)

(0 05 di) g = — GP2(B)nt GP(B) jn G2 (B) it TPP2(B )t + (2.35)

2.1.5. Correlation functions for the O(N) model

These general relations for zero-dimensional models of N real scalars can be further simplified
under the assumption of O(N) symmetry and if they are evaluated for J = 0, which corresponds
to an evaluation at the minimum of I'(g), which we simply call Jin and which is shown in
Section 2.2.2 to be trivial in zero dimensions. As already mentioned, correlation functions of an
odd number of fields vanish for J = 0. Using the relations (2.9) to (2.11) we find the following
identities, see also, e.g., Refs. [107, 125],

-1

(61 00)° = (di ¢:) = (T9°(Bunin )5, (2.36)
(9i Gi D1 0:1)° = (i §i Di Di) — 3 (i Di)? = — (b i) T?P%% (Brin i » (2.37)
(Pi i bi Pi bi D) = (bs Pi i bi Pi i) — 15 (i Pi i hi) (Pi bs) + 30 (s i) = (2.38)

2222, 2 72y2
I =992 (Grin )i = 3 207 [1 -5 %} , (2.40)
6) _ GEEEEE . B 3 32)2 2 22)2)2
T =T99%%%%( B0 )isiiis = 60 <¢;N2>3 {1 — <E¢;2§2> + sy <(<(;2)>4> - (2.41)
N2 )

_ (¢2)° }
4(N+2)(N+4) (g2)8 |~

Deriving relations like these (also for higher-order vertex functions) can be automized using com-
puter algebra programs like MATHEMATICA [147] as was done for results in later chapters of this
thesis.

In the following chapters we are repeatedly making use of these relations between vertex functions
and expectation values from the path integral, because the FRG is formulated on the level of the
effective action (2.20), while the straightforward calculation of reference values is only possible
by direct evaluation of the expectation values from the partition function. Thus, the identities
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provide access to exact reference values for the vertex function via the one-dimensional integrals
(2.12). For explicit numerical and/or analytical results it still remains to specify the classical

—

action S(¢) as is shown below for various test cases.

2.2. Symmetry breaking, phase transitions, convexity and
all of that

Next, we turn to a very special feature of zero-dimensional QFT, namely the absence of (sponta-
neous) symmetry breaking and PTs and what this has to do with the Coleman-Mermin-Wagner-
Hohenberg-Berezinskii (CMWHB) theorem. In this context we also discuss convexity of the gen-
erating functionals. Our discussion is a summary of our more detailed Ref. [1, Appendix B], which
is in turn partially based on Refs. [109, 13].

2.2.1. Ehrenfest classification

According to Ehrenfest’s classification [148, 11], PTs are defined as discontinuities in the derivatives
of thermodynamic potentials, when differentiating is performed w.r.t. an intensive thermodynamic
variable. The order n of a PT is given by the lowest n'"-order derivative which shows this
discontinuity while lower-order derivatives must stay continuous.

However, in zero spacetime dimensions there are no true thermodynamic potentials and state
variables. All quantities are dimensionless and concepts like temperature, pressure etc. do not
exist. Still, as already mentioned before, there are zero-dimensional analogues of thermodynamic
potentials, namely the Schwinger functional (2.15), which plays the role of the free energy, and
the effective action, which can be associated with the grand canonical potential (2.20). The cor-
responding “thermodynamic state variables” are the sources J and mean fields @. In consequence
PTs should show up as discontinuities in derivatives w.r.t. J or 7, depending on the generating
functional.

Having said this, it can be shown that in fact Z(.J) € C* in zero dimensions for O(N)-symmetric
actions, thus it is a smooth function of J € RY. Following Ref. [109] this is demonstrated as
follows: (For sake of simplicity we restrict the “physicists proof” to N = 1.)

A function is called smooth (or € C*°), if for all n € N the left- and right-derivatives coincide.
For the generating functional (2.13) this is realized if

C9Z()

lim {3 =2C)) —gn

oJn

J_e] =0, (2.42)

e—0 Jte

which is easily demonstrated using Def. (2.13) and that S(¢) at least grows quadratically and is
bounded from below,

, " Z(J)
lim T o

oo
] =lm N [ dpo" e ST (e —e7 ) = (243)
Tte J—el 70 Jowo

_ hn’(l) |:26N/ d¢¢n+1 e—8(¢)+J¢ +O(E2) — 0
(g — 0

In the second step the exponentials are expanded for small € and it is further used that in zero
dimensions the remaining ¢-integral in the last line is finite.?> The proof can be directly generalized
to IV # 1. Note that the convergence of the g-integration (for arbitrary N) is only guaranteed if
S (¢7 ) is an even function of each component of ¢. For O(N)-symmetric actions this is trivially

3The last aspect is not fulfilled in higher dimensional spacetime as well as the N — oo limit in zero-dimensional
spacetime, which is, why PTs in terms of discontinuities etc. can exist. Similar violations of theorems affect the
convexity of the generating functionals, see below.
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fulfilled. Hence, without any terms that explicitly break the O(N) symmetry there are no phase
transitions according to Ehrenfest.

Having established that Z(J) € C*, this directly transfers to W(.J) and T'(#), because the log-
arithm of a smooth function is smooth. The same applies to the Legendre transformation of a
smooth function.

It is also noteworthy (because it might appear counter-intuitive at first sight) that these arguments
applies to any & ((5 ) which at least grows asymptotically linear in the invariant p. This also
includes non-differentiable, non-analytic actions, which might have non-trivial degenerate global
minima. However, one has to keep in mind that we are integrating over (5, respectively p, and
that smoothness of the generating functional refers to J instead. For examples and illustrations,

we refer to Ref. [1, Appendix B] and Refs. [149, 13].

2.2.2. Convexity of the generating functionals and the location of the
physical point

Before we continue with our discussion on the absence of PTs etc., we have to briefly comment
on the convexity of the generating functionals as well as the identification of the physical point
where correlation functions and vertex functions are evaluated.

Convexity

A function of several arguments is convex if its Hessian is positive semi-definite. In turn, a matrix
M is positive semi-definite if £7 M & > 0 for all £ € RV,

Hence, for Z(f ) we need to study its second derivatives w.r.t. the source-field components J;.
These, however, are directly related to the generic two-point correlation functions in the presence
of the sources J,

1 o0 - >
<¢)i2 ¢i1>f - Z(j) N/—oo dN¢¢i1 ¢)i2 e_S(¢)+J @ s (2'44)

which is clear from definition (2.14). The additional factor 1/Z(.J) is irrelevant for the following,
because it is manifestly positive for all J. In consequence, we study

1
2(J)

o N e

€Ty <¢z (b]>j*1?] = N/ dN(ZS (fT . (5)2 e,3(¢)+.]T.¢ . (245)
—0o0

The expression is positive semi-definite, which is seen as follows: Consider a substitution of the

integration variables in terms of an O(N) rotation (2.2), OT ¢’ = é. Next, without loss of gener-

ality (w.l.o.g.) choose the rotation matrix such that #7 OT = (|#,0,...,0). This turns the factor

in front of the exponential into |Z|? ¢2, which is positive or zero. The integral measure as well as

the action S(¢) are O(N)-invariant and have the same shape in the transformed variables. The

source is replaced by JT OT', which ultimately does not alter the fact that the exponential in total

is always positive.

We find that the Hessian is positive semi-definite and Z(.J) is convex.

Analogously we proceed for W(j ) and show its convexity. Using Eq. (2.18),

T.§) 7T ) ;= (2.46)

8

i (i $11)5 x; =((Z7 - $)") 7~
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it is easy to see that the Hessian is always positive semi-definite.
From this we can directly conclude that also I'(Z) is convex, because the Legendre transform of
a convex function is convex by definition, cf. Refs. [149, 13].

The physical point — the evaluation point for correlation and vertex functions

Taking into account that all three generating functionals are smooth and convex it is obvious that
they have their unique minimum at J =0 and @ = 0 respectively. The correct evaluation point
for correlation functions of Z(.J') and W(J) is of course by construction .JJ = 0 — their minimum.
However, from Eq. (2.23) we also know that the correct evaluation point of the field-dependent
vertex functions is the extremum of I'(Z). It follows from the previous considerations that this
extremum is a unique minimum in zero dimensions and located at ¢ = 0.

Again, note that even though the classical O(N)-invariant action S ((; ) might have degenerate
non-trivial global minima, the physical evaluation point for T'(#) is always ¢ = 0 in zero dimen-
sions and the O(N) symmetry of the ground state is always restored. Hence, there is no symmetry
breaking in zero spacetime dimensions.

For higher-dimensional QFTs the IR effective action still needs to be convex. However, smoothness
and analyticity is no longer required, such that there is an entire “flat region” and the physical
minimum can indeed be/stay non-trivial. Symmetry breaking is in general possible.

We refer to Ref. [1, Appendix B] and Refs. [149, 13] for further discussions and illustrations on
these topics.

2.2.3. Landau’s classification of phase transitions

According to Landau’s classification, PTs [150] are linked to the spontaneous breaking or restora-
tion of symmetries, while an intensive external thermodynamic state variable is varied. It is
signaled by the (dis)appearance of an order parameter, which characterizes the state of the sys-
tem (its symmetry), e.g., a condensate. On some occasions it is also possible to use an extensive
thermodynamic state variable itself as an order parameter. Here, however, it does not make sense
to study the variation of its canonically conjugate intensive state variable, since this corresponds
to explicit symmetry breaking.

Zero dimensions are again special: The only “intensive state variables” are J and their canonically
conjugate “extensive” counterparts are ¢. However, ¢ is directly linked to the condensate. Hence,
there is exclusively the option to explicitly break the O(NN) symmetry by considering non-vanishing
source fields .J. However, as long as J = 0, we also have @i, = (q’_)' ) = 0 as discussed in
Sections 2.2.1 and 2.2.2.

The same applies to the variation of any other parameter in & ((5 ). It simply has no influence on
the location of the physical point, which is always at ¢ = 0 in the IR, and the condensate <q§ )
always vanishes, as long as the O(N) symmetry is not explicitly broken.

Thus, Ehrenfest and Landau classification lead to identical conclusions on the possible ground
state of zero-dimensional O(N) models — namely the trivial state.

2.2.4. The CMWHB theorem

Some readers might interject that this result is already expected from the CMWHB theorem. It
states that for systems of spatial dimensions d < 2 and sufficiently short-range interactions there
cannot be spontaneous breaking of continuous symmetries at non-zero temperature [151, 152, 153,
154, 155].
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Indeed, zero-dimensional systems fulfill the “dimensional” requirement and interactions are indeed
strong and “short-range”, because they are all in a single point. However, there is a priori no notion
of temperature.

Still, there is a workaround: It is possible to think of zero-dimensional QFTs in terms of the
infinite-temperature limit of a thermal quantum mechanical system or a QFT in a tiny spacetime
box. In any case, considering the zero-volume and infinite-temperature limit, only the lowest
bosonic Matsubara mode survives and the system is effectively zero-dimensional [109, 139]. In
this sense, the CMWHB theorem applies and spontaneous symmetry breaking is forbidden.

Despite everything and strictly speaking, this argument is only valid for systems with NV > 1 and
continuous symmetries, where breaking of this symmetry causes the existence of Nambu-Goldstone
modes [156, 157, 144], because the theorem relies on their existence for the symmetry restoration.
In fact, we have found, that also for NV = 1 there is no symmetry breaking either, even though this
symmetry is a discrete Zo symmetry. It seems as if the single o-mode actually suffices to restore
the symmetry, totally without the support of Nambu-Goldstone particles. We come back to this
fact several times in this thesis and strongly believe that this calls for additional future research.
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Chapter 3

The need for strictly
non-perturbative methods

Abstract In this chapter we briefly discuss the severe limitations of perturbative methods as
well as the large-N expansion. We first provide a short general introduction into the methods.
Then their shortcomings are exemplified using two different zero-dimensional O(N)-symmetric toy
models. However, for general reference we start this chapter by presenting the trivial model — the
free theory.

Note, that our entire discussion does not aim at mathematical rigor and there is a lot more to
say about these two and related methods than what is presented in this chapter. Here, we are,
however, mainly interested in motivating the use of strictly non-perturbative methods like the
FRG in a playful way with seemingly innocent actions and get familiar with aspects of the large-
and infinite-N approximation. Experts might want to simply skim over this chapter and continue
careful reading in the next chapter.

Disclosure This chapter and especially the part on the saddle-point expansion is mainly based
on our own Ref. [3]. Furthermore it contains material from our publications [1, 2]. However, we
also comment on well-known results for perturbation theory for the zero-dimensional O(NN) model.
These results are taken from Refs. [128, 129, 130, 131, 109, 107, 23, 124, 125].

3.1. The free theory

Before we turn to the main subject of this chapter, we briefly present some results for the trivial case

—

— the free theory — as reference. The corresponding action S(¢ ) of massive non-interacting O(N)-

symmetric bosons is given by a potential which exclusively contains the quadratic contribution

with positive mass m?,

S($) =Us(¢) = sm>¢*> =m’p=Uo(p), (3.1)
All corresponding correlation functions (2.9) can therefore be calculated from the moments of a

Gaussian-type integral,
(212) 2" [;7 dppE 1 pn o0 (5 )
= = PR = t=m"p, (3.2)
fO dpp= e—Uo(p)
on m2n fOOO dtt%—l n e—t (A_S?)
Joodtty et
_ 2m mznf(% + n)

(%)

(6>
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With Eq. (A.38) we find

(67 =) =1, and  Va>1 (@) =ZF +n-1)(@)""). (3

The corresponding vertex functions are derived by inserting these results into Egs. (2.39) to (2.41)
etc.. One finds,

r® =m2, and vn>2 I™=0. (3.4)

Anyhow, for this special case it is easier to evaluate the Gaussian integral in Eq. (2.13) explicitly

=

for the action (3.1) and determine W(J) from Eq. (2.15),

> g T T -
W(J)=mZ(J) = (N/ dV¢ e_§m2¢2+‘]T‘¢> = 525 J? + const. (3.5)
— o0

As expected for a Gaussian integral it directly follows that exclusively the variance — the connected
two-point correlation function (2.18) — is non-zero, while all higher cumulants — connected n-point
correlation functions — vanish [140]. Additionally, it turns out that the Legendre transformation
to the effective action is trivial and we find

I(¢) = $m?@? + const., (3.6)

which directly explains Eq. (3.4). This result is also rather intuitive for massive non-interacting
particles, because all interaction vertices vanish and exclusively the 1PI two-point function sur-
vives.

3.2. Limitations of perturbation theory

Next, we turn to the first real application of the zero-dimensional O(N) model. It serves as the
minimal example to study limitations of perturbation theory. To this end, we need a non-trivial
O(N)-symmetric action, which contains “interactions” of our bosons in the single spacetime point.
As usual in QFT the ¢*-model will do the job.

After presenting the model and exact reference solutions, we first demonstrate the general non-
convergence of the perturbation series. Second, we show that considering a low-order expansion
may still be useful for an extremely small coupling in the sense of an asymptotic series, while it is
totally inappropriate beyond this limit.

Ultimately, we discuss general shortcomings of the idea of the perturbative approach.

3.2.1. ¢*-theory
The zero-dimensional version of the ¢*-theory is defined by the following action/potential
S(6)=U6) =156+ 3 (67, (3.7)

with positive mass m? € R~ and positive quartic coupling A € Rq. (Later on we also consider
the same action with negative mass.) Formulated in terms of the O(N)-invariant (2.6) this reads,

Ulp)=m?p+5p°. (3.8)

Exact solution

Interestingly, the zero-dimensional ¢*-theory is one of the rare QFTs that is exactly integrable.
Analogously to the free theory the expectation values (2.12) can be calculated in terms of known
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functions. This is because the respective integrals are all of the following type,

/ dppF tpn e U0 = [ dppFint et iet = (3.9)
0

such that the correlation functions and vertex functions can all be expressed in terms of functions
of this result for the appropriate n. Here 1 F} (a;b; ¢) is the confluent hypergeometric function and
I'(s) is the conventional gamma function (A.37).

There are various ways to reshape this result, e.g., in terms of Kummer’s and Tricomi’s function
or modified Bessel functions of the second kind. Anyhow, the result is well-known in literature,
see, e.g., Refs. [107, Eq. (3.2)], Ref. [110, Eq. (36)] or other references from Chapter 1.

However, note that for practical applications it is usually much simpler to calculate the (one-
dimensional) integrals in the expectation values (2.12) numerically to basically arbitrary precision,
which is also done throughout this work.

Anyhow, having exact reference solutions, we can turn to conventional perturbation theory.

3.2.2. Perturbation theory

The following paragraphs are based on Refs. [128, 129, 130, 131, 109, 107, 23, 124, 125] and ex-
clusively serve for introductory and motivational purposes.

Conventional perturbation theory is based on an expansion of the partition function (2.13) and
consequently the expectation values (2.12) in the coupling A under the assumption that A\ < 1,
thus,

N_1 n —
:2nf0<><>dpp7 lp e S(p) B

T2\n
3.10
<(¢ ) > fo()o dpp%_l e*S(P) ( )
2 R dppE Tl et
e T
o) N_ 1 5 2 _
:2”f0 dpp==1p [17%p2+%p4+0()\3)]e p
JoTdpp® T 1= 02+ 35t + O(N)] e
For the two-point vertex function, inserting Eq. (3.10) into Eq. (2.39) leads to
I® = 2o =1+ (N+2) 3 —2(N+4)(N +2)§ (2)*+0(?). (3.11)

For both results and w.l.o.g. we set m? = 1, which corresponds to a simple rescaling of the fields
and the coupling. For example, for N = 2 we find for the expansion to O(\°),
2 2 242, 14 43 _ 46 y4 | 562 \5 _ 8054 6 7
T@ =14 2N 2X2 4 L33 4634 562 )5 8054 \6 4 O(AT). (3.12)
Thus, already from this expression one sees that the modulus of the expansion coefficients is

growing rapidly, which should be alarming. Absorbing the factor % from Eq. (3.7) in the coupling
does not alter this fact.
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This can be analyzed more systematically. To this end and again w.l.o.g. we study the basic
integral from the denominator of Eq. (3.10) for N =1 in terms of a perturbation series,

/ dpp%_1 e U = (3.13)
0

= / dpp%_l e_p_%pz =
0

00 . oo
= /0 dpp2te Y (=40 =
m=0
oo
am A\ .

m=0

In the last step, we exchanged summation and integration and defined the expansion coefficients,

am = ()" gty [ dppPmritt e 2D (3.14)
0

6™ m!

=(-)"&HLT(2m+ 1) =

6™ m!

m 4m)!
:(—1) 6}”% W\/E

To study the convergence of the series in the last line of Eq. (3.13), we use the ratio test
(d’Alembert’s criterion) and Eq. (A.43),

Amt1 A'm#»l

Am Am

x lim mA\. (3.15)

m—r oo

r= lim
m—r 00

We find that r > 1 for large m, such that the sum does not converge. (This result does not
change for other integrals occurring in Eq. (3.10).) In conclusion, the exchange of summation and
integration in the last step of Eq. (3.13) was not justified and perturbation theory is in general
ill-conditioned. In fact, we can directly argue that the expansion Eq. (3.13) has zero radius of
convergence at A = 0, because the original integral itself converges for A > 0, but diverges for A < 0.

The explanation why it is still possible to obtain decent results for very small coupling and finite
expansion order is that the series is an asymptotic series at A = 0 and it is possible to calculate
an optimal finite expansion order with least deviation from the exact result. Hence, for extremely
small A\ the precision of the perturbation theory is overwhelming and the difference between the
Taylor expansion and the partial sum is negligible. However, increasing the coupling leads to large
deviations, already for rather small expansion orders, which then grow rapidly.

From a QFT perspective, this is understood as follows. The combinatorial number of graphs which
contributes to each order in perturbation theory grows faster (factorial) than the suppression by
the powers of the small coupling, A™. Thus, suppression of higher-order terms in the perturbation
series exclusively works until combinational growth exceeds the suppression by the small coupling.
For the O(N) model all this depends on N, the specific order-n correlation function (3.10) and A.

Here, we do not go any further into detail on this topic. Instead we refer to the textbooks Ref. [23,
Sec. 2.1], Ref. [128, Sec. 11], Ref. [129, Sec. 7.5], Ref. [130, Sec. 5.1] or for example Refs. [131,
109, 107, 124, 125]. In this context it is also worth mentioning that there are variants to improve
perturbation theory, e.g., using Borel summation or the framework of optimized perturbation
theory, which are also discussed within some of the above references.
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Figure 3.1: The exact result for T(? —m? via Egs. (2.12), (2.39), and (3.8) and the perturbative
result from Eq. (3.12) as functions of A for N = 2. The plot is an adaption from Ref. [107, Fig. 3].

Anyhow, to get an impression of the poor quality of perturbation theory, we plot the exact result
for I'® and the perturbative result for different expansion orders as a function of \ for fixed N = 2
in Fig. 3.1. Tt is obvious (already without plotting the relative deviations), that perturbation the-
ory is close to the correct result exclusively for A <« 1 and significantly deviates for larger .
This result does not change drastically for different N, but is even worse for higher-order vertex
functions, cf. Ref. [107].

However, what about UV actions with large A, multiple couplings, negative mass term, or cusps?
Of course, there are again selected examples where perturbation theory (with certain modifica-
tions) could be applied and decent results are obtained. Nevertheless, perturbation theory cannot
be seen as a reliable framework beyond these strict limitations. Especially in higher-dimensional
systems it is much harder to estimate the point where one leaves the range of applicability, where
perturbation theory breaks down. Additionally, calculations are getting much more involved, be-
cause UV and IR divergences can emerge in every single expansion order and call for regularization
and renormalization.

In conclusion, it is worth turning to alternative techniques, which also avoid direct evaluation of
the (functional) integrals and (statistical) integration.

3.3. The %-expansion and its limitations

The following subsections are mostly based on our own publication Ref. [3] and in parts closely
follow its text. Some introductory examples and figures are taken from Ref. [107] and adopted for
our purposes.

We turn to a commonly used “non-perturbative” approach for the calculation of correlation func-
tions in statistical mechanics and QFT. The method is referred to (depending on the context) by
many different names, which, strictly speaking, all refer to slightly different, but closely related
methods in pure mathematical statistics. In most QFT contexts physicists are not too picky and
loosely interchange these names. (Most definitely this is also true for my own work).

The method is known as the %—expansion (including the N — oo limit), t"Hooft limit, the Laplace’s
method, the saddle-point expansion, the stationary-phase approximation, or method of steepest
descent. Oftentimes it is simply referred to as the mean-field approximation, which is probably
most unspecific and sometimes even wrong.

Anyhow, the key idea behind the method is the expansion of characteristic quantities of a model or
theory, like the correlation and vertex functions, in powers of % Here, N is the number of different
kinds of (interacting) degrees of freedom in our model or theory. In high-energy physics these can
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be particle/field types, spins, molecules, color charges ete.. For an expansion in % it should there-
fore be assumed that this number is large, 1 << N. In order to make sense of this expansion, it is
required to rescale extensive quantities by appropriate powers of N. This facilitates the compari-
son between different N and especially the N — oo limit without introducing artificial divergences.

At this point, the question arises why a method that again relies on an expansion in a small
parameter, here %, is considered to be non-perturbative. The explanation is that contrary to
conventional perturbation theory, which is based on an expansion in a dimensionless small cou-
pling constant, the %—expansion is also applicable to strongly interacting systems with large and
multiple coupling constants etc.. Indeed, the method enjoyed great successes and oftentimes keeps
its predictive power even for systems of unexpectedly small N in their strongly coupled regime, cf.
for example Refs. [28, 158, 159, 160, 29, 74, 31] in the context of particle physics or see Ref. [30]
for a review. This is also demonstrated within this section. Nevertheless, the method also comes
with certain problematic features, e.g., non-convex IR potentials or a total failure, if the expansion
point is a non-analytic or degenerate global minimum of the potential. Such shortcomings are the
key aspect of our critique and motivate the use for strictly non-perturbative methods like the FRG.
Within the next subsections, we introduce the %—expansion for our zero-dimensional O(N) model.
For this theory the N from the %—expansion parameter is of course the dimension N of the group
and number of boson fields. We introduce the method for the calculation of arbitrary correlation
functions and arbitrary UV potentials. First, we crosscheck the method with the free theory.
Afterwards we present established results for the performance of the %—expansion for the ¢*-
theory, which we already studied within perturbation theory. The limitations of the method are
demonstrated using another toy model developed by ourselves in Ref. [3], which is inspired by a
higher-dimensional model from Ref. [77] and used to study the large- and infinite-N limit in FRG

in the context of shock waves and diffusion in field space.

3.3.1. The ;-expansion for the zero-dimensional O(N) model

The starting point of our discussion are of course again the general correlation functions (2.12) of
zero-dimensional O(N) models,

2 [PdppTlpn e U

i dpp¥ T 0

(6%

(3.16)

As has just been said, the %—expansion requires to rescale extensive quantities with their inverse

dependence on N. Therefore, we introduce the rescaled O(N)-invariant and the rescaled potential,

prry =0, Ulp) = V(y) = + U(p). (3.17)

Expressing the correlation functions by these quantities and slightly rearranging the integrals, we
arrive at,

. on Nn foo dyy%—l yn e—NV(y)
(05" = o~ —NV(y) - (3.18)
Jo dyy=z—le
on N fooo dy yn—l e—N[V(y)—% In(y)]
T [Fdyy e NV@-imGl
_ 2N IV (y) — 5ln(y).y" ]
IM[V(y) - 3n(y),y~?]
In the last line we introduced the integral
IM(f,9) = / dy g(y) e MW, (3.19)
0
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which is the standard form to apply the saddle point expansion/Laplace’s method [33]. (Note, that
the cognizant reader can already identify the logarithmic structure in the function f(y), which is
also generated in Yukawa-type models in QFT, if fermions are completely integrated out.)

The saddle-point expansion The following general calculations are not original to the author
and can be found elsewhere, e.g., in Refs. [33].

The fundamental assumption of the %—expansion is that f(y) has a unique global minimum at yo.
In addition, it is assumed that f(y) and g(y) are analytic in yg — expandable to arbitrary order.
As long as both functions grow at least like polynomials in y (about yp), it is possible to derive
an asymptotic series of ZWV)[f, g] for large N in powers of %

The idea behind is that the integrand of Eq. (3.19) is strongly peaked around the minimum yq of
fly) if N is large and can be approximated by a sum of Gaussian integrals. Thus, shifting the

integration variable by g,

y=10+ 5 (3.20)

z

an expansion in should lead to good approximations already for small expansion orders, as
long as N is sufficiently large and vice versa.

Consequently we study this shift in the integral (3.19) and a systematic expansion in %,

TM[f,g] = (3.21)
_ /0 Ty gly) e NIW) — (3.22)
=¢1ﬁ/zﬁdzg(yo+jﬁ) exp (= Nf(yo+ %)) = (3.23)
-5/ Zmdzg@o 2% (3.24)

xeXp(—Nf(O)—%f@)zZ—

s [P =iy fV 2+ 0(2) >

e _L p@)
~ o NFY ﬁ/_ dze 277 (9(0) + ﬁ [9(1) - %9(0) & 2z + (3.25)

+L[Lg® - 1 p® 2 4 L) (pGNy2 4 1 p0) ) 2] 2 @(Nf%)) -

— (0) =
=N S > A Cilf gl (3.26)
=0

In the calculation n-th derivatives of f and g, which are evaluated at yg are abbreviated with
superscripts (n). The above calculation consists of the following steps

1. An integration-variable substitution via the shift (3.20).

. o,
2. An expansion of the exponent in ik

3. The extraction of the z-independent zeroth-order term from the integral and separation of
the Gaussian factor exp(f% f® 22) in the integrand.

4. An expansion of the remaining exponential contribution and expansion of g in ﬁ
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5. Extending the integration domain and lower integration bound, using that N is large and
that the integrand is peaked.

6. The term-by-term evaluation of Gaussian type integrals and elimination of integrals that are
odd in z.

7. Grouping terms in powers of %

The result is a power series in % with N-independent coefficient C;[f, g]. The first two coefficients
are for example,

Colfr 91 =9', (3.27)

2) (1) £(3) © (£FB)2  40) £(4)
g g f 599 () g f (3.28)

Cilf, 9] = 2@~ 2(f@)2 + 24 (f(2))3 8(f@)2°

Computing higher-order coefficients is simple but tedious and error-prone using pen and paper.
It is advisable to use computer algebra systems like MATHEMATICA [147], as was also done in this
work and Ref. [3].

Application of the saddle-point expansion to the zero-dimensional O(N) model Taking
this expansion for the integrals of type (3.19), it is straightforward to express Eq. (3.18) in a power
series in ;. The expansion up to O(N~?) reads,

= (3.29)

_ n 1 nfn—1+(n—3)2y5 VP (yo) — 255 VP (30)] 0
= (2y0) (1 + N [2ySV(2)(yo) n 1]2 + O(N2)> )

and is easily extended to higher-order corrections. However, remember that it is exclusively valid
for functions f(y) = V(y) — 1 In(y) which are analytic around their global minimum yo.

Using Eq. (3.29) we can again derive expressions for the 1PI vertex functions via Egs. (2.39)
to (2.41) and their generalization.

3.3.2. Crosscheck - the free theory

As a first crosscheck, it is always advisable to return to the free theory, see Section 3.1. (Anyhow,
we need these results as being part of our special toy model later on.) For sake of simplicity, we
again set m? =1 in Eq. (3.1), such that the %—rescaled potential reads

Voly) =y. (3.30)

For the corresponding f(y) we find

fWw)=V(y)—3In(y) =y—3 In(y). (3.31)

The minimum yg of this function is unique and located at

!
0=0,fW),_,, =1~ 3 (3.32)
Consequently,
w=1. Vi) = 4. Floo) = §1 - (3)] (3.3
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and for the second and third derivatives we have

2V (y)| =0, Rfw|,_, =2, (3.34)

Y=Yo Y=Yo

BV (y)| =0, Bfy)l = -8. (3.35)

Y=Yo Y=Yo

Obviously, V(y), f(y), and g(y) = y"~* are analytic around yo = 3, such that Eq. (3.29) can be
used as an approximation. Using the above values in Eq. (3.29) one finds,

¥ =1, N =1+%,  H@P)=1+F+2=, ... (336
and from Egs. (2.39) to (2.41) etc.,
r® =i, and vn>2 I =90, (3.37)

In fact, these are exact results, as can be seen by direct comparison with Egs. (3.3) and (3.4).

The reason is, that the maximal correction for ﬁ <q_§ 2) to 1 is always O(N~(~1). Expanding to
higher order in % is therefore useless.

Interestingly, taking the N — oo limit, the result for the vertex functions (3.37) does not change,
while the correlation functions (3.36) all reduce to 1. The first result is hardly surprising, because a
free theory is a free theory and its IR interaction vertices always have to vanish, independent of the
number N of free particles. However, the higher-order correlation functions (3.36) also contain
totally unconnected graphs of free propagators, which correspond to many-particle processes,
where particles are in fact “passing by” each other and do not interact. These trivial processes

depend on the number N of possibly involved non-interacting particles.

3.3.3. ¢'-theory in the 1 -expansion

Next, let us return to the ¢*-theory and see, whether the %-expansion yields better performance
than perturbation theory, especially for large A and/or negative mass term m?. Hence, w.l.o.g.
we consider Eq. (3.8) with m? = 41,

(317)

Ulp)=+p+ 30, Viy) =+y+5v°, N =NX. (3.38)

Checking analyticity of f(y) = V(y) — 2 In(y) at its minimum,

2
CF3+VO+6N

Yo N (3.39)

is trivial, because yo # 0 and all involved functions are analytic for y > 0. Hence, we can directly
apply the %-expansion to both scenarios in Eq. (3.38) at arbitrary A.

Here, we do not present any further analytic results, even though this would be easily possible.
Instead, we evaluate Eqgs. (3.29) and (2.39) symbolically using MATHEMATICA [147] and ultimately
insert explicit values for n, IV, and X for different expansion orders. These results are compared
to exact results for I'®), which are obtained from brute-force integration of Eqgs. (2.12) and (2.39).
The idea of benchmarking the %-expansion in zero dimensions is not original to ourselves. It
was performed in great detail in the excellent Ref. [107] for ¢*-theory with positive mass term.
Here, we simply reproduce parts of their Fig. 3, which exemplifies the power of the %—expansion
already at rather small N by computing I'®, here for N = 2. In Fig. 3.2 we also present an
analogous plot for ¢*-theory with negative mass term, which shows similar results concerning the
reliability. However, studying higher-order vertex functions, as was also done in Ref. [107], one
clearly experiences slower convergence by including higher-order corrections in % Furthermore, a

more systematic analysis for increasing N at a fixed ) is straightforward and presented in Ref. [107].



32 3. The need for strictly non-perturbative methods

2.0 T T T T 2.0 T
N=2 _ N=2 exact =
1.5} 7 ] 15} i
DS O(%) - Z exact O(%) sz~ -
~ > P &\ 1 s
_orop o ¢, 10} 7~
= O(wv) g O(wv)
051 ] 0.51
O(x2) m?— 1 O(xr) m?— 1
0.0 ' ! ' ' 0.0
0 2 4 6 8 10 0 2 4 [§ 8 10
A A
(a) For positive mass m? = 1. (b) For negative mass m? = —1.

Figure 3.2: The exact result (blue solid line) for I'®) via Egs. (2.12), (2.39), and (3.38) and the
large-N expansion result from Egs. (3.29) and (2.39) as functions of A for N = 2. The zeroth
order is plotted as a red solid line, the first-order correction as an orange dashed line and the
second-order correction as a green dashed line with larger dashing in both panels. The left panel
is an adaption of Ref. [107, Fig. 3].

Nonetheless, this work is not about benchmarking the precision of the %—expansion with simple
toy models, where we totally believe that it yields decent results, also in higher-dimensional
generalizations. Rather, we want to demonstrate how the slight modifications in the UV sector
of a theory (the UV classical action) can lead the J--expansion astray and how the infinite-
N limit can totally alter the phenomenology w.r.t. finite N. This is for example of particular
relevance in the vicinity of first-order PTs and for condensation/vaporization phenomena, e.g.,
if an external parameter like the chemical potential is varied. Here, potentials can comprise
degenerate global minima and cusps at their physical point. However, in the context of higher-
dimensional model calculations it is usually hard to identify these problems, due to a multitude
of interfering mathematical challenges and additional approximations.

3.3.4. An instructive toy model to study the failure of the %-expansion
and problems of the infinite-/N limit

To this end we constructed the following seemingly innocent toy model in Ref. [3], which was
inspired by Ref. [77]. Its continuous potential is formed by stringing together linear pieces in y,
which corresponds to a piecewise quadratic dependence on the scalar field itself. The negative/zero
slope of the middle piece depends on some parameter a > 0. In %—rescaled quantities (3.17) it
explicitly reads,
Y for 0<y<2,
Viy)=4¢—ay+2(a+1) for 2<y<8, (3.40)
y—6(a+1) for 8<y,
and for its y-derivative we find,
1 for 0<y<2,
v(y)=0,V(y) =4 —a for 2<y<8, (3.41)

1 for 8<uy.
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Figure 3.3: The potential V(y) from Eq. (3.40) (upper panel) and its derivative v(y) = 9,V (y)
from Eq. (3.41) (lower panel) for different values of the parameter a and where a. is given by
Eq. (3.42). From Ref. [3, Fig. 1].

The potential and its y-derivative are illustrated for three different values of a in Fig. 3.3. Here,
a., which we denote as the critical value for a, is

ac =4+ —1In(2) ~ 0.018951. (3.42)

This terminology and the role of a. are discussed in the next paragraphs. In addition, another
illustration of the potential in the rescaled scalar field

r = ﬁ b, (3.43)
is later on provided in Fig. 6.12. It is clearly visible that the UV potential has always a unique
global analytic minimum at y = 0 for a € [0,2a.]. Additionally there is a degenerate flat region
for a = 0 and a second non-analytic local minimum at y = 8 for 0 < a < 2a.. (Values a > 2a,. are
not of relevance for our discussion.)

Exact solution

Before we turn to the actual discussion and the saddle-point expansion, note that this model is
exactly integrable. Using the definition of the (incomplete) gamma function (A.36) and (A.37),
we find for a > 0,

/OO dyy¥-lyn NV O20 (3.44)
0
=N~ (F+n) (r(g +n) —T(§ +n,2N) + SNV (L 45, 8N) +

+(—a)~ 5+ e 2N@t) [P(X 4y _9Ng) —T(X 4, _8Na)]> 7
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and for a = 0,
/oo dyy? ' yr e NV P20 (3.45)
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e
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These general integrals can in principle be used to evaluate the arbitrary correlation functions
(2.12) by hand and to further obtain the vertex functions (2.39) to (2.41). High-precision numerical
evaluation is of course also always possible.

The infinite-N limit of the exact solution

In addition to the exact solution for finite IV, we also present the infinite-/N limit of this exact
solution. For this, we insert Eq. (3.44) or Eq. (3.45), respectively, into the general expression for
the correlation function (2.12), which we rescale by 5. Afterwards we use Egs. (A.41) and (A.42)
and send N — oco. We find for a = 0,

lim & ((62)™) =1, (3.46)
while for 0 < a < 2a,

for a<ae,

lim - (%)) = (3.47)
N‘n.
N=eo 16™, for a.<a<2a..

The corresponding vertex functions in the N — oo limit are

1, for a<a,
r® = vn#2 '™ =0. (3.48)

1—16, for a. <a<2a.,

For further details we refer to Ref. [3, Appendix A].

3.3.5. Application of the saddle-point expansion

Next, we turn to the saddle-point expansion of the correlation functions for the potential (3.40).
To this end, we analyzed and plot the function

fly) =V(y) — 5In(y), (3.49)

see Fig. 3.4. We recapitulate that an expansion in %, thus Eq. (3.29), is exclusively applicable,
if f(y) has a unique global minimum gy and is analytic around this minimum. Our f(y) has
in general two minima yo,; and yo2 with yo1 < yo,2. The second minimum is always located
at yo2 = 8 — the non-analytic cusp of the potential (3.40), while the first minimum agrees with
the minimum of f(y) for the free theory, thus yo1 = %, see Section 3.3.2. The latter is easily
understood, because the minimum is always located on the first sector of the potential, where
V(y) = y, which is identical to the free theory.
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Figure 3.4: The function f(y) = V(y) — 1 In(y) for the potential (3.40) for selected values of the
parameter a with a. = § — £ In(2) = 0.018951. The local minima of f(y) are located at yo = 3 and
Yo,2 = 8, where yo (yo,2) is the unique global minimum for 0 < a < a. (a > a.). At a = a. both
minima coincide and are global minima of f(y). The non-analyticity of f(y) in yo 2 = 8 inherited

from the piecewise definition of V(y) is clearly visible in the plot. From Ref. [3, Fig. 2].

The number and the position of the minima is independent of the parameter a. However, depending
on a, either yp 1 or yo2 is the global minimum, while the other one still stays a local minimum.
The critical value is a = a., when both minima of f(y) are degenerate, i.e.,

Fyoi=13)= fyo2=8), (3.50)

which is exactly the case for a. previously defined in Eq. (3.42). (This does by no means imply
that V(yo,1) = V(yo,2).)

We conclude: As long as a < a. the +-expansion of the expectation values (3.29) is perfectly
valid, because f(y), g(y), and V(y) are analytic at the expansion point yg1 = % Moreover, we
simply recover the results of the saddle-point expansion of the free theory from Section 3.3.2, but
this time for a highly non-linear interacting theory with non-analytic UV potential. However, in
contrast to the free theory, the saddle-point results for the correlation functions (3.36) are an actual
approximation to the exact results at finite N, because the latter are calculated from Eqs. (3.45)
and (3.44). Now, we could of course start to quantify the quality of this approximation, which is
however, not the objective of the discussion. Still, we note that for N — oo the leading order of
the +--expansion agrees with the N — oo limit of the exact results (3.46) and (3.47). This sounds
trivial, but it is not.

On the other hand, if a > a. the situation is totally different. The saddle-point approximation
and ﬁ—expansion is formally' no longer applicable, because the expansion point is non-analytic
and might not even be unique for a = a.. In this case, we should indeed abstain from using the
expansion Eq. (3.29), because an expansion is no longer well-defined. This does of course not alter
the fact that the exact result Eq. (3.44) is perfectly valid and also the N — oo limit (3.47) that
can be obtained from this result is well-defined.

In summary, we learned:

1. Already tiny variations of parameters in a theory can cause great differences in their phe-
nomenology. This effect is drastically enhanced in the N — oo limit, as can be seen from
all correlation functions (3.47), which jump at a., while Eq. (3.45) and ratios thereof are
continuous functions of a at a. as long as NN is finite. This jump in the correlation functions
and vertex functions can be associated with a first-order PT, which is driven by the varia-
tion of a, but is totally absent for finite but otherwise arbitrarily large N. In conclusion, the

11n fact, if one applies the saddle-point expansion at Y0,2, despite the fact that it is mathematically not allowed,
and exclusively uses right-derivatives, one still obtains appropriate results for this toy model. Howsoever, this is
dangerous and certainly not generalizable.
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N — oo limit completely changes the physics of the system. This drastic difference between
finite and infinite N and its consequences are again analyzed within the FRG framework for
this model.

2. Sometimes it is extremely hard to judge when one is leaving the radius of convergence of
an approximation scheme. In the context of smooth UV potentials, which can be written
down in closed form, it might be simple to identify the global minimum and judge its quality
as an expansion point. Nevertheless, oftentimes the %-expansion and the infinite-N limit
are applied to UV actions, where this is a highly non-trivial task. For example, consider
a boson-fermion system with Yukawa interaction, where the fermions are integrated out.
Here, the effective bosonic UV action comprises the logarithm of the fermion determinant
and identifying the true ground state of this effective classical action can be challenging.
Furthermore, external parameters, like a chemical potential can introduce artificial cusps
into these actions, which could even coincide with non-trivial minima of the potential. See
Part II for further discussions, details, and examples.

Hence, our simple toy model should be considered as a warning that the %—expansion and infinite-

N limit can fundamentally spoil the phenomenology. In addition, these methods are not by
themselves sensitive to their limitations.

3.3.6. Summary

In this chapter we demonstrated on the basis of two examples, i.e., perturbation theory and the
%—expansion (including the infinite-N limit), that there is a manifest need for non-perturbative
methods, which also avoid the direct evaluation of the integrals in the partition function and

expectation values, but which are
1. independent of the number and (relative) strength of couplings.
2. insensitive to the analyticity /smoothness of the involved actions.
3. not based on a specific expansion point.

4. work reliable in all kinds of limits of a theory (e.g., small vs. infinite N) and under the
variation of external parameters.

In addition, we demonstrated that it needs challenging but exactly solvable test cases to study the
quality and predictability of a method under a controlled environment. It is simply not enough to
use standard ¢*-theory as a benchmark test, which is anyhow oftentimes the case in the literature.



Chapter 4

The Functional Renormalization
Group from zero spacetime
dimensions

Abstract In this chapter we provide a pedagogical and perhaps unconventional introduction
to the FRG method. Without having to understand the physical concepts of coarse-graining,
RG scales, and renormalization etc. we derive the ERG equation — the Wetterich equation — in
zero-dimensional spacetime. We start off with some simple observations concerning the generating
functional for correlation functions and deduce a flow equation for this functional, which smoothly
interpolates between a trivial theory and the theories that we are actually interested in. We
show how to transform this flow equation into a flow equation for the generating functional for
1PT vertex functions and how to find the correct initial condition for the latter. For the entire
discussion we again use the model of N identical real scalars with possible O(N) symmetry.
Afterwards we turn to truncations of the flow equation and explain why these are actually not
needed in zero spacetime dimensions, which makes zero-dimensional FRG a perfect testing ground.
We derive and discuss the exact flow equation for the local potential, but also introduce an artificial
truncation scheme, the FRG Taylor expansion. Both are studied numerically in later chapters.
Finally, we discuss symmetry breaking/restoration during the RG flow.

Disclosure This chapter is completely based on our own publications [1, 2, 3] and especially
follows the discussion of Ref. [1, Chap. IT & Appendix B d], which was in turn partially inspired
by Refs. [106, 109, 107, 108, 110, 135, 136]. However, the presentation of the material in this
thesis slightly differs in its presentation from the corresponding publication [1] and is exclusively
written by the author. General introductions to the FRG in higher dimensions can be found for
example in Refs. [53, 54, 55, 56, 57, 100, 35].

4.1. Solving integrals with flow equations

Having briefly analyzed two alternative methods to the brute-force calculation of expectation val-
ues in the previous chapter, which were not able to produce satisfactory results, we finally turn
to the FRG as a possibly more powerful alternative and strictly non-perturbative method.

We start our discussion with a simple observation: As we have already experienced in Section 3.1
there are QFTs where the calculation of all correlation and vertex functions is trivial. These
are free non-interacting (massive) theories, which simply correspond to standard Gaussian-type
integrals in the functional-integral formalism, and their correlation functions can be identified as
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the standard Gaussian moments. This basically generalizes to arbitrary spacetime dimensions and
field types.

Let us assume that we add some arbitrary higher-order interacting terms to a free theory, such that
the theory is no longer exactly integrable. Furthermore, let us assume that the coefficient of the
quadratic term, the positive mass, is huge compared to all other interaction terms in the action.
In addition, we know that the probability-distribution function for the microstates is formed by
the exponential of the negative action, see Eq. (2.4). This implies that the integrands in the corre-
lation functions (2.5) are completely dominated by the quadratic mass term and almost perfectly
approximate Gaussian integrands, because higher-order contributions from interaction terms ex-
clusively enter in the tail of the probability distribution, which hardly contributes to the integrals,
due to the strong exponential suppression. Thus, by sending the (positive) mass to extremely
large values, basically any theory turns into a quasi-free ultra-massive Gaussian non-interacting
integrable theory.

So, what if we introduce an artificial mass term into the partition function of a theory that we are
interested in and by hand manipulate its magnitude, such that a complicated interacting theory can
be transformed into a trivial quasi-free theory and vice versa? If this transition could be described
dynamically by some evolution equation, there was a chance to calculate the correlation and vertex
functions of highly complicated theories from a particular evolution starting with trivial Gaussian
correlation and vertex functions. Instead of calculating high-dimensional functional integrals, we
“only” had to solve the evolution equation(s).

In fact, exactly this is possible and done by the FRG method, which is explained in the following
using the zero-dimensional model of N real scalars from Chapter 2.

Of course, the FRG and the RG in general are based on many more physical and mathemati-
cal ideas and observations. For a pedagogical introduction to the concepts behind, we refer to
Ref. [161] or the FRG-specific Refs. [53, 54, 55, 56, 57, 100, 35]. We come back to these ideas at
various occasions throughout the discussions of this thesis, but do not go into detail here.

4.1.1. The scale-dependent partition function

As motivated in the previous paragraph, we use the zero-dimensional model of N real scalars and
introduce an artificial mass-like term into the action and the partition function (2.13),

Z(t,J) = N/OO AV e S(@)-ASte)+TT4 (4.1)

This term is sometimes denoted as the regulator insertion and reads
AS(t,6) = 50" R(1) 6 = § ¢ Rij (1) 6; - (4.2)

So far we do not assume O(N) symmetry of the theory. Consequently it is advisable to choose
a diagonal mass term, which does not introduce additional interactions between the fields, but is
still applicable to O(N)-symmetric theories,

R(t) =1 ’I“(t) s d Rij (t) = 6ij T(t) . (43)

The higher-dimensional analogues of R and r are usually called the regulator and the regulator-
shape function and are oftentimes energy/momentum-dependent.! This directly brings us to
their dependence on the so-called RG time t. In higher-dimensional models the RG time ¢t is
directly linked to the RG scale k, usually via the UV cutoff A, see Appendix D.1. However, in
zero spacetime dimensions there is no notion of an energy scale which can serve as a “momentary”
reference scale for the energies and momenta occurring in loops, like in higher dimensions, because

1For details on higher-dimensional regulator(-shape) functions, we refer to Refs. [162, 163, 54, 100, 164, 165,
166, 167].
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in zero dimensions there are no loop momenta etc.. Anyhow, in zero dimensions we still use the
concept of the UV cutoff A, which simply refers to a plain number, and is larger than any other
“scale” in the model, e.g., couplings, other parameters etc.. Here, A is simply associated to the
maximal artificial “mass” per particle that is introduced by the regulator — the coefficient of the
quadratic term in the action. In turn, the RG time is used to smoothly interpolate between a
theory with this huge mass A (in the UV) and the original theory without the artificial additional
mass-like term (in the IR). (The association of small ¢ with the UV and large t with the IR
is explained below, when we turn to the 1PI formalism.) In fact, it can be interpreted as the
zero-dimensional version of Callan-Symanzik-type regulators, cf. Ref. [167].

Therefore, w.l.0.g.> we choose the following regulator-shape function and domain for ¢,

r(t)=Ae", t€[0,00). (4.4)

Thus, for ¢t = 0 we have 7(t = 0) = A and the theory is approximately Gaussian and all correlation
functions are known. Oppositely, for ¢ — 0o we recover the original partition function (2.13) and
the correlation functions, that we are interested in in the first place.

For practical (and numerical) purposes it usually suffices (is necessary) to stop at some finite tig,
which still has to correspond to an extremely small r(t1gr) = rir 2 0, and has to be much smaller
than all other “scales” in the model. This is referred to as the IR cutoff time/scale.

The role of the regulator — a visualization

For better understanding of the effect of (¢) on integrals like Eq. (4.1), we plot its integrand for
N =1and J = 0 for two different Zy-symmetric actions. In Fig. 4.1a we use the action (3.7) of the
¢*-theory with negative mass term, while Fig. 4.1b shows the dependence on ¢ for a non-analytic
but otherwise perfectly valid classical action,

_¢2a if |¢|§%7
S(@) =14 -(3)°, it 2 <¢l <2, (4.5)

= (@t =91), if 2<|g|.

The plots clearly demonstrate how r(t) deforms the actions from ultra-massive free smooth actions,
which are quadratic in ¢, into their actual shape, while the exponential integrand turns from a
Gaussian-shape distribution into the more complex original probability distribution. As long as A
is much larger than the other parameters of the actions, the Gaussian character clearly dominates.
However, when r(t) reaches the magnitude of the other parameters in the action, which is of order
one, we observe a rapid change until r(¢) ultimately becomes irrelevant for large ¢ and the original
action/probability distribution is recovered.

4.1.2. The heat equation — an evolution equation for the scale-dependent
generating functional of (connected) correlation functions

So far we introduced a term into our original theory, the regulator, which allows to smoothly
interpolate between a trivial quasi-free Gaussian theory and the theory that we are originally
interested in. Next, we examine how this evolution can be described mathematically.

2The only two requirements for the regulator-shape function, apart from the correct ¢t = 0 and t — oo limits, are
that r(t) € C1, such that its first derivative exists for all ¢, see also Ref. [100]. In addition we demand V¢ d;r(t) < 0.
This guarantees that the regulator can always be interpreted as a mass term and monotonically decreases with ¢.
The need for both aspects becomes clear within the next lines. Furthermore, note that all regulators that fulfill
these criteria are reparametrization-invariant in zero dimensions. This does not generalize to higher-dimensional
theories.
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Figure 4.1: The integrand (upper panel) and the exponent (classical action plus regulator insertion)
of Eq. (4.1) for N =1 at J = 0 as a function of the field variable ¢ for various RG times ¢. The
UV cutoff is A = 103, which is notably larger than the model parameters, and the IR cutoff
rir ~ 3.06 - 10~# is significantly smaller than all model scales and corresponds to ¢t = 15. From
Ref. [1, Figs. 1 & 2.

A flow equation for Z(t,.J)

As usual, if we study changes of quantities with time — here RG time — we take derivatives w.r.t.
t of these quantities. For Eq. (4.1) this leads to

OZ(t,J) = — [L o) N/ AN §2 e=S@)-ASEH+T¢ (4.6)

PZ(t,J)
_[1 PP Sk A A
zor®] % 57757,

= — [ 0r(t)] Ajz(t’j)a

where A ; is the Laplace operator in the space of source-fields J. On a formal level, this RG
equation constitutes a PDE for the scale-dependent partition function Z(t, J ) on the infinite
domain J € RY. The RG time plays the role of the evolution parameter — the time — and the
source-field space J is identified with the spatial domain. The equation is of first order in time
and of second order in its spatial derivatives. In fact, we identify Eq. (4.6) as a conventional
heat /diffusion equation [168], a fact which is also known in the FRG community [124, 100, 169].
In order to be a well-posed problem with unique (weak) solution and stable convergence according
to Hadamard, it is well-known that the diffusion coefficient of the heat equation needs to be
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positive semi-definite [168, 49, 50], i.e.,
D=—-10r(t)>0. (4.7)

This is indeed ensured by the monotonicity of the regulator shape function, see also Refs. [100,
164].3

A direct consequence of the RG evolution being described by a diffusion equation, which also gen-
eralizes to higher spacetime dimensions, is that the equation itself singles out a unique direction
of time from the UV (¢ = 0) to the IR (¢ — o0). The reason is that diffusion is a dissipative
manifestly irreversible process and linked to the production of entropy. This introduces a ther-
modynamic arrow of time and time asymmetry [170] and backwards integration is impeded. It is
manifest on the level of the PDE and its numeric solution, as will be discussed in detail in later
chapters.

However, to be well-posed, one also needs to specify boundary and initial conditions for the PDE.
Formally, boundary conditions are not needed here, because the PDE is defined on all RV and
an initial condition suffices. It is a pure initial-value/Cauchy problem [104]. Unfortunately, the
initial condition is basically identical for any UV action S ((5 ), because it is by construction an
almost perfect Gaussian,

j‘2

Z(t=0,J)~ N (¥)? e28 . (4.8)

Z

This implied that RG flows for Z(¢t = 0, ) of totally different classical actions S(¢ ) are identical,
which is nonsense. Thus, one had to include the tiny deviations from the perfect Gaussian shape,
which are caused by the different higher-order interaction contributions in & (5 ), to obtain different
initial conditions. This, however, would require to solve the high-dimensional functional integrals
which we wanted to avoid in the first place.

In conclusion, Eq. (4.6) is perfectly valid, but seems to be problematic for practical (numerical)
computations, see Ref. [1] for further details. Furthermore, we mentioned several times in Sec-
tion 2.1 that the generating functional for correlation functions is anyhow not the optimal choice
of storing information about a QFT.

Therefore, we turn to the other two generating functionals that were introduced in Section 2.1,
i.e., the generating functional of connected correlation functions, Def. (2.15), and the generating
functional of 1PI vertex functions, Def. (2.20).

A flow equation for W(t,J)
It is straightforward to generalize the definition of the generating functional of connected correla-
tion functions to its scale-dependent counterpart. One simply uses Def. (4.1) and defines

W, J)=lnZ(t,J), (4.9)

which starts off in the UV at t = 0 as an almost perfect parabolic function of the source fields j,
¢f. Eq. (4.8), and approaches its physical value for ¢ — oo.

Using the identities of Section 2.1.3 and the flow equation (4.6), we arrive at an RG flow equation
for W(t,J ),

OW(t, ) = =[50 (®)] [A;W(E,T) + (W) (W, T))] - (4.10)

In analogy to the flow equation (4.6) we are confronted with a heat equation with manifestly
positive diffusion coefficient. However, in addition to the conventional “heat-flux” another term

3Note that zero-dimensional spacetime allows to eliminate 8;7(t) from the equation by appropriate reparametriza-
tion of the temporal coordinate, which anyhow keeps the structure of the equation unchanged and again emphasizes
that all valid regulators are identical up to a reparametrization. In higher-dimensional spacetimes this is no longer
the case.
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is generated, which is quadratic in the first spatial derivative of the abstract fluid field W(t, J ).
This turns the problem into a non-linear PDE, which in general complicates its solution.

Anyhow, we are again confronted with the same shortcoming as before. The initial condition is
to first approximation identical for any possible S (gi_; ). However, incorporating the tiny devia-
tions from W(t = 0, J ) x J? required to solve the functional integral from Eq. (4.1) including
interaction terms. However, this was what we wanted to avoid in the first place by turning to

perturbation theory, the %—expansion, and the FRG method.

Note: Interestingly, the flow equation (4.10) is structurally identical to Polchinski’s RG flow equa-
tion for the RG flow of effective Lagrangians [171, 100] and similar to the flow equations used in
Ref. [102]. In turn, these flow equations do not exhibit the problem of indistinguishable initial con-
ditions, because there the abstract fluid is the effective Lagrangian (Wilson’s effective action) itself.

Anyhow, we turn to yet another generating functional and its associated exact RG flow equation
and demonstrate that it has well-defined and distinguishable initial conditions for separate theories
— the Wetterich equation.

4.2. The exact renormalization group equation — the Wet-
terich equation

In a first step, we generalize the definition of the generating functional of 1PI vertex functions
(2.20) (the effective action) to a scale-dependent version using the Legendre transformation of
Eq. (4.9),

L(t, @) =sup; {J- G- Wt J)} = J(t,6) -6 — W, J(t,6)). (4.11)

Note that the evaluation on the supremum makes the sources RG-time- and field-dependent.
Furthermore, we introduce the so-called effective average action,

F(ta SB) = P(tv SB) - AS(tv 95) ) (412)

where we subtract the regulator insertion (4.2) from Eq. (4.11). Both generating functionals,
Egs. (4.11) and (4.12), have the correct IR limit for ¢ — oo and approach the 1PI IR effective
action (2.20). Their UV behavior is, however, different, and discussed below. (Within the next
lines it becomes clear why one uses Eq. (4.12) instead of Eq. (4.11) for practical computations.)

4.2.1. A flow equation for I'(t, )

The derivation of the exact RG flow equation for the effective average action (4.12) is straight-
forward. One starts again by taking the time derivative of the generating functional. The actual
calculation is presented in the next lines, with explicit references to the used identities at the end
of the lines,

- (4.12)

oL (t, ) (4.13)
. oy (4.11)
- . 5 - 5 5 (4.2)
=0 (J(t, @) - G—WI(t, J(t,3)) — AS(t,3)) =
5 (2.21)
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e Lo (4.10),(2.21)
= - oW, J(t,3)) — (% 8tr(t)) g2 =

PW(t,J)
8, 0J;

(% 8tr(t)) 572]'

In a final step, we have to express the scale-dependent connected two-point correlation function
to formulate the entire flow equation on the level of the vertex functions. We use Egs. (2.26)
and (4.12) and find,

= 25, - S35, o -1
ol'(t,g) = (% atr(t)) 3i; G¥#(t,8)i = (% 8tr(t)) 0ij (F“”‘P(t, 7))+ R(t))ji . (4.14)
This equation is the zero-dimensional version of the ERG equation or Wetterich equation for a
model of N real scalars. In its general form for possibly non-diagonal regulators in arbitrary
spacetime dimensions and with arbitrary field content, this equation reads

L4 [®] = STr (5 0. Ry) G[®]] (4.15)

where ® contains all degrees of freedom of a system and STr is the “supertrace” that accounts for
sign flips due to anti-commutation of fermionic components etc.. For further information, we refer
to Appendix C.2, where a detailed derivation of the Wetterich equation is presented for arbitrary
field content in an arbitrary number of spacetime dimensions, and Refs. [54, 172, 35].

Anyhow, a few comments concerning the form of Eq. (4.14) are in order. In general, the equation
is still a diffusion-type equation. It is first order in its temporal derivative and of second order in
its spatial derivatives. The spatial domain is now the mean-field space and the spatial coordinates
are ¢ € RY. In contrast to the previous RG flow equations (4.6) and (4.10), we are confronted with
an inverse dependence on the second derivative of the abstract fluid field T'(t, ). The equation
therefore surely keeps its dissipative character, but diffusion is not necessarily enhanced in regions
of high gradients and vice versa. We shed light on the true underlying structure of this equation in
the next chapter. For the moment we simply turn to the issue of an appropriate initial condition
for this PDE, because the PDE is still a Cauchy problem without boundary conditions, since the
domain of the PDE is not compact and not finite.

4.2.2. A proper UV initial condition for the RG flow of the effective
average action

To find the initial condition for Eq. (4.14) we have to calculate the ¢ — 0 limit of the effective

average action (4.12). The starting point of this discussion is the identity

o-TtF) — Jn 2T, =TT (6,6)F _ N'/Oo o e—S(q?)—AS(t,$)+fT~(<5—¢)7 (4.16)

which simply follows from the Defs. (4.1), (4.9), and (4.11).
Firstly, we shift the integration variables by the mean fields, ¢ — (5 I= 5 — 4, which is the same
shift that is frequently deployed in the background-field formalism to study fluctuations about the

expectation value of the field [145, 173]. Secondly, we use the ¢-dependent version of Eq. (2.23)
and find,

D) < N7 [TV S DA 0T ST (417)

The two rightmost terms in the exponent can be combined and we have

N
2

N

— 0 N - - =2, -
F(t,@):—ln/ AN ()7 eSO+ =3 ST 1 N (27 (4.18)

— 00
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Here, we renamed the integration variable and introduced the normalization factor of an N-
dimensional Gaussian integral with mass r(¢). Now we are ready to analyze the ¢ — 0 limit of

L(t,@).

In the integral on the r.h.s. the classical action does not depend on t, while the last term in
the exponent is of higher order. The middle term of the exponent, however, approaches an N-
dimensional Dirac delta distribution

t ()

t
t—0 47T

e 208 5 §(N)(F), (4.19)

as long as A is much larger than all scales in S ((5 ). Thus, denoting

N2

c(t) = -WN(5) 7, (4.20)

the t — 0 limit of the effective average action is

L(t,3) = —In / A¥§ 6N (F) e~ SEHEHTZ (B¢ | () = S(F) + c(t). (4.21)

— 00

We identify the initial condition for the RG flow equation of the effective average action as the
classical action evaluated for the mean fields ¢ (up to a scale-dependent constant, which we ignore
for a moment). Different models with distinct classical actions S(Z) therefore correspond to
different well-defined initial conditions and generally distinguishable RG flows.

This also explains why ¢ = 0 is denoted as the UV and t — oo as the IR: The effective average
action simply continuously interpolates between the classical microscopic UV action (@) and the
full-quantum IR effective action I'(¢). This transition from micro- to macro-physics is exactly
described by the ERG equation (4.14). In higher-dimensional spacetime it goes hand in hand with
continuously integrating out momentum shells, which makes the Wetterich equation the direct
implementation of Wilson’s concept [174, 175, 176, 161] of the RG.

However, it remains to analyze the role of the scale-dependent but field-independent constant
(4.20). The problem is that for ¢ — 0 its absolute value is large, ¢(t) ~ Inr(t). Therefore, by
including this term, the initial condition for the RG flow would be completely dominated by this
large constant and the differences of different S(¢) would again be hardly visible. Anyhow, an
overall field-independent term is always irrelevant for all physical observables, which are either
obtained from the IR vertex functions or from relative differences in I'(#). In both cases the
t-dependent constant drops out. In addition, inspecting Eq. (4.14), one finds that the r.h.s. of the
PDE exclusively depends on the second derivative of T'(¢, @), such that the ¢-dependent constant
does not modify the evolution of T'(t, @) itself. We conclude that the t-dependent term (4.20) can
be ignored and dropped from practical calculations.

In summary, the Wetterich equation (4.15) is the evolution equation that we were looking for: It
allows to circumvent the brute-force calculation of functional integrals like Eq. (2.12). The price
to be paid is that one has to solve in general a highly non-linear multi-dimensional PDE. Instead
of calculating the correlation functions, one extracts the vertex functions from the solution of the
PDE by taking field-space derivatives at its minimum, cf. Section 2.2.2. In zero dimensions, this is
of course cumbersome compared to the direct calculation of expectation values, while for higher-
dimensional problems, it could be an advantage. Unfortunately, in higher-dimensional spacetimes,
the Wetterich equation even turns into a functional partial-integro differential equation, which
usually cannot be solved exactly and calls for approximations. The question is therefore how
solving this equation is done in practice. This is the topic of the following two sections.
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4.3. The ERG equation without truncations — a PDE for
the local potential of the zero-dimensional O(N) model

As it stands, even the zero-dimensional Wetterich equation for a model of N real scalars is a tough
problem, because it is an N-dimensional PDE, and without further constraints, there is nothing
we can do about it.

Fortunately, most problems in QFT are heavily constrained by symmetries of all kind. For the
(functional) integrals in the calculation of correlation functions like Eq. (2.7) the O(N) symmetry
was used to reduce the dimensionality of the integration from N to 1. A similar approach is
usually taken in the FRG formalism: It is known that the IR effective action only comprises terms
which are in accordance with the UV symmetries of the system — the symmetries of the partition
function [144, 145, 19, 177, 13]. Hence, during the RG flow all kinds of interaction terms and
couplings are generated, but all of them have to preserve the symmetries from the UV. (Of course,
this is not the case for the vacuum/ground state, which is extracted as the minimum of the IR
effective action and can break symmetries, which is spontaneous symmetry breaking during the
RG flow.)

Having this in mind, it is advisable to write down the scale-dependent effective average action in
terms of scale-dependent function(al)s of invariants of the UV symmetries and to study the RG
flow of these function(al)s.

4.3.1. The flow equation of the local potential of the O(N) model

For the zero-dimensional O(N) model this is simple. The only possible O(N)-invariant structure,
which is built up from the O(N) invariant of the mean fields J,

0=13%3", (4.22)

is a scale-dependent effective potential U(t,F) = U(t,9). In the UV at ¢ = 0 it simply matches
the classical potential of Chapter 2. The effective average action is therefore described on all RG
scales by

I'@t,g)=U(t,¢)=Ult o), (4.23)

and starts off in the UV as the classical action/potential S(¢) = S(0) = U(p). Inserting this in
the ERG equation (4.14) we obtain an exact flow equation, which is effectively two-dimensional —
one temporal coordinate (the RG time ¢) and a single spatial coordinate (the invariant p).

In order to also reduce the r.h.s. of Eq. (4.14) to a dependence on t and p, we have to invert the
matrix-valued two-point function and calculate the propagator. This is done as follows.

We calculate the first two derivatives of Eq. (4.23) w.r.t. the components of

[22(t, @) = #23% L(t,3) = 6, U (t, 0) + @5 i DU (t, 0) - (4.25)

These and the Def. (4.3) of the regulator can be used to write down the components of the full
field-dependent matrix-valued two-point vertex function,

(P2, @) + R(1)) ;, = 0 [r(t) + DU (¢, 0)] + ¢ 0: U (¢, 0) (4.26)

The inverse of this object is generated as follows. We introduce the field-space projectors which
project onto the one-dimensional subspace which is parallel (||) to the field-space vector ¢, and
onto the (N — 1)-dimensional subspace that is perpendicular (L) to the same vector respectively,

oy _ PP oy Y5 Pi
Pl(@) = = Piilg) = o5 = "5t (4.27)
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As is convenient for any reasonable projectors, they are idempotent, orthogonal, and complete.
Using these projectors, the two-point function is split into parallel and perpendicular contributions

(FP2(8.) + R()) ;, = Pjs(&) [r(1) + 0,U (¢, 0)] + (4.28)

Ji
+PJi(@) [r(t) + 9,U (1, 0) + 200U (1, 0)]
The inversion of this object is now simple, due to the projector properties. One finds

(%%(.5)+ RO =PH) g + (4.29)
1

r(t) + 0,U(t, 0) + 2003U(t, 0)

(=
"‘Pji(@)

=PH(3) G (4, 3) + PI(3) G (1, F) .

In the last line we defined the full propagators of the so-called radial ¢ mode and the IV — 1 pions,
which correspond to the Nambu-Goldstone modes of higher-dimensional problems,

oo =\ 1
) = L+ 0,0 0) + 20020 (10) (4.30)

T =\ 1
G F) = T (4.31)

Next, Eq. (4.29) is inserted into the r.h.s. of the Wetterich equation (4.14) and the summation
over field indices (the trace) is evaluated. In total, one obtains the following PDE,

% 6t7”(t) % 8,57"(75)

QU(t,0) =(N —1) r(t) + 9,U(t, 0) + (t) + 0,U(t, 0) +2002U(t, 0)

(4.32)

whose spatial domain is parameterized by the invariant g € [0, c0).

In contrast to what is usually found in the literature, it turns out, see next chapter, that for certain
purposes it is much better to return to the fields instead of the invariant as the domain of PDE.
However, instead of using ¢ it suffices to pick one field-space direction, e.g., g = (0,0,...,0), such
that

o=130%, (4.33)

because the Wetterich equation is valid for any field configuration. Using this variable transfor-
mation, the PDE is defined for o € (—00,00) and reads,

o %5}1"(15) %aﬂ”(t) .
00t o) =N =) e T8, Ulto) T 70 + 20 (o) (4.34)

=i i+ , (4.35)

where U(t,o) = U(t,—0), which is a remnant of the O(N) symmetry. In the last line we also
introduced the graphical representation of the RG flow equation in terms of Feynman graphs. The
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crossed circles represent the regulator term % Oyr(t), while the full o and pion propagators are rep-
resented by blue jagged and red dashed lines. For further details on this graphical representation,
see also Appendices C.2 and E.

Note that in higher spacetime dimensions the derivation of the flow equation of the effective
potential in O(N)-type models is very similar and the final result is structurally identical. The
difference in higher dimensions are scale-dependent prefactors and that the flow equation for the
effective potential is no longer exactly equivalent to the functional integral, but is part of an infinite
set of coupled set of PDEs, which is usually truncated, see Appendix C.2.4. Nevertheless, almost
all of the upcoming discussion in the next chapters can be generalized or adopted to non-zero
spacetime dimensions.

4.4. Artificially truncating the ERG equation — the FRG
Taylor (vertex) expansion

As was just said, FRG in higher-dimensional spacetime usually calls for approximations and one
is usually confronted with a coupled set of PDEs and ODEs which describe the RG flow of the
system.

A commonly used approximation scheme is the so-called vertex expansion [53, 57, 35], where
the scale-dependent effective average action is expanded in interaction vertices/field-orders. In
non-zero dimensions, these vertices are usually momentum-dependent and high resolution in mo-
mentum space is usually the goal, when this approach is used.

Another truncation scheme is the derivative expansion [53, 57, 35], where the effective average ac-
tion is expanded in powers of momenta, but field dependences are included at all orders. The lowest
order contribution of this approximation is the LPA, which is exact in zero dimensions, because
there are no momenta. This approximation is believed to work well at small momenta/energies
etc..

Still, even the LPA flow equation is oftentimes further approximated in terms of a Taylor-expansion
of the effective potential in powers of the field, e.g., Refs. [78, 178, 179, 53, 65, 56, 66, 180, 63, 70,
69, 71]. Hereby, the expansion point is usually chosen to be the scale-dependent or the IR mini-
mum of the effective potential. For zero dimensions the IR minimum is trivial as demonstrated in
Section 2.2.2. Consequently, in zero dimensions the vertex expansion and the Taylor expansion of
the effective potential coincide.

Even though the Taylor expansion of the effective potential is not needed and it is possible to
solve Eq. (4.34) (numerically) in full generality, it is instructive to study artificial truncations in
zero dimensions. The reason is that in general the effective potential does not need to be analytic
during the RG flow and can even develop non-analyticities in the IR in higher dimensions [83, 91,
77,101, 103]. An expansion in the fields is therefore generally questionable, because the radius of
convergence might be strongly limited or not exist at all. Still, this expansion is used frequently
without any doubt. Therefore, we believe that it is useful to demonstrate its limited range of
applicability via some simple zero-dimensional test cases, similar to what was done in Chapter 3
for perturbation theory and the %—expansion. Due to the availability of exact reference values,
this may help to get a better intuition on the quality of this truncation scheme and an estimate
of its factual range of applicability.

Hopefully, this contributes to the ongoing debate on useful truncation schemes of the Wetterich
equation, because so far there is no absolute systematics for the development of correct truncations
and their errors. Acting from necessity, truncations are usually simply adopted to the problem at
hand by experience rather than quantitative evidence.

4.4.1. The formalities of the FRG Taylor expansion

In this section, we formally introduce the zero-dimensional FRG Taylor expansion as a truncation
of the exact flow equations (4.32) and (4.34). This idea is not original to the author and can also
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be found in Refs. [107, 108, 109, 110, 125].

The starting point is the equality of the effective average action and the effective potential
Eq. (4.23). We expand it in powers of the O(N) invariant o = %952, such that the expansion
respects the UV symmetry. Explicitly the expansion up to a truncation order m reads,

L(t,¢)=Ut, @)=Y mrign V) 4 (37%)" = (4.36)

or

n=0

expressed via the invariant itself. Here, I'(2™) (t) are the scale-dependent expansion coefficients
— the vertices. The additional factors (2n — 1)!! and n! are introduced such that the expansion
coefficients in the IR exactly match the 1PI 2n-point vertex functions with identical field indices
(2.39) to (2.41) etc., thus, TC) (tg) =T ..

This expansion implies that Eqgs. (4.32) and (4.34) turn into a coupled set of ODEs for the expan-
sion coefficients. This system is obtained as follows.

We start by inserting the Taylor expansion (4.36) or Eq. (4.37) into Eqs. (4.24) to (4.26) and
repeat the projector decomposition of the previous Section 4.3.1. As an intermediate result, we
obtain the o and pion propagators (4.30) and (4.31) in their Taylor-expanded version,

-1

m—+1
T2 ~(2n —o\n—1
G™(@) = |r() + Y @ LV gt (3 6°) = (4.38)
L n=1
m-+1 B -1
= rO+ Y @t TV Gt g“] —6™(0),
L n=1
m—+1 B | -1
6*) =)+ 3 a0 oy (0| - -
L n=1
m—+1 B -1
=)+ Y e T 0 oty @] —G"(g),
L n=1
Thus, in analogy to the flow equations (4.32) and (4.34), we find
OiLe(@) = (3 0r(1)) [(N = 1) G™ (@) + G77 ()], (4.40)
and
9iTe(0) = (5 0r(t)) [(N = 1) G™(0) + G (0)] , (4.41)
respectively.

In the last step, we also insert Eqgs. (4.36) and (4.37) on the left-hand side (1.h.s.) of these equations
and expand both sides in ¢ = %95 2 up to the desired expansion order m. Either by comparing
coefficients on both sides of the equation or by taking an appropriate number of derivatives w.r.t.
the invariant and evaluating at o = %4,5' 2 = 0 afterwards, we obtain the following coupled set of
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ODEs [107, 109],

=(0) B 3 8tr(t)
oI 0 (t)=N 7r(t)2+ f‘(Q)(t) , (4.42)

_N+2 20y (t)

L@ (t) = r(4)
o (t) = 3 01O (t)]g (), (4.43)
fwy 2N E8) () g2 N4 FOr() o
O, (t) 3 [0+ DO [T ()] 5 ) 1 TO0) Lo,  (4.44)
and for all n > 2m + 2
AT () =0. (4.45)

As can be seen, the respective flow equation for the coefficient I'?")(¢) always contains I'?"+2)(t)
on the r.h.s.. Hence, without truncating this system at an artificial expansion order m, we obtain
an infinite tower of coupled ODEs.

This is discussed in detail in Appendix C.2.4. In addition, note, that the UV initial values for the
ODE system of vertices are extracted by also expanding the UV potential and mapping its coef-
ficients on the UV coefficients T'(*™ (tyv), which already implies analyticity of the initial potential.

Finally, we remark that a computation of high-order Taylor expansions by hand is tedious and
error prone. Therefore, we recommend using computer-algebra systems like MATHEMATICA [147]
for their derivation as was also done for this thesis and the corresponding publication [1].

4.5. Symmetry breaking/restoration during the RG flow in
zero dimensions

In this section we return to the question of symmetry breaking/restoration in zero dimensions as
well as smoothness and convexity of the generating functionals. It is a continuation of Section 2.2.
The motivation for this discussion is rather simple. In Section 4.2.2 we argued that the correct
UV initial condition for the effective average action is the classical action, T'(t = 0,@) = S(§F).
Moreover, we know that the IR limit of the effective average action is the IR effective action
I'(t — 0o,@) =T'(F). For the latter, we demonstrated its smoothness and convexity in Section 2.2.
The former classical action, however, neither needs to be convex nor smooth.

This implies that there can be PTs during the RG flow from the UV to the IR on the level of
f‘(t, @ ). This transition only allows for a temporary breaking of a symmetry and always leads to a
restoration of all symmetries in the IR. Without fermionic degrees of freedom, symmetry breaking
has to be imprinted to the dynamics already in the UV initial condition, if it should be present
at all at some point during the RG flow, because the bosonic degrees of freedom exclusively work

against symmetry breaking.

Of course, this calls for some step-by-step explanation:

Let us start with the RG-scale-dependent versions of the generating functionals of (connected)
correlation and vertex functions Eqgs. (4.1), (4.9), and (4.11). The plain introduction of the
regulator insertion (4.2) simply adds an additional smooth mass term to the classical action and
the partition function. In consequence, the proof of smoothness from Section 2.2.1 still applies.
The same holds true for the proof of convexity in Section 2.2.2. We conclude that the generating
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functionals Z(¢, j), Wi(t, j), and T'(¢,F) are convex and smooth at all RG times t. The question
is how this fits with the discussion of the previous paragraph.

Convexity Concerning convexity, the reasoning is rather simple. In Eq. (4.12) we defined the
effective average action as follows

T(t, @) =T(t,3) — AS(, @) . (4.46)

Even though I'(t, @) is convex for all ¢, it is obvious from this definition that this is not necessarily
the case for T'(¢,#) due to the subtraction of the quadratic mass term. This resolves the first
puzzle.

Smoothness Nevertheless, the question of smoothness remains. Since I'(t, ) and AS(t, ) are
smooth for all ¢, Eq. (4.46) implies that also I'(¢, ) is smooth for all . But this is in direct
opposition to the fact that T'(¢, &) is initialized with S(#), which can hand down contain cusps.

The reason for this discrepancy is hidden in Eq. (4.19). The limit of T'(t — 0,3) = S(#) would
only be exact for an infinite UV cutoff A. This, however, does not make sense, because in this limit,
vertices like T(®)(t = 0) would diverge, as can be seen from Eq. (3.4) with m? = A and we could
hardly calculate at all. Hence, the UV limit is pathologic. The approximation T'(t — 0, &) = S(F)
is only almost exact for very large A and explains the discrepancy in smoothness. For all practical
applications this does not have any consequence at all: As long as there is a contribution of the
diffusive o mode in the flow equation, see Eq. (4.34), the flow equation itself will slightly smooth
out any cusps already after an infinitesimal RG time step, such that smoothness of f(t —0,4)
is recovered. (We find that this does not need to happen in the N — oo limit of Eq. (4.34).) We
can even estimate the error for the observables which stems from the minimal approximation in
the initial condition. In fact the error should be of magnitude

1 st scale i
error & argest bjia ein§ 7 (4.47)

because the initial criterion for the choice of A was that it should be much larger than all scales
and parameters in S(g).

Analyticity Still, the above discussion does not say anything about analyticity of the generat-
ing functionals at all. A function can easily be smooth, without being analytic and expandable.
In consequence, even though smoothness might be restored for T'(t, @) (at finite N) in the RG
flow immediately, this does by no means imply that the FRG Taylor expansion of Section 4.4.1
converges and is applicable at all.

In summary, the zero-dimensional O(N) model also allows to study PTs, even though these are
not associated with the variations of external thermodynamic parameters. The phase transition
that can be studied by our toy model is in fact symmetry restoration of the ground state, if it was
initially broken by the ground state of the microscopic UV classical action.

4.6. Summary

In this chapter we presented the FRG method in terms of simple modifications of probability-
distribution functions and generating functionals. By introducing an artificial mass-like term in a
QFT, which is altered along some evolution parameter ¢, we derived a partial differential equation
which allows to calculate vertex functions without (numerically) calculating functional integrals
at all. It is exclusively required to solve this PDE, which sometimes requires approximations.
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The peculiar aspect of this chapter is that by using the zero-dimensional O(N) model we were
able to reduce the Wetterich equation to its absolute minimal form and essential characteristic
properties. We were able to get rid of all additional complications, which usually come with high-
dimensional QFTS, such as spacetime symmetry groups, infinities, regularization, renormalization,
truncations etc.. This sets the stage for reanalyzing the Wetterich equation and working out some
novel fluid-dynamical aspects, which also generalize to higher-dimensional applications.
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Chapter 5

FRG flow equations and
(computational) fluid dynamics

Abstract In this chapter we recast the FRG flow equation for the effective potential of the zero-
dimensional O(N) model in the form of a conservation law. We identify advective and diffusive
fluxes. This promotes the interpretation of RG flow equation to a fluid-dynamical problem with all
its consequences, which are presented in detail. We discuss irreversibility and entropy production
as well as shocks and their mathematical formulation in different limits of the flow equation.
Afterwards we deal with the numerical implementation: We first focus on a specific numerical
scheme from the field of computational fluid dynamics, the Kurganov-Tadmor (KT) (central)
scheme, and then turn to the general formulation of appropriate boundary conditions.

The entire chapter focuses on theoretical considerations, while practical applications and tests of
our findings are discussed in the next chapter.

Disclosure This chapter is entirely based on our own work, which is published in Refs. [1, 2,
3]. The compilation of the results is different, but some parts of this chapter closely follow the
presentation from the publications. Most of the material is based on work which I performed in
equal shares with M. J. Steil and the support of our other coauthors.

Furthermore, this chapter is influenced by the works of our collaborators [77, 101, 102, 103] as
well as our related own project Ref. [4], which is presented in Part II of this thesis.

5.1. Flow equations and conservation laws

Already in Section 4.1 we discussed that the RG flow equations for Z(t,.J) and W(t,.J) share
certain similarities with fluid-dynamical problems, e.g., the heat equation. However, due to diffi-
culties with the initial conditions of these PDEs, we turned to the Wetterich equation for T'(¢, ).
We finally arrived at a flow equation for the local effective potential U(t,o) = U(t,0) for the
zero-dimensional O(N) model, ¢f. Egs. (4.32) and (4.34). However, a structured analysis of this
equation is still outstanding. This is part of this chapter.

5.1.1. Turning the LPA flow equation into a conservation law

For convenience only, we again present the LPA flow equations (4.32) and (4.34) formulated in
the O(N) invariant g,

L0 (t) 3 Or(t)
Ut 0) = (N —1) r(t) + 0,U(t, 0) + r(t) + 0,U(t, 0) +2002U(t,0)

0€0,00), (5.1)
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and in the background field o,

%atr(t) %5}1"(15)
r(t)+ 2 0,U(t,0)  r(t)+02U(t,0)’

0 U(t,o)=(N—-1) o € (—00,00). (5.2)
Both formulations of the flow equation are of first order in the temporal coordinate, comprise a di-
rect dependence on their spatial coordinate, and contain terms with up to second-order derivatives
w.r.t. the spatial coordinate. It is notable that the r.h.s. of this flow equation does not depend
on U itself, but exclusively on its derivatives. Furthermore, we know that U is not a physically
measurable observable. It is only possible to measure derivatives of and relative differences in U.
Both facts can be seen as prompts from the equation itself not to study the PDEs as they stand,
but to turn to its spatial derivative(s).

Therefore, we calculate the g-derivative of the first version of the PDE,

%8157’(15) %aﬂ"(t)
)tu(t,o)  r(t) +ult, o) +200,u(t, o)

and the o-derivative of its second version,

Ouult,) = 30|V 1) |, e 63

dhult, o) = % [(N -b r@)iagit()t,a) r(t) iaézf(j()t, 0)} ’ o € (-00,00). (54)
Here we introduced

u(t, 0) = 0,U(t, 0) , (5.5)
and,

u(t,o) = 8,U(t, o), (5.6)

respectively. Note that even though both derivatives are labeled with the small letter u, they are
different functions due to the chain rule % = %6%.

By not executing the derivatives on the r.h.s. of Egs. (5.1) and (5.2) we can indeed identify the
flow equation for the derivative of the potential with a conservation law, where the flux (the
square bracket on the r.h.s.) depends on ¢, g, u, and d,u or ¢, o, u, and dyu respectively. (Of
course, also other choices of spatial and temporal coordinates are possible and the equation keeps

its conservative form.) In general, we identify u as the conserved quantity or the abstract fluid field.

It is important to remark that also the initial condition for the flow equation needs to be adopted
and is

u(t =0,0) = 0,5(0), or u(t =0,0) = 0,8(0). (5.7)

Moreover, if formulated in o, the function u(t, o) is Zs-anti-symmetric, u(t, o) = —u(t, —o), while
u(t, o) has no additional symmetry and is exclusively defined for ¢ > 0.

Before we start discussing the single contributions, a few remarks are in order.

1. The conservative form of the flow equation has clear advantages when it comes to an intuitive
interpretation of the dynamics. Our entire physical thinking and mathematical description
of the world is structured by conservation laws that provide direct access to the behavior of a
system. Conservation laws are not only found in all areas of natural science and engineering,
but also in finance and economics and have proven to be the most robust laws of Nature.

2. Conservation laws are subject of intensive research and studied numerically in the field of
CFD. Extremely powerful tools for their numerical solution were developed within the last
century [104, 49, 50, 51, 52]. Hence, formulating RG flow equations in terms of conservation
laws provides direct access to this toolbox, which only has to be adopted to the specific
problems at hand.
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3. The above observation that the LPA flow equation in the FRG formalism should be consid-
ered as a fluid-dynamical conservation law is due to Refs. [77, 181]. Some aspects/consequences
can already be found in Refs. [76, 75, 91].

Interestingly, it seems as if this reformulation of the RG flow equation in terms of a fluid-
dynamical problem is actually in parts a rediscovery. In the “pre-Wetterich” era of flow
equations, which was dominated by Polchinski-type equations [171], several works already
analyzed the flow equations in this fashion [92, 93, 94, 95, 96, 97, 98, 99, 100].

Moreover, even the notation of RG “flow” equation or RG “time” is not an accident and

comparisons of hydrodynamic flow and RG flow can be found in common textbooks [182,
19].

Therefore, it is surprising that these aspects have not been studied further.

5.1.2. The LPA flow equation as an advection-diffusion equation

Next, we dive into a deeper analysis of the single contributions to the flow equation. Therefore,
we first split Egs. (5.3) and (5.4). For the o-formulation we find

Opu(t, o) + d% Flt,u] = % Qlt, 0,u, Opu] , (5.8)
with fluxes
B Lowr(t)
Flt,ul= — (N —1) m, (5.9)
. 1 6t7’(t)
Qe =5 uft )+ 200,u0,0) (510

whereas for its formulation in o, we have

Ou(t,o) + L Flt,o,u] = L Q[t,0,4], (5.11)
with fluxes
B Lor(t)
Flt,o,u]= — (N —1) m (5.12)
B Lowr(t)
Q[t, 0yu] = m. (5.13)

Here, we identify F' as advection-type fluxes and @ as diffusion-type fluxes, which is explained
within the next lines. The full equation is therefore identified as an advection-diffusion problem,
which falls into the class of standard fluid-dynamical PDEs.

The pion-loop as a non-linear advection flux

In a first step, let us simply ignore the @-contributions to the flow equation. Later on, we find
that this formally corresponds to the N — oo limit, which is already anticipated from the factor
(N —1) in F. From the derivation of the RG flow equation in Section 4.3, we know that the fluxes
F' completely stem from the loop contributions of the N — 1 pions (the Goldstone modes in higher
dimensions).

Now, the question is why we can interpret this contribution as an advection term which transports
the fluid u in a directed manner. This is understood by executing the derivatives in Egs. (5.8)
and (5.11) (ignoring Q) [77],

Owu(t, o) = —(0,F[t,u]) Oul(t, o), O F[t,ul = (N —1) 2 <0. (5.14)
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We clearly see that this equation is an advection equation in its primitive form, where the fluid
velocity is given by 9, F [104, 49, 50, 51, 52]. Hence, N — oo is the inviscid limit of the flow
equation. We find that the fluid velocity depends on the fluid u itself, similar to the famous
Bateman-Burgers equation [183, 184], but is also time-dependent. Interestingly, due to the mono-
tonicity of r(t), see Eq. (4.4), the fluid velocity is manifestly negative, which implies that the
fluid w is exclusively moved from large p towards p = 0. Hence, there is a unique direction of
information propagation.

Similarly, we find for the o-formulation,

Owu(t,o) = — (0, Ft,0,u]) Osu(t, o) — OxF[t,0,u], (5.15)

where

%@r(t)
o[r(t) + 7 ut, o))

B Flt,o,u] = (N — 1) (5.16)

Again, we have the structure of an advection equation with dynamical fluid velocity 0, F[t, o, u],
where o € (—00,00). We find that the fluid v simply always moves towards o = 0 from positive
and negative o. In addition to the advective term, one also obtains admixtures of a source-like
term, because the advection flux in Eq. (5.11) is explicitly o-dependent. (However, this term is
undirected and does not influence the discussion on bulk transport.)

For both formulations the strength of the advection strongly depends on t as well as the ratio
of r(t) and u(t, g), respectively %u(t,a), in the denominators. In general, for large o = %02,
the advection flux and fluid velocity are strongly suppressed and there is no movement at all,

because asymptotically u grows at least linear in o = 1 0. Anyhow, especially for late RG times

and small o = %02 or regions where r(t) and u(t, o) ,Zrespectively %u(t,a) are of opposite sign
and almost cancel in the denominators, the flux and velocity can get huge. Among other things,
this implies that fast-moving waves of u approach ¢ = %02 = 0 and eventually collide with the
boundary condition (in g) or with waves of opposite sign (in o). Furthermore, this generically
allows for shock- and rarefaction-wave formation, because systems of non-linear advection tend to
form non-analytical behavior [104, 49, 50, 51, 52], which was studied in Ref. [77, 101] and recently
Ref. [103] in the FRG context.

Also note that the velocity 0, F strongly depends on the number of pions and is generally not
bounded at all. In consequence, the RG flow falls in the class of non-relativistic classical flow

equations and there is no “causal bound” for propagation speed like in relativistic hydrodynamics.

The o-loop as a non-linear diffusion flux

Next, let us turn to the contribution of the o-loop and ignore the advective contribution. This
is easily done by setting N = 1. In complete analogy to the previous discussion, the best way
to identify the diffusive nature of the o-contribution to the RG flow is to execute the spatial
derivatives in Egs. (5.8) and (5.11). This time we start with the o-version of the flow equation,

Owu(t,o) = DIt, O,u] O*u(t, o), (5.17)

where

% 8tr(t)
[r(t) + Oou(t, o))

Dit, 0yu] = 0,Q[t, Opu] = — >0. (5.18)

We directly identify the RG flow equation (for N = 1) as a heat/diffusion equation with dynami-
cal diffusion coeflicient D[t,d,u]. Hence, the N = 1 scenario is the “viscous” limit. The manifest
positivity of the diffusion coefficient ensures stability of the equation and well-posedness of the
problem [168, 104, 49, 50, 51, 52]. In general, ordinary diffusion is an undirected process, which
tends to eliminate gradients of all kind. There is strong diffusion in the vicinity of jumps, cusps,
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and large gradients, while in constant, smooth, and flat regions diffusive processes are slow. Nev-
ertheless, here we are confronted with highly non-linear diffusion. The diffusion coefficient itself
is RG-time dependent and inversely depends on the gradient of the fluid. Again, we find that
for large |o| and/or early times the diffusion is strongly suppressed. For late times the diffusion
gets stronger. However, here it critically depends on the gradient and the second derivative of w.
In regions of small gradients and but large curvatures (close to minima of «) diffusion is strong,
because the diffusion coefficient as well as 92u(t, o) are large. The effect is even more pronounced
in regions where r(t) and 9,u(t,o) are of opposite sign, e.g., in the middle part of a mexican-
hat-type potential, such that diffusion on the level of the PDE strongly works against symmetry
breaking.

In total, we find that both the advective and diffusive contribution tend to be strongest for RG
scales close or below model scales and for small o = %02. Especially the diffusive o-mode is
important for a flattening of the potential at small ||, respectively for symmetry restoration. The
relative dominance of advection or diffusion for fixed initial condition can be controlled by varying

the number of fields N.

So far our discussion of diffusion was based on the o-formulation of the RG flow equation. The
simple reason is that the flux (5.10) cannot be uniquely identified as a diffusion flux due to the
additional u(t, 0) and o dependences. This is easily seen by executing the o-derivative. Thus,
already at this point we conclude that the best choice of spatial variables might strongly depend
on the difference between finite and infinite NV and the applied numerical schemes, which oftentimes
rely on a strict splitting of advective and diffusive fluxes. We come back to the differences of the
o- and p-formulation below.

5.1.3. Consequences of the fluid-dynamical interpretation of RG flows

Identifying the ERG equation as a highly non-linear advection-diffusion equation comes with some
direct severe consequences.

Diffusion and irreversibility

As briefly mentioned in Section 4.1, systems that comprise diffusive processes are dissipative, which
therefore also applies to the LPA flow equation (except for the N — oo limit). Furthermore, dis-
sipation is always linked to an increase in information that is needed to describe the system, or
a loss of information about the initial state (depending on the perspective). This is associated to
the growth of an entropy and directly linked to the irreversibility of a process.

In fact, the direct connection between irreversibility, the semi-group property of the RG, and
diffusion terms in the LPA flow equation was already discussed for versions of RG flow equations
from the “pre-Wetterich” era [97, 98, 99]. For example, Ref. [99] states that the second order field-
space derivative of the potential “[...] corresponds to a dissipation in the flow and is responsible
for the semi-group property of the RG.” This view is supported by our findings based on the more
modern FRG formulation by Wetterich, Morris, Ellwanger et al..

Advection and irreversibility

Still, also purely advective systems can show irreversible dynamics and entropy production. This
happens, for example, if several characteristic curves, which describe the movement of little por-
tions of the fluid, intersect and a shock wave is formed. Here, the information about the initial
state and direction of the movement of the single fluid portions is lost and the dynamics is irre-
versible and subsequently described by the movement of the shock front. This also comes with an
increase of an entropy of the system. For recent discussions in the context of infinite-NV FRG flow
equations, see Refs. [77, 101, 3].
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A “thermodynamic arrow of time” in the RG flow

We conclude that for general N the LPA flow equation describes an irreversible flow of the deriva-
tive of the local potential from ¢ = 0 (the UV) to ¢ — oo (the IR). Further, this evolution goes
hand in hand with the production of entropy and the loss of information about the initial (UV)
state of the system. Hence, the RG scale/time can be interpreted as a “thermodynamic arrow
of time” in the abstract sense, which is set by the direction of increasing entropy and gradual
loss of information about the initial state [170]. These aspects directly generalize to the Wetterich
equation for arbitrary systems, because the Wetterich equation is of manifestly diffusive character,
as long as truncations and approximations are not applied to the PDE. Truncations may violate
this property.

The reinterpretation of the IR

In this context, it is also sensible to rethink the interpretation of the IR solution of RG flow
equations. From the fluid-dynamical perspective on the RG flow equation, the IR, where all
fluctuations are integrated out and the “PDE dynamics” stops, can be interpreted as a kind of
“thermodynamic” equilibrium, which is approached by the diffusive contribution, or a steady flow,
from the advective perspective.

In fact, this is conceptually very similar to the equilibration of the air flow around an airfoil, when a
plane reaches its travel altitude and should therefore be seen as a manifestly fluid-dynamic process.

This interpretation and its consequences might be of particular interest for RG flow equations of
higher-dimensional systems in their rescaled dimensionless form. Here, steady-flow solutions/equilibrium
solutions from fluid dynamics are the fixed-point solutions of the RG.

Relation to Kadanoff’s and Wilson’s approach to the RG

From the classical and original non-perturbative RG perspective, which traces back to Wilson’s
generalization of Kadanoff’s block-spin transformation [185, 174, 175, 176, 161, 19], the above
discussion of the Wetterich formulation of the RG is rather intuitive. Step-by-step block-spin
transformations from microscopic to macroscopic scales with appropriate rescaling are a manifestly
irreversible process, where the information about the microscopic spin configuration is lost and
absorbed in effective macroscopic spins — the coarse-graining process. On top, several distinct
microscopic configurations can lead to the same macroscopic physics.

The same applies if formulated in Fourier space on the level of QFTs, to the gradual integration of
(Euclidean) momentum shells from the UV to the IR, where all couplings and processes at some
energy scale are integrated out and absorbed in effective couplings at lower energy scales until
the IR is reached. The possible infinite number of effective measurable IR couplings, vertices, or
expectation values comprise all microscopic information from all higher energy scales. Neverthe-
less, it is impossible to restore the information about the micro-physics once the IR is reached.
Backwards integration to higher energy and smaller length scales is only possible theoretically in
truncated subsystems.

Relation to the “pre-Wilson” and perturbative RG

It is interesting to ask how these findings relate to the perturbative picture of the RG, which
traces back to the early works of Callan, Symanzik, Gell-Mann, Low, t‘'Hooft, Weinberg, Georgi,
Politzer and many more. Here, one does not consider a continuum of infinitely many coupling
constants, which is for example collected in an effective potential, but studies the RG flow of a
single coupling or selected small number of couplings. (This can also be done with the Wetterich
equation using truncations.)

Anyhow, in this case the RG equations reduce to a coupled set of ODEs, and the dissipative and
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fluid-dynamical character of the RG is lost. On a formal level,'it is possible to integrate this set
of ODEs in both directions, to higher and lower RG scales and energies. The most extreme case
is certainly the [-function of a single coupling. Hence, also irreversibility and the semi-group
property of the RG transformations is spoiled. Working on a finite small set of couplings therefore
implies that it would be possible to resolve the microphysics from the macrophysics, which is not
possible.

Anyhow, this does not imply that this “pre-Wilson” RG approach is wrong. It is merely the
range of applicability that is limited to the weakly interacting perturbative regime of models and
theories. As soon as one leaves this regime and encounters strongly interacting physics, one is
confronted with a fast rising number of interactions of different scales and one has to turn to a
non-perturbative framework, which reflects the previously described effects.

This difference of the perturbative and non-perturbative RG perspectives is already summarized
in the recommendable article [161] by Wilson himself.

An entropy function and the connection to the C-theorem

In the light of the above discussion, the obvious question is, whether it is possible to quantify the
dissipative character of RG flow equations by some explicit entropy function.

Basically, this is what is also tried by so-called C-functions and was first discussed in the context
of two-dimensional conformal QFT [95]. In Ref. [95], Zamolodchikov discusses the irreversibility
of RG group: “Some of the information on the ultraviolet behavior of the field theory is lost
under renormalization transformations with ¢ > 0, since in the field theory it is not legitimate to
examine correlations at scales smaller than the cutoff. We would therefore expect that a motion
of the space @ [a change of the set of all couplings] under the influence of the renormalization
group would become an ‘irreversible’ process, similar to the time evolution of dissipative systems.”
Therefore, Zamolodchikov proposes and proves that “[t|here exists a function ¢(g) of the coupling
constant g in a 2D renormalizable field theory which decreases monotonically under the influence
of a renormalization-group transformation.” The exact properties of such C-function are [95] (in
the notation of Ref. [2]),

1. There exists a positive function
C({g:},t) > 0. (5.19)

of all (possibly infinitely many) dimensionless couplings {g;} of the theory and RG time ¢,
with the additional property

de({gi},t) > 0. (5.20)
(The choice of sign is convention.)

2. The C-function takes a fixed value at (critical) fixed points of the theory. These fixed values
can be identified with the central charge ¢ (of the Virasoro algebra [187]),

CH{gi}.t) =c, (5.21)
and the central charge is different for different fixed points.

The terminus “C-theorem” is usually restricted to two-dimensional (conformal) QFTs, while gen-
eralizations to higher dimensions, e.g., four dimensions, are denoted as .A-theorems, where the
central charge is replaced by some anomaly coefficient [188].

Even though there was rather active research on C- and A-functions, their construction, and proofs
within the last decades, cf. Refs. [189, 188, 190, 191, 192, 186, 193, 97, 98, 99, 194, 195, 196, 197,

1On a practical level, numerical instabilities or the special form of the equations [186] might still prevent the
“up-and-down” integration of a system of ODEs.
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198, 199, 100], not all questions in this context seem to be settled. Especially the explicit con-
struction of C-functions for practical models and truncations is still a field of active research.

We shall not further comment in detail on the current status of research in this field as it is beyond
the scope of our present studies. Nevertheless, we believe that our work might introduce a new
aspect to the discussion, which we were not able to find in the literature so far.

1. In the past, entropy-like functions or C-functions were oftentimes discussed in the context of
a (finite) set of coupling constants. We believe that our zero-dimensional minimal example
might hint at another approach, which was also taken by Refs. [97, 98, 99, 100, 190, 164, 198,
199]. The irreversible character of the RG flow is manifestly encoded, if one turns to a global
description of the space of couplings, e.g., in terms of a flowing effective potential via some
dissipative PDE. Hence, entropy-/C-functions might be identified via global descriptions of
field /theory space.

2. We believe that our work shows that there should be a direct connection between the C-
theorem and abstract entropy functions of the PDEs that describe the RG flows. This is
of particular interest for truncated systems of FRG flow equations or approximations. On
the one hand, the approach via entropy functions of the PDEs from the field of CFD might
allow to identify C-functions of truncated systems. On the other hand, this connection could
help to identify minimal requirements for truncations, e.g., the presence of irreversibility,
dissipation, and an entropy-/C-function on the level of the ODEs and PDEs.

3. Furthermore, as discussed below, the existence of an entropy function for a PDE can be used
to show stability and convergence of the solution [49, 50]. In addition, discretized versions
can in turn be related, used, and studied for finding stable numerical schemes. We further
demonstrate that there could be a direct relation between C-functions, (numerical) entropy
functions, and the total variation diminishing (TVD) property below.

In the following, we therefore present the construction of an entropy function from Ref. [2] for
our zero-dimensional O(N) model. We comment on possible identification as a C-function. For
generalization to higher dimensions we refer to Ref. [2]. Unfortunately, so far we were only able
to construct an entropy function for N =1 and N = oo, while the problem remains unsolved for
N # 1. A possible explanation is sketched in Section 5.1.6 and Refs. [2, 3].

5.1.4. An entropy function in the viscous N = 1 limit

Within the next paragraphs, we recapitulate the main steps in the construction of an entropy
function for the RG flow equation of the zero-dimensional O(N) model with N =1 from Ref. [2],
where also a discussion of subtleties can be found.

As one of the ingredients, we need the spatial derivative of the RG flow equation (5.4),

O|0su(t,0)] = % <[r<t);2it£§20_)}2 agu(t,a)) . (5.22)

However, the actual starting point is the definition of the functional
Sl =~ [ dos(fo)), (5.2

which we denote as the entropy functional of some real-valued function f(o). The integration
domain is the entire field space (the domain of the PDE as well as f). As the integrand, we
introduced a continuously (at least) twice differentiable convex function,

s:R—oR, y = s(y), (5.24)
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with
s(y) € C*(R), s"(y) 20, (5.25)
which shall not grow faster than y? for |y| — oc.

In the following we show that by choosing f(c) = d,u(t,o) Eq. (5.23) indeed presents a mono-
tonically increasing function for ¢ € [0, o), viz.,

4 8[0,u] >0, (5.26)
and can therefore be interpreted as an entropy-type function (after minor modifications).

We straightforwardly evaluate

3t Sl0su] = (5.27)

= - %/ do s(9,u(t, o)) 629

—00

B / " do (00su(t, o))  (@pult, o)) O

— 00

/—O:o 4 {di ([r(t) —%%:152 o) dult, ”))] s'(Opult,0)) =

- [ <[r(t)_%6tr(t) 3 030,017 ) o Orutt o) +

oo + Oy u(t,o)]
%6tr(t) 2U g S/ u g -
+ [ ey ol SOt

where we used integration by parts in the last step.
To understand that the r.h.s. of this equation is indeed greater or equal to zero, it is instructive
to analyze the remaining terms separately.

1. By construction, due to its convexity, s” > 0. Also [0%u(t,o)]? is obviously positive. The
same holds true for the denominator, even though already r(¢)+0,u(t, o) > 0 by construction
of the FRG. Lastly, because of its monotonicity, —9r(t) > 0. In total, the integrand of the
first term is manifestly positive and so is the integral.

2. The second term vanishes, which is seen as follows: First, by construction, s'(y) maximally
grows like y for |y| — oco. Second, for |o| — oo the potential U(t, o) grows at least quadrat-
ically, implying that O,u(t, o) grows at least linearly in 0. We distinguish

(a) If lim|y|oo U(t,0) ~ o2 the factor d2u(t,o) = O3U(t,o) vanishes, while the other
terms do not grow with o for large |o|. This implies that the entire term vanishes,
because of the evaluation at £oo.

(b) Iflim|y|—00 U(t, o) grows faster than 2 than the denominator [r(¢) +d,u(t, 0)]? always
grows faster than the terms in the numerator. Hence, for an evaluation at +oc the term
vanishes.

In conclusion, we find that S[0,u] grows monotonically during the RG flow. Further it encodes
all information about all possible interactions and dynamics of the field in a global manner and
therefore is equivalent to an infinite set of coupling constants/vertices.
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Anyhow, there are two remaining issues. A first minor problem is that S[0,u] is by Def. (5.23)
negative, which is uncommon for an entropy. Second, S[0,u] is simply divergent, because field-
space is infinite and O,u(t, o) is at least constant for |o] — co. This is seen best if we explicitly
choose s(y) = y?, which we will keep for all further discussions,

S[Opu] = — / " 4o [Dyult, o). (5.28)

— 00

Both doubts are cured by keeping in mind that we are exclusively interested in relative changes
or differences of entropy. Therefore, we are allowed to simply subtract the entropy functional of
the initial condition. We define the normalized entropy

ClO,u] = S[0,u(t,0)] — S[Osu(t = 0,0)], (5.29)

which is always positive. On top, it is finite, because for large |o| the “fluid” u(t,o) does not
evolve at all and the asymptotic contributions of both terms in Eq. (5.29) cancel. This is seen by
inspection the PDE (5.4), where the r.h.s. vanishes for large |o].

In total, we were able to construct an explicit entropy function for the PDE and our exact RG
problem. This function further fulfills the requirements (5.19) and (5.20) for a C-function, while
Eq. (5.21) does not exist in zero dimensions because there exists no central charge and — as far as
we know — no fixed-point solution.?

Below, in Section 5.2.4, we also present a discretized version of this entropy function and provide
explicit numerical results for selected UV actions. In addition, we relate this entropy to the TVD
property and therefore argue that its existence hints at the existence of stable numerical schemes
as well as unique weak solutions.

5.1.5. The %-rescaled flow equations and the N — oo limit

For studying the N — oo limit or comparing finite-N and infinite-\V calculations, it is advisable
to work with the +-rescaled version of the RG flow Eqgs. (5.3) and (5.4). In analogy to Eq. (3.17)
of Section 3.3, we rescale the fields, the O(N) invariant, and the effective potential,

s r==a, py=2p, U—sV=+U. (5.30)

The RG flow equation in the formulation of the rescaled invariant y reads

CA[N-1 Lo 1 3 0 (1)
dpv(t,y) = dy[ N () toty) N @) +olty) + 298,00 y)

] , y€I0,00), (5.31)

while the RG flow equation in the formulation of the rescaled field x is

_d[N-1 10r(t) 1 1 0r(t)
Ov(t,x) = dx[ N r) + Lot 2) + N )+ va(t,x)} , x € (—00,0). (5.32)

Note that the prefactors 2=t and + are the same for LPA flow equations of O(NNV) models in any
dimension, such that the following is general.

Inspecting the structure of the rescaled RG flow equations it is obvious that the PDE gets more and
more advection-dominated when N is increased, because the diffusive contribution is suppressed

by %

2Work on the general absence of zero-dimensional fixed-point solutions for the effective potential in RG flow
equations is in progress, but was not finished by completion of this thesis.
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In the N — oo limit, the above flow equations simply reduce to their inviscid limit,

A}lgclm dv(t,y) = @ W] ) y € [0,00), (5.33)
and
. . d [ %6t7"(t)
ngnoo atv(t,x) = @ _m 5 x € (—O0,00) . (534)

Note that both equations are integrable by applying the method of characteristics as shown in
Section 5.1.7, which was already applied to their higher-dimensional counterparts in Refs. [75, 76,
101].

Furthermore, in Section 5.1.8 we use these equations to analytically analyze shock waves in field
space.

5.1.6. Another entropy function for the inviscid N — oo limit

In the context of our work on shock and rarefaction waves in the context of the %—expansion [3],

we noticed that it is possible to also formulate an entropy function for the RG flow equation in
the N — oo limit, Eq. (5.33). Thus, similarly to the discussion of Section 5.1.4 we find,

Clv] = TV[u(t =0,y)] — TV[v(t,y)], (5.35)

where TV denotes the total variation (the arc length of v(¢,vy))

TV[o(t, y)] = /0 " dy 0y0(t )] (5.36)

Basically, the difference between the entropy functions for N = 1 and N — oo is the different
integration domain and the change from the square of the derivative to its absolute in the integrand.
Anyhow, so far we were not able to formulate a general entropy function for finite N > 1. Loosely
speaking, the reason is that for finite NV > 1 the r.h.s. of the PDE always explicitly depends on
the position in the spatial domain, see, e.g., Eqs. (5.31) and (5.32). This dependence manifests
as a source/sink term after executing spatial derivatives and therefore additionally spoils the arc
length of u respectively v.

This is supported by literature from the field of CFD [200, 201, 202, 203, 204].

For further details we refer to our own Ref. [3, Appendix EJ.

5.1.7. Method of characteristics in the inviscid N — oo limit

A special method for the analytic solution of (quasi-)hyperbolic PDEs is the method of char-
acteristics. Characteristic curves (or oftentimes just characteristics) are parametric curves that
form solutions of a PDE. They are defined as those curves where functions of the solution or the
solution itself stays constant. The method is applicable to purely advective systems as long as the
“fluid” is only transported without “collision” of single fluid cells, hence without or in advance of
the formation of shocks.

Within the next paragraphs, we apply this method to the RG flow equations in the N — oo
limit, 4.e., Eqgs. (5.33) and (5.34), which are of quasi-hyperbolic type, and construct their analytic
solutions.

In the context of the N — oo FRG flow equation this was first done by Tetradis and Litim [75, 76]
and later on by Aoki, Kumamoto, Sato, and Yamada [205, 91]. A comprehensive interpretation
of the characteristic curves in the context of CFD was first provided by Grossi and Wink [77] and
later on extended in Ref. [101].
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General considerations

The construction of the characteristic curves is rather simple, c¢f. Refs. [206, 207, 49]. The general
starting point is a quasilinear hyperbolic PDE of type,

0 = a(tv Y, U) 8tv(t7 y) + b(t7 Y, U) 8yv(t7 y) + C(ta Y, U) ) (537)

where ¢ is the temporal coordinate, y is the spatial coordinate, and v = v(t, y) is a fluid field. The
solution of this equation, if it exists, forms a surface (¢,y,v(t,y)) € R3. The characteristics are
therefore parametric curves (¢(7),y(7),v(7)) of some parameter 7 lying on this surface, where we
assume that v stays constant. Thus, via the chain rule,

0= div(t(T),y(T),T) = (5.38)

=20 g (t(r), y(r), 7) + 22 8, 0(t(7), (1), 7) + Brv(t(1), y(7),7) -

Comparing this equation to Eq. (5.37) we obtain the so-called Lagrange-Charpit/characteristic
equations [206],

2D = a(t(r),y(r),v(r)) (5.39)
20 —b(t(r), y(7), v(7)), (5.40)
280 = e(t(r), y(r), v(7)), (5.41)

which form a set of three coupled ODEs. The initial conditions for these equations are taken from
the original PDE problem,

t(r =0) =tg, y(r=0)=yo, v(t = 0) = vo(to, Yo) , (5.42)

where t( is the initial time. Hence, each point gy in the domain of the PDE is a starting point
of a characteristic curve (¢(7),y(7),v(7)), which is described by the above three coupled ODEs.
Solving the ODE system for each starting point, we have access to the solution of the PDE.

Application to the N — co flow equations
For the sake of simplicity, we work with the flow equation (5.33)?,
1 1
= Opr(t 5 Or(t
2 Orr(t) } __ 29 = 0,u(t,y) . (5.43)
r(t) +o(t,y) [r(t) + v(t,y)]

Here, the y-derivative was already executed to match the shape of Eq. (5.37). Explicitly inserting
the regulator (4.4) we identify,
Ae=Hn) ov(T)

ot(r) _ ay(r) B
or —h or  2[Ae~t) ()2’ a7 =0. (5.44)

d

outtn) = 37|

The corresponding initial conditions of the RG flow equation are,
t(r=0)=0, y(r=0)=yg >0, v(T =0) =v(0,y0) . (5.45)
Integration of the first and last differential equation from Eq. (5.44) is trivial and we find
t(r)=r, v(1) = v(0,y0) , (5.46)

3The absence of the explicit dependence on the spatial coordinate slightly s