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Introduction

1. The following investigations deal with the unprovable assertions on which
geometry is founded. Every mathematical theory is based on certain un-
provable assertions; the separation between provable and unprovable is
made by formulating axioms or postulates. Euclid’s Elements (325 BCE)
are the first example of an axiomatic foundation for elementary geometry,
particularly admirable in the case of the theory of proportions. The main
goals of the developments that have flowed from Euclid are:

(a) Investigation of the parallel axiom. In the 19th century it was first
recognized that the parallel axiom is unprovable from the remaining
axioms of Euclid, and that it is not reducible to simpler assumptions.
However, there are other assertions equivalent to the parallel axiom.
We shall not go further into these investigations, which concern the
so-called noneuclidean geometry.

(b) Investigations of continuity, particularly the axiom of Archimedes.
The existence of incommensurable segments shows that the axiom of
Archimedes does not suffice to introduce the number concept in ge-
ometry via coordinates. From the standpoint of geometric intuition,
it is unsatisfactory to assume from the outset that geometric space is
a number manifold. Continuity plays a crucial role in the foundation
of the theory of proportions and the theory of planar and spatial con-
tent. We shall not go further into these investigations either. Here we
wish to introduce coordinates into synthetic geometry independently
of continuity assumptions. The Archimedean axiom then gives im-
portant insights into the structural properties of synthetic geometry
via the detour through coordinate geometry.

(c) In projective geometry, investigations of incidence properties are not
supposed to involve the concept of magnitude. This raises the ques-
tion of “pure foundations of projective geometry”, that is, founda-
tions without limit processes and congruence assumptions. Here it
turns out that planar and spatial geometry are essentially different.

The investigations that follow are concerned mainly with point (c). We
leave aside all problems normally treated in basic courses in noneuclidean
geometry or “elementary mathematics from an advanced standpoint”.
Our goal is to study ways of establishing projective geometry on the basis
of the Hilbert axioms. The algebraic construction of geometry as coordi-
nate geometry over a generalized number system plays an essential role.
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4 Introduction

2. We conclude this introduction with a few remarks on the axiomatic method.

The axioms involve various properties of geometric figures: incidence (for
example, two points determine exactly one line), order (for example, when
three points lie on a line, exactly one of them is between the other two),
congruence, continuity, and parallelism. Hilbert’s axioms are correspond-
ingly divided into groups I to V. Hilbert’s division is not the only one
possible. For example, Pasch based his investigations on another division,
into so-called “core theorems”. The essence of mathematics lies in its
freedom.1 But for each system one requires the axioms to be

α) independent,

β) consistent,

γ) complete.

Requirement α)—eliminating superfluous assumptions—is not only for the
sake of elegance. Deciding what needs proof and what does not is the basic
problem. To prove the independence of a given axiom system one has to
show that an assertion A does not follow from assertions A1 to An. For a
geometric axiom system, independence is proved, for example, by giving a
model geometry in which assertions A1 to An hold but assertion A is false.
This idea is often used in what follows. The model need not be minimal,
that is, it may have properties B1 to Bm as well as properties A1 to An.
If A does not follow from A1 to An and B1 to Bm then it certainly does
not follow from A1 to An alone.

Consistency is a very deep problem, which we shall not expand on here.
The consistency of geometry may be reduced to the consistency of arith-
metic. The requirement of completeness lies at the foundation of all ge-
ometric disciplines. For example, a part of the axiom system may suffice
to found a subdiscipline of geometry, say projective geometry, but not the
whole of elementary geometry.

3. The investigations below are based on Hilbert’s axiom system. The method
he discovered and used, namely to connect general number systems with
geometric theorems and thereby reduce geometric problems to algebraic
problems, is systematically extended.

The circle of problems in projective geometry is not confined to showing
the hypotheses and paths leading to the fundamental theorem of pro-
jective geometry. It also includes structural questions, for example, the
previously unsolved problem of classifying plane configuration theorems:
given configuration theorems S1 and S2, one wants a procedure to decide
whether S2 follows from S1 or not.

The claim that S2 does not follow from S1 may be proved, for example,
by giving a model geometry in which S1 holds but S2 is false. It certainly
appears more natural to systematically generate all consequences of S1

and present them so directly that the absence of S2 is clear, but this path
is connected with severe difficulties of principle.

1Translator’s note. Here Moufang is quoting a remark of Cantor (almost word for word),
from Math. Ann. 21, (1883), p. 564.



Introduction 5

4. As prerequisites we assume familiarity with elementary geometry, ana-
lytic and projective geometry, and some basic concepts from the algebra
of quaternions. Beyond that, foundational investigations require a cer-
tain mathematical maturity, an appreciation of structural questions rather
than the simple desire to acquire knowledge. Naturally, proofs become
longer when they are based on more restricted hypotheses.



Chapter 1

The axioms of geometry

1.1 Incidence axioms

1. Geometric figures consist of three types of things: points, lines and planes.
We denote points by large Roman letters, lines by small Roman letters,
and planes by large German letters. It is not necessary to attach an in-
tuitive meaning to these concepts. Only the relations between them are
important, for example, the concepts of “lying upon”, “between”, “con-
gruent”, “parallel”, “continuous”. These relations satisfy the following
axioms.

I.1 Through two distinct points A and B there is always a line g, the
so-called connecting line of A and B.

I.2 Two distinct points have no more than one connecting line.

I.3 On any line g there are always at least two distinct points A and B.
There are at least three points not in the same line.

I.4 Through any three distinct points not in the same line there is always
a plane E, the so-called connecting plane of the three points. In each
plane there is always at least one point.

I.5 Three distinct points not in a line have no more than one connecting
plane.

I.6 Axiom of planes: if E contains the points A and B (A 6= B) then any
point on the connecting line of A and B also lies in E.

I.7 If two planes have a point in common then they have at least one
more point in common.

I.8 There are at least four points not in the same plane.

Axioms 1 to 3 are called the plane incidence axioms, and 4 to 8 are the
space incidence axioms.

In what follows, the expressions A lies in E, A is a point of E, A belongs
to E, A is incident with E, will be used synonymously. Likewise, the
expressions A lies on g, g goes through A, A belongs to g, A is incident
with g, mean one and the same thing. When A lies on both g and h, A is

6



1.2 Order axioms 7

called the intersection point of g and h. The axioms are formulated so that
each axiom contains only one requirement, and these requirements say as
little as possible. For example, Axiom I.1 does not require that there be
exactly one line through two points. Uniqueness is demanded only after
existence has been postulated. Also, it is not required, for example, that
each line contain many points. It suffices to demand the existence of two
points, because the existence of further points can then be proved.

2. Consequences of the incidence axioms.

(a) Two distinct lines of a plane have either no common point or at
least one. In the latter case they have exactly one common point, by
Axiom I.2.

(b) A line g and a point A outside it determine exactly one plane E.
Indeed, by Axiom I.3 there are at least two different points B and C
on g. By I.4 and I.5 there is exactly one plane through A, B, and C,
and by I.6 it contains the whole line g.

(c) A plane E and a line g that does not lie in E have either no point
in common or—when a common point exists—only one, otherwise
Axiom I.6 would be contradicted.

(d) Two distinct lines g and h with one common point A determine
exactly one plane. Indeed, by I.3 there is a point B on g different
from A, and a point C on h different from A. By I.4 there is at least
one plane E connecting the three points A,B,C not in a line, and by
I.5 no more than one. By I.6, all points of g and all points of h lie in
E.

(e) Two distinct planes E1 and E2 have either no point in common or
else a line in common, because the existence of a common point A
implies the existence of a further common point B, by I.7. Then by
I.6 the connecting line g of A and B lies entirely in E1 and E2. If E1

and E2 also have a common point P not in g, then E1 and E2 must
coincide by consequence (b).

1.2 Order axioms

1. The axioms of this section describe the “betweenness” concept.

II.1 When the point B lies between A and C, then A,B,C are three
different points on a line, and B also lies between C and A.

The relation “between” is therefore symmetric with respect to the end-
points. We write (ABC) ←→ (CBA).

II.2 For any two points A,B on a line g there is a point C with (ABC).

A C B



8 1 The axioms of geometry

II.3 Of any three points on a line, at least one lies between the others.
In what follows, the “segment AB” means the set of all points C with
(ABC), together with the points A,B which we call the endpoints
of the segment. All the other points of the connecting line of A and
B are said to be “outside the segment AB”. Three points on the
same line are called “collinear”; three points not on a line are called
“noncollinear”.

II.4 The plane order axiom. Let A,B,C be noncollinear points and sup-
pose that g is a line in the plane they determine, but not passing
through any of A,B,C. If g goes through a point of the segment
AB, then g also goes through a point of the segment AC or a point
of the segment BC.

The idea of axiom II.4 is that a line which enters a triangle must also
leave. It is provable that it cannot meet both the segments AC and BC.

[]1

2. Consequences of the order axioms.

(a) Suppose we have a triangle2 A,B,C and a line with points E,F,D.

A
B

E

C

F
D

Then (ABE) and (BDC) imply (AFC), otherwise Axiom II.4 would
be contradicted. This theorem is also known as the axiom of Pasch.
It says that, if a line meets a side of a triangle at an interior point,
and another side at an exterior point, then it necessarily meets the
third side at an interior point.

(b) On Axiom II.2:
The segment AB is by definition the set of all points C on the line
connecting A and B for which (ACB), together with the endpoints.
We claim that segment AB contains at least one point C with (ACB).

1Translator’s note. Here I omit Moufang’s sentence “In this chapter we denote the con-
necting line of points P and Q by PQ, and the segment with endpoints P and Q by PQ”
because I think it best to dispense with the bar notation. The opposite notation—PQ for the
line segment and PQ for the line—is used by Hilbert and also by Hartshorne (2000), and in
any case Moufang drops the bar notation after a while. I have tried to minimize confusion by
using PQ for the line through P and Q and saying “segment PQ” explicitly when the segment
is meant.

2Translator’s note. From now on, Moufang denotes the triangle with vertices A, B, C by
the usual notation ∆ABC.
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Proof: An E outside segment AB exists by I.3;
F on EA exists with (AEF ) by II.2;
G on FB exists with (FBG) by II.2.

A B

F

G

E

C

Now consider ∆ABF and the line EG. By Pasch’s axiom (conse-
quence (a)), C exists as the intersection point of AB with EG, and
(ACB). Q.E.D.
Axiom II.2 ensures that a given segment may be extended beyond
its endpoints; consequence (b) ensures that the segment itself is not
empty of interior points. It has at least one, and hence infinitely
many. It is thereby proved that the line connecting two points con-
tains infinitely many further points.

(c) On Axiom II.3:
Suppose that A,B,C are collinear and that (ACB) and (CAB) are
false. Then (ABC) is true, that is, of three points on a line g, exactly
one lies between the other two.
Proof: A point D outside g exists by I.3;
an E on BD with (BDE) exists by II.2.
Now consider ∆ABE and DC. Since (ACB) is false and (BDE)
is true, we know by II.4 that there is an H on segment AE with
(AHE).

A C

E

H

B

K
D

Next we consider ∆BCE and AD and similarly conclude that there
is a K with (EKC), because (CAB) is false and (BDE) is true.
Then for ∆AKE and the line HC it follows from (EKC) and (AHE)
by Pasch’s axiom (consequence (a)) that (ADK). Finally we consider
∆AKC and EB. From (ADK) and (EKC) it follows, by Pasch’s
axiom, that (ABC). Q.E.D.
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(d) On Axiom II.4:
A line that meets all three sides of a triangle, two of them in the
interior, necessarily meets the third side in the exterior. In other
words: if (AEB) and (BFC) then (AGC) is false.
Proof. Let E,F,G be collinear on g. Then either (EFG) or (FEG)
or (FGE). Suppose, for example, that (EFG) holds.

A
E

B

G

C
F

I consider ∆AEG and BC. It follows from the assumptions (AEB)
and (BFC), by Pasch’s axiom, that (ACG) also holds. Then (AGC)
is false by (c).
The remaining cases are handled similarly. Q.E.D.

3. Ordering of points in the plane.

Each line g divides the points of the plane outside g into two classes {A}
and {B}. Two points in the same class have a connecting segment that
contains no point of g. On the other hand, the segment connecting two
points not in the same class contains a point of g.

Proof. Outside g there is at least one point A, by I.3. Let S be a point
on g, so there is an A1 on SA such that (SAA1). Hence (ASA1) is false.
Thus A1 and A belong to the class of A, since (A1SA) is likewise false.

g
S

A

A1
A2

This “common membership” relation between A and A1 is symmetric and
transitive. The symmetry is evident.

Proof of transitivity.

Suppose A2 ∈ {A} and A1 ∈ {A}. Then segment A1A2 contains no point
of g, because g meets ∆AA1A2 outside the segment AA1 by the proof
above. Likewise for segment AA2. Hence g also cannot meet segment
A1A2 in its interior, by II.4, so A2 ∈ {A1}.
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Conversely: by hypothesis there is a U on g with (AUB). To show that
B 6∈ {A1} we consider ∆AA1B and g. Then g meets segment AB in the
interior, but not segment AA1. Hence (A1V B) by Pasch’s axiom. That
is, A1 6∈ {B}.

g
S

A

A1

B

U V

Each point therefore belongs to at most one class, but to at least one.
Indeed, if A and B belong to different classes, and if X is an arbitrary
point on AB, then exactly one of (BXU), (UXA), (XBU), (XAU) holds.
If X is not on AB, then it follows from Pasch’s axiom for ∆ABX and the
line g that g meets either segment BX or segment AX in the interior,
since it meets segment AB in the interior. Q.E.D.

4. Ordering of points in space.

Each plane E divides the points of space outside E into classes, such that
the segment connecting two points in different classes contains a point of
E, while the segment connecting two points in the same class does not.

Proof. There is a point A outside E by I.8. In E there is a point S by I.4.
On SA there is a point A1 with (SAA1) by II.2, so (ASA1) is false, that
is, A1 ∈ {A}.

S

A

A1
A2

Now suppose that A1 ∈ {A} and A2 ∈ {A} and that A,A1, A2 are not
collinear. It follows that A2 ∈ {A1}, that is, A1A2 contains no point of
E. Indeed the plane AA1A2 = E1 is uniquely determined, and since E
and E2 have S in common they have a common line s by I.7 and I.6. The
line s meets ∆AA1A2 in the interior of neither segment AA1 nor segment
AA2, and hence also does not meet segment A1A2. Thus segment A1A2

contains no point of E.
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Conversely, it remains to show that, when segment AB contains a point
of E, then so does segment A1B.

Well, the plane through A,A1, B has the point U in common with E, and
hence a whole common line t. The line t meets segment AB in the interior,
but not segment AA1, hence it meets segment A1B in the interior, say
at V , so (A1V B) holds. Thus V also lies on E, and hence segment A1B
contains a point of E. Q.E.D.

5. Transitivity of the ordering of points on a line.

Let A,B,C,D be four points on a line. Then (ABC) and (BCD) imply
(ABD) and (ACD).

We give the proof only for (ACD).

g A B C D

F

M E

H

Outside g there is a point E. On segment CE there is an F with (CEF )
by II.2. I apply Pasch’s theorem to ∆ACE and BF . We have (ABC)
and (CEF ), hence there is an M with (AME). By the same argument in
∆BCF and the line AE, (CEF ) and (ABC) give (BMF ). Similarly with
∆BDM and FC: (BCD) and (BMF ) give (MHD). Finally, in ∆ADM
and FC, (AME) and (MHD) give (ACD). Q.E.D.

To prove (ABD) one makes appropriate changes in the construction.

We also have:

(ABC) and (ACD) imply (BCD) and (ABD).

We prove the first assertion [(ABC) and (ACD) imply (BCD)].

g
A B C

F

G

D

H

Outside g there is a point G, and on BG there is an F with (BGF ).
Applying Pasch’s axiom to ∆ABG and CF , we find that CF does not
meet the segment AG in its interior. It follows, by Pasch’s axiom for
∆AGD and CF , and (ACD), that FC meets GD at a point H with
(GHD). Now Pasch’s axiom for ∆BGD and FC, together with (BGF )
and (GHD), implies that (BCD). Q.E.D.
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6. The concept of “half-line”.

Just as space is divided into two classes by a plane, and the plane is divided
into two classes by a line, so too is a line divided into half-lines or rays.

On the line g there exists a point O, by I.3, and further points B,A1, A2.
Suppose that (A1OA2) is false but (A1OB) is true. In other words, A1

and A2 lie on the same side of O, but A1 and B lie on different sides. We
have to prove that A2 and B also lie on different sides of O. We have either
the ordering (OA1A2) or the ordering (OA2A1). In both cases it follows
from (5) [that is, transitivity]—since (A1OB) is true by hypothesis—that
(BOA2) or (A2OB). Q.E.D.

7. The harmonic scale

Finally we show that infinitely many points can be constructed on a line.
First we prove that the fourth harmonic point is different from initial
points A,B,C.

Suppose that the ordering (CAB) holds. There is an E outside g; draw
EB and EA. Then EB 6= EA. On BE there is an F such that (EFB),
so F does not lie on AE. (By Pasch’s axiom for ∆EBA and CE, and
because (EGA) and (CAB), the segment CF meets the segment AE at G
with (AGE). By Pasch’s axiom for ∆CAF and GB, and because (CAB)
and (CGF ), we also have (AMF ).)

C A B

E

F
G

D

M

We now apply Pasch’s theorem four times:
∆CBF and AE: (BFE) and (CAB) imply (CGF )
∆ABE and CF : (BFE) and (CAB) imply (AGE)
∆CAF and GB: (CGF ) and (CAB) imply (AMF )
∆ABF and ME: (AMF ) and (BFE) imply (ADB),
where D is the intersection of ME and AB.

From (ADB) it also follows that D 6= A and D 6= B. Since (CAB) and
(ADB) hold, it follows from the transitivity of the ordering that (CDB),
hence D 6= C also. Q.E.D.

This construction may now be repeated.
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Again let E be an arbitrary point outside AB, and take F on AE so that
(AFE). Then FC and EB intersect at a point G with (BGE) and (FGC).
One shows as above that AG and EC meet at a point R with (ERC),
that RB and FC meet at a point G1 with (BG1R), and that EG1 meets
the segment BC at a point B1. If one denotes the intersection3of the lines
UX and V Y by UX ∩ V Y , then the construction proceeds recursively as
follows:

BiR ∩ FC = Gi+1,

Gi+1E ∩ AC = Bi+1.

A C

E

B

F

R

G
G1

B1

Then all the Bi are different and they are in the order of their indices,
that is, (Bi−1BiBi+1) holds, and also (ABiC) for all natural numbers i.
Thus there are infinitely many distinct points Bi on the segment BC. The
proof depends on Pasch’s axiom and the transitivity of order.

1.3 Congruence axioms

The congruence axioms involve relations between segments that are congruent
or equal to each other.

III.1 Transportability of segments.

Suppose two points A and B are given on g, together with a point A′ on
g′. Then on each half-line of g′ there is at least one point B′ such that the
segment AB is congruent or equal to the segment A′B′: AB = A′B′.

One says that AB and A′B′ are “congruent” or “equal” and writes = or
≡ or ∼= between them.4 The order of the endpoints of a segment does
not matter because the segment is defined by its set of endpoints. The
definition of congruence depends symmetrically on the endpoints, hence
AB ∼= A′B′ and A′B′ ∼= AB. Also, as will be shown below, segment
transport is unique.

3Translator’s note. Moufang uses the symbol × for intersection. We use the ordinary
intersection sign to avoid any possible confusion with a product operation.

4Moufang uses = for congruence, but I have replaced this by ∼=, since congruence does not
mean absolutely equal. I use = only between identical objects, though I follow ordinary prose
usage in saying segments or angles are “equal” when they are equal in size. Moufang uses the
≡ sign for “equals by definition”, and also for “identically equals” and I have retained this
notation.
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III.2 Transitivity of segment congruence.

A1B1
∼= AB and A2B2

∼= AB imply A1B1
∼= A2B2.

It follows that each segment is congruent to itself.5 By making the special
choice A2

∼= A1 and B2
∼= B1, we get A1B1

∼= A1B1. The symmetry of
segment congruence also follows, that is, A′B′ ∼= AB implies AB ∼= A′B′.
Indeed III.2 says that AB ∼= AB and A′B′ ∼= AB together imply AB ∼=
A′B′. Q.E.D.

Segment congruence is therefore a symmetric and transitive relation. One
can say that two segments are “congruent to each other”. The set of all
segments is partitioned into classes of congruent segments.

III.3 Additivity of segments

Let A,B,C be three points on a line g, and let A′, B′, C ′ be three points
on a line g′.

g
A B C

g′
A′ B′ C ′

Suppose that segments AB and BC have only the point B in common, and
that segments A′B′ and B′C ′ have only the point B′ in common. Then
AB ∼= A′B′ and BC ∼= B′C ′ imply AC ∼= A′C ′.

Angle transport.

We understand an angle to be a pair of rays6 g, h on two distinct lines g,
h with a common point (the vertex of the angle): ∠(g, h) ∼= ∠(h, g). An
angle divides the points of the plane into inner and outer points.

g

h

G2

G1

G1 ∩ G2

Suppose that G1 is a half plane bounded by h, and G2 is a half plane
bounded by g. Then the common points of G1 and G2 comprise the
interior of the angle. The connecting segment of two inner points meets
neither g nor h. Conversely: if H is a point of h and G is a point of g, then
the segment HG consists entirely of inner points. The proof is analogous
to that in Section 1.2, (3).7

5Translator’s note. This property (reflexivity) should really be made an axiom, as was
done by Euclid. Reflexivity does not follow from transitivity as Moufang claims, since the
empty relation is transitive but not reflexive.

6Translator’s note. I have gone along with Moufang’s notation g for a half line of g. Some
authors, such as Hartshorne (2000), use ~g, because a half line has a direction. But Moufang
also uses the bar notation for a half plane, where an arrow seems undesirable.

7Translator’s note. Moufang here cites “consequence (e)”, which does not exist. It seems
likely that she means (3), which follows consequence (d) and is the place where the ordering
of points in the plane is introduced.
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III.4 Axiom of angle transport (movability of figures).

Suppose ∠(g, h) is given in E, and also g′ through O′ in E′. Let E
′

be
a half plane of E′ determined by g′ and let g′ be a half line of g′. Then
there is exactly one half line h

′
originating from O′ and in the half plane

E
′
such that ∠(g, h) ∼= ∠(g′, h

′
).

E O

hg
E′

E′

g′

g′

Here the sense of rotation of the angle is disregarded, just as the sense
of a line segment was earlier. However, in contrast to segment transport,
angle transport demands uniqueness as well as existence.

If A is the vertex of an angle ∠(h, k), B point on h, and C a point on k,
then it is convenient to write ∠(h, k) as ∠BAC ∼= ∠CAB.

III.5 Weak congruence theorem.

Given ∆ABC and ∆A′B′C ′, if AB ∼= A′B′, AC ∼= A′C ′, and ∠BAC ∼=
∠B′A′C ′, then ∠ABC ∼= ∠A′B′C ′.

It follows, by exchanging B and C, that ∠ACB ∼= ∠A′C ′B′ also.

Now for some important consequences of the congruence axioms.

(a) Uniqueness of segment transport.
The uniqueness of segment transport follows from the uniqueness of
angle transport and axiom III.5 by an indirect argument.

g

A B

g′

A′ B′ B′′

Suppose AB ∼= A′B′ and AB ∼= A′B′′. Take a point C outside g and
consider the triangles ∆A′B′C and ∆A′B′′C. We have

A′ B′ B′′

C

∠CA′B′ ∼= ∠AA′B′′,
A′C ∼= A′C,

A′B′ ∼= A′B′′,

hence by III.5 we have ∠A′CB′ ∼= ∠A′CB′′. Then it follows from
the uniqueness of angle transport that B′ = B′′. This proves the
uniqueness of segment transport.
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(b) The complete congruence theorem for triangles.8

From AB ∼= A′B′, AC ∼= A′C ′, ∠CAB ∼= ∠C ′A′B′ it follows that
BC ∼= B′C ′.
Proof. Suppose that BC 6∼= B′C ′. Then there is a D′ on B′C ′ such
that CB = B′D′. Consider ∆ACB and ∆A′D′B′. By III.5, all their
corresponding angles are equal, so in particular

A′ B′

C ′

D′

∠C ′A′B′ ∼= ∠CAB ∼= ∠D′A′B′.

Since D′ 6= C ′, this contradicts the uniqueness of angle transport.
Hence we must have BC ∼= B′C ′. Q.E.D.

(c) Congruent angles have congruent supplementary angles.
Suppose AC ∼= A′C ′, AB ∼= A′B′, AD ∼= A′D′, ∠BAC ∼= ∠B′A′C ′.

C DA

B

C ′ D′A′

B′

It is required to prove that ∠BAD ∼= ∠B′A′D′.
Proof. Consequence (b), applied to ∆ABC and ∆A′B′C ′, gives
BC ∼= B′C ′ and ∠BCA ∼= ∠B′C ′A′. By III.3, CD ∼= C ′D′.
Consequence (b), applied to ∆CBD and ∆C ′B′D′, now gives BD ∼=
B′D′ and ∠BDC ∼= ∠B′D′C ′. In ∆ABD and ∆A′B′D′, Axiom III.5
gives ∠BAD ∼= ∠B′A′D′. Q.E.D.

As an extension, we now prove congruence of opposite angles: α ∼= β.

α
α1

β
α′

α′
1

Proof. If α 6∼= β there is a unique α′ such that α′ ∼= α. By the theorem
just proved, applied to α and α′, we have α1

∼= α′
1. Applying the

same theorem to α1 and α′
1 then gives β ∼= α′, whence it follows by

transitivity that α ∼= β. Q.E.D.
8Translator’s note. This is the property known in English as SAS or “side-angle-side”.
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(d) Theorem of the exterior angle.
An exterior angle of a triangle is greater than each non-adjacent in-
terior angle.
Proof. Make AD ∼= CB, where (DAB). Then we have to prove that
∠CAD > ∠ACB. First we prove that ∠CAD 6∼= ∠ACB.

A E BD

C

If these angles are equal, then applying Axiom III.5 to ∆DAC and
∆BCA gives ∠DCA ∼= ∠CAB. By (c), ∠DCA must equal the
supplementary angle of ∠BCA. By the uniqueness of angle transport,
B therefore lies on CD or, what is the same thing, C lies on DB.
Thus C,A,B lie on a line, contrary to hypothesis.
Now we prove that the assumption ∠DAC < ∠ACB also leads to
a contradiction. Under this assumption there is an E such that
∠DAC ∼= ∠ACE, and E lies on the same side of A as B. But
then ∆ACE is a triangle in which the exterior angle at A equals the
interior angle at C, which we have just proved to be impossible.
The theorem of the exterior angle is thereby proved for ∠ACB. The
proof for ∠CBA is analogous, with B interchanged with C and use
of the opposite angle theorem. Q.E.D.

1.4 The parallel axiom

Suppose we are given a plane E, a line g in it, and a point P in E outside g.
Then E contains a line h through P not meeting g.

g

h

α
α

A

P
α

Proof. The existence of an intersection point g∩h = B in the figure contradicts
the theorem of the exterior angle. For each line PA one can find such a line h
through P by transportation of the alternate angle α. Q.E.D.

IV Parallel axiom (also known as the parallel postulate).

In E there is at most one line through P not meeting g.

Euclid formulated this postulate as follows. If two lines g, h in the plane are
cut by a third line c, and if the sum of the interior angles with c on one side
is less than two right angles, then g and h will meet on that side if prolonged
sufficiently far.
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Both formulations have the consequence that lines are parallel if and only if
they have equal alternate angles.

The parallel postulate has played a vital role in the development of geometry.
Even in ancient times, Euclid’s formulation stimulated attempts to prove it
from the remaining axioms. The noneuclidean geometries first found by Gauss,
Bolyai, and Lobachevsky demonstrated its unprovability.

1.5 Axioms of continuity

V.1 Axiom of Archimedes (axiom of measure).
Let AB and CD be arbitrary segments, and let CD be transported onto
AB repeatedly, giving points A1, A2, . . . , Am where each Am−1Am = CD.
Then for some natural number m one has the ordering (ABAm).

A A1 A2 B A3 C D

Here we have used the possibility and uniqueness of segment transport. A
geometry in which axiom V.1 does not hold is called non-Archimedean.

With the axioms enumerated so far it is still not possible to establish the
cartesian geometry over the real numbers. One needs to adjoin the following
axiom.

V.2 Axiom of linear completeness.

The system of points on a line admits no order-preserving extension sat-
isfying the first congruence theorem and the Archimedean axiom, that
is, the axioms I.1–I.3, II, III.1, V.1. That is, it is not possible to adjoin
further points to this system so that the extended system satisfies all the
axioms just listed.

The completeness axiom is satisfiable essentially because the required axioms
include the axiom of Archimedes. It possible to show that a system of points on
a line satisfying Axioms I.1–I.3, II, III.1 can be extended in an order-preserving
way. Thus, in the absence of the axiom of Archimedes, the completeness axiom
can be refuted.

The linear completeness axiom implies the completeness theorem:
The points, lines, and planes constitute a system that admits no extension

satisfying the axioms I, II, II.1,V.1, and hence no extension satisfying all the
axioms.

Without the completeness axiom, that is, from Axioms I, II, III, IV alone,
the identity of the geometry with the usual cartesian analytic geometry does
not follow.

Regarding the independence of all these axioms, it has already been re-
marked that the spatial incidence axioms do not follow from the planar ones.
The independence of the order axioms from the incidence axioms is proved
with the help of a model geometry over the complex numbers. The congruence
axioms are partially independent (namely, III.5 is) of the incidence and order
axioms. The independence of the parallel postulate is due to the consistency of
noneuclidean geometry, and that of the Archimedean axiom to the consistency
of non-Archimedean geometry.



Chapter 2

Number systems

2.1 Number fields

To construct model geometries one often uses coordinate geometries, and hence
algebraic methods. Algebra works with things we call numbers (and denote by
small Latin letters), and uses two operations on them. We now consider the
axioms of algebra.

1. I′ Operations and existence.

I′.1 Uniqueness of sum: a + b = c is unique.
Here the order of summands is fixed.

I′.2 If a and b are given, then there is exactly one x such that a + x = b,
and exactly one y such that y + a = b.

I′.3 Existence of “zero”. There is exactly one element 0 such that a+0 = a
and 0 + a = a.

I′.4 Uniqueness of product: a · b = c is unique.
Also, the order of a and b is fixed.

I′.5 If a and b are given, and a 6= 0, then there is exactly one x such that
ax = b and exactly one y such that ya = b.

I′.6 Existence of “one”. There is exactly one element 1 such that a ·1 = a
and 1 · a = a.

II′ Computation rules.

II′.1 Associative law of addition: (a + b) + c = a + (b + c).

II′.2 Commutative law of addition: b + a = a + b.

II′.3 Associative law of multiplication: (ab)c = a(bc).
One proves by complete induction that a sum of arbitrarily many
summands, and also a product of arbitrarily many factors, may be
bracketed arbitrarily.

II′.4 Left distributive law: a(b + c) = ab + ac.

II′.5 Right distributive law: (b + c)a = ba + ca.

20
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II′.6 Commutative law of multiplication: ab = ba.

Each system of symbols with sum and product operations satisfying the
laws I′ and II′ is called a number field (for example, the rational numbers,
real numbers, complex numbers). Systems for which II′.3 is not satisfied
are called nonassociative systems.

2. First we prove some consequences of axioms I′ and II′.

(a) Equality of right and left inverses. By I′.5 there are x and y
such that ax = b and ya = b. Let b be the unit element,1 which we
now denote by e.
Claim: ax = e, ya = e → x = y.
Proof. ax = e implies (ax)a = ea = a.
ya = e implies a(ya) = ae = a or, by II′.3, (ay)a = a = (ax)a.
Hence (ay − ax)a = 0.
Then, since a 6= 0, it follows that ay−ax = 0 = a(y−x) and therefore
y = x. Q.E.D.
We denote y and x by a−1.
One shows analogously that a + x = 0 and y + a = 0 imply x = y.
We denote x and y by (−a).

(b) Inverse of an inverse: (a−1)−1 = a.
Proof. Indeed, x = (a−1)−1 is defined by a−1x = e.
Hence a(a−1x) = ae = a, or (aa−1)x = a, so ex = a = x. Q.E.D.
One shows analogously that −(−a) = a.

(c) Inverse of a product: (ab)−1 = b−1a−1.
Proof.

(ab)−1 · (ab)} · b−1 = (ab)−1 · {(ab)b−1}
= (ab)−1 · {a(bb−1)}
= (ab)−1 · ae

= (ab)−1 · a.

Hence b−1 = (ab)−1a and therefore

b−1 · a−1 = {(ab)−1 · a} · a−1

= (ab)−1 · (aa−1)

= (ab)−1 · e
= (ab)−1 Q.E.D.

One notes that the derivation of this relation uses the associative law of
multiplication only in the special form where two factors of the product
are equal.2

3. The axioms I′ and II′ are not independent.
1Translator’s note. That is, the element called “one” in Axiom I′.6.
2Translator’s note. Or rather, inverses of each other.
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(a) The existence of zero follows from Axioms I′.1, I′.2, and II′.1.
Proof. By I′.2, the equation a + x = a has exactly one solution
xa = a, and the equation y + a = a has exactly one solution ya = a.
Then II′.1 gives, for arbitrary b,

b + (a + xa) = b + a = (b + a) + xa.

Since b+a = c is arbitrary (that is, for any a we can choose b so that
b + a has a prescribed value), it follows that

c = c + xa,

that is, xa is a right zero element.
It also follows from II′.1 that

(ya + a) + b = a + b = ya + (a + b),

that is, c = ya + c, so ya is a left zero.
It remains to show that xa = ya. Substituting c = ya in c = c + xa

gives
ya = ya + xa,

and it follows from c = ya + c with c = xa that

xa = ya + xa,

hence xa = ya follows by I′.1.
This proves the existence of at least one zero element xa = ya = 0
such that c + 0 = 0 + c = c for all c. If there were another zero
element 0′, then for c = 0′ we should have

0′ + 0 = 0 + 0′ = 0′,

and d + 0′ = 0′ + d = d with d = 0 gives

0 + 0′ = 0′ + 0 = 0,

hence 0 = 0′. Q.E.D.
The existence of the unit element is proved analogously from I′.4,
I′.5, and II′.3.

(b) The commutative law of addition follows from I′, II′1,4,5.
Proof. Let u and v be any two elements with u 6= 0.

(u + v)(u−1 + e) = u(u−1 + e) + v(u−1 = e)

= uu−1 + u + vu−1 + v

= e + u + vu−1 + v,

(u + v)(u−1 + e) = (u + v)u−1 + (u + v)

= uu−1 + vu−1 + u + v

= e + vu−1 + u + v.
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Now let ẽ + e = 0 and v + ˜̃v = 0, and it follows from the equations
above by left addition of ẽ and right addition of ˜̃v that

ẽ + e + u + vu−1 + v + ˜̃v = ẽ + e + vu−1 + u + v + ˜̃v,

hence
u + vu−1 = vu−1 + u.

Setting vu−1 = w gives

u + w = w + u Q.E.D.

This proof does not carry over to a proof of the commutative law
of multiplication, because the analogous distributive law a + (bc) =
(a + b)(a + c) does not exist!

2.2 Ordered and continuous number systems

III′ Axioms of order

III′.1 Existence and uniqueness of order: for any two elements a, b, exactly
one of the relations a ≤ b, a = b, a ≥ b holds.

III′.2 Transitivity of order: a > b and b > c imply a > c.

(And similarly for the sign <.) The order is therefore antisymmetric and
transitive.

III′.3 First monotonicity law (monotonicity of addition).

If a > b then a + c > b + c and c + a > c + b for any c.

III′.4 Second monotonicity law (monotonicity of multiplication).

If a > b and c > 0 then ac > bc and ca > ba.

A number system that satisfies Axioms III′.1 to III′.4 is called a linearly
ordered number system. Correspondingly, a number field is said to be linearly
ordered when it satisfies all the axioms I′, II′, and III′.1 to III′.4.

IV′ Axioms of continuity

IV′.1 Axiom of Archimedes

For any positive3 a and b there is a natural number n such that na > b.

IV′.2 Completeness axiom: It is impossible to add further elements to the
system in an order-preserving manner so that the Axioms I′, II′, III′, and
IV′.1 remain valid.

An ordered Archimedean number field satisfies Axioms I′ to IV′.1.
We remark that II′.6 follows from I′, II′.1–II′.5, III′, and IV′.1, but not

without use of IV′.1!
3Translator’s note. That is, a, b > 0.
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2.3 Structure of ordered Archimedean skew fields

Definition: A skew field is a number system that satisfies Axioms I′ and II′

without II′.6. Thus ab = ba does not necessarily hold in a skew field.

Main theorem: Each ordered Archimedean skew field is a field.
In other words, the commutative law of multiplication is a consequence of the
remaining axioms, without the completeness axiom.

The proof of the main theorem divides into four steps.

1. Lemma: Each linearly ordered skew field K contains a subsystem R′ iso-
morphic to the field of rational numbers.

Proof:

α) In K there is a unit element 1′ and a zero element 0′. We denote
the skew field unit by 1′ to distinguish it from the 1 of the rational
numbers, and the skew field zero by 0′ similarly to distinguish it from
the 0 of the rational numbers. One constructs

1′ + 1′ = 2′,

and so on, recursively:

n′ + 1′ = (n + 1)′.

Each natural number is thereby associated with an element of R′.
1′ + x = 0′ has exactly one solution, namely x = (−1)′. We set

(−1)′ + (−1)′ = (−2)′ , . . . , (−n)′ + (−1)′ = (−n − 1)′.

It will now be proved that the elements n′ are isomorphic to the ring
of integers, that is 4

(mn)′ = m′n′ and (m + n)′ = m′ + n′.

First one shows by complete induction that for n ≥ 1 we also have

(−n)′ + 1′ = (−n + 1)′.

This relation is correct for n = 1. Induction shows that, for each
natural number n,

(−(n + 1))′ + 1′ = (−n)′ + (−1)′ + 1′ = (−n)′

= ((−n − 1) + 1)′ = (−(n + 1) + 1)′

We similarly show that

n′ + (−1)′ = (n − 1)′,
4Translator’s note. A pencilled note in the manuscript at this point reads:

Remark: These relations prove only a homomorphism! To prove that the homo-
morphism is an isomorphism requires use of the linear ordering!
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because

(n+1)′ +(−1)′ = n′ +1′ +(−1)′ = n′ = (n+1− 1)′ = ((n+1)− 1)′.

In summary, we can say that the definitions

n′ + 1′ = (n + 1)′

(−n)′ + (−1)′ = −(n + 1)′

imply the relations

(−n)′ + 1′ = (−n + 1)′

n′ + (−1)′ = (n − 1)′.

β) For integers m we have

(m · 1)′ = m′ = m′ · 1′.

We wish to prove that also

(m · (−1))′ = m′(−1)′ = −m′.

We have

m′(1′ + (−1)′) = m′ · 0′ = 0′ = m′1′ + m′(−1)′ = m′ + m′(−1)′,

hence
m′(−1)′ = (−m)′.

If we now assume that (−m)′ = −m′ holds for some fixed m > 0,
then it follows from

(m + 1)′ + (−m − 1)′ = m′ + 1′ + (−m)′ + (−1)′

= 1′ + m′ + (−m)′ + (−1)′

= 1′ + (−1)′ + m′ + (−m)′ = 0′

that
(−m − 1)′ = −(m + 1)′.

The induction hypothesis

(−m)′ = −m′

is correct for m = 1 by definition of (−1)′, and hence in general, so

m′(−1)′ = −m′ = (−m)′ = (m · (−1))′.

γ) Now we show that all integers m, n satisfy the relations

n′ + m′ = (n + m)′ (1)
n′ · m′ = (n · m)′ (2)
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(1) is correct for each n and m = 1.
For m > 1 we make the following induction step:

n′ + (m + 1)′ = n′ + m′ + 1′ = (n′ + m′) + 1′

= (n + m)′ + 1 = (n + (m + 1))′.

For m < −1 one proceeds from the true relation for m = −1,

n′ + (−1)′ = (n − 1)′

and the induction hypothesis

n′ + (−m)′ = (n − m)′

to

n′ + (−(m + 1))′ = n′ + (−m)′ + (−1)′ = (n − m)′ + (−1)′

= (n − m − 1)′ = (n − (m + 1))′.

(2) is proved analogously.
From (mn)′ = m′n′, which is valid for each integer m and n = 1,
it follows that

(m(n + 1))′ = (mn + m)′ = (mn)′ + m′ = m′n′ + m′

= m′(n′ + 1′) = m′(n + 1)′.

From (m(−n))′ = m′(−n)′, which is valid for each integer m and
n = 1, it follows that

(m(−n − 1))′ = (−mn − m)′ = (−mn)′ + (−m)′

= m′(−n)′ + (−m)′ = m′(−n)′ + m′(−1)′

= m′((−n)′ + (−1)′) = m′(−n − 1)′. Q.E.D.

The isomorphism between the elements n′ and the integers is thereby
proved.

δ) I now apply division to m′ and n′.
Suppose a and m′ belong to K.
It follows from the distributive law that

am′ = a(1′ + 1′ + · · · + 1′) = a + a + · · · + a

= 1′a + 1′a + · · · + 1′a = (1′ + 1′ + · · · + 1′)a = m′a,

hence
am′ = m′a.

Now m′ · x = 1′ has exactly one solution, namely

x = (m′)−1.

Then we also have xm′ = 1′. We denote (m′)−1 by 1
m′ .
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Define fractions by (m′)−1 · n′ = n′(m′)−1 = n′
m′ .

We must first show that the latter “fraction” can be simplified:

(nλ)′

(mλ)′
=

n′λ′

m′λ′ = n′λ′(m′λ′)−1 = n′ · λ′ · λ′−1 ·m′−1 = n′m′−1 =
n′

m′ .

The set of all elements n′
m′ is a subdomain R′ isomorphic to the

rational numbers. This is proved by showing that the correspondence

n′

m′ 7→
n

m

satisfies

n′
1

m′
1

+
n′

2

m′
2

7→ n1

m1
+

n2

m2
,

n′
1

m′
1

· n′
2

m′
2

7→ n1

m1
· n2

m2
.

Indeed, if one thinks of

n′
1

m′
1

and
n′

2

m′
2

with a common denominator m then

n′
1

m′ +
n′

2

m′ = n′
1 · m′−1 + n′

2 · m′−1

= (n′
1 + n′

2)m
′−1 = (n1 + n2)′m′−1 =

(n1 + n2)′

m′ .

And

n′
1

m′
1

· n′
2

m′
2

= n′
1 · (m′−1

1 ) · n′
2 · (m′−1

2 )

= n′
1n

′
2 · m′−1

1 · m′−1
2 = (n1n2)′ · (m2m1)′−1 =

(n1n2)′

(m1m2)′

This completes the proof of the lemma. One may therefore remove
the accents from the elements of R′.

Since K is assumed to be linearly ordered, the elements of R′ within it
have the same linear ordering as the rational numbers.

2. Lemma: For any element ρ of the subsystem R′ (isomorphic to the field
R of rational numbers) and any element a of K one has

ρa = aρ.

Proof. Suppose ρ = n′
m′ . Then

aρ = a
n′

m′ = a(n′m′−1) = (an′)m′−1 = (n′a)m′−1 = n′(am′−1)

= n′(m′a−1)−1 = ((m′a−1)n′−1)−1 = ((a−1m′)n′−1)−1

= (a−1(m′n−1))−1 = (m′n′−1)−1a = (n′m′−1)a

=
n′

m′ a = ρa Q.E.D.
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3. Lemma: For any two elements a and b of K with

a < b

there is an element ρ of R′ such that

a < ρ < b.

In other words, the rational numbers are dense in K.

Proof. Suppose 0 < a < b. Then the Archimedean axiom gives an N such
that

N · 1 > a.

This means there is an n with n < a < n + 1.

We investigate two cases:

(1) n + 1 < b. Then n < a < n + 1 < b, so n + 1 = ρ.

(2) n + 1 > b. Then n < a < b < n + 1, so 0 < b − a < 1 since
b − a < n + 1 − n = 1.

In the latter case the Archimedean axiom gives an m such that

m(b − a) > 1 or b − a >
1
m

for a natural number m.

Thus
b > a +

1
m

.

Also, there is a natural number k such that

k

m
< a <

k + 1
m

,

from which it follows that

b >
k

m
+

1
m

=
k + 1

m
, whence a <

k + 1
m

< b.

Taking ρ = k+1
m , Lemma 3 is proved. Q.E.D.

Proof of the main theorem. Let a, b > 0 be elements of K. We shall derive
a contradiction from ab 6= ba. By the monotonicity law for multiplication, ab
and ba have the same sign, so we can assume that both are positive.

Suppose that ab < ba.
Then by Lemma 3 there is a ρ such that ab < ρ < ba. Right multiplication

of ab < ρ by a gives
(ab)a < ρa, or aba < ρa.

By Lemma 2, ρa = aρ, hence aba < aρ.
Now multiplying ρ < ba on the left by a gives

aρ < a(ba) = aba.

But this is a contradiction, hence ab = ba. Q.E.D.
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2.4 Ordered number fields: Archimedean and
non-Archimedean

1. The rational numbers are an Archimedean ordered field. They satisfy
all the axioms except the completeness axiom IV′.2. The field is extendible
by Dedekind cuts to the field of real numbers, in which IV′.2 holds.

2. A non-Archimedean field: rational functions of one parameter.

Let ri be numbers from the ground field of reals. We construct polynomials
with parameter t:

P (t) =
n∑

i=0

rit
i.

P (t) is nonzero when not all the coefficients ri are equal to 0.

Expressions of the form

f(t) =
P1(t)
P2(t)

=
r0 + r1t + r2t

2 + · · ·
ρ0 + ρ1t + ρ2t2 + · · ·

are the elements of a system which, as we shall show, is a linearly ordered
but non-Archimedean field.

First we define the zero and unit elements:

Zero element: r0 = · · · = rn = 0, not all ρi = 0

Unit element: n = m, ri = ρi.

Operations and computation rules:

Addition is performed by termwise addition of numerators, after the de-
nominators have been made equal.

Polynomials are added and multiplied in the usual way. Thus all the
usual rules for computation with fractions hold, that is, the elements of
the system constitute a field.

P1

P2
+

Q1

Q2
=

R1

R2
,

P1 · Q
P2 · Q =

P1

P2
,

P1

P2
· Q1

Q2
=

P1Q1

P2Q2

P1

P2
· x =

Q1

Q2
−→ x =

Q1

Q2
· P2

P1
.

Ordering:

A rational function f(t) has constant sign for sufficiently large t > |t0|. If
f1(t) and f2(t) are elements of the form P (t)

Q(t) then f1(t)−f2(t) has constant
sign for all sufficiently large positive values of t. One now sets:

III′.1 f1(t) >,=, < f2(t) according as f1(t) − f2(t) >,=, < 0 [for t suffi-
ciently large.]. This orders the rational functions in one indetermi-
nate according to their ultimate behavior.
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III′.2 This ordering is transitive, that is, f1 > f2 and f2 > f3 implies
f1 > f3, because

(f1(t) − f3(t)) = (f2(t) − f3(t)) + (f1(t) − f2(t)).

The left hand side is > 0 for sufficiently large t > |t0| because each
term on the right hand side is.

III′.3 Monotonicity theorem for addition:

If f1 − f2 > 0 for sufficiently large t then so is

(f1 + f3) − (f2 + f3) = f1 − f2,

hence f1 > f2 implies f1 + f3 > f2 + f3.

III′.4 Monotonicity theorem for multiplication:

If f1 > f2 and f > 0 then f1f > f2f or (f1 − f2)f > 0.

This is because

f1 − f2 =
r0 + r1t + · · · + rntn

ρ0 + ρ1t + · · · + ρmtm
> 0 implies

rn

ρm
> 0

and

f =
r′0 + r′1t + · · · + r′ktk

ρ′0 + ρ′1t + · · · + ρ′ltl
> 0 implies

r′k
ρ′l

> 0.

In (f1 − f2)f the highest power of t in the numerator is in the term
rnr′ktk+n, while the highest power of t in the denominator is in the
term ρmρ′lt

m+l. Here we have

rnr′k
ρmρ′l

> 0, that is, (f1 − f2)f > 0. Q.E.D.

The Archimedean axiom does not hold. Indeed, consider the element
f(t) = n − t (n a natural number). Then, for fixed n, f(t) < 0 for
sufficiently large positive t. Hence the Archimedean axiom does not hold
because f(t) = n − t gives n · 1 < t. One says that the indeterminate t
is “non-Archimedeanly large relative to 1”, that is, it is larger than each
integer multiple of 1. One writes t À 1.

Remark. This extension of the real numbers to the field of functions f(t)
does not preserve all the axioms I′, II′, III′, and IV′.1 (to IV′.2). This is
why the extension does not contradict the completeness axiom.

3. Another representation of the field of rational functions f(t) is in terms
of Laurent series.

f(t) =
∞∑

i=N

αit
i with N an integer and the αi real.
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We define the operations by

f1 + f2 =
∞∑

i=N

(αi + βi)ti

f1 · f1 =

( ∞∑
i=N

αit
i

) ( ∞∑
k=M

βktk

)

=
∞∑

l=N+M

γlt
l

with γj+M+N = αNβM+j+αN+1βM+j−1+· · ·+αN+jβM for j = 0, 1, 2, . . .

Zero element : αi = 0 for all i.

Unit element : α0 = 1, αi = 0 otherwise.

Axioms I′ and II′ are satisfied, as can be seen immediately. For example,
inverses arise as follows. Given

a =
∞∑

i=N

αit
i, we seek b =

∞∑
k=M

βktk

such that ab = 1.

One finds that N + M = 0, M = −N , αNβ−N = 1, so β−N = 1
αN

.

Then 0 = γ1 = αNβ−N+1 + αN+1β−N gives β−N+1, and β−N+l is found
recursively from

0 = αNβ−N+l + αN+1β−N+l−1 + · · · + αN+lβ−N .

This gives all the βk, and hence b.

The existence of inverses implies the existence of quotients with the help
of the associative law of multiplication.

Order axioms III′.

Suppose f(t) =
∑∞

i=N αit
i = a. When is a >,=, < 0? Since it is assumed

that a 6= 0, there is a nonzero coefficient αN+n with N + n minimal.

We define a >,=, < 0 according as αN+n >,=, < 0.

Also, a >,=, < b when a − b >,=, < 0.

All order axioms and the monotonicity laws are then satisfied, as one sees
immediately.

The element t =
∑

αit
i with α1 = 1, and the other αi = 0, is > 0.

The Archimedean axiom is not satisfied.

We consider f(t) = 1−n · t, which is > 0 (since f(t) = 1 · t0 −nt1) for any
natural number n. Thus 1 > nt and one writes t ¿ 1. In contrast to the
first representation, t is now “non-Archimedeanly small relative to 1”.

The convergence of the series in question is completely irrelevant. We
focus only on the coefficients and define an element of the number system
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to be a denumerable sequence of real numbers,

a = (αN , αN+1, αN+2, . . .),
b = (βN , βN+1, βN+2, . . .), or (βM , βM+1, βM+2, . . .)

and define

a + b = (αN + βN , αN+1 + βN+1, . . .)
a · b = (γN+M , γN+M+1, . . .)

where γN+M+l = αN+lβM + αN+l−1βM+1 + · · · + αNβM+l

By carrying out the representation in this manner, the parameter t is
eliminated.

We mention that while the Archimedean axiom implies commutativity of
multiplication, the converse does not hold, because—as we now see—there
are non-Archimedean ordered fields with commutative multiplication.

4. The complex numbers constitute a field which cannot be linearly or-
dered, so a fortiori they cannot be Archimedeanly ordered.

To prove that they cannot be ordered one proceeds indirectly, using the
monotonicity laws to show that the assumptions i > 0 and i < 0 lead to
contradictions.

Suppose that i > 0 and take i = a, 0 = b in the second monotonicity law
(a > b, c > 0 → ac > bc). For c = i we get

ii > 0 · i = 0,

−1 > 0 False!

If we suppose that i < 0 then −i > 0 (otherwise addition of i < 0 and
−i < 0 would give i − i < 0, that is, 0 < 0, which is false).

But −i > 0 multiplied by −i > 0 gives −1 = (−i)(−i) > 0(−i) = 0 which
is false. This completes the proof that the complex numbers cannot be
ordered.

5. Coordinate geometry over a field is constructed as usual by taking
points to be number pairs (or number triples), lines (or planes, respec-
tively) to be given by linear equations, and the axioms of geometry are
then investigated algebraically.

I To verify the incidence axioms, it suffices to solve linear equations,
which is possible in a field.

II The order axioms hold when the field is linearly ordered.

III The congruence axioms are valid when square roots exist (since the
length of P1P2 =

√
(x1 − x2)2 + (y1 − y2)2) and motions of trans-

lation, reflection, and rotation are representable. Here we confine
ourselves to the plane.
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Unique transport of a segment onto a given half line g says that the circle
around A with given radius meets the segment g of the diameter in ex-
actly two points. To determine their coordinates requires the square root
operation.

g
AP2 P1

Angle congruence is defined analytically with the help of rotations and
reflections. The transformations of the plane are represented as follows:

Translation: x′ = a + x, y′ = b + y.

Reflection in the x-axis: x′ = x, y′ = −y.

Rotation: x′ = a
|√a2+b2|x − b

|√a2+b2|y, y′ = b
|√a2+b2|x + a

|√a2+b2|y

O
X

Y

x

y
P

x′

y′ P ′

a

b
C

E

The latter formula represents the rotation through the angle ∠COE that
carries P = (x, y) to P ′ = (x′, y′). Then ∠COE is called ∠P ′OP .

Thus the introduction of the congruence axioms is possible in a number

domain in which
√

a2 + b2 = a
√

1 + a2

b2 is present along with a and b. The
field of rational functions of t previously considered does not satisfy this
condition until extended to the domain of special algebraic functions of t,
obtained from the real numbers and t by repeated rational operations and
the operation w 7→ √

1 + w2. This extension may also be linearly ordered
by ordering the algebraic functions according to their ultimate behavior.
One sees in this way that the Axiom of Archimedes is not a consequence
of Axioms I, II, III, IV.

IV The continuity axioms of the geometry are equivalent to those of the
number system.

By means of the plane geometries over the various number systems one
obtains the following table, in which we do not further investigate the
complex geometry.
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Field Valid axiom groups
Real numbers I, II, III, IV, V
Complex numbers I; II false
Rational functions of t I, II, IV; III, V false
Algebraic functions of t I, II, III, IV; V false

Consequences: II is independent of I, V.1 is independent of I to IV.

6. We conclude with a further independence assertion: Axiom III.5 is
independent of Axioms I, II, III.1–III.4, IV, V.1.

The proof is obtained through a suitable model geometry over the real
numbers, in which points, lines, and planes are defined as usual but length
is defined artificially as follows.

length P1P2 =
∣∣∣√(x1 − x2 + y1 − y2)2 + (y1 − y2)2 + (z1 − z2)2

∣∣∣
First we prove the uniqueness of segment transport.

The parametric equation of a line is

x = x0 + at

y = y0 + bt

z = z0 + ct

so
(length P0P )2 = l2 = (at + bt)2 + b2t2 + c2t2

and therefore
t = ± l√

(a + b)2 + b2 + c2
.

That is, the position of a point P0 on a half line from P is uniquely
determined by its distance.

With III.2 there is nothing to prove, since equality of numbers is transitive.

Segment addition (Axiom III.3) is derived as follows. Suppose (P1P2P3)
is the order of three points on a line. Then their parameter values satisfy
t1 > t2 > t3 (or else t1 < t2 < t3). This is because

length P1P2 =
∣∣∣√(a + b)2 + b2 + c2

∣∣∣ (t1 − t2)

length P2P3 =
∣∣∣√(a + b)2 + b2 + c2

∣∣∣ (t2 − t3),

hence

length P1P2 + length P2P3 =
∣∣∣√(a + b)2 + b2 + c2

∣∣∣ (t1 − t3)

= length P1P3.

Hence III.3 holds.

The proof that III.5 does not hold is carried out by considering the triangle
ABC with A = (1, 0), B = (−1, 0), C = (0, 1√

2
).
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O
X

Y

B A

g′

C

g

h

h′′
h′

π/2

We have length OA = length OB = 1 and

length OC =

√(
0 − 0 + 0 − 1√

2

)2

+
(

0 − 1√
2

)2

+ (0 − 0)2 = 1

measure ∠AOC = measure ∠BOC =
π

2
.

Thus triangles OAC and OBC satisfy the hypotheses of III.5. Neverthe-
less ∠OAC 6∼= ∠OCB, because if one translates angle α = ∠CAO to the
apex C and rotates it about C to bring g to the position of h, then g′

does not go to h′ but to h′′.5 We mention that the pseudolength we have
introduced agrees with the ordinary length for all point pairs in which
y1 = y2.

2.5 Skew fields and Desarguesian geometry

1. A skew field is defined by the operations and computation rules for a field,
without the commutative law of multiplication. When AB 6= BA for at
least one pair of elements one speaks of a proper skew field. We first treat
Hamilton’s quaternions as an example of a proper skew field.

The ground field is the real numbers and the basis elements, or units, are
e0 = 1, e1 = i, e2 = j, e3 = k. The numbers of the system are

a = r0 + r1e1 + r2e2 + r3e3.

5Translator’s note. Essentially the same example occurs in Hilbert’s 1930 Grundlagen, but
without the transport and rotation of angle. Hilbert observes directly that ∠OAC 6∼= ∠OCB,
despite SAS being satisfied in triangles AOC and COB.

Hilbert also points out that

length AC =

√
2 − 2√

2
6=

√
2 +

2√
2

= length BC

and that the isosceles triangle theorem fails for ∆AOC and ∆COB.
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Addition is defined by

a + b = (r0 + ρ0) + (r1 + ρ1)e1 + (r2 + ρ2)e2 + (r3 + ρ3)e3,

and multiplication by

ab =
∑

rieiρkek =
∑

riρkeiek

and
eiek = αik0 + αik1e1 + αik2e2 + αik3e3,

where the αike are given constants of the ground field. In our case we have
in particular

e1e2 = e3 e2e3 = e1 e3e1 = e2

e2e1 = −e3 e3e2 = −e1 e1e3 = −e2

e1e1 = −1 e2e2 = −1 e3e3 = −1.

Quaternion multiplication is noncommutative; for example e1e2 = −e2e1.
The distributive law of multiplication holds by definition. And the asso-
ciative law holds because (eiej)ek = ei(ejek) for all choices of indices, as
one may verify by trying all combinations.

The neutral elements among the quaternions are:

“Zero”: r0 = r1 = r2 = r3 = 0

“One”, e0: r0 = 1, r1 = r2 = r3 = 0, because ae0 = e0a = a.

To determine the reciprocal of a quaternion, we must solve the equations

ax = e0, ya = e0.

To do this one introduces the conjugate of a,

a = r0 − r1e1 − r2e2 − r3e3,

for which

aa = r2
0 + r2

1 + r2
2 + r2

3 + (r1e1)(−r2e2) + (r2e2)(−r1e1) + · · ·
= r2

0 + r2
1 + r2

2 + r2
3 − r1r2(e1e2 + e2e1) + · · ·

= r2
0 + r2

1 + r2
2 + r2

3

= “norm” of a = N(a).

Then the reciprocal of a is

a−1 =
a

N(a)
because aa−1 = e0.

This establishes the validity of Axioms I′, II′.1–II′.5. II′.6 does not hold,
so we have a proper skew field. Since the complex numbers a = r0 + r1i
form a subsystem of the quaternions, the quaternions—like the complex
numbers—cannot be linearly ordered.
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The quaternions are an example of a so-called hypercomplex algebra. Such
a structure is defined in general by a ground field of the ri (for example, the
real or rational numbers) and basis elements e0, e1, . . . , en. The general
element of the algebra is

∑n
0 riei. Addition and multiplication of a =∑n

0 riei and b =
∑n

0 r′iei are defined by

a + b =
n∑
0

(ri + r′i)ei

ab =
n∑

i,k=0

rir
′
keiek, where eiek =

n∑
l=0

αiklel

for fixed αikl in the ground field. The αikl determine the so-called multi-
plication table of the algebra.

The condition for commutativity may be expressed by

αikl = αkil for each i, k, l.

For associativity it is necessary and sufficient that

(eiek)en = ei(eken) for each i, k, n.

Now

(eiek)em =

(∑
l

αiklel

)
em =

∑
s

(∑
l

αiklαlms

)
es

ei(ekem) =
∑

l

αkmleiel =
∑

s

(∑
l

αkmlαils

)
es.

Hence the condition for associativity is that∑
l

αiklαlms =
∑

l

αkmlαils.

The distributive law always holds. In fact if

a =
∑

r
(1)
i ei, b =

∑
r
(2)
i ei, c =

∑
ρiei,

then

(a + b)c =
∑

i

(r(1)
i + r

(2)
i )ei ·

∑
k

ρkek

=
∑

l


∑

i,k

(r(1)
i + r

(2)
i )ρk · αikl


 el

=
∑

l


∑

i,k

r
(1)
i ρkαikl +

∑
i,k

r
(2)
i ρkαikl


 el

= ac + bc.



38 2 Number systems

The proof of a(b + c) = ab + ac is analogous.

The zero element of the algebra is given by ri = 0 for all i.

The element e0 is the unit element when

α0kl =
{

0 for k 6= l
1 for k = l.

The algebra is a division algebra when, for each nonzero element

a =
∑

riei,

there is an element
a′ =

∑
ρlel

such that
aa′ = e0, the unit element.

This requires solvability of the equations

n∑
i,k=0

riρkαikl =
{

0 for l 6= 0
1 for l = 0

We content ourselves with these general remarks.

2. Ordered skew fields (Desarguesian number systems)

The skew fields considered thus far are not ordered.

The Hilbert number system we are about to describe is an example of a
skew field that can be linearly ordered. The general number of this system
is defined by

a =
∞∑

i=N

Pi(s)ti,

where N is an integer, Pi(s) =
∑∞

k=Ni
αkis

k, the Ni are integers, the αki

are real, and s and t are parameters.

Addition is defined by

a + b =
∞∑

i=N

(Pi(s) + Qi(s))ti,

where

Pi(s) + Qi(s) =
∞∑

k=Ni

(αki + βki)sk.

Because of this, addition is commutative and associative.

The zero element has

Pi(s) = 0, that is, αki = 0 for all i, k.

Multiplication is set up to be noncommutative.
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First of all we have

ab =
∞∑

i=N

Pit
i ·

∞∑
k=M

Qktk

= PN tN · QM tM + (PN tN · QM+1t
M+1 + · · · ) + · · ·

We force noncommutativity by setting

ts = 2st.

We also set tα = αt and sα = αs for each rational α, whence it follows by
complete induction that

tpsq = 2pqsqtp.

Then

tNPM (s) = tN
∞∑

l=NM

αlMsl =

(∑
l

αlM · 2Nlsl

)
tN ≡ P

(N)

M (s) · tN .

In this notation, we get

ab = PNQ
(N)

M tN+M +
(
PNQ

(N)

M+1 + PN+1Q
(M+1)

M

)
tN+M+1 + · · · ,

which again represents an element of the system.

The associative law of multiplication holds. In fact, the equation

(ab)c = a(bc)

is satisfied termwise:

(αkis
kti · βnmsntm)γpqs

ptq = (αkiβnm · 2insk+nti+m)γpqs
ptq

= αkiβnmγpq · 2in+(i+m)psk+n+pti+m+q,

and we get the same value for

αkis
kti(βnmsntm · γpqs

ptq).

The distributive laws also hold, for example, (a + b)c = ac + bd follows
thus:(∑

Pit
i +

∑
Qit

i
)
·
∑

Rktk =
∑
i+k

(Pi + Qi) R
(i)

k ti+k

=
∑ (

PiR
(i)

k + QiR
(i)

k

)
ti+k

=
∑
i+k

PiR
(i)

k ti+k +
∑
i+k

QiR
(i)

k ti+k.

The unit element e is defined by P0 = 1, with the other Pi = 0, where
P0(s) = 1 means α00 = 1 and the other αl0 = 0.

We obviously have
ae = ea = a.
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From now on we write 1 in place of e.

Determination of inverses.

We let
a−1 =

∑
Qktk, where Qk(s) =

∑
βlksl

and the βlk are to be determined.

We have

1 = aa−1 =
∞∑

i=N

Pit
i ·

∞∑
k=M

Qktk =
∑
i,k

PiQ
(i)

k ti+k.

First we must have N + M = 0, so M = −N .

Then we must have PN (s) · Q(N)

M (s) = 1, so

∞∑
l=L

αlNsl ·
∞∑

k=K

βk,−N · 2Nksk = 1.

Therefore K = −L and αLNβ−L,−N = 1, whence β−L,−N is determined.

It now follows in turn that

αL+1,Nβ−L,N2−NL + αL,Nβ−L+1,N2N(−L+1) = 0,

and so on, giving a recursive determination of the βk,−N .

The condition that the coefficient of t1 equals 0 gives

PNQ
(N)

−N+1 + PN+1Q
(N+1)

−N = 0

or∑
L

αlNsl ·
∑
K1

βk,−N+1 · 2Nksk +
∑
L1

αl,N+1s
l ·

∑
−L

βk,−N2−N+1sk = 0,

where the second term is the given power series, beginning with sL1−L.

Thus we must have

K1 + L = L1 − L, or K1 = L1 − 2L

and
αLNβk,−N+1 + αL1,N+1β−L,−N = 0.

From this we get βk,N+1 etc.

Since ts = 2st, this number system is a proper skew field. Its basis ele-
ments are the denumerably many symbols

skti.

Now we investigate the possibility of ordering. To this end we consider
the general element

a =
∞∑
i,k

αk,is
kti
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and the coefficient αMN of the smallest power of t and of s.

Then
a > 0 or a < 0

according as
αMN > 0 or α < 0.

We say a <,> b when a − b >,< 0.

The transitivity of the elements is inherited from the transitivity of the
numbers

αMNβMNγMN .

Monotonicity likewise follows from the monotonicity of the coefficients.
The validity of the first monotonicity law,

a > b −→ a + c > b + c

follows from the validity of

αMN > βMN −→ αMN + γMN > βMN + γMN .

The validity of the second monotonicity law (a > b, c > 0 → ac > bc)
follows because

αMN > βMN , γM1N1 > 0

implies
αMN · γM1N1 · 2NM1 > βMN · γM1N1 · 2NM1 ,

where the left side of the inequality represents the coefficient of

sM+M1tN+N1 in ac.

This establishes the linear ordering. The ordering is not Archimedean:

We have 1 À s À t, that is, 1 > ns and s > mt for arbitrary natural
numbers n and m.

In fact
a = 1 − ns > 0,

because, more precisely,

1 · s0 − n · s1 > 0.

Likewise
a = s − mt > 0

because a = st0 − mt1, where αMN = +1 in the notation above.

3. Application of Hilbert’s number system to geometry.

We construct a plane coordinate geometry over this skew field. A point is
a pair (x, y) of numbers; a line is represented by ax + by + c = 0.

Two points P1 and P2 are called equal when x1 = x2 and y1 = y2. Two
lines g1 and g2 are called equal when there is a λ such that

a1 = λa2, b1 = λb2, c1 = λc2.
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Then there is also a µ such that a2 = µa1, b2 = µb1, c2 = µc1. We call g1

and g2 parallel when a1 = λa2, b1 = λb2, and c1 6= λc2.

We now prove analytically the incidence theorems of this geometry. For
the sake of later investigations we introduce a case distinction whose pur-
pose will become apparent later.

Existence of an intersection g1 ∩ g2 of nonparallel lines g1 and g2.

1) a1, a2 6= 0.
Then

a1x + b1y + c1 = 0 × a−1
1 −→ x + a−1

1 b1y + a−1
1 c1 = 0 (1)

a2x + b2y + c2 = 0 × a−1
2 −→ x + a−1

2 b2y + a−1
2 c2 = 0 (2)

whence
(a−1

1 b1 − a−1
2 b2)y + (a−1

1 c1 − a−1
2 c2) = 0.

If a−1
1 b1 − a−1

2 b2 = 0, or a−1
1 b1 = a−1

2 b2, then

µa1 = a2 −→ µb1 = b2,

that is, g1 ‖ g2, which is not the case. Therefore

(a−1
1 b1 − a−1

2 b2) 6= 0

and the coordinates of the intersection point are determined from (1)
to be

y = (a−1
1 b1 − a−1

2 b2)−1 · (a−1
2 c2 − a−1

1 c1) (3)

x = −a−1
1 c1 − a−1

1 b1(a−1
1 b1 − a−1

2 b2)−1 · (a−1
2 c2 − a−1

1 c1) (4)

To show that x, y also satisfy equation (2) one sets

x = −a−1
2 c2 − a−1

2 b2(a−1
1 b1 − a−1

2 b2)−1 · (a−1
2 c2 − a−1

1 c1) (4′)

and then (4)−(4′) equals

−a−1
1 c1+a−1

2 c2+(−a−1
1 b1+a−1

2 b2)(a−1
1 b1−a−1

2 b2)−1·(a−1
2 c2−a−1

1 c1) = 0,

hence x = x. Q.E.D.
This shows that g1 and g2 have exactly one point of intersection.

2) a1 6= 0 but a2 = 0, b2 = 0.
Equation (2) then becomes

b2y + c2 = 0 or y = −b−1
2 c2.

Substituting this in (1) gives

a1x − b1b
−1
2 c2 + c1 = 0 or x = −a−1

1 c1 + a−1
1 b1b

−1
2 c2.

3) a1 = a2 = 0, b1 6= 0, b2 6= 0.
This implies a1 = λa2, b1 = λb2, contrary to hypothesis.
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Does the parallel axiom hold?

Given line g and point P1 not on g, we seek g1 parallel to g through P .

Let g1 have the equation

a1x + b1y + c1 = 0.

Then [since P1 = (x1, y1) is on g1]

a1x1 + b1y1 + c1 = 0,

and therefore
c1 = −a1x1 − b1y1.

Also [if g is a0x + b0y + c0 = 0] we must have

a1 = λa0, b1 = λb0.

Thus g1 has the equation

λa0x + λb0y − (λa0x1 + λb0y1) = 0,

which is unique up to the factor λ. Thus the parallel axiom holds.

As usual, one can associate an improper intersection point with two paral-
lel lines and obtain the projective incidence theorems by introducing ideal
elements. This can be done at once by means of homogeneous coordinates,
but we have intentionally avoided this path.6

Connecting two points.

For given (x1, y1), (x2, y2) we seek α, β, γ such that

αx1 + βy1 + γ = 0
αx2 + βy2 + γ = 0.

These equations determine α, β, γ up to a constant factor. The calculation
is similar to that for the intersection of two lines.

In space there are analogous definitions:

Point: P = (x, y, z).

Plane E: Ax + By + Cz + D = 0.

Planes E1, E2 are equal when A1 = λA2, . . . , D1 = λD2.

A line is defined to be the set of common points of two distinct nonparallel
planes.

We must now establish the order of points on a line and show that the
Axioms II hold.

6Translator’s note. Homogeneous coordinates are avoided, no doubt, because they do not
work for the nonassociative systems considered in Section 2.7.
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(a) Suppose that the line is parallel to an axis, say it is by + c = 0, so
y = −b−1c = constant.

X

Y

x1

P1

x2

P2

x3

P3

The xν are taken from a linearly ordered number system. Suppose
that xi 6= xj for i 6= j and that x1 < x2. Then the compatible
possibilities for ordering x1, x2, x3 give the following schema.

x1 < x2




x2 < x3 → x1 < x2 < x3

x2 > x3

{
x3 < x1 → x3 < x1 < x2

x3 > x1 → x1 < x3 < x2

If x1 > x2 we similarly get

x1 > x2 > x3

or x3 > x1 > x2

or x1 > x3 > x2.

Definition: P2 lies between P1 and P3, in other words (P1P2P3), if

x1 < x2 < x3 or x1 > x2 > x3.

This establishes the possibility of ordering, and one easily sees that
ordering is transitive.

(b) Suppose that the line is arbitrary: ax + by + c = 0 with a, b 6= 0.
Then for two different points we have xi 6= xj and yi 6= yj .
Definition: (P1P2P3) holds when x1 < x2 < x3 or x1 > x2 > x3.
We then have: xi < xk < xl or xi > xk > xl implies yi < yk < yl or
yi > yk > yl.
Proof. The equation axi + byi + c = 0 gives yi = −b−1(c+axi). Now
it follows from

xi < xk < xl,

by the monotonicity theorem for multiplication that

axi < axk < axl for a > 0
axi > axk > axl for a < 0,

hence by the monotonicity theorem for addition that

axi + c < axk + c < axl + c

or axi + c > axk + c > axl + c,
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and by the monotonicity theorem for multiplication again that

b−1(axi + c) < b−1(axk + c) < b−1(axl + c)

or b−1(axi + c) > b−1(axk + c) > b−1(axl + c).

That is, xi < xk < xl or xi > xk > xl implies yi < yk < yl or
yi > yk > yl. Q.E.D.

This shows that the linear order axioms hold. In order to investigate the
axiom of Pasch (II.4), we must investigate the possibility of dividing the
points of the plane into two classes by a line g. For precisely the points of
g we have ax + by + c = 0.

Definition:
Class 1 is defined by g(x, y) = ax + by + c > 0.
Class 2 is defined by g(x, y) = ax + by + c < 0.

Now we must prove:

1) When (P1P2P3) and g(P3) > 0, g(P1) > 0 then also g(P2).
Proof. Suppose the connecting line h of P1 and P2 is given by

αx + βy + γ = 0 with β 6= 0,

so that
αxi + βyi + γ = 0 for i = 1, 2, 3.

It follows that

α(x1 − x3) + β(y1 − y3) = 0
α(x2 − x1) + β(y2 − y1) = 0.

The first of these equations times (x1 − x3)−1 and the second times
(x2 − x1)−1 are

α + β(y1 − y3)(x1 − x3)−1 = 0

α + β(y2 − y1)(x2 − x1)−1 = 0.

By subtraction, the latter give

β(y1 − y3)(x1 − x3)−1 = β(y2 − y1)(x2 − x1)−1.

Since β 6= 0, it follows that

(x1 − x3)−1(x2 − x1) = (y1 − y3)−1(y2 − y1) = ρ.

Now if (P1P2P3) holds then

x1 < x2 < x3 or x1 > x2 > x3

and
y1 < y2 < y3 or y1 > y2 > y3.
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Hence in either case, ρ < 0. Also, |ρ| < 1 because

x1 < x2 < x3 or x1 > x2 > x3

implies

0 < x2 − x1 < x3 − x1 or 0 > x2 − x1 > x3 − x1,

hence
(x3 − x1)−1(x2 − x1) < 1.

Now

x2 = (x1 − x3)ρ + x1

y2 = (y1 − y3)ρ + y1

hence

g(P2) ≡ ax2 + by2 + c

= a[(x1 − x3)ρ + x1] + cρ + b[(y1 − y3)ρ + y1] − cρ + c

= (ax1 + by1 + c)ρ − (ax3 + by3 + c)ρ + ax1 + by1 + c

= g(P1)ρ − g(P3)ρ + g(P1)
= g(P1)(1 + ρ) − g(P3)ρ
> 0 since g(P1), g(P2), 1 + ρ > 0, ρ < 0.

as required. Q.E.D.

Thus when P1 and P2 lie on the same side of g, so do all points of
the segment P1P3.

2) When g(P3) < 0 and g(P1) > 0 there is a P2 on g with (P1P2P3).
Proof. Let

g ≡ ax + by + c = 0
h ≡ αx + βy + γ = 0 with αxi + βyi + γ = 0 for i = 1, 3.

In 1) it was proved that if (P1P2P3), where P3 is any point between
P1 and P3 on the line P1P3, then

(x1 − x3)−1(x2 − x1) = (y1 − y3)−1(y2 − y1) = ρ,

where ρ < 0 and |ρ| < 1, and also that

x2 = (x1 − x3)ρ + x1

y2 = (y1 − y3)ρ + y1.

One now seeks to determine ρ so that P2 at the same time lies on g,
that is, so that

ax2 + by2 + c = 0.

This gives the following condition for ρ:

a(x1 − x3)ρ + ax1 + b(y1 − y3)ρ + by1 + c = 0,
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or

g(P2) = g(P1)(1 + ρ) − g(P3)ρ = 0
[g(P1) − g(P3)]ρ = −g(P1)

ρ = −[g(P1) − g(P3)]−1 · g(P1).

Hence ρ < 0 and also |ρ| < 1 because 0 < g(P1) < g(P1) − g(P3).
Thus P2 lies on h and g. Q.E.D.

The results 1) and 2) show that a segment whose endpoints lie in the
same class contains only points of this class, and points of different classes
determine a segment containing a point of g. This enables us to prove the
theorem of Pasch.

Hypothesis: g meets AB at P with (APB) and CB at Q with (CQB).

Claim: Either g ‖ AC or g has an intersection point S with AC and
(ASC) is false.

Proof. When g is parallel to AC there is no intersection point, and hence
the side AC of the triangle certainly is not met by g at an interior point.

A
B

C

S

Q

P

g

If an intersection point S exists, then (ASC) is false, otherwise A and C
would lie on different sides of g, hence B and C would lie on the same side
of g (by the hypothesis that A and B lie on different sides), contrary to
the hypothesis that CB contains a point of g. Q.E.D.

Summary:

Over each ordered skew field it is possible to construct a coordinate geom-
etry in which the planar (and spatial) incidence and order axioms hold.
The theorem of Desargues also holds, as we shall show in 4 a).
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4. Two results about Desargues’ theorem in the plane.

a) The following is a preparatory remark about linear dependence.
Let

λ1g1 + λ2g2 ≡ (λ1a1 + λ2a2)x + · · · + (λ1c1 + λ2c2) = 0

be a line through P0, the intersection of g1 and g2. Given an arbitrary
λ1 = λ, λ2 = −λg1(P1) · g2(P2)−1 is determined by the requirement
that the line go through P1, if P1 does not lie on g2.
Each line through P0 can therefore be represented in the form

P0

g1

g

P1 g2

λ1g1 + λ2g2 = 0.

This includes the case where P0 is an improper point.

Analytic proof of Desargues’ theorem:

The theorem reads: If two triangles lie in the plane so that the lines
through corresponding vertices go through a point, then the intersections
of corresponding sides lie on a line, and conversely.

It suffices to prove the second part of the assertion.

The hypothesis is that

1
2

3

1′

2′

3′

s B

g2

g′2

A

g1

g′1

C

g3

g′3

S

h1

h2

h3

s ≡ µ3g3 + µ′
3g

′
3

≡ µ2g2 + µ′
2g

′
2

≡ µ1g1 + µ′
1g

′
1

h1 ≡ λ′
2g

′
2 + λ′

3g
′
3

≡ λ2g2 + λ3g3

h2 ≡ λ′
3g

′
3 + λ′

1g
′
1

≡ λ3g3 + λ1g1

h3 ≡ λ′
1g

′
1 + λ′

2g
′
2

≡ λ1g1 + λ2g2

And the conclusion is that h1, h2, h3 go through a point S, that is, there
are c1, c2, c3 such that

c1h1 + c2h2 + c3h3 = 0 with not all ci = 0.
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Proof.

By hypothesis,
µ′

1g
′
1 − µ′

2g
′
2 ≡ µ1g1 − µ2g2.

The line represented by the left hand side goes through the point 3′, and
the above identity says that it also goes through the point 3, so the line
is identical with h3. Consequently one has

µ′
2g

′
2 − µ′

3g
′
3 ≡ µ2g2 − µ3g3 ≡ h1

µ′
3g

′
3 − µ′

1g
′
1 ≡ µ3g3 − µ1g1 ≡ h2

µ′
1g

′
1 − µ′

2g
′
2 ≡ µ1g1 − µ2g2 ≡ h3

whence it follows by addition that

h1 + h2 + h3 = 0

and hence the ci = 1. Q.E.D.

This proof uses only the computation rules of a skew field. Thus the
commutative law of multiplication is unnecessary. The converse statement,
that perspective triangles also lie axially, now follows by applying the
assertion just proved to the triangles

∆C11′ and ∆B33′,

which are in perspective from B by hypothesis. Since h1 goes through S,
as was just proved, the two triangles lie axially.

b) The theorem of Desargues is not provable in a plane geometry satis-
fying the planar Hilbert axioms (I.1–3, II.1–4, III.1–4, IV, V) except
III.5.

The proof of this assertion was given by Moulton (Trans. Amer. Math.
Soc. 1902, vol. II, pp. 193–195), using a suitable model geometry.

Its points are defined as usual. Its lines (see the sketch) are defined as
follows.

s

g1

α < π/2

g1

α = π/2

g

h

α > π/2

g2
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A fixed line s is chosen, and an ordinary line g1 that meets s from below at
an angle ≤ π

2 is also a line of the artificial geometry. An ordinary line g2

that meets s from below at an angle α > π
2 is bent above s and continued

at half the slope. The corresponding artificial line is thus a broken path
consisting of two half lines g and h, a so-called “bent line”.

We must now establish the valid axioms.

The connection of two points P , Q is seen to be unique by sketching
the possible cases, of which only the last is nontrivial. One drops a per-
pendicular from P to s and makes BP = PC. Then if CQ meets s at H,
the desired path is the bent line PHQ.

s

Q

B

C

P

H

Intersection of two lines: Either g ‖ h or g 6‖ h.

α) g ‖ h. For α ≤ π
2 the parallel postulate holds in the usual form. It

also holds for α > π
2 , because when the lower half of a bent line g is

parallel to the lower half of h this is also true for the upper half.

β) g 6‖ h, that is, there is a point of intersection. The possible cases are
sketched below.

g h g h hg g h g h hg

Desargues’ theorem is false in this model geometry!
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One sees this from the figure, in which ∆123 lies axially with ∆1′2′3′.
(The axis of perspectivity is the line at infinity, since corresponding sides
are taken to be parallel.) The triangles are not in perspective, however,
since h1 does not go through S.

s

S

h2 h3h1

h1

1′ 3′
2′

1 3
2

Length measure is the same as usual for ordinary lines, and for bent
lines it is the sum of the ordinary lengths of the parts above and below
the bend.

Angle measurement occurs only in the upper half plane. In order to
determine the angle between g, g′, for example, we draw parallels h, h′ to
g, g′ through an arbitrary fixed point O in the upper half plane. Then let
∠(g, g′) ∼= ∠(h, h′).

g

g′
O

h

h′

Verification of the remaining axioms is then evident, and we do not go
further into them.

Axiom II.5 does not hold, as may be seen from the following figure, in
which

B

C

A

B′ A′

C ′

O

BA ∼= B′A′

CA ∼= C ′A′

∠CAB ∼= ∠C ′A′B′

but ∠BCA 6∼= ∠B′C ′A′.
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One sees in particular that Desargues cannot be proved from the planar ax-
ioms of incidence and order. Herein lies a fundamental difference between
planar and spatial geometry: it is well known that Desargues’ theorem in
space is an immediate consequence of the spatial incidence axioms.

2.6 The theorem of Pappus

1. The theorem of Pappus7 says:

If the vertices 1, 2, 3, 4, 5, 6 of a hexagon lie alternately on lines g and h,
then the intersections of opposite sides, namely the points P,Q,R, which
may be denoted

12 ∩ 45, 23 ∩ 56, 34 ∩ 61,

lie on a line.

1

2

3

4

5

6

Pappus line

[]8

The theorem is a special case of Pascal’s theorem for conic sections, in
which the conic degenerates to a pair of lines. In what follows we are
concerned only with this special case. When the Pappus line is the line at
infinity, one speaks of the affine Pappus theorem.

2. Pappus’ theorem does not follow from Desargues’ theorem.

The proof is by construction of a model geometry, in which the incidence
theorems, the parallel postulate, and Desargues’ theorem hold. The geom-
etry is the planar cartesian coordinate geometry over the Hilbert number
system with parameters s and t, described on p. 38. Thus

ts = 2st 6= st.

7Translator’s note. Like Hilbert, Moufang calls this the theorem of Pascal, but she points
out that the theorem is only a special case of the usual Pascal’s theorem. We revert to the
historically accurate name for the special case, the theorem of Pappus, and use the term
“Pascal’s theorem” only for the general theorem about a hexagon with vertices on a conic
section.

8Translator’s note. Here we omit Moufang’s sentence “This notation for the intersection of
two lines will often be convenient, and we shall also use it without the bar over the connected
points, since the distinction between segments and lines is no longer relevant.” since we have
already dispensed with the bar notation for lines. See page 8.



2.6 The theorem of Pappus 53

We make the following construction.

X

Y

1 1∗

gl

s

s 5∗

6∗

kl′
t

t 3∗

2∗

k′
ts
4∗

g′
st

On the two coordinate axes we consider the ordinates s and t, and on the
y-axis also the ordinate 1. We now draw the lines

g ≡ sy + x − s = 0
g′ ≡ sy + x − st = 0

which are parallel, with g′ meeting the x-axis at the point st;

k ≡ ty + x − t = 0
k′ ≡ ty + x − ts = 0

which are parallel, with k′ meeting the x-axis at the point ts;

l ≡ x + y − s = 0
l′ ≡ x + y − t = 0

which are parallel, with l′ meeting the x-axis at the point t.

According to Pappus’ theorem, the connection of points 3∗ and 4∗ must
be parallel to the connection of points 1∗ and 6∗, but this is false because
ts 6= st. Thus Pappus’ theorem is false in our geometry.

3. Desargues’ theorem follows from Pappus’ theorem.

This was shown by Hessenberg (Math. Ann., vol. 61) by means of the
incidence theorems and the parallel postulate. We make the following
construction.

Let triangles BCA and B′C ′A′ be in perspective with center O. []9

9Translator’s note. Here we omit Moufang’s sentence “From now on we write BCA persp.
B′C′A′” because in fact she never uses this notation.
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If BA ‖ B′A′ and AC ‖ A′C ′ then the theorem says that BC ‖ B′C ′.

We draw the construction line m through A parallel to OB′ and let

m ∩ A′C ′ = M.

Also let n = MB′, n ∩ BA = N , and L = m ∩ CC ′.

O

B

A

C

B′

A′

C ′m

L

n

M

N

We now consider the following hexagons in turn:

α) In hexagon10 NAMA′B′O, NA ‖ B′A′ and OB′ ‖ AM ,
hence also ON ‖ A′M = A′C ′ by Pappus’ theorem.

β) In hexagon NOBCAL, OB ‖ LA and ON ‖ A′C ′ ‖ AC,
hence also NL ‖ BC by Pappus’ theorem.

γ) In hexagon NOB′C ′ML, [OB′ ‖ LM and ON ‖ AC ‖ MC ′

hence also] NL ‖ B′C ′ [by Pappus’ theorem.]

It follows from β) and γ) that

BC ‖ B′C ′

and hence the theorem of Desargues is proved. Q.E.D.

4. Pappus’ theorem suffices as a basis for projective geometry.

Suppose we are given two lines g and g′ and a harmonic quadruple of
points on each. A projective correspondence between g and g′ is a one-
to-one correspondence between their points. The fundamental theorem of
projective geometry says that it is uniquely determined by three pairs of
corresponding points, AA′, BB′, CC ′, and that the correspondence may
be set up by the operations of connection and intersection alone.

gA B C D

g′
A′ B′ C ′ D′

10Translator’s note. Moufang writes the hexagons in α), β), γ) as NB′MOAA′, NBAOLC,
NB′MOLC′ respectively, for some reason preferring to list the vertices out of order. I have
rewritten their vertices in the correct cyclic order for the use of Pappus’ theorem.
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The provability of the fundamental theorem from Pappus’ theorem will be
shown in detail in Section 3.4.

Here we show the converse, namely, that Pappus’ theorem follows from
the fundamental theorem.

4 6

1 3

2

5

p q

B

B′

S
A

A′

One maps the line p by a perspectivity onto the pencil 1 and, likewise, q
onto the pencil 3. The product of two perspectivities is a projectivity. On
the other hand, the pencil 1 is perspectively related to the point series 4,
2, 6 and also to the pencil 3, hence the pencils 1 and 3 are projectively
related to each other and therefore p is projectively related to q. But the
latter projectivity is a perspectivity, since the intersection of p and q is
fixed by the map, so the connections of corresponding points, namely 4B′,
B6, AA′ go through a single point S.

This means that
S = 16 ∩ 34

lies on AA′. But this is the theorem of Pappus. Q.E.D.

2.7 Alternative fields

In contrast to ordinary fields, which are commutative and associative, and to
skew fields, which are associative and noncommutative, alternative fields are
noncommutative and nonassociative. That is, we have in general

a(bc) 6= (ab)c
ab 6= ba.

We require however the weak associative rules

a(ab) = (aa)b
(ba)a = b(aa)
a(ba) = (ab)a.
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1. Alternative fields are realized by the hypercomplex algebra of Cayley num-
bers,11 which today is the only known alternative field.12 An alternative
field satisfies the following axioms:

1) Addition:
a + b = c is always defined and unique.
Associative law: (a + b) + c = a + (b + c).
Commutative law: a + b = b + a.
There is a zero element 0 such that a + 0 = a = 0 + a.

2) Multiplication:
ab = c is always uniquely defined.

3) Distributive laws:

a(b + c) = ab + ac

(b + c)a = ba + bc.

4) Weak associative laws:

a(ab) = (aa)b
(ba)a = b(aa)
a(ba) = (ab)a

There is a unit element 1 such that a · 1 = 1 · a = a.

5) Each element a 6= 0 has a reciprocal a−1 such that

a · a−1 = 1 = a−1 · a.

4′) There is also the following special associative law, but it can be proved
from Axioms 1) to 4). (See R. Moufang: Alternativkörper und der
Satz vom vollständigen Vierseit, Hamburg Abh. 1933.)

a(a−1b) = (aa−1)b = b, (ba)a−1 = b(aa−1) = b.

Max Zorn (Hamburg Abh. vol. 8, 1931, p. 123 ff.) showed that
these relations follow from the remaining axioms.13

Cayley realized this alternative field as a hypercomplex algebra. The
Cayley numbers use eight units over the real numbers. Their multi-
plication is given by the following table.

11Translator’s note. I have retained the term Cayley numbers for what are now more often
called the octonions, since it should not lead to confusion. However, Cayley gets more than
his share of credit for the octonions, which were first discovered by John Graves in December
1843 and rediscovered by Cayley in 1845. Cayley was first to mention them in print, mainly
because Hamilton promised to communicate Graves’ discovery but didn’t get around to it.

12Translator’s note. More precisely, they are the only alternative field over the real numbers.
There are several theorems about the uniqueness of the Cayley numbers, for which a good
reference is Numbers by Ebbinghaus et al., Springer-Verlag 1991.

13Translator’s note. In fact 4′) is equivalent to 4) in the presence of the other axioms.
Moufang gives the converse of Zorn’s result in her paper cited above. She attributes the proof
of a(ba) = (ab)a to Reidemeister.
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e0 = 1 e1 e2 e3 e4 e5 e6 e7

e0 = 1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

2. There is a simpler presentation of this system due to Dickson,14which takes
the quaternions as ground field. The general number of the alternative
field is defined to be

a = q + Qe,

where q and Q are quaternions over the real numbers and e is an arbitrary
symbol. We now define:

Addition: a + b = (q + Qe) + (r + Re) = (q + r) + (Q + R)e.

Multiplication: a · b = (qr − RQ) + (Rq + Qr)e,

where q = α0e0 − α1e1 − α2e2 − α3e3

is the conjugate of q = α0e0 + α1e1 + α2e2 + α3e3.

When one sets a = α0e0 + α1e1 + α2e2 + · · · + α7e7,

then the eight units in this presentation are

e0 = 1, e1, e2, e3,

e0e = e4, e1e = e5, e2e = e6, e3e = e7.

3. The computation rules of the alternative field may now be derived from
the Dickson presentation.

Addition is commutative and associative, since this is true for the quater-
nions.

Zero element: a = 0 when q = Q = 0.

a + ã = 0 −→ a = −q − Qe, with ã = −a.

The distributive law

a(b1 + b2) = ab1 + ab2

will now be proved. If

b1 + b2 = b

= (r1 + R1e) + (r2 + R2e)
= (R1 + r2) + (R1 + R2)e

14Translator’s note. Linear Algebras, Cambridge University Press 1914, p. 15. It is worth
mentioning that Dickson’s construction also produces the complex numbers from the real
numbers, and the quaternions from the complex numbers.
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then

a(b1 + b2) = q(r1 + r2) − (R1 + R2)Q + {(R1 + R2)q + Q(r1 + r2)}e
= qr1 − R1Q + (R1q + Qr1)e + qr2 − R2Q + (R2q + Qr2)e
= ab1 + ab2 Q.E.D.

The other distributive law is proved similarly.

Multiplication.

First we exhibit the existence of inverses. The identity element is defined
by Q = 0, q = 1.

Here we need to insert a remark on the norm theorem. The norm of
a Cayley number, like that of a complex number or quaternion, is the
product of a Cayley number a = q + Qe by its conjugate a = q − Qe.

Thus it follows from the definition of multiplication that

aa = N(a) = qq + QQ.

The norm theorem says that the norm of a product equals the product of
the norms of the factors.

For complex numbers this is easily verified by computation:

a = α0 + α1e1 N(a) = α2
0 + α2

1

b = β0 + β1e1 N(b) = β2
0 + β2

1

ab = (α0 + α1e1)(β0 + β1e1)
= α0β0 − α1β1 + (α0β1 + α1β0)e1

N(a) · N(b) = (α2
0 + α2

1)(β
2
0 + β2

1)

= α2
0β

2
0 + α2

0β
2
1 + α2

1β
2
0 + α2

1β
2
1

N(ab) = (α0β0 − α1β1)2 + (α0β1 + α1β0)2

= α2
0β

2
0 + α2

0β
2
1 + α2

1β
2
0 + α2

1β
2
1 ,

hence N(ab) = N(a) · N(b). Q.E.D.

One also calls this the Euler-Lagrange identity.15

The norm theorem also holds for quaternions. In fact:

ab = (α0 + α1e1 + α2e2 + α3e3)(β0 + β1e1 + β2e2 + β3e3)
= (α0β0 − α1β1 − α2β2 − α3β3)

+ (α0β1 + α1β0 + α2β3 − α3β2)e1

+ (α0β2 + α2β0 + α3β1 − α1β3)e2

+ (α0β3 + α3β0 + α1β2 − α2β1)e3,

15Translator’s note. This term, if used at all today, is probably applied to the four square
identity that follows. The four square identity was discovered by Euler in 1748, and used by
Lagrange in 1770 to prove that every natural number is the sum of four squares.

The two square identity, corresponding to the norm theorem for complex numbers, appears
to have been known to Diophantus. He mentions a special case of it in Book III, Problem 19
of his Arithmetica.
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N(ab) = (α2
0 + α2

1 + α2
2 + α2

3)(β
2
0 + β2

1 + β2
2 + β2

3)

= (α0β0 − α1β1 − α2β2 − α3β3)2

+ (α0β1 + α1β0 + α2β3 − α3β2)2

+ (α0β2 + α2β0 + α3β1 − α1β3)2

+ (α0β3 + α3β0 + α1β2 − α2β1)2,

hence N(ab) = N(a) · N(b). Q.E.D.

The norm theorem also holds for the Cayley numbers. In order to show
this, we first prove the following:

Lemma: For any quaternions Q and R

Q · R = R · Q,

where the bar denotes the conjugate.

Proof. We have

N(Q) = Q · Q
N(R) = R · R

QR · QR = N(QR) = N(Q) · N(R) = QQ · RR.

Left multiplying this by Q−1 gives

R · QR = Q · RR

= RR · Q since RR is real.

Then left multiplication by R−1 gives

QR = R · Q Q.E.D.

Using the Dickson presentation, it may now be shown that each nonzero
Cayley number has an inverse.

a = q + Qe

a = q − Qe

aa = qq + QQ + (−Qq + Qq)e

=
7∑

i=0

α2
i = N(q) + N(Q) = N(a) = real,

and therefore
a

N(a)
=

q

N(a)
− Q

N(a)
= a−1.

Now we come to the proof of the norm theorem for Cayley numbers!

We have ab = (q + Qe)(r + Re) = qr − RQ + (Rq + Qr).
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Therefore, since N(a) =
∑7

i=0 α2
i = qq + QQ,

N(ab) = (qr − RQ)(qr − RQ) + (Rq + Qr)(Rq + Qr)

= (qr − RQ)(r q − QR) + (Rq + Qr)(q R + rQ)
by the lemma

= qrr q − qrQR − RQr q + RQQR + RqqR + RqrQ + Qr qR + QrrQ,

whereas

N(a)N(b) = (qq + QQ)(rr + RR)

= qqrr + qqRR + QQrr + QQRR.

When one observes that

qqr = rqq (because qq is real)

and
qq = qq,

then one sees that

N(ab) − N(a)N(b) = −qrQr − RQr q + RqrQ + Qr qR

= −(qrQr + RQr q) + (RqrQ + Qr qR)

Multiplying (RqrQ+Qr qR) on the left by R and on the right by R, then
dividing by RR, gives16

N(ab) − N(a)N(b) = −(qrQr + RQr q) + (qrQr + RQr q) = 0 Q.E.D.

The norm theorem for Cayley numbers implies the following algebraic
identity:17

7∑
0

α2
i ·

7∑
0

β2
i = (α0β0 −

7∑
1

αiβi)2

+ (α0β1 + α1β0 + α2β3 − α3β2 + α4β5 − α5β4 − α6β7 + α7β6)2

+ (α0β2 + α2β0 − α1β3 + α3β1 + α4β6 − α6β4 + α5β7 − α7β5)2

+ (α0β3 + α3β0 + α1β2 − α2β1 + α4β7 − α7β4 − α5β6 + α6β5)2

+ (α0β4 + α4β0 − α1β5 + α5β1 − α2β6 + α6β2 − α3β7 + α7β3)2

+ (α0β5 + α5β0 + α1β4 − α4β1 − α2β7 + α7β2 + α3β6 − α6β3)2

+ (α0β6 + α6β0 + α1β7 − α7β1 + α2β4 − α4β2 − α3β5 + α5β3)2

+ (α0β7 + α7β0 − α1β6 + α6β1 + α2β5 − α5β2 + α3β4 − α4β3)2.

16Translator’s note. These operations produce no change, because (RqrQ + Qr qR) is an
element plus its conjugate, hence real.

17Translator’s note. The eight square identity was discovered by Degen, Mém. l’Acad.
Imp. Sci. St. Petersbourg, VIII (1822), pp. 207–219, and rediscovered by Graves in 1843.
This led to Graves’ discovery of the octonions. Thus each hypercomplex number system—
complex numbers, quaternions, and octonions (or Cayley numbers)—was foreshadowed by the
corresponding norm theorem, in the form of an identity involving sums of squares.
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Thus the product of two sums of eight squares is again a sum of eight
squares, generalizing the Euler-Lagrange identity. Such identities for sums
of n squares exist only for n = 1, 2, 4, 8.18

4. Of the weak associativity laws for an alternative field we prove only two
here; the proof of the others is analogous.

1) Claim: a−1(ab) = (a−1a)b = b.

Proof. Given

a = q + Qe, b = r + Re,

we have

ab = qr − RQ + (Rq + Qr)e = r1 + R1e.

Hence

a−1(ab)

=
q

qq + QQ
r1 + R1

Q

qq + QQ
+

(
R1

q

qq + QQ
− Q

qq + QQ
r1

)
e

=
q

N(a)
(qr − rQ) + (Rq + Qr)

q

N(a)

+
{

(Rq + Qr)
q

N(a)
− Q

N(a)
(qr − RQ)

}
e

=
N(q)r
N(a)

− qRQ

N(a)
+

qRQ

N(a)
+

rQQ

N(a)

+
{

RN(q)
N(a)

+
Qr q

N(a)
− Q

N(a)
r q +

QQR

N(a)

}
e

=
N(q)r + rN(Q)
N(q) + N(Q)

+
{

RN(q) + N(Q)R
N(q) + N(Q)

}
e

= r + Re = b Q.E.D.

2) Claim: a(ab) = (aa)b

Proof. We have

a(ab)

= (q + Qe)(r1 + R1e) = qr1 − R1Q + (R1q + Qr1)e

= q(qr − RQ) − (qR + rQ)Q +
{
(Rq + Qr)q + Q(r q − QR)

}
e

= q(qr) − qRQ − qRQ − rN(Q) +
{

Rqq + Qrq + Qr q − N(Q)R
}

e,

Also, aa = (q + Qe)(q + Qe) = qq − QQ + (Qq + Qq)e = q1 + Q1e,

18Translator’ note. First proved by Hurwitz, Göttinger Nachrichten, 1898, pp. 309–316.
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hence

(aa)b

= (q1 + Q1e)(r + Re) = q1r − RQ1 + (Rq1 − Q1r)e

= (qq − N(Q))r − R(Qq + Qq) + {R(qq − N(Q)) + (Qq + Qq)r} e

= (qq)r − N(Q)r − RQq − RQq +
{

R(qq) − RN(Q) + Qqr + Qq r
}

e

When one recalls that quaternions are associative, and that they
commute with real numbers, the underlined terms in this expression
for (aa)b can be seen to equal the underlined terms in the expression
for a(ab). The doubly underlined terms are equal because they each
have a factor q + q which, being real, can also be commuted. Q.E.D.

To prove that the Cayley numbers are nonassociative in general, it suffices
to find a triple a, b, c for which (ab)c 6= a(bc).

Claim:

The triple Q, e, q satisfies Q(eq) 6= (QE)q.

Proof. We have

eq = (0 + 1 · e)(q + 0 · e) = 0 · q − 0 · 1 + (0 · 0 + 1 · q)e = qe

Q(eq) = Q(qe) = (Q + 0e)(0 + qe) = Q · 0 − q · 0 + (qQ + 0)e = qQe

(Qe)q = (0 + Qe)(q + 0e) = 0 · q − 0 · Q + (0 + Qq)e = Qqe.

Since qQ 6= Qq in general, for example, for Q = e1, q = e2, the claim is
proved. Thus alternative fields are nonassociative in general. Q.E.D.

5. General structural properties of alternative fields.

α) The associative laws may be written in the following form.
We denote (xy)z − x(yz) by [x, y, z], so [x, y, z] 6= 0 in general. How-
ever, we have the weak associative laws:

[x, x, y] = 0, [y, x, x] = 0, [x, y, x] = 0.

With this notation it is easy to prove:
Theorem:
The symbol [x, y, z] changes sign (“alternates”) with the exchange of
two elements.
Proof. We have
1) [a + b, a + b, c] = 0 = [a, a, c] + [b, a, c] + [b, b, c] + [a, b, c],

hence [b, a, c] = −[a, b, c].
2) [a, b + c, b + c] = 0 = [a, b, b] + [a, b, c] + [a, c, c] + [a, c, b]

hence [a, c, b] = −[a, b, c]. Q.E.D.
3) In particular, if we set c = b then we get [b, a, b] = −[a, b, b].

This proves the third weak associative rule,

a(ba) = (ab)a,

mentioned at the beginning of this section.
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From 1) and 2) one sees that, when [x, y, z] = 0, then the symbol is
in fact zero for all six permutations of x, y, z.

β) The rule (ab)−1 = b−1a−1 holds in an alternative field.
By applying the identities

(u−1u)v = v and (vu)u−1

we get
b−1 =

{
(ab)−1(ab)

}
b−1 = (ab)−1a,

hence
b−1a−1 = ((ab)−1a)a−1 = (ab)−1 Q.E.D.

γ) The four identity holds in any distributive ring:

[ab, c, d] − [a, bc, d] + [a, b, cd] = a[b, c, d] + [a, b, c]d.

This follows from the distributive laws, as one sees by expanding the
brackets.

δ) A commutative alternative field is an ordinary field, and hence
the general associative law holds. Namely

0 = (ab − ba)c − c(ab − ba)
+ (bc − cb)a − a(bc − cb)
+ (ca − ac)b − b(ca − ac)

= [a, b, c] + [b, c, a] + [c, a, b] − [b, a, c] − [c, b, a] − [a, c, b]
= 6[a, b, c]

Hence [a, b, c] = 0 if ab = ba, ca = ac, bc = cb. Q.E.D.

ε) Ordered alternative fields
The axioms of linear order are evidently not satisfied by the Cayley
numbers. Since the latter are the only known realization of an alter-
native field, it remains an open problem whether there is a linearly
ordered alternative field.19 However, we have the theorem:
An archimedean ordered alternative field is an ordinary field.
Proof. An alternative field contains an identity element. We define

2 = 1 + 1, . . . , (m + 1) = m + 1, . . .

−1 = 0 − 1, . . . , −(m + 1) = −m − 1, . . . ,

which are all different because the alternative field is linearly ordered.
From these “integers” we build the “rational numbers” of the alter-
native field:

α = mn−1.

Then if a is an arbitrary member of the alternative field we have
αa = aα.

19Translator’s note. This question was answered in the negative by the theorem of Bruck
and Kleinfeld, Proc. Amer. Math. Soc. 2, (1951), according to which every alternative field
is an octonion algebra.
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First we have ma = am because

ma = (1 + 1 + · · · + 1)a = a + a + · · · + a = a(1 + 1 + · · · + 1).

Likewise, (ma)b = m(ab) because

(a + a + · · ·+ a)b = ab + ab + · · ·+ ab = (1 + 1 + · · ·+ 1)ab = m(ab).

By α), [m,a, b] = 0 implies

[a,m, b] = 0 = [a, b,m].

Therefore

a(mn−1) = (am)n−1 = (ma)n−1 = m(an−1) =
(
(an−1)−1m−1

)−1

=
(
(na−1)m−1

)−1
=

(
(a−1n)m−1

)−1
=

(
a−1(nm−1)

)−1

= (nm−1)−1a = (mn−1)a.

When α is a “rational number” of the alternative field one also has

(αa)b = α(ab), that is, [α, a, b] = 0.

Indeed, it follows from

(ma)b = m(ab)

first of all that
{(ma)b}−1 = {m(ab)}−1

,

and this may be written

b−1(a−1b−1) = (b−1a−1)m−1.

Then if b−1 = v and a−1 = u we have

v(um−1) = (vu)m−1 that is, [v, u,m−1] = 0,

where u and v are arbitrary and m is an integer.
The four identity now gives

[mn−1, a, b]− [m,n−1a, b] + [m,n−1, ab] = m[n−1, a, b] + [m,n−1, a]b,

hence [mn−1, a, b] = [α, a, b] = 0. Q.E.D.

This shows that the subdomain of numbers α = mn−1 satisfies the
computation rules of the rational numbers, and hence is isomorphic
to them.
Now suppose that the alternative field is Archimedeanly ordered.
Let a and b be positive with a < b. Then there is a rational α
with a < α < b. It follows from this that the commutative law of
multiplication holds.
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If not, there would be at least one pair a, b with ab < α < ba.
Multiplying this inequality on the right by a gives

(ab)a < αa,

and multiplication on the left similarly gives

aα < a(ba).

Since aα = αa and a(ba) = a(ba), this is a contradiction.
From the commutative law, it follows by δ) that the associative law is
also valid. Thus it is proved that an Archimedeanly ordered alterna-
tive field is an ordinary field. The question of a geometric equivalent
to an alternative field is treated in Section 3.3.



Chapter 3

Foundations of projective
geometry in the plane

3.1 Special cases of Desargues’ theorem

1. In future we denote the general form of Desargues’ theorem on perspective
triangles in the plane by D0, and special cases of it by D1, D2, etc.1

Also, Desargues’ theorem will always be understood in its double form:
that perspective triangles lie axially, and conversely. “Perspective” means
the lines through corresponding vertices go through a point. “Axial”
means that the intersections of corresponding sides lie on a line.2

D1: A triangle ∆123 has one vertex (3) on a side of the other triangle
∆1′2′3′, or else an intersection (3) of corresponding sides lies on the
line through corresponding vertices (of triangles ∆11′B and ∆22′C).
We denote these two types of special Desargues’ theorem by D1.

O
3

2′

A

B

C

2

1

3′

1′

1Translator’s note. In her 1930s papers, Moufang denoted these theorems by D11, D10, D9,
etc. At that time, the subscript denoted the number of free parameters in the configuration;
here it evidently denotes the number of constraints.

2Translator’s note. More explicit terms are normally used in English: “in perspective from
a point” for “perspective”, and “in perspective from a line” for “axial”. However, Moufang’s
terminology seems clear enough, so I have not altered it.

66
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Our figure contains yet another special Desargues’ theorem, which
Hessenberg3 gave the name “little Desargues’ theorem”: it concerns
triangles ∆12O and ∆BC3′ whose center of perspective (3) lies on
the axis A2.
We call this the little Desargues’ theorem to distinguish it from the
other special cases D1.

D2: Each of the triangles ∆123 and ∆1′2′3′ has a vertex on a side of the
other, or two intersections of corresponding sides lie on two lines con-
necting corresponding vertices. (∆11′B and ∆22′C), or one triangle
has two vertices on sides of the other (∆11′A and ∆33′C).

O
3

2′

A

B

C

2

1

3′

1′

We denote these three special cases of Desargues’ theorem by D2.
It is worth mentioning here that D2 (that is, any of its three cases)
represents the geometric equivalent of an alternative field, as we shall
show in the next section.

D3: All three vertices 1, 2, 3 lie on sides of the triangle ∆1′2′3′.

1′ 2′

3′

2 1

3

We content ourselves here with this rather unsystematic account of special
Desargues’ theorems. We shall not be concerned with theorem D3, but
D1 and D2 are fundamental for the investigations below.

3Translator’s note. Hessenberg introduced this term in his paper Begründung der elliptis-
chen Geometrie in Math. Annalen 61 (1906), p. 178.
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2α) Theorem D2 is equivalent to the assertion that the position of the fourth
harmonic point D for three given points A,B,C is independent of the
quadrilateral used to construct it.

First, s1 through C is arbitrary, because if s2 6= s1 goes though C then
the quadrilateral ABQQ′ always leads to the point D, since D2 in ∆PQB
and ∆P ′Q′A implies that the points O, M , N are collinear. Conversely,4

if the position of D is independent of the construction elements A,B,O
then O,M,N are collinear, that is, theorem D2 holds.

C
B

P ′ s1

s2

O

M

N

P

Q

A

Q′

D

It remains to show, with the help of theorem D2, that moving O to O1

results in the same point D. Here s remains fixed.

We repeat the construction with the quadrilateral ABP1Q1 and claim that
O1,M1, D are collinear.

4Translator’s note. This “converse” is in fact incorrect. It repeats a mistake made on
p. 762 of Moufang’s paper in Math. Annalen 106, (1932)—assuming that the diagonal
points of a complete quadrilateral cannot lie in a line. They can (e.g. in the 7-point plane),
and only a partial converse holds: if no complete quadrilateral in the projective plane has
collinear diagonal points, then the theorem of the complete quadrialateral (CQ) inplies the
little Desargues theorem (see Pickert Projective Ebenen, Springer-Verlag, 1955). The mistake
was apparently first pointed out by Marshall Hall, on p. 269 of his paper on projective planes
in Trans. Amer. Math. Soc. 54 (1943).

Because of the mistake, Moufang’s research took a wrong turn in 1932–3. Believing CQ
to be equivalent to D2, she rewrote the main result of her 1930 dissertation—that D2 is
equivalent to coordinatization by an alternative field—as a “proof” that CQ is equivalent to
coordinatization by an alternative field. However, in her “proof” that CQ ⇒ alternative field
(p. 766 in Math. Annalen 106) she actually invokes little Desargues at each point, thinking it
is a consequence of CQ. Thus in fact she has proved that little Desargues ⇒ alternative field.

In her followup paper, Abh. Math. Sem. Hamburg 9 (1933), Moufang continues to assume
that CQ ⇔ D2, but in fact she really proves that alternative field ⇒ D2. This proof is easily
modified to show that alternative field ⇒ little Desargues, and no doubt Moufang would have
done so had she noticed her mistake about CQ. This is why Moufang gets credit for the
theorem: little Desargues ⇔ alternative field.

In the present manuscript, Moufang returns to stating the theorem in its original form,
D2 ⇔ alternative field, but it is still not known whether this theorem is correct. The first
to find a valid replacement for D2—namely little Desargues—seems to have been Hall in the
1943 paper cited above. Moufang gives no sign of having seen Hall’s paper.
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C A D B

O O1

O2

Q1

P

Q

P1
M2

M1

M

Proof. Consider O2 on OB and the [shaded] triangles ∆BMM2 and
∆AOO2. They are axial, since

BM ∩ AO = P, BM2 ∩ AO2 = P1, MM2 ∩ OO2 = Q

are collinear.

This is a D2 configuration. Consequently, the triangles in question are
in perspective [from D] and O2, M2, D are collinear. Now we formally
replace O by O2 and O2 by O1.

It follows by the same argument that O1, M1, D are collinear. Q.E.D.

Assuming theorem D2, this proves that the position of the fourth harmonic
point is independent of the choice of O and also of the choice of line s
through C. The independence of the fourth harmonic point is called the
theorem of the complete quadrilateral, and this shows that it is equivalent
to D2.

2β) Now we prove that D2 implies all properties of harmonic quadrilaterals,
namely exchangeability of pairs and invariance under projection.

For the sake of brevity we write {ABCD} to denote that D is the fourth
harmonic point of A,B,C.
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(a) To begin with, {ABCD} implies {BACD} and {ABDC}.
The first is trivial because of the symmetric roles of A and B in the
quadrilateral construction. The second is proved as follows.

C A D B

S

P
Q

M

C A D B

P

S
M

Q

[By relabelling the first figure] there is a generating quadrilateral
over AB with adjacent vertex D and adjacent side going through C,
namely the quadrilateral ABPQ in the second figure, with adjacent
vertices S,M,D.

(b) Exchangeability of pairs. {ABCD} implies {CDAB}.
I have to show that there is a generating quadrilateral over CD with
adjacent vertex B and adjacent side through A. To do this I must
prove, for example, that CRMD is such a quadrilateral, where R =
CO ∩ PB.
The points A,B,C,D and P,Q, S,M correspond to those in the first
figure above [but with S now replaced by O]. Let CM ∩ AO = F .
Then {APOF}, because the quadrilateral APBQ stands over F .

C A D B

O

Q

P

MH

R

F

In quadrilateral APRC, let H = RA ∩ CP . Then H,F,B are
collinear, since one can also generate {APOF} with the quadrilateral
APCR.
The relation {ABCD}, generated by the quadrilateral ABHP in-
stead of ABPQ, shows that R,F,D are collinear. The quadrilat-
eral CDRM therefore has adjacent vertices B,O, F ; and O,F,A are
collinear. That is, we also have {CDBA}. [Hence {CDAB} by part
(a).] Q.E.D.
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We therefore have

{ABCD} −→ {CDAB}, {DCAB}, {BACD}, {BADC},
{ABDC}, {CDBA}, {DCBA}.

(c) Invariance of the harmonic quadruple under projection.
Suppose that {ABCD} is projected from O onto g′.
Claim: The relation {A′B′C ′D′} holds.

g

O

C

C ′

B′ g′

A′

A

A′′

B

M ′

D′

D′′

M ′′

P

Q

M

D

Proof. First of all, O and M are collinear with M ′ = A′′B ∩ AB′,
since {ABCD} may be generated by the quadrilateral ABPQ as
well as by the quadrilateral ABA′′B′. Thus {A′′B′CD′′}, since it is
generated by the quadrilateral A′′B′BA.
It follows that {CD′′A′′B′} by (b). This quadruple is generated
by the quadrilateral C ′D′CD′′, and hence O and A are collinear
with M ′′ = C ′D′′ ∩ CD′. But then {C ′D′B′A′} is also a harmonic
quadruple, hence so too is {A′B′C ′D′}. Q.E.D.
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3. Theorem D2 implies theorem D1.5

One has to prove that the perspective triangles ∆123 and ∆1′2′3′ in the
accompanying figure lie axially, that is, that A,B,C are collinear.

To prove this one introduces the points

O K 3 3′

C

1

2
1′

2′

4

4′
5

5′
A

B

11′ ∩ 3C = 4
22′ ∩ 3C = 4′

43′ ∩ 13 = 6
4′3′ ∩ 23 = 6.

O K 3 3′

C

1

2
1′

2′

4

4′
5

A

B

5′

6

6′

7

7′

8
8′

9

9′

Theorem D2 for triangles ∆123 and ∆44′3′ says that C, 6, 6′ are collinear.

5Translator’s note. Moufang’s proof of this theorem also makes the implicit assumption
that the diagonal points of a complete quadrilateral are collinear, and I believe it is still
open whether D2 implies D1 in an arbitrary projective plane. For a proof under the explicit
assumption that the diagonal points are not collinear, see Pickert Projective Ebenen (Springer-
Verlag 1955) p. 193 or Heyting Axiomatic Projective Geometry (North-Holland 1963) p. 55.
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We now construct the points

7 ≡ 11′ ∩ 66′

7′ ≡ 22′ ∩ 66′

8 ≡ 1′3′ ∩ 66′

8′ ≡ 2′3′ ∩ 66′

9 ≡ K1 ∩ 1′3′

9′ ≡ K2 ∩ 2′3′.

The points C, 8, 8′ are collinear, since C, 6, 6′ are collinear and by con-
struction 8 is collinear with 6 and 6′, and 8′ likewise.

Then it follows by Theorem D2 in ∆1′3′4 and ∆K13 that O, 9, 6 are also
collinear.

By Theorem D2 in ∆2′4′3′ and ∆K32 we have O, 9′, 6′ collinear. And
Theorem D2 in ∆12K and ∆1′2′3′ shows that C, 9, 9′ are collinear.

The generating quadrilateral 4133′ gives {41O7}, and the quadrilateral
4′233′ likewise gives {4′2O7′}.
One now projects {41O7} from 6 onto 1′3′, obtaining the harmonic quadru-
ple {3′B98}; and {4′2O7} from 6′ onto 2′3′, obtaining the harmonic
quadruple {3′A9′8′}.
The harmonic quadruples {3′B98} and {3′A9′8′} with the common point
3′ are therefore in perspective. That is, since C, 9, 9′ are collinear, and
also C, 8, 8′, so too are C,B,A. Q.E.D.

4. The converse of the theorem just proved from D2, namely that axially
lying triangles ∆123 and ∆1′2′3′, with 3′ on 12, are also in perspective,
follows in a similar way by reversing the argument.

One can also reach the conclusion by an indirect argument. Suppose that
the three lines 11′, 22′, 33′ have intersections

O3 = 11′ ∩ 22′, O1 = 22′ ∩ 33′, O2 = 33′ ∩ 11′ with O3 6= O2.

Connecting O2 with 2′ then determines a unique point 2 6= 2 on 13′,
and connecting 2 with 3 determines a unique point A 6= A on 2′3′. The
triangles ∆1′2′3′ and ∆123 then satisfy the hypotheses of the previous
section and hence are axial, that is, C,B,A are collinear. But C,B,A are
also collinear by hypothesis, hence A = 2′3′ ∩ BC and A = 2′3′ ∩ BC,
so A = A. Retracing our steps, we then find 2 = 2 and hence O3 = O.
Q.E.D.

3.2 The Hilbert segment calculus

To understand the meaning of D2, we construct a plane geometry in which the
plane axioms of incidence and order, the parallel postulate, and D2 hold. In this
geometry we use D2 to introduce a segment calculus independent of congruence
axioms and continuity, that is, we construct a “number system” geometrically.
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Sum and product are defined as geometric operations.6 It is shown that each
computation rule is equivalent to an incidence theorem, and the rules provable
in our geometric system turn out to be the axioms of an alternative field.

We remark that the parallel postulate is used only to introduce ideal points
in the plane as simply as possible. Actually, the incidence axioms are needed
only in their projective form (that is, two distinct points determine a unique
line, and two distinct lines determine a unique point).

1. “Addition”

1) In what follows we distinguish two lines, intersecting at O, as the x-
and y-axes, and a unit point on each.

O
x

y

gP

a b

Q

c = a + b

The “sum” a + b of segments [ending at] a and b is defined as the
segment with endpoint c determined as follows. Let g be any parallel
to the x-axis. Through b draw a parallel to the y-axis, meeting g at
Q. Then through Q draw a parallel to Pa, meeting the x-axis at c.
Thus c at first seems to depend on the special choice of g. However,
this is not the case, because if g′ is another parallel to the x-axis we
have the following picture.

O
x

y

gP

a c

g′P ′

Q

Q′

b

The triangles ∆P ′Pa and ∆Q′Qc are in perspective by construction,
hence by the little Desargues theorem they are also axial, so the sum
c is uniquely determined.

2) a + b = b + a

To prove this we consider the following sketch.

O
x

y

gP

a b

Q

a + b = c = b + a

R

6Translator’s note. Moufang uses the symbols +̂ and ◦ for these operations, but I have
opted for the usual symbols, since there seems to be no danger of confusion.
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Hypothesis: Pa ‖ Qc, aR ‖ bQ.
Claim: Pb ‖ Rc.
Proof. ∆PRa is axial with ∆cbQ, hence by D2 they are in perspec-
tive. Hence ∆PbQ is in perspective with ∆cRa, so by D2 they are
axial. That is, PB ‖ Rc. Q.E.D.

3) (a + b) + c = a + (b + c)

O
x

y

g

a

P

b

Q

a + b = d

M

c

R

e = b + c

S

(a + b) + c

f

M ′

Hypothesis: Pb ‖ Re, Pd ‖ Rf , Qb ‖ Rc ‖ Se ‖ y-axis.
Claim: Pa ‖ Sf , or Qd ‖ Sf .
Proof. ∆PMb is axial with ∆RM ′e, since all corresponding sides are
parallel. The little Desargues theorem implies that MM ′ ‖ x-axis,
and hence ∆QMd is in perspective with ∆SM ′f [where f equals
(a+ b)+ c]. Then it follows from little Desargues again that Qd ‖ Sf
[and hence f also equals a + (b + c)]. Q.E.D.
Thus the associative law holds for segment addition.

4) The zero element is the segment a = 0 whose endpoints are both
at the origin.

O
x

y

gP ≡ Q

a = a + 0

We have a + 0 = a = 0 + a.

The additive inverse7 −a of a satisfies (−a) + a = 0 = a + (−a).
For its construction see the sketch!

y

O

P

a−a

Q

Thus all the computation rules for addition are valid.

7Translator’s note. Moufang uses the symbol ã for the additive inverse of a, but again I
have opted for the usual notation.
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The roles of the two axes are interchangeable. To switch from the
x-axis to the y-axis we must change our previous notation, writing
xa for a and xe for the unit point e on the x-axis, etc. For each a,
ya is defined by yexe ‖ yaxa.

xO

y

xe

ye

e

e

xa

ya

a

a

Interchangeability of the axes with respect to sum results as
follows. Construct xc by means of the auxiliary line g, and yc by
means of the auxiliary line h. Then

x

y

O

gya

xa

h

ye

xe

yb

xb

B

P

xc

Q

yc

A

Oya ‖ xaA ‖ xbP

xeye ‖ xaya ‖ Pxc ‖ xbyb

Oya ‖ xaQ ‖ xbP

xaya ‖ Qyc.

Let B = Qyb ∩ Pxb. Then the triangles ∆xayaA, ∆xbybB, which lie
axially by construction, are in perspective by D2. That is, O,A,B are
collinear. Applying D2 to the perspective triangles ∆xaOya, ∆QBP
gives xaya ‖ PQ, hence xc, P,Q, yc lie on a parallel to xeye. Q.E.D.

2. “Multiplication”

1) Definition of xaxb = xc.
We are given xeye ‖ xaya. Through yb one draws the parallel to yexa;
it cuts the x-axis at xc = xaxb. We abbreviate this by ab = c.

x
O

y

xe

ye

xa

ya

xb

yb

xc

The sketch shows the construction, with yexa ‖ ybxc.
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2) Interchangeability of the axes with respect to product.
By construction we have

xeye ‖ xaya ‖ xbyb ‖ xcyc

xaye ‖ xcyb.

We have to prove that xeya ‖ xbyc.

x
O

y

ye

xe

ya

xa

∞
W

yb

xb

yc

xc

∞
W

P1

M1

P2

M2

∞
V

∞
R

∞
U

∞
U

∞
R ′ ∞

U
∞
U

Proof. We have two quadrilaterals with O as common adjacent ver-
tex, namely yexeyaxa and ybxbycxc. The point at infinity

∞
U of xeye

is also a common adjacent vertex.
Let M1 = yexa ∩ yaxe, M2 = ycxb ∩ ybxc.
Then O,M1,M2 are collinear by the quadrilateral theorem.

{yexeP1

∞
U} and {ybxbP2

∞
U} are harmonic quadruples. I project them

from M1 and M2 respectively onto the line at infinity and obtain—
when

∞
W denotes the point at infinity on xaye,

∞
R the point at infinity

on xeya, and
∞
R ′ the point at infinity on xbyc—the harmonic quadru-

ples { ∞
W

∞
R

∞
V

∞
U} and { ∞

W
∞
R ′ ∞

V
∞
U}.

It follows that
∞
R=

∞
R ′, that is, xeya ‖ xbyc.

Thus the axes are interchangeable. Q.E.D.

3) Existence of identity and inverse elements.
The identity element is xe. The proof that

xaxe = xa = xexa

is clear from the pictures.

xe

ye

xa

xaxe

xe

ye

xa

xexa

ya
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The inverse8 xa−1 of xa must satisfy

xaxa−1 = xe = xa−1xa.

We determine xa−1 and ya−1 by the following construction. Through
xe draw the parallel to xaye. It cuts the y-axis at ya−1 , whence xa−1

is determined by ya−1xa−1 ‖ yexe.

xb = xa−1

yb = ya−1

xe

ye

xa

Then indeed xaxa−1 = xe.
Also ya−1ya = ye, hence also xa−1xa = xe.

3. Computation rules for multiplication.

1) a(ab) = (aa)b

x
O

y

ye

xa

ya

xaa

yb

xab

yab

xa(ab)

x(aa)b

The figure is identical—apart from notation—with the figure for 2),
so the proof is analogous to the one there.

8Translator’s note. Moufang denotes the multiplicative inverse of xa by xã. Since xa

replaces the previous notation a, it seems to me more logical to denote the multiplicative
inverse by xa−1 . Indeed, Moufang herself switches to the latter notation before long.
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2) b(aa) = (ba)a
By construction we have (see sketch)

xeye ‖ xaya,

yexb ‖ yaxc, xeya ‖ xayf , yexb ‖ yaxc ‖ yfxd,

[where c = ba, d = b(aa), f = aa] and we have to show yexc ‖ yaxd.

O

ye

xe

ya

xaxb xc = xba

M1

yf = yaa

xd = xb(aa)

M2

Proof. Let M1 = xeya ∩ xcye, M2 = xayf ∩ xdya.
∆yexeM1 and ∆yaxaM2 lie axially, because all corresponding sides
are parallel. Since ya lies on xaM1, it follows by D1 that the triangles
are in perspective, and hence O,M1,M2 are collinear.
Thus ∆yaM1xc is in perspective with ∆yfM2xd by the above. Since
ya lies on M2xd, D1 applies again, and it shows that the triangles
are axial. That is, yaxc ‖ yfxd. Q.E.D.

3) a−1(ab) = (a−1a)b = b

(ba)a−1 = b(aa−1) = b

The first of these is trivial by the interchangeability of the axes.

xe

ya−1

xa

ye

xab

yb
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To prove the second equation one has to show that the figure in which

ya−1

xe

M1

ye

xb xa

ya

xc = xab

M2

xeye ‖ xaya,

ya−1xe ‖ yexa,

yexb ‖ yaxc,

where c = ab, also has
ya−1xb ‖ yexc.

Proof. Let m1 = ya−1xe ∩ yexb, M2 = yexa ∩ yaxc.
Then D1, applied to the the axial triangles ∆yexeM1 and ∆yaxaM2,
shows that O,M1,M2 are collinear. The assertion then follows by
applying D1 to the perspective triangles ∆ya−1xbM1 and ∆yexcM2.
Q.E.D.

4) Does (ab)c = a(bc) hold?
One cannot prove this from D2, but it does follow from two applica-
tions of the general Desargues theorem (D0).

O xb

ye

xab

yb

M1

xbc

yc

x(ab)c

ybc

M2

Since O,M1,M2 are collinear by D0, it follows that

ybxab ‖ ybcx(ab)c.

The attempt to prove the general associative law from D2 fails, as it
must, for reasons we explain later.
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5) Does ab = ba hold?
This law immediately follows from the theorem of Pappus, as one
sees from the figure.

O xb

ye

xa

yb

xab

xba

ya

We proved earlier that Desargues’ theorem follows from Pappus’ the-
orem (Hessenberg), but not conversely (using Hilbert’s number sys-
tem). Since D2 is a special case of Desargues’ theorem, it also cannot
follow from Pappus’ theorem. Later we shall even prove, as already
mentioned, that D2 does not imply D0.

6) The distributive laws.

α) a(b + c) = ab + ac
By hypothesis:9 xeya ‖ xbyab ‖ xcyac ‖ Qyd ‖ Pxf .

x

y

O

gyab

xb

h

ya

xe

yac

xc

B

P

xf = xb+c

Q

yab+ac = yd

A

It is to be proved that xf , P,Q, yd are collinear. The figure is the
same as the figure used earlier to prove interchangeability of the
axes with respect to addition, and the proof is word for word the
same as before.

9Translator’s note: Moufang’s figure for this proof is somewhat confusing, since she wants
to compare it with a geometrically identical figure used earlier. She does so by putting the
old labels (in brackets) next to the new ones. To my mind this is a distraction, so I have
taken the liberty of omitting the old labels from the figure, and have also omitted a couple of
Moufang’s sentences that refer to it.
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β) (b + c)a = ba + bc.
I construct the segments on the y-axis, where, for the sake of
brevity, only the subscripts are written. We have

x
O

y

xe

b

y2 = b + c

c

xa

y1 = ba

M2

y4 = ba + ca (b + c)a

y3 = ca

M1

xeyb ‖ xay1 ‖ M1y2 ‖ M2y4

xeM1 ‖ xaM2 ‖ Oy1

ycM1 ‖ y3M2 ‖ Oxa

and we have to prove that xey2 ‖ xay4.

Proof. By construction, ∆xeycM1 and ∆xay3M2 are axial, so by
theorem D1 they are also in perspective, that is, O,M1,M2 are
collinear. Then the assertion follows from the same theorem in
the triangles ∆xey2M1 and ∆xay4M2. Q.E.D.

All the computation rules for the sum and product operations of an
alternative field are thereby proved, using only D2 and its conse-
quences.

Overview and classification
Suppose we assume projective incidence properties, that is, the ordi-
nary incidence axioms plus the parallel postulate.
Then the additional assumptions

D2 −→ all computation rules of an alternative field
D0 −→ all computation rules of a skew field

Pappus −→ all computation rules of a field.

Hilbert based the segment calculus on the general Desargues’ theo-
rem. The result that the weaker Desargues’ theorem D2 yields the
computation rules of an alternative field is due to R. Moufang. Math.
Ann. 106 (1932). p. 755ff.
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4. Introducing plane coordinates and coordinate geometry.

A point P is represented by a number pair (x, y).

x

Py

In order to present the equation of a line, we investigate several cases.

1) A line g through O.

O

g

xa

ye

x2

P2
y2

x1

y1
P1

ξ

Q
η

P

Let P1 and P2 be arbitrary points on g. Then, in triangles ∆y1x1P1

and ∆y2x2P2, D2 obviously gives x1y1 ‖ x2y2.
Suppose that the parallel to x1y1 through ye cuts the x-axis at xa.
Then x1 = ay1 and x2 = ay2, and hence for all points on g we have
x = ay or y = bx.
For a = 0 one obtains all the points of the y-axis; for b = 0 the points
of the x-axis.
Conversely, the coordinates (ξ, η) of a point Q not on g do not satisfy
the equation x = ay, since ξ 6= aη by the uniqueness of the product
operation.

2) A line g not through O.
Let P be an arbitrary point on g with coordinates (x, y). One draws
parallels to g through the unit point and the point x on the x-axis.
They cut the y-axis in the points a and ax respectively. Then it
follows from the definition of addition that

y0 = y + ax

for all points on g. Here a and y0 = c are fixed.
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g
x0

y0

y = η
P

x

Q

ξ

ax

1

a

Conversely, the coordinates (ξ, η) of a point Q not on g do not satisfy
this equation, otherwise for η = y, ξ 6= x we should have

y0 = ax + y = aξ + η, hence a(x − ξ) = 0,

which is false because a 6= 0 and x 6= ξ.
Similarly, one can obtain the equation of g in the form

x + by = const.

Thus we have two types of lines:

x = c and y + ax = c with a 6= 0,

or
y = c and x + by = c.

The lines x = c are not included in the form y + ax = c.

3.3 Coordinate geometry over an alternative field
(“harmonic geometry”)

In Section 2.5 it was proved that the incidence theorems and Desargues’ theorem
hold in any coordinate geometry over a skew field. In this section it will be
shown that the incidence theorems and the special Desargues theorem D2 hold
in any coordinate geometry over an alternative field. (Such a geometry is called
harmonic because D2 allows harmonic quadruples to be defined and their main
properties proved.) Thus we are about to follow the path opposite to that in
the previous section, by starting with the analytic definition of points and lines.
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1. Definition of points and lines

P = (x, y); P1 = P2 means that x1 = x2 and y1 = y2.

A line is represented by either one of two essentially different equations:

x − b = 0 or y + ax − b = 0.

Two lines are called equal when all their coefficients coincide.

It will be shown below that the computation rules of an alternative field
suffice to prove the projective incidence theorems for our geometry (in the
affine form), and to prove the special Desargues theorem D2.

2. Incidence theorems

1) Intersection of two lines
Two distinct lines either have exactly one point of intersection or else
are parallel. Lines g1 and g2 are called parallel when both have the
form x − b = 0 or both have the form y + ax − b = 0 with same a.
Thus two lines of different types are never parallel.

g1 : x − b1 = 0
g2 : x − b2 = 0 [with b1 6= b2]

have no point of intersection, that is, they are always parallel.

g1 : x − b1 = 0
g2 : y + a2x − b2 = 0

have exactly one intersection: x = b1, y = b2 − a2x = b2 − a2b1.

g1 : y + a1x − b1 = 0
g2 : y + a2x − b2 = 0

For a1 = a2 we have g1 ‖ g2. For a1 6= a2, subtraction gives

(a1 − a2)x − b1 + b2 = 0.

And a1 − a2 6= 0, so (a1 − a2)−1 exists. Multiplying on the left by it
[and using a−1(ab) = b with a = a1 − a2 and b = x] gives

x − (a1 − a2)−1(b1 − b2) = 0,

hence x = (a1 − a2)−1(b1 − b2), y = b1 − a1

{
(a1 − a2)−1(b1 − b2)

}
,

[using the equation for g1]. Thus we have found a point P on g1. P
also lies on g2, as calculation [of y + a2x − b2] shows:

b1 − a1

{
(a1 − a2)−1(b1 − b2)

}
+ a2

{
(a1 − a2)−1(b1 − b2)

} − b2

= b1 − b2 + (a1 − a2)
{
(a1 − a2)−1(b1 − b2)

}
= b1 − b2 − (b1 − b2) = 0

This proves the existence of an intersection point for g1 and g2. Now
we must prove its uniqueness.
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If (x1, y1) and (x2, y2) are two intersection points then we have

y1 + a1x1 − b1 = 0
y2 + a1x2 − b1 = 0

}
y1 − y2 + a1(x1 − x2) = 0 (1)

y1 + a2x1 − b2 = 0
y2 + a2x2 − b2 = 0

}
y1 − y2 + a2(x1 − x2) = 0 (2)

Then (1)−(2) gives (a1 − a2)(x1 − x2) = 0. [Since a1 6= a2] this
implies x1 = x2, and hence y1 = y2 from (1).
Thus in all cases where g1 6‖ g2 there is exactly one intersection point.
Q.E.D.

2) Connecting two points by a line
Suppose P1 ≡ (x1, y1) is different from P2 ≡ (x2, y2).
Thus if x1 = x2, y1 6= y2.
In this case the connecting line is x − b = 0, with b = x1 = x2. The
formula y + ax − b = 0 is impossible here, because if

y1 + ax1 − b = 0
y2 + ax2 − b = 0

then subtraction gives y1 − y2 + a(x1 − x2) = 0, with x1 − x2 = 0,
and this contradicts y1 6= y2.
When x1 6= x2 I take the formula y+ax−b = 0. Then the two points
give the two equations

y1 + ax1 − b = 0
y2 + ax2 − b = 0

and subtraction gives y1 − y2 + a(x1 − x2) = 0. Since x1 − x2 6= 0,
(x1 − x2)−1 exists, and multiplying on the right by it gives:

(y1 − y2)(x1 − x2)−1 − a = 0, hence a = (y1 − y2)(x2 − x1)−1.

[Substituting this value of a in the first equation gives]

b = y1 +
{
(y1 − y2)(x2 − x1)−1

}
x1.

These values of a and b also satisfy the second equation, because

y2 +
{
(y1 − y2)(x2 − x1)−1

}
x2 = y1 +

{
(y1 − y2)(x2 − x1)−1

}
x1

Thus it is shown that there is always exactly one line through two
different points. Q.E.D.

3) The parallel postulate
Let g be y + ax− b = 0 and suppose that P1 ≡ (x1, y1) is a point not
on g. We have to show that there is exactly one line g′ through P1

with g ‖ g′.
Let g′ be y+ax−b′ = 0. Since P1 lies on g′, b′ = y1 +ax1 is uniquely
determined. Q.E.D.



3.3 Coordinate geometry over an alternative field (“harmonic geometry”) 87

If g has the form x− b = 0, g′ is uniquely determined as x−x1 = 0.

The line connecting a proper point (x1, y1) to an improper point—
given either by the collection of parallels y + ax − bi = 0 to a line
y + ax − b = 0, or by the collection of lines x − bj = 0 parallel to a
line x − b = 0—is thereby uniquely determined.

3. Condition for three points to be collinear.

The line g through P1 and P2 is uniquely determined by 2) above. P3 on
g therefore satisfies

y3 +
{
(y1 − y2)(x2 − x1)−1

}
x3 − y1 −

{
(y1 − y2)(x2 − x1)−1

}
x1 = 0 (1)

First notice that this relation is symmetric in P1 and P2, because

y1 − y2 =
{
(y2 − y1)(x1 − x2)−1

}
(x1 − x2)

implies that

y1 +
{
(y1 − y2)(x2 − x1)−1

}
x1 = y2 +

{
(y2 − y1)(x1 − x2)−1

}
x2 (2)

Now we have to show that P3 on g implies P2 on P1P3, that is, that
equation (1) also holds when the indices 2 and 3 are exchanged:

y2 +
{
(y1 − y3)(x3 − x1)−1

}
x2 − y1 −

{
(y1 − y3)(x3 − x1)−1

}
x1 = 0 (3)

To do this, we deduce from (1) that

x3 =
{
(y1 − y2)(x2 − x1)−1

}−1
(y1 − y3) + x1

=
{
(x2 − x1)(y1 − y2)−1

}
(y1 − y3) + x1

x3 − x1 =
{
(x2 − x1)(y1 − y2)−1

}
(y1 − y3)

(x3 − x1)−1 = (y1 − y3)−1
{
(y1 − y2)(x2 − x1)−1

}
.

Substituting in the left hand side of (3) gives{
(y1 − y2)(x2 − x1)−1

}
x2 + y2 − y1 −

{
(y1 − y2)(x2 − x1)−1

}
x1

=
{
(y1 − y2)(x2 − x1)−1

}
(x2 − x1) + y2 − y1,

which indeed equals zero.

The condition for collinearity of three points P1, P2, P3 is therefore

(y1 − y3)(x3 − x1)−1 = (y1 − y2)(x2 − x1)−1

and likewise for each permutation of the indices.

There is an analogous condition for three lines

y + aix − bi = 0, i = 1, 2, 3

to pass through a point (likewise for each permutation of the indices):

(a2 − a1)−1(b2 − b1) = (a3 − a1)−1(b3 − b1)
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It also follows that if P3 lies on P1P2 and P4 lies on P1P2 then P3 lies on
P3P4, because

(y2 − y1)(x2 − x1)−1 = (y3 − y1)(x3 − x1)−1

and
(y2 − y1)(x2 − x1)−1 = (y4 − y1)(x4 − x1)−1

then

(y3 − y1)(x3 − x1)−1 = (y4 − y1)(x4 − x1)−1 Q.E.D.

4. Proof of the special Desargues theorem D2.

The proof breaks into five steps.

1) Let g be any line through O, P and P ′ any points on g, h any line
through P , Q the intersection of h with the x-axis, PQ ‖ P ′Q′,
k through P parallel to the x-axis, l through Q parallel to g, R the
intersection of k and l, k′ through P ′ parallel to the x-axis, l′ through
Q′ parallel to g, and R′ the intersection of k′ and l′.
Claim: O,R,R′ are collinear.

x
O

y g

P

Q

R

h l

k

P ′

Q′

h′

l′

k′
R′

Proof. Assuming

g : y + ax = 0
h : y + αx − β = 0,

it follows that P =
(
(a − α)−1β,−a

{
(a − α)−1β

})
, Q = (α−1β, 0).

Similarly

k : y + a
{
(a − α)−1β

}
= 0

l : y + ax − a(α−1β) = 0,

imply R =
(
α−1β + (a − α)−1β,−a

{
(a − α)−1β

})
= (ξ, η) say.
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Then

ξη−1 = − [
α−1β + (a − α)−1β

] [{
(a − α)−1β

}−1
a−1

]
= −a−1 − (α−1β)

[{
β−1(a − α)

}
a−1

]
= −a−1 − (α−1β)

[
β−1 − (β−1α)a−1

]
= −a−1 − α−1 + a−1

= α−1, which is independent of β.

Hence for R′ ≡ (ξ′, η′) we have η′ξ′−1 = ηξ−1, and therefore the three
points O,R,R′ are collinear by the criterion derived above,

(y1 − y2)(x3 − x1)−1 = (y1 − y2)(x2 − x1)−1,

in the special case where (x1, y1) = (0, 0), (x2, y2) = (ξ, η), and
(x3, y3) = (ξ′, η′). Q.E.D.

2) In order to free the figure from its special position in the coordinate
system, we make the coordinate transformation:

x = x′ + c,

y = y′ + d.

This is a collineation, that is, points go to points and lines to lines,
and incidence of points and lines is preserved.
In fact

x + a = 0 goes to x′ + a′ = 0
y + ax + b = 0 goes to y′ + ax′ + b′ = 0.

Consequently, the special Desargues theorem also holds when the
center of perspective is an arbitrary point in the plane.
The same calculation may be carried out when x and y are exchanged,
that is, when equations of lines are taken in the forms y + b = 0 and
x+ay + b = 0. This proves those instances of the Desargues theorem
D2 in which the lines connecting vertices are parallel to the x-axis or
the y-axis.

3) Now we free QQ′ from its special position in the coordinate system.
This is done via the transformation

x′ = x

y′ = cx + y or y = −cx′ + y′.

This is also a collineation, because

x + a = 0 goes to x′ + a = 0,

y + ax + b = 0 goes to y′ − cx′ + ax + b = 0
or y′ + a′x′ + b′ = 0.



90 3 Foundations of projective geometry in the plane

x
O

y y′

x′
P

Q

R
P ′

Q′

R′

This collineation leaves the y-axis fixed, because for x = 0 we have
x′ = 0 and y = y′. However, the x-axis goes to the line cx + y = 0,
which is a line through the origin. Then further application of the
transformation 2) proves the Desargues theorem D2 in the case where
the axis of perspectivity is the line at infinity.

4) Now we transform the axis of perspectivity from infinity to the y-axis.

x′ = x−1

y′ = yx−1

is a collineation, because

x + a = 0 goes to x′−1 + a = 0 or x′ + a−1 = 0

y + ax + b = 0 goes to y′x′−1 + ax′−1 + b = 0
or y′ + a + bx′ = 0.

x

y

S

P

Q

R

P ′

Q′

R′

−→

x′

y′

S

S

S

P ′

Q′

P

Q

R′
R

Parallel lines go to lines that meet on the y-axis. Indeed:

y + ax + b1 = 0
y + ax + b2 = 0

}
go to

{
y′ + b1x

′ + a = 0
y′ + b2x

′ + a = 0,

which intersect at x′ = 0, y′ = −1. That is, the intersection lies on
the y′-axis.
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5) Finally, one can free the axis of perspectivity from its special position
by the collineation

y′ = y

x′ = cy + x,

as in 3).

Thus D2 holds in general, and the algebraic equivalent of D2 is a
plane coordinate geometry over an alternative field. The general
Desargues theorem D0, however, does not hold. If this theorem were
valid, the configuration on page 80 would hold everywhere in the
plane. If one constructs a plane coordinate geometry over the Cayley
numbers in the manner given here, and takes a = e1, b = e2, c = e
(where e1, e2, e are special Cayley numbers) then, since (e1e2)e 6=
e1(e2e), the configuration on page 80 is false, so the general Desargues
theorem cannot hold, even though D2 does.

5. The results above establish the following logical relationships between Pap-
pus’ theorem and the Desargues theorems D0 and D2.

Pappus’ theorem
−→
6←− D0

−→
6←− D2,

where −→ means “implies” and 6−→ means “does not imply”.

It is important to note that the statement Desargues 6−→ Pappus is valid
assuming the plane incidence and order axioms, because the Hilbert num-
ber system is ordered. However, the statement D2 6−→ D0 is proved as-
suming only the incidence axioms, because the Cayley number system is
not ordered. It is an open problem whether D0 is provable from D2 as-
suming the plane incidence and order axioms. A solution of this problem
would answer the question whether ordered alternative fields exist.

6. These investigations show the central importance of the segment calculus.
It enables a partial algebraicization of a geometry in which certain con-
figuration theorems hold. Investigating the structure of such a geometry
by purely synthetic methods is generally very difficult. More precisely: if
S1 and S2 are two configuration theorems and S2 follows from S1 on the
basis of plane incidence (and order) then the proof can be carried out syn-
thetically, given sufficient skill. But if S2 does not follow from S1, this can
hardly be proved by purely synthetic methods. One therefore resorts to
algebraic methods, whereby one constructs a model coordinate geometry
in which S1 is true and S2 is false.

The segment calculus achieves the passage from synthetic geometry to co-
ordinate geometry. The computation rules for the coordinates depend on
the nature of the basic configuration theorem S1. This gives a systematic
approach to the very difficult and obdurate problem of classifying plane
configuration theorems.
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3.4 Foundations of projective geometry

1. Pappus’ theorem is equivalent to the fundamental theorem of projective
geometry.

In Section 2.6 (page 55) we proved that Pappus’ theorem follows from the
fundamental theorem of projective geometry. We now prove the converse.

From Section 3.2 (page 73) we know that Pappus’ theorem gives a segment
calculus over a field, whose elements serve as coordinates in an analytic
geometry. This allows us to introduce projective coordinates in the plane
and to define projective maps. Here it suffices to do this for single figures.
A mapping is then projective if and only if it preserves the cross ratio
(CR). That is, a quadruple A,B,C, P can be mapped projectively to
A′, B′, C ′, P ′ if and only if

CR =
x3 − x1

x3 − x2
:

x4 − x1

x4 − x2
=

x′
3 − x′

1

x′
3 − x′

2

:
x′

4 − x′
1

x′
4 − x′

2

,

where the xi are the coordinates of A,B,C, P and the x′
i are those of

A′, B′, C ′, P ′.

When A,B,C and A′, B′, C ′ are fixed, the P ′ corresponding to a given P
is uniquely determined. If x′

4 = x′ and x4 = x, while the others remain
fixed then the above equation may be solved for x′ as

x′ =
αx + β

γx + δ
, or

{
ρξ′1 = αξ1 + βξ2

ρξ′2 = γξ1 + δξ2

in the homogeneous coordinates ξ1, ξ2. Thus a projective map is described
by a linear transformation. Each linear transformation leaves the CR
invariant, as one may compute directly.

Suppose P is given and the numbers xi, x′
i come from a field. Then the

linear transformation of a line onto itself,

x′ =
αx + β

γx + δ
,

is uniquely determined by three corresponding point pairs. If

ξ1

ξ2
goes to

ξ′1
ξ′2

,
η1

η2
goes to

η′
1

η′
2

,
ζ1

ζ2
goes to

ζ ′1
ζ ′2

then

ρ1ξ
′
1 = αξ1 + βξ2 ρ1ξ

′
2 = γξ1 + δξ2

ρ2η
′
1 = αη1 + βη2 ρ2η

′
2 = γη1 + δη2

ρ3ζ
′
1 = αζ1 + βζ2 ρ3ζ

′
2 = γζ1 + δζ2

or
x′

i = (γxi + δ)−1(αxi + β).

Of these four coefficients, only three are essential, but without the help of
the commutative law none of them can be removed. With the commutative
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law, one coefficient can be normalized to 1 and there remain three linear
equations for the three essential coefficients:

γxix
′
i + δx′

i − αxi − β = 0.

These equations can be solved for α, β, γ, δ in the usual way. Thus the
projective map is uniquely determined by three corresponding pairs. It
follows from well known facts of analytic geometry that it may be realized
by joining points and intersecting lines.

One sees, further, that Pappus’ theorem implies not only the fundamental
theorem of projective geometry, but in fact all plane configuration the-
orems are consequences of Pappus’ theorem. A configuration theorem is
in general a statement of the following kind. Given finitely many points
and lines with prescribed incidences, one constructs in a prescribed way
finitely many new points. Then the configuration theorem says that cer-
tain incidences hold in the extended figure, independently of the choice of
initial elements.

2. Basing plane projective geometry on weaker hypotheses.

(a) Projective incidence+Pappus −→ Field

(b) Projective incidence+D0 −→ Skew field
+Archimedean postulate −→ Field

(c) Projective incidence+D2 −→ Alternative field
+Archimedean postulate −→ Field

Thus addition of the Archimedean postulate—as was shown earlier—
makes each skew or alternative field into a field, which is necessary for
the fundamental theorem of projective geometry (by the first item in this
section).

3. Meaning of the general Desargues theorem D0.

It is well known that D0 can be proved from the spatial incidence axioms.
In other words, embeddability of the plane in space is sufficient for the
validity of D0. It is also necessary.

Indeed, suppose we have a plane geometry with incidence and D0. Then
we may introduce a coordinate geometry over a skew field in which the
usual definitions of linear figures extend to three or more dimensions.
The incidence theorems there follow by solving linear equations, which is
always possible in a skew field.

4. Foundation of projective geometry in space.

Spatial incidence and the Archimedean postulate suffice to derive the fun-
damental theorem. In fact, spatial incidence implies Desargues’ theorem,
and hence a geometry over a skew field, and addition of the Archimedean
postulate makes the skew field a field. We know from the first item in this
section that the field properties suffice to prove the fundamental theorem.

5. Order axioms are inessential in the above investigations.
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6. The parallel postulate may be eliminated.

It suffices to indicate how to derive the projective incidence properties of
the plane.

(a) The work of Schur or Pasch makes it possible to introduce ideal
elements into the spatial incidence axioms (Axioms I) and the order
axioms, without the parallel postulate.

(b) Ordinary incidence and order in the plane do not suffice to introduce
ideal elements. One needs a configuration theorem such as Desargues’
theorem. It is essential to have at least the special Desargues theorem
D2.

3.5 Proof of Pappus’ theorem from the congru-
ence and parallel axioms

1. We mention in advance that the parallel postulate makes it possible to
draw a line b, through a point A outside line b, that meets a at a prescribed
angle ∠α.

a

a′A

b

α

To show this we draw through A the unique parallel a′ to a, and transport
the angle α to a′ at A. Its other leg is the desired line b, since alternate
angles at parallels are equal.

2. Suppose that A,B,C lie on g and A′, B′, C ′ lie on g′, and that BC ′ ‖ B′C
and AC ′ ‖ A′C. We have to prove that AB′ ‖ A′B. The proof is based
on the theorem about angles in a circle.

α) Draw D′B through B so that ∠OCA′ ∼= ∠OD′B. Since CA′ ‖ C ′A
we also have ∠OCA′ ∼= ∠OAC ′, hence ∠OD′B ∼= ∠OAC ′. Then
A′D′BC is a cyclic quadrilateral, hence ∠CBA′ ∼= ∠OD′C also.
Both angles are subtended by the chord A′C of the circle K1

β) Since ∠OD′B ∼= ∠OAC ′, and both are subtended by the chord
BC ′, BD′C ′A is a cyclic quadrilateral (in circle K2). It follows that
∠OAD′ ∼= ∠OC ′B and, since B′C ‖ C ′B, also ∠OAD′ ∼= OB′C.

γ) Since ∠OAD′ ∼= ∠OB′C, CD′B′A is a cyclic quadrilateral in cir-
cle K3, where both angles are subtended by the chord D′C. Thus
∠OAB′ ∼= ∠OD′C also.
But α) also implies ∠OD′C ∼= ∠OBA′, from which it follows that
∠OBA′ ∼= ∠OAB′, that is, B′A ‖ BA′. Q.E.D.
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O
g

g′

C

A′
B′

B A

C ′

D′K1

K2

K3

In Math. Annalen, vol. 64, Hjelmslev proved that projective geometry can
be based on the plane axioms of incidence, order and congruence, without
the parallel postulate and continuity. Thus there are three essentially
different paths to projective geometry without the parallel postulate:


with continuity and with D2

without continuity
{

with congruence
with Pappus’ theorem

We have yet to prove that the foundation can be built on continuity and
the special Desargues theorem D2, since our derivation used the parallel
postulate. It remains to show that the ordinary plane axioms of incidence
and order, together with D2, suffice to introduce ideal elements in the
plane (see Chapter 4).

3.6 Proof of Pappus’ theorem in space

That is, from the axiom groups I, II and congruence axioms but without conti-
nuity.

1. Pappus’ theorem may be proved with the help of spatial incidence and
congruence. In fact, here we prove the general Pascal theorem on the
hexagon in a curve of second order, whence the Pappus-Pascal theorem
for a line pair follows.10

As Dandelin 1825 showed, a one-sheeted hyperboloid contains two families
of lines, gi and hi, that are skew to the axis of the hyperboloid. All the
lines in a family are skew to each other, but each line gi cuts each line hi.
Thus six lines that belong alternately to the two families form a spatial
hexagon. For this “mystic hexagon” one can prove a theorem that gives
Pascal’s theorem immediately.

10Translator’s note. Recall from the earlier note on page 52 that Moufang calls Pappus’
theorem “Pascal’s theorem” throughout. This is the first time she actually mentions Pappus,
and the first time she takes up the general Pascal theorem.



96 3 Foundations of projective geometry in the plane

g3

G3

h2

H2

g1

G1

h3

H3

g2

G2

h1

H1

2. The intersection of a surface of degree 2 with a plane is a curve of degree
2, C2. On C2 we take six points Hi, Gi (i = 1, 2, 3) as in the figure, for
which we shall prove Pascal’s theorem.

It will be convenient to use the following abbreviations:

[GH] for the line connecting G and H

[gh] for the plane connecting g and h

(gh) for the intersection point of g and h

Claim:
([G3H1][G1H3]) = Q
([G1H2][G2H1]) = R
([G2H3][G3H2]) = P


 are collinear,

Or in words: the intersections of opposite sides of hexagon on a C2 lie on
a line.

Proof. Let gi, hi be the lines in the alternate families of lines on the
hyperboloid that go through the points Gi, Hi respectively.

The pairs g1, h3 and h1, g3 span planes that meet in a line (similarly for
the index pairs 2,1 and 3,2).

h1
A

g3

C
h3

g1

Writing this down in detail we get

([g1h3][g3h1]) = [(g1h1)(g3h3)] = [AC]
([g2h1][g1h2]) = [(g2h2)(g1h1)] = [BA]
([g3h2][g2h3]) = [(g3h3)(g2h2)] = [CB].
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∆ABC spans a plane E. Let the plane of the conic section be S. We have
E 6= S, because E = S implies, for example, that (g1h1) lies in S; but g1

has only the point G1 in common with S, so we should have (g1h1) = G1

and analogously (h1g1) = H1, which is a contradiction because G1 6= H1.

Thus the intersection of E and S is a line s. But P,Q,R lie on s, as we
shall prove for P . (For Q and R the proof is analogous.)

It is clear that P lies in S; we have to show that P also lies in E. First,
P = ([H2G3][H3G2]) lies on [(g2h2)(g3h3)], because [(g2h2)(g3h3)] is the
intersection of the planes [g3h2] and [g2h3], and the latter planes are cut
by the third plane S in the lines [G3H2] and [G2H3], hence the latter lines
meet on [(g2h2)(g3h3)] = [BC].

But all points of BC lie in E, by definition of E. Hence P lies in E, and
similarly so do R and Q. That is, P,Q,R lie simultaneously in E and S,
and hence in a line. Q.E.D.

One therefore has the theorem: the intersection lines of opposite planes
of the mystic hexagram are the sides of a triangle whose vertices are the
intersection points of opposite sides of the hexagram.

This proves Pascal’s theorem for the hexagon G1H1G2H2G3H3.

To pass from a proper curve of degree 2 to a line pair it suffices to choose
the cutting plane S as a tangent plane of the hyperboloid.

3. Existence of the one-sheeted hyperboloid on the basis of the
congruence axioms remains to be shown.

To do this we regard the one-sheeted hyperboloid as the collection of the
two families of lines described at the beginning of this section, and look
at the implications of the congruence axioms for the properties of motions
and reflections. The most important properties are:

α) Two intersecting lines are mapped into each other by reflection in a
unique plane, the so-called meridian plane or symmetry plane. Con-
versely, two lines mapped into each other by reflection intersect in a
proper or improper point, that is, they lie in a plane.

β) If b results from a by rotation about d, and if a and b do not lie in a
plane perpendicular to d, then a and b are skew.
Proof. Rotation about d maps all, and only, the points of d into
themselves. Since neither a nor b meets the axis d, no point of a or
b is fixed. Moreover, no point P of a goes to a point Q 6= P of a,
otherwise PQ = a would lie in a plane perpendicular to d, contrary
to hypothesis. Thus a and b can have no point in common: as a
point of b, such a point must come from a point of a, but as a point
of a it comes from another point of a, contrary to what we have just
proved. Thus a and b are skew. Q.E.D.

We also mention without proof:

γ) An odd number of reflections in planes with a common axis is repla-
cable by reflection in one plane through this axis.
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δ) An even number of reflections in planes through an axis may be
replaced by a rotation about d.

The existence of a mystic hexagram may now be proved. Take the cutting
plane S tangential to the hyperboloid, so the intersection curve becomes
a line pair g, h. We therefore begin with two intersecting lines g, h with
symmetry plane E. In E one chooses a line d not passing through (gh)
and not perpendicular to [gh]. Three points Gi are given on g, and three
points Hi on h. Let S be the reflection in E that exchanges g and h.

g

d

h

E

H1 H2
H3

G1
G2

G3

One constructs the planes

[dGi] = Ei1 and [dHi] = Ei2.

They constitute a pencil of planes with axis d. I reflect the line h to the
line hi in the plane Ei2, abbreviating this by

h
Ti−→ hi

Similarly, let g
Si−→ gi denote reflection of g in Ei1.

I claim: gi and hi are the sides of a mystic hexagram.

To begin with, gi goes through Gi, hi goes through Hi.

We must therefore show

1) Each gi meets each hk.

2) Each gi is skew to each gk (and similarly for the hi).

Proof of 1): hi
Ti−→ h

S−→ g
Sk−→ gk.

Hence by γ) and α) there is an intersection point (higk).

Proof of 2): Since the square of each reflection is the identity, they are
involutions. That is, the same reflection that brings h to hi also brings hi

to h. Thus
hi

Ti−→ h
Tk−→ hk

and, by δ, the map from hi to hk is a rotation about d. Hence hi and hk

are skew by β).

The existence of the mystic hexagram on the basis of congruence axioms
(or more precisely, from theorems on reflections and rotations they imply)
is thereby proved. Q.E.D.
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Summary. Projective geometry in space can be founded in two
ways:

Incidence Incidence
Order Order

Continuity (Archimedean postulate) Congruence (mystic hexagram)
Without parallel postulate Without parallel postulate

The introduction of ideal elements is achieved with the help of spatial
incidence and order. The approach on the left is taken more often than
necessary, because the usual coordinate geometry is Archimedean, whereas
projective geometry need not be. For example, the coordinate geometry
over the field of rational functions in t or its extension by square roots to
a field of algebraic functions of t, which is ordered but not Archimedeanly
ordered, is a projective geometry, since the incidence axioms and Pappus’
theorem hold.

It is still an open problem to find how much must be assumed about
space—including incidence and order but omitting congruence—in order
to prove Pappus’ theorem.



Chapter 4

Introducing ideal elements
in the plane using D2

The introduction of ideal elements using only plane incidence and order has
not yet been achieved. In space, however, the introduction of ideal elements on
the basis of Hilbert’s incidence and order axioms offers no difficulty, as Schur
and Pasch have shown. The fundamental difference between the plane and space
appears here: in the plane it is necessary to add configuration theorems in order
to prove theorems that in space can be proved from the incidence axioms alone.

In what follows we use an idea of Dehn (carried out in R. Moufang, Math.
Ann., vol. 105 (1931), p. 759 ff.) for introducing ideal elements in the plane
on the basis of the theorem D2. It is well known that the general Desargues
theorem is sufficient. The corresponding constructions with inaccessible points
in the plane are given, for example, by Enriques (Questions in Elementary
Geometry).

Here is how Dehn’s model geometry is constructed.

1. We introduce artificial points and artificial lines, for which it can be shown
that two points always have a common line and two lines always have ex-
actly one common point. We divide the projective plane by three pairwise
intersecting lines into four regions, numbered 1 to 4.

4

III

I II

3

3
2

2

1

1 III

I II

P1

P
Q

100
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In the figure [on the left], the same number in two regions indicates that
they correspond to one piece of the projective plane. Now we map the
outer regions into the interior of the triangle I, II, III by collinear reflection
so that IQPP1 is a harmonic quadruple [in the figure on the right]. The
triangle I, II, III is thereby covered four times, and each point of the
triangle carries an index 1, 2, 3, or 4 according to which of the regions the
corresponding point Pi comes from. The latter points Pi are the artificial
points of this model geometry.

A line is here represented by a triangle ABC, whose construction follows
from the definition of the points: the triangles I, II, III and ABC are
reciprocal, that is, IA, IIB, IIIC meet at a point.

I II

III

B

A

C

g2

g4

g1

The sides of the triangle can be labelled in
(
4
3

)
= 4 ways, as in the following

table:
AB BC CA
g4 g1 g2

g3 g1 g2

g2 g4 g3

g1 g3 g4

The vertices of the triangle simultaneously carry all four indices, since they
lie in the four regions simultaneously. Thus all four sheets come together
at the vertices. The sides of the triangle are doubly covered: for example,
the points I, II carry either the indices 3, 4 or the indices 1, 2, so sheets 3
and 4 meet along side I II and so too do sheets 1 and 2.

2. Proof of the projective incidence axioms

For this we use ordinary plane incidence and order, and theorem D2 for
accessible points only.

In Section 3.1 we used D2 to derive the properties of harmonic quadruples,
briefly: exchangeability of pairs, invariance under projection, harmonic
quadruples in the complete quadrilateral. All three theorems use only
accessible points.
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1) Connection of two points
α) Points with the same index: the connecting line is shown in the

figure as the inner triangle.
Essentially, one has to construct the unique triangle ABC through
PiQi and reciprocal to I, II, III, and then one has to label the
sides according to the table above.

III

I II

B Ag1
Pi Qi

C

g3

g4

β) Points with difference indices: for example, P4, P1.
The connecting line is constructed as follows.

I II

III

B

A

M

C

P4

U

P1

V

S

IP4 ∩ II III = U

IP1 ∩ II III = V

P4V ∩ P1U = S

SI ∩ II III = A

AP4 ∩ I III = B

AP1 ∩ I II = C

∆ABC is then the artificial triangle, without labelling as yet. If
CIII ∩ IA = M we must show that ∆ABC is reciprocal to ∆I II
III, that is, that B,M, II are collinear.

To prove this we consider the quadrilateral IP4AV with adjacent
vertex U . Let

P4A ∩ US = G.
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Then {GP1US} by definition of harmonic quadruples. Let

I II

III

B

A

M

C

P4

U

P1

V
S

K

L′

L
G

IIIC ∩ AP4 = L

IIM ∩ I III = B′

IIL ∩ I III = K

IL ∩ II III = L′.

We must therefore show that B = B′.
We have

{GP1US}
A

∧ {LCIIIM}
II

∧ {KI IIB′}
This notation means, for example, that the harmonic quadruple
{GP1US} goes to the harmonic quadruple {LCIIIM} by projec-
tion from A. The sign ∧ is usual in projective geometry for a
perspective or projective relationship.
We also have

{LCIIIM)
I

∧ {L′II IIIA}
L

∧ {IKIIIB}.

Therefore, by the uniqueness of the fourth harmonic point to
three given points, we have B = B′, as required.

This secures the existence of the reciprocal triangle. Now we have
to prove its uniqueness. For this we must show that if ABC is a
reciprocal triangle to ∆ I II III, and if P4 is an arbitrary point
on BA and P1 is an arbitrary point on AC, and if U, V, S have
the old meaning, then S,A, I are always collinear.

Consider the quadrilateral BAIII with the harmonic quadruple
{LCIIIM}.

{LCIIIM}
A

∧ {GP1US′}, whence S′ = MA ∩ UP1.
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We therefore have to show that S = S′. We consider the quadri-
lateral IP4AV . Let

AI ∩ P4V = T, UT ∩ AP4 = G′, UT ∩ IV = P ′
1.

Thus {G′P ′
1UT}.

Now the points G′, P ′
1, U, T are harmonic in the quadrilateral

IP4AV , independently of whether B1A and IV meet at an inac-
cessible point or not. Indeed, if one draws the auxiliary line V G′,
the quadrilateral P4TAU has purely accessible vertices and hence
a harmonic quadruple, which goes to G′, P ′

1, U, T by projection
from I.

{G′P ′
1UT}

A

∧ {GZUS′} with Z = AP ′
1 ∩ UP1,

therefore Z = P1. But then P1 = P ′
1 also, hence T = S = S′, as

required.

Thus through two given points with different indices there is ex-
actly one triangle ABC reciprocal to I II III, obtainable by the
construction above. Moreover, its labelling is uniquely deter-
mined by the table. Q.E.D.

Thus it is shown that two distinct points have exactly one connecting
line in our artificial geometry.

2) Intersection of two lines
In the accompanying figure,

I

III

IIC ′

B′

A′
B

A

C

S2

g′1 g′2 g2 g1

g′3
g′4

g ∩ g′ = g2 ∩ g′2 = S2.

In finding the intersection of the lines g and g′, the only points that
come into consideration are the crossing points of like-labelled sides
of the triangles ABC and A′B′C ′.
Two reciprocal triangles never cross at more than four places. Of
these, only one is a crossing in the sense of our geometry, namely the
intersection of two like-labelled triangle sides.
To prove this we first develop a few auxiliary results.
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By Pasch’s theorem, an ordering is preserved by projection:

U V W

W ′

V ′′

V ′
U ′

(UV W ) → (UV ′′W ′) → (U ′V ′W ′).

We use this to show that (BB′III) and (AA′III) imply (CC ′II).
Let

I II

III

C ′

A′

B′

M ′

C

B

A

M

V ′

V

V = IA′ ∩ IIB
V ′ = IIIV ∩ II III.

Now

(BB′III)
II

∧ (V M ′A′)
III

∧ (V ′C ′II)

and

(A′AIII)
I

∧ (V MB)
III

∧ (V ′CI)

Together, these give (CC ′II), as required.
It follows that BC and B′C ′ do not meet, by Pasch’s axiom applied
to ∆IBC and B′C ′. The same holds for A′C ′. Thus the number
of crossings is bounded by 4. (One easily sees that (AA′III) and
(BB′III) give the same result. This exhausts all essentially different
possibilities.)
One now sees easily that there is exactly one crossing point of like-
labelled lines, by following up the

(
4
2

)
= 6 possibilities in the table

on page 101. Q.E.D.
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3. Topological connectivity of the artificial geometry in the triangle.

1) The surface is not orientable, because if one follows the given [dashed]
closed path through P1, which passes all the vertices of I II III, the
orientation is reversed. The strip bounded by g and h therefore has
the connectivity of the Möbius band.

I II

III

P1

g1

g4

g2

h1

h4

h2

The surface therefore contains an orientation-reversing path.

2) The connectivity of the fourfold covering is represented in the accom-
panying sketch, where points to be identified are labelled the same.1

The [Euler] characteristic is

χ = faces − edges + vertices = 4 − 6 + 3 = 1.

Nonorientability and characteristic 1 characterize the projective plane.
[In fact, nonorientability is redundant, since the projective plane is
the only surface with Euler characteristic 1.]

1Translator’s note. Moufang’s sketch consists of four triangles, named 1, 2, 3, 4, with
virtually illegible edge labelling in my copy of the manuscript. However, the edge labelling
can be reconstructed from the diagram on page 100, and it is more instructive to do so. One
sees from page 100 that the covering consists of four triangles 1, 2, 3, 4, each with the three
vertices labelled I, II, III. The edges of the triangles are joined in pairs—for example, the edge
between I and III on triangle 4 is joined to the edge between I and III on triangle 2, whereas
the edge between I and III on triangle 1 is joined to the edge between I and III on triangle 3.
This creates a surface with 4 triangular faces, 6 edges, and 3 vertices.
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4. Order

By cutting the covering of the triangle along g, each of the three sheets is
cut once, decomposing them each into a quadrilateral and a triangle. Thus
altogether there are three triangles, three quadrilaterals and an uncut
triangle.

3

3

1

1

2

2

I II

III

g

The quadrilaterals are connected in such a way as to form a topological
disk. Each line divides the disk into two parts so that two points on
opposite sides of the cut cannot be connected without crossing the cut.
But this is essentially the axiom of Pasch. Thus our model geometry
satisfies not only projective incidence, but also projective order.

5. The special Desargues theorem D2 holds in this artificial incidence
geometry, as was proved by Smid (Math. Ann. 111 (1935)).

Thus the significance of D2 lies in the projective extendability of the plane
and also in the algebraicization of synthetic plane geometry via a cartesian
coordinate geometry over an alternative field.

At the same time we have established that the fundamental theorem can be
derived from D2 and the Archimedean postulate, starting from incidence
and order in the bounded plane.



Appendix 1

Methods for introducing ideal elements in the
plane

1. With the help of D2

[As in the previous section.]

2. With the help of D0

This achieves the construction of the line connecting an accessible point
P with the inaccessible intersection of two lines g and h (see figure).

g

h

A
A′

BB′

O

P P ′

Q

R

B′′

Let A and A′ be any points on g, B and B′ any points on h, AB∩A′B′ = R,
O arbitrary on AP , PB ∩ RO = Q, B′Q ∩ OA′ = P ′.

Then ∆A′B′P ′ is axial with ∆ABP , with axis RQ = RO, and hence by
D0 they are in perspective, that is, PP ′ goes through g ∩ h.

The construction is also correct when B′ becomes B′′ = h∩AP , in which
case D2 suffices for the proof.

3. With the help of congruence axioms, using Hjelmslev’s method of
reflection in lines.

It is assumed that any point can be reflected in any line.

108
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Then, for example, to connect an accessible point P to the inaccessible
intersection of lines g and h, one reflects P in h to Ph, and Ph in g to
Q1. On the other hand, P is reflected in g to Pg, and Pg in h to Q2. Let
s = Q1Q2 and let P ′ be the reflection of P in s. Then PP ′ is the desired
connection. The proof is omitted here.

h

g

P

Ph

Q1

Pg

Q2

P ′

s

[Using l−→ to denote reflection in the line l]

P
h−→ Ph

g−→ Q1

P
g−→ Pg

h−→ Q2

Q1Q2 = s

P
s−→ P ′ PP ′ is the desired connection.



Appendix 2

The role of the order axioms

In Hilbert’s segment calculus, the vanishing of a polynomial indicates a config-
uration theorem (with the line of intersection points passing through O). Since
Pappus’ theorem determines an analytic geometry over a field, all plane con-
figuration theorems must be analytically provable from it. That is, all plane
configuration theorems follow from Pappus’ theorem, as mentioned earlier.

The problem of Dehn is the (as yet incompletely answered) question whether
there are incidence theorems S “between” the theorems of Pappus and Desargues—
which therefore do not imply Pappus and do not follow from Desargues. In the
language of segment calculus, this asks whether there are computation rules
which do not imply commutativity but do not hold in all skew fields.

Wagner (Math. Annalen 1937) has shown that the identical vanishing of a
polynomial P (a, b, . . . , k) implies commutativity when the linear order axioms
hold. Linear order is essential, as is shown by the example of 2 × 2 matrices
over a field, for which we have the identity

L(AB − BA)2 = (AB − BA)2L,

which does not imply AB = BA.
The investigations of Wagner therefore answer the question in the negative

for computation rules with integer coefficients.
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W Wagner: Über die Grundlagen der projektiven Geometrie und allgemeine
Zahlensysteme
(Math. Ann. vol. 113, 1936, p. 528 ff.)

111


