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REVIEW

Open resources for chemical probes and their implications for future drug discovery
Esra Balıkçıa,b†, Anne-Sophie M. C. Marquesa,b†, Jesper S. Hansena,b† and Kilian V. M. Huber a,b

aTarget Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; bCentre for Medicines Discovery, Nuffield 
Department of Medicine, University of Oxford, Oxford, UK

ABSTRACT
Introduction: The rational development of new therapeutics requires a thorough understanding of 
how aberrant signalling affects cellular homeostasis and causes human disease. Chemical probes are 
tool compounds with well-defined mechanism-of-action enabling modulation of, for example, domain- 
specific protein properties in a temporal manner, thereby complementing other target validation 
methods such as genetic gain- and loss-of-function approaches.
Areas covered: In this review, the authors summarize recent advances in chemical probe development 
for emerging target classes such as solute carriers and ubiquitin-related targets and highlight open 
resources to inform and facilitate chemical probe discovery as well as tool compound selection for 
target validation and phenotypic screening.
Expert opinion: Chemical probes are powerful tools for drug discovery that have led to fundamental 
insights into biological processes and have paved the way for the development of first-in-class drugs. 
Open resources can inform on various aspects of chemical probe development and provide access to 
data and recommendations on use of chemical probes to catalyse collaborative science and help 
accelerate drug target identification and validation.
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1. Introduction

Although small molecule drugs are sometimes referred to as 
targeted therapeutics, data suggest that many, if not most, 
Food and Drug Administration (FDA)-approved pharmaceuti
cals interact with several proteins inside cells [1]. Therefore, 
their use as tools to dissect biological pathways is confined, 
for example, by the innate promiscuity of co-factor mimetic 
compounds. Highly selective chemical probes are therefore 
important complementary tools to unravel the biology of 
less well-characterized or even unexplored proteins and emer
ging target classes. Chemical probes should, ideally, selectively 
modulate the activity of a specific protein or its respective 
biological function(s) in a manner that is preferably reversible 
and temporal [2,3]. Strict quality criteria defining potency, 
selectivity, and cell permeability are needed in order to effec
tively accomplish this goal across the druggable genome and 
to boost robustness in preclinical target validation (Figure 1, 
reviewed in detail in refs [4–6]). Importantly, chemical probes 
may act as inhibitors or activators that modulate protein 
activities, degraders leading to a chemical knockdown of 
a protein of interest or molecular glues, for example, that 
stabilize protein–protein interactions. As a result, several tool 
compounds may be needed to survey different functions of 
a given protein. Multiple distinct chemotypes and control 
compounds should be established for a given target to further 

increase confidence in the interpretation of observed pheno
types [7]. It is important to keep in mind that although che
mical probes aim to accelerate drug development, their 
primary goal is to investigate a particular function of a given 
target, which in many instances may not result in a desirable 
phenotype [8]. Over the past two decades, the value of che
mical probes has become increasingly recognized fueled by 
the discovery of tool compounds such as JQ1 [9] and I-BET [10] 
that have helped pave the way into an expanding universe of 
human bromodomain research. These compounds have pro
vided new insights into transcription and chromatin regulation 
and how these processes are linked to the disease develop
ment. Particular areas of recent interest for chemical probe 
development are solute carriers and ubiquitin biology related 
targets, which will be discussed in more detail later.

2. Open resources for chemical probe development

Chemical probe development involves several steps such as 
target identification and assay development analogous to 
classic target-based drug discovery projects. It is crucial to 
conduct a careful and thorough review of the target biology 
literature as well as any relevant chemical matter that may be 
available. Target tractability, protein biochemistry (such as 
whether the protein can be generated recombinantly), 
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functional or biophysical assays, the existence of small mole
cule inhibitors, and other factors (peptides, antibodies, com
plex binding partners) are also assessed in this process. In 
order to address these points, there are several public data
bases that can help navigate the literature and associated 
data. Once a target has been identified, the chemical probe 
development process revolves mainly around iterative rounds 
of screening and medicinal chemistry (Figure 2).

Databases such as UniProt [11], OMIM [12], OpenTargets, and 
canSAR [13], which collect information on gene, structure, func
tion, and disease association, offer succinct summaries on indi
vidual targets and link out to other relevant data repositories 
(Table 1). Such portals are a convenient means to browse large 
scale omics datasets, such as DepMap, which provides insights 
into gene essentiality and co-dependencies based on genome- 
wide CRISPR screens [15]. Proteomics data available from CCLE, 
NCI, and proteomicsDB [22] can inform on expression levels and 
effect of genetic and/or chemical perturbations [55]. Although 
more focused in its approach, CMap provides access to gene 
expression signatures following perturbations with small mole
cules, gene knockdown, or overexpression [16]. For details on 
protein complex partners which may be relevant for a given 
target function or help identify essential co-factors and chaper
ones, protein–protein interaction (PPI) databases such as 
BioGRID [29], IntAct [30], Pathway Commons PPIDs [31], and 
NURSA [32] accumulate data from hundreds of comprehensive 
studies ranging from affinity purification coupled to mass spec
trometry (AP-MS) or Western blotting to co-purification/recon
stitution of recombinant proteins. There are also a variety of 
target-class focused databases, such as UbiHub, which provides 
information on E3 ligases and other UPS proteins, including 
availability of protein 3D structures and ligands [17]. The DUB 
Portal surveys multi-omics data focusing on deubiquitinating 
enzymes (DUBs) with regard to their function, substrates, and 
known interaction partners [18].

The footprint of artificial intelligence (AI) is also consistently 
increasing across all areas relevant to medical research 
(Figure 3), including the search and design of small molecules 
[57,58]. One of the first examples of hit identification using 
a combination of different AI-based software and platforms is 
the discovery of ISM042-2-001, a potent CDK20 inhibitor [58]. 
In this instance, a combination of protein structure prediction 
using AlphaFold [26,59] with PandaOmics [60], 
a biocomputational platform and Chemistry42 [61], an AI- 

tool for accelerating small-molecule drug design, enabled 
the generation and testing of small-molecule binders for 
CDK20 within 30 days.

Availability of chemical matter for a given target or path
way can greatly facilitate the probe development process. In 
this context, the Chemical Probes Portal provides a star-based 
expert assessment of available tool compounds [36]. Other 
initiatives such as ChEMBL [37,38], SGC [51], ProbeMiner [39], 
Probes & Drugs [40], opnMe [41], Probe Reports from the NIH 
Molecular Libraries Program (MLP), Gray Lab, etc. (see Table 1), 
are high quality chemistry resources offering general or 
focused sets of small molecules with adequate properties for 
cellular studies. DrugBank [42–45] and DrugCentral [46] collate 
drug data including mechanisms and targets while BindingDB 
[28] informs on reported biophysical binding affinities. The 
Cancer Therapeutics Response Portal (CTRP) from the Broad 
Institute [19–21] is another web-based resource which harbors 
a variety of datasets related to compounds such as their 
association with cancer genetics and cell lineage features.

Several target-focused chemical probe programs have 
emerged over the years. Many of these comprise international 
consortia involving both academic as well as industry partners. 
In Europe, the EU’s Innovative Medicines Initiative (IMI) has 
spearheaded open-access efforts to help achieve step-changes 
in chemical probe discovery in new areas. For example, 
EUbOPEN aims to develop and establish new technologies 
and methods to accelerate hit identification and chemical 
probe discovery to provide an expanded set of chemical 
probes for phenotypic screening [62]. RESOLUTE, another IMI- 
funded consortium, is focusing on establishing an open 
resource for studying solute carrier (SLC) transporters to 
explore SLC biology and their potential as drug targets [53]. 
The reagents provided include codon-optimized plasmids for 
protein expression as well as SLC-overexpression and knock
out cell lines. Data comprising information on functional 
assays and binders, such as nanobodies and antibodies, as 
well as transcriptomics, proteomics, and metabolomics data, 
are captured via an online portal. These efforts are comple
mented by initiatives such as EU-OPENSCREEN, a European 
Research Infrastructure Consortium (ERIC) centered on open 
access high-throughput screening platforms as well as medic
inal chemistry technologies [63]. Chemical probe discovery has 
also greatly benefitted from structural biology consortia such 
as the Structural Genomics Consortium (SGC), RIKEN, and 
Protein Structure Initiative (PSI) [52]. On top of technical 
improvements enabled by these collaborations, such as high- 
throughput X-ray crystallography workflows, which have dra
matically increased the number of available structures in the 
Protein Data Bank (PDB) [24,25], many initiatives have also 
recognized the importance of making outputs available in an 
unrestricted, open access manner to facilitate partnerships, 
maximize efficiency, and avoid duplication of effort.

3. Chemical probe development for SLCs and the 
ubiquitin-proteasome system (UPS)

The integral membrane protein family of SLC and the UPS 
represent two areas of emerging medical interest. Using 
these two areas as examples, we will explore methodologies 

Article highlights

● Chemical probes are powerful tools to elucidate biology and uncover 
new therapeutic paradigms

● Chemical probes can also provide starting points for assay develop
ment and help open up new target classes with economic impact

● Stringent selectivity and potency criteria are essential for target 
validation using chemical probes

● Technological advances and innovative chemical biology approaches 
have helped to improve and accelerate chemical probe design

● Open resources and open science initiatives for chemical probe 
development ensure high quality standards are maintained and 
facilitate timely dissemination of reagents and results

● Freely accessible chemical probes can be a catalyst for crowdsourcing 
science to unlock the full potential of the human druggable genome
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Figure 1. Considerations for evaluating chemical probes.

Figure 2. Core activities of chemical probe development.
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for assay development, screening, hit finding, including new 
modalities, as well as relevant technical and target-specific 
obstacles and considerations, in the sections that follow.

3.1. SLCs

SLCs comprise the largest family of transporters in the human 
genome with more than 450 members, currently divided into 
66 different families based on either sequence, fold, or func
tional similarity [64]. These proteins are integral membrane 
proteins residing in cellular membranes with more than half 
localized to the plasma membrane [65]. SLCs transport a wide 
range of small molecules, including metabolites, nutrients, 
amino acids, hormones, metal ions, as well as small molecule 
drugs across cell membranes [65]. The spectrum of on aver
age≥100 different types of SLCs produced by a given cell 
defines the intracellular composition of solutes such as meta
bolites and drugs [66]. Not surprisingly, many SLCs have been 
implicated in common diseases such as cancer, diabetes, heart 

disease, Alzheimer’s, and neuropsychiatric disorders. Hence, 
SLCs are emerging as a superfamily of highly disease- 
relevant and pharmacologically tractable proteins. The impor
tance of SLCs as pharmacological targets is demonstrated by 
the fact that the most successful therapy for depression 
includes blocking serotonin reuptake with fluoxetine 
(Prozac), which works as an antagonist of the serotonin trans
porter SLC6A4 [67].

However, the function of many SLCs is still unknown, and 
there are few medicines that target these transporters [68,69]. 
The difficulty in developing routine medium- and high- 
throughput assays has hampered both basic SLC biology and 
the development of selective small molecule inhibitors and 
activators to further investigate their roles in cells and inform 
drug design. Whereas, it is common practice for soluble pro
teins to compare assays using purified proteins with effects in 
orthogonal cell-based assays, in case of membrane proteins, 
and SLCs in particular, there are substantial challenges due to 
a lack of available methods for studying transport with 

Table 1. A selection of open resources for chemical probe development.

Category Databases Context & URL Refs

Gene & 
Phenotype

OMIM Human genes and genetic phenotypes; https://www.omim.org/ [12]

OpenTargets Human genetics and genomics data; https://www.opentargets.org/ [14]
canSAR Cancer drug target predictions; https://cansar.ai/ [13]
DepMap Gene dependencies in human cancer cell lines; https://depmap.org/portal/ [15]
CMap Cellular signatures with genetic or small-molecule perturbation; https://maayanlab.cloud/Harmonizome/dataset/ 

CMAP+Signatures+of+Differentially+Expressed+Genes+for+Small+Molecules
[16]

UbiHub Ubiquitination target prioritization and drug design; https://ubihub.thesgc.org/static/UbiHub.html [17]
DUB Portal DUB function in oncology; https://labsyspharm.github.io/dubportal/ [18]
CTRP Cancer cell lines and sensitivity to small-molecules; https://portals.broadinstitute.org/ctrp.v2.1/ [19– 

21]
Protein UniProt Protein sequence and functional information; https://www.uniprot.org/ [11]

ProteomicsDB Multi-omics and multi-organism resource; https://www.proteomicsdb.org/ [22]
Human Protein Atlas Human proteins in cells, tissues and organs; https://www.proteinatlas.org/ [23]
Protein Data Bank X-ray or cryo-EM protein structures; https://www.rcsb.org/ [24,25]
AlphaFold AI-based 3D protein structure predictions; https://alphafold.ebi.ac.uk/ [26,27]
BindingDB Binding affinities of proteins with drug-like ligands; https://www.bindingdb.org/rwd/bind/index.jsp [28]
BioGRID Protein-protein, genetic and chemical interactions, and post-translational modifications; https://thebiogrid.org/ [29]
IntAct System and analysis tools for molecular interaction data; https://www.ebi.ac.uk/intact/home [30]
Pathway Commons Pathway data from multiple organisms; https://www.pathwaycommons.org/ [31]
NURSA Protein complexes datasets; https://maayanlab.cloud/Harmonizome/dataset/NURSA+Protein+Complexes [32]
FragMax, Crystallographic fragment screening; https://www.maxiv.lu.se/beamlines-accelerators/science-initiatives/fragmax- 

biomax-fragment-screening-platform/
[33]

XChem Crystallographic fragment screening; https://www.diamond.ac.uk/Instruments/Mx/Fragment-Screening.html [34]
CRIMS-HTX lab Crystallographic fragment screening; 

https://htxlab.embl.fr/#/
[35]

Chemical Chemical Probes Portal Chemical probes and chemical tool compounds; https://www.chemicalprobes.org/ [36]
ChEMBL Drug-like molecules; https://www.ebi.ac.uk/chembl/ [37,38]
ProbeMiner Chemical Probes; https://probeminer.icr.ac.uk/#/ [39]
Probes & Drugs Bioactive compound libraries; https://www.probes-drugs.org/home/ [40]
opnMe Open-access Boehringer Ingelheim molecule library; https://www.opnme.com/ [41]
DrugBank Information on drugs and drug targets; https://go.drugbank.com/ [42– 

45]
DrugCentral Information on drugs; https://drugcentral.org/ [46]
Gray Lab First-in-class chemical probes; https://graylab.stanford.edu/probe-resources/
PROTAC-DB Structural information and experimental data of PROTACs; http://cadd.zju.edu.cn/protacdb/about [47]
PROTACpedia Manually curated data on PROTACS; https://protacpedia.weizmann.ac.il/ptcb/main
DELopen DNA-encoded compound libraries; https://hits.wuxiapptec.com/delopen [48– 

50]
Consortia SGC Genomics and structural biology; https://www.thesgc.org/ [51]

RIKEN Structural biology; https://www.riken.jp/en/
PSI Structural biology; https://web.archive.org/web/20090113222901/http://www.nigms.nih.gov/News/Reports/ 

PSIAssessmentPanel2007.htm
[52]

RESOLUTE SLC biology; https://re-solute.eu/ [53]
EUbOPEN Chemogenomics, tools for probe development and chemical probes; https://www.eubopen.org/
EU-OPENSCREEN High-throughput screening and medicinal chemistry; https://www.eu-openscreen.eu/
NIH Molecular Libraries 

Program
Small-molecule chemical probes; https://www.ncbi.nlm.nih.gov/books/NBK47352/ [8,54]
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purified proteins. This is largely owed to the fact that SLCs 
have partially hydrophobic surfaces due to their localization in 
cellular lipid membranes. Extraction, purification, and recon
stitution of SLCs into artificial membranes are often inefficient 
and low-yielding processes which significantly impairs the 
ability to obtain relevant amounts of active SLC proteins. 
Consequently, most high-throughput studies with membrane 
transporters rely on cell-based systems which have been pro
ven efficient for GPCRs and ion channels. However, in case of 
transporters such approaches are complicated by the fact that 
most cell types usually have a large repertoire of different, 
sometimes redundant transporters that may transport the 
same substrate. As a result, interpretation of cell-based assay 
data is frequently difficult, and orthogonal protein-based 
assays are therefore critical for SLC probe development. 
Compounds that target the substrate site to lock the SLC 
structure in a conformation that blocks solute transport repre
sent the traditional approach in the area of chemical probe 
development, yet to realize the full potential of this significant 
human protein family, new strategies are required.

3.2. UPS

Ubiquitination is the second most observed posttranslational 
modification in human proteins [70]. This process involves the 
cooperative activity of E1, E2, and E3 enzymes to tag protein 
substrates with ubiquitin chains to induce their proteasomal 
degradation. Components of the ubiquitin system are attrac
tive therapeutic targets since aberrations in this process have 
been associated with many diseases such as cancer and neu
rodegeneration [71,72]. Several UPS-targeting small molecules 
have been approved or are undergoing clinical trials (see 
literature for relevant reviews, such as [73]). The best charac
terized E3 ligase modulators include thalidomide and its deri
vatives lenalidomide and pomalidomide, also called 
immunomodulatory drugs (ImiDs), which are approved for 
the treatment of multiple myeloma. These compounds enable 
surface remodeling of the E3 ligase substrate receptor 

cereblon (CRBN), altering its affinity for preferred substrates. 
Subsequent modifications to these so-called molecular glues 
yielded compounds with greater selectivity and a broader 
range of compatible substrates [74–76]. Aside from their ther
apeutic value, these drugs have paved the way for the emer
ging area of targeted protein degradation (TPD), highlighting 
the vast potential of proximity-induced pharmacology [77–79].

4. New tools and approaches to support chemical 
probe development

Successful probe development relies on robust and informa
tive assays to enable screening and assessing selectivity and 
cellular target engagement. Here, we discuss a selection of 
recent advancements in tools and approaches to interrogate 
SLC and UPS biology, serving as non-exhaustive examples of 
how novel strategies can be employed to develop chemical 
probes for new and emerging target classes.

4.1. Natural binders

Camelid nanobody binders can contribute to the deorphani
sation of targets such as SLCs by providing complementary 
tools for modulating transporter function and facilitating 
structural biology experiments. Inhibitory nanobodies have 
been described for the vesicular glutamate transporter-1, 
SLC17A7 [80], and recently, structural information of nanobo
dies binding to two peptide transporters provided new 
insights into peptide and prodrug recognition by SLC15A1 
and SLC15A2 [81]. Nanobodies have been suggested to have 
considerable potential in the development of future medicines 
[82], including structure-guided small molecule drug discovery 
[83]. An exciting example is the recently identified protein 
complex consisting of SLC6A19 and angiotensin-converting 
enzyme 2 (ACE2) that is recognized by the Spike glycoprotein 
on virus particle surfaces and is likely to enhance the entry of 
some coronaviruses, such as SARS-CoV-2, into cells [84]. 
Studies have shown that neutralizing antibodies can prevent 
virus infection in vitro by blocking Spike protein recognition 
sites on cell surfaces [85]. It will be interesting to see how 
these data will affect the development of small-molecule bin
ders that may be able to prevent COVID-19 infections in 
humans in the future.

4.2. Fragment and DNA-encoded library screening

Most high-throughput screening (HTS) campaigns are 
designed to survey compounds with a minimum size of 250  
Da that have the ability to bind to a protein via hydrogen 
bonding or hydrophobic interaction networks. Fragment- 
based drug discovery (FBDD) aims to extend screening to 
include compounds with low molecular weight and complex
ity. Conceptually, this approach enables decreasing the che
mical space whilst maximizing promiscuity to address a broad 
range of targets. The reduced complexity of fragments 
increases the possible number of binding sites, resulting in 
higher hit rates. Selected fragments can then be further opti
mized using fragment-merging or other classic structure- 
based design methods.

Figure 3. Applications for artificial intelligence (AI) and machine learning (ML) 
approaches in chemical probe development. (Reviewed in detail in ref [56]).
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As fragment hits tend to have low affinity and potency, 
various biophysical methods have been evaluated for primary 
screening efforts. Early initiatives, for example, used nuclear 
magnetic resonance (NMR) to explore structure–activity rela
tionships (SAR) [86]. Later, technological advances allowed for 
high-throughput X-ray crystallography to be used for studying 
fragment–protein interactions. This method is based on soaking 
of fragment libraries into preformed crystals. Current methodol
ogies allow for the screening of fragment libraries of up to 
a thousand molecules each week on average. Along with 
advancements in beam sources, detectors, and software analy
sis, collaborative efforts have resulted in the establishment of 
such screening systems, such as the CRIMS-HTX lab, FragMax, 
and XChem, at a number of synchrotrons [33–35,87,88]. 
Recently, crystallographic fragment screening provided several 
tractable starting points for the main protease MPro of SARS- 
CoV-2, demonstrating the power and versatility of this 
approach [89]. Similarly, another study on the SARS-CoV-2 
NSP13 helicase identified fragments hits for the development 
of selective probes [90]. As demonstrated in these studies, one 
of the most exciting aspects of crystallographic fragment 
screening is the possibility of uncovering ligands for novel 
binding pockets or allosteric sites. DNA-encoded library (DEL) 
screening has also gained a lot of attraction over the last couple 
of years, thanks to its ability to sample billions of compounds in 
a rapid and cost-effective way [48–50]. Recent offerings such as 
DELopen provide academic researchers with access to estab
lished DEL libraries and enable performing screens in-house.

4.3. PROTACs

PROTACs are heterobifunctional molecules that may bind 
a protein of interest (POI) and an E3 ubiquitin ligase at the 
same time resulting in the formation of a ternary complex [91– 
94]. When both the POI and E3 are in close proximity, the 
target protein is ubiquitinated by the E3 ligase and subse
quently recruited to the proteasome for degradation. Beyond 
their therapeutic potential, PROTACs represent highly valuable 
and versatile chemical biology tools for target validation [95]. 
They work in a fundamentally different way than traditional 
inhibitors or antibodies and can be thought of as a chemical 
alternative to gene knockdown, for example, using siRNA. 
PROTAC-mediated target degradation can help answer 
hitherto technically inapproachable complex biological ques
tions. Analogous to classical chemical probes, degraders need 
to be thoroughly characterized, which necessitates an under
standing of their proteome-wide effects as well as the phar
macology innate to the respective target and E3 ligase.

The PROTAC-DB and PROTACpedia databases collate various 
pieces of information on heterobifunctional degraders such as 
target class, chemical structure, and degradation capacity [47]. 
Recently, the first-in-class SLC degrader d9A–2 has been 
reported [96]. This PROTAC employs an optimized SLC9 ligand 
and a CRBN-recruiting warhead connected via a PEG linker 
allowing for efficient SLC9A1 degradation as demonstrated in 
two cell lines resulting in perturbation of cellular pH home
ostasis as expected for the SLC9 family. Interestingly, d9A–2 
also affected other SLCs on the cell surface and, to a lesser 

extent, other SLC family members at intracellular membrane 
sites [96]. The fact that SLCs can be targeted for degradation 
with no or limited knowledge of substrate specificity makes this 
an attractive strategy for future SLC probe development.

5. Expert opinion

Chemical probes have the potential to be transformative tools 
by opening up new target classes and establishing new ther
apeutic concepts. While they are best employed in conjunction 
with orthogonal target validation approaches, such as genome 
editing, the power and traction of chemical probes is unique as 
exemplified by the game changing impact of bromodomain 
and extraterminal domain (BET) inhibitors on chromatin chemi
cal biology. Their versatility in exploring biological systems, as 
well as their general ease of use, have aided in the advance
ment of our fundamental understanding of biological systems 
and disease mechanisms. Chemical probes are invaluable assets 
for drug target validation, helping to accelerate drug discovery 
while reducing duplication of effort. Consequently, there is 
broad agreement that such tools and associated data should 
be freely available to researchers with no limits on use in order 
to fully realize their potential. However, the development of 
high quality reagents as well as curating and maintaining these 
resources represent a substantial logistical as well as financial 
challenge. With the development of new chemical modalities, 
such as protein degraders, the chemical probe toolbox con
tinues to expand and new types of information such as multi- 
omics, cell painting, and single cell data need to be captured 
and linked to compounds and orthogonal assay results [97]. 
Preserving such data and making it accessible to the commu
nity will be key to help unlock the power of AI and machine- 
learning (ML) based approaches for medicine. Such methods 
are potentially powerful tools that can aid in many aspects of 
a drug discovery project. In particular, combining several AI 
platforms and software can significantly accelerate the discov
ery of new small molecule ligands for novel and complex 
targets. We expect such integrated platforms to evolve 
enabling improved predictions including modeling of protein 
dynamics or protein–ligand complexes structures.

Although open resources and databases for genomics, tran
scriptomics, proteomics, and chemical biology data are rapidly 
expanding, similar searchable databases for biochemical and bio
physical assays, antibodies, and screening protocols that are not 
locked behind a paywall have so far received comparable little 
attention. A potential template for capturing such data could be 
the integration of target-enabling packages (TEPs, https://www. 
thesgc.org/tep) into existing repositories like OpenTargets. 
Validation data such as immunoprecipitation and CRISPR KO 
experiments for antibodies would be critical to include [98,99]. 
A similar case could be made for depositing information for nano
body binders, which are highly relevant for a number of target 
classes, including GPCRs [100–102], ion channels [103–105], E3 
ligases [106], and phosphoinositide 3-kinases [107,108].

While we have attempted to showcase a representative subset 
of freely available databases and general strategies for chemical 
probe development, it is important to acknowledge that there are 
many more specialized databases and data repositories, including 
commercial ones such as CAS (https://www.cas.org/), which are 
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complementary to the ones listed here. As expected, results may 
vary substantially depending on the intended target audience and 
how primary data are extracted, processed, and scored from the 
literature. Expert-based reviews, of course, frequently disagree 
with algorithmic interpretations of data, and vice versa. Even 
though many websites offer APIs for convenient access to data 
and other features, a lack of such protocols hinders systematic 
evaluation of compounds and respective properties. Most vendors 
and chemical suppliers also provide structural information and 
brief summaries on biochemical and cellular properties of avail
able chemical probes, but researchers may find it difficult to assess 
important parameters, such as selectivity in a comprehensive 
manner. To eliminate bias and avoid scaffold-inherent off-target 
effects, it is good practice to use multiple and structurally diverse 
chemical probes for a particular target. In general, small molecule 
chemical probes are currently targeting only a fraction of the 
druggable genome and many are not optimized for in vivo use 
in model organisms. It is also worth noting that technically, che
mical probes may also comprise peptides and oligonucleotides, 
which are not covered in this review. As our understanding of 
biology continues to evolve, it will be exciting to see new chemical 
probes and probe modalities emerge for areas such as proximity- 
induced pharmacology, RNA, and phenomena like liquid–liquid 
phase separation.
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