Supporting Information for

Legionella pneumophila macrophage infectivity potentiator protein appendage domains modulate protein dynamics and inhibitor binding

Wiedemann, C.^{1, #}, Whittaker^{2, #}, J.J., Pérez Carrillo^{1, #}, V.H., Goretzki^{1, 3}, B., Dajka^{4, 5}, M., Tebbe¹, F., Harder¹, J.-M., Krajczy, P.⁶, R., Joseph^{3, 4, 5}, B., Hausch^{6, 7}, F., Guskov², A., Hellmich^{1, 3, *}, U.A.

¹Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany

²Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, The Netherlands

³Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt/Main, Germany

⁴Institute for Biophysics, Goethe-University, Frankfurt/Main, Germany

⁵Department of Physics, Freie Universität Berlin, Germany

⁶Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Darmstadt, Germany

⁷Centre for Synthetic Biology, Technical University of Darmstadt, 64283 Darmstadt, Germany

*Correspondence to UAH: <u>ute.hellmich@uni-jena.de</u>

*These authors contributed equally: C.W., J.J.W., V.H.P.C.

Table S1: Data collection and refinement statistics (molecular replacement)

	LpMIP ¹⁻²¹³	LpMIP ¹⁻²¹³	<i>Lp</i> MIP ¹⁰⁰⁻²¹³	<i>Lp</i> MIP ⁷⁷⁻²¹³	<i>Lp</i> MIP ⁷⁷⁻²¹³	TcMIP
	- F	+ JK095	+ JK095	+ JK095	+ JK236	+ JK236
PDB-ID	8BJC	8BJD	8BK6	8BK5	8BJE	8BK4
Wavelength	0.9763	0.9763	0.9763	0.9763	0.9763	0.9795
Resolution range	62.24 - 1.71	48.07 - 2.4	59.92 - 2.263	29.7 - 1.44	45.86 - 1.491	35.99 - 1.342
	(1.772 - 1.71)	(2.486 - 2.4)	(2.344 - 2.263)	(1.492 - 1.44)	(1.544 - 1.49)	(1.39 - 1.342)
Space group	P 43 21 2	P 43 21 2	P 43 21 2	P 31 2 1	P 31 2 1	P 21 21 21
a, b, c (Å)	77.773 77.773 103.789	76.752 76.752 103.597	73.557 73.557 103.286	53.54 53.54 77.36	52.951 52.951 73.146	42.493 57.529 67.712
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 120	90, 90, 120	90, 90, 90
Unique reflections	19488 (241)	12644 (1218)	13801 (1344)	23619 (2330)	15279 (250)	28364 (209)
Completeness (%)	55.53 (7.00)	99.91 (99.75)	99.63 (99.18)	99.21 (98.69)	76.74 (12.73)	74.79 (5.62)
Mean I/sigma(I)	12.2(2.61)	11.1(2.10)	8.0	9.92(2.59)	15.33(2.04)	15.56(1.30)
Wilson B-factor	22.40	45.77	46.45	18.67	19.02	13.38
R-meas	0.09	0.06	0.06	0.07	0.08	0.08
CC1/2	93.3(24.0)	99.7(22.1)	98.5(32.3)	99.6(21.8)	99.1(27.7)	99.2(26.0)
Reflections used in refinement	19488 (241)	12642 (1218)	13760 (1334)	23616 (2330)	15273 (250)	28314 (209)
Reflections used for R-free	971 (16)	607 (56)	663 (53)	1137 (132)	745 (15)	1444 (10)
R-work	0.2455 (0.3083)	0.2357 (0.3254)	0.2856 (0.3866)	0.1838 (0.3227)	0.1975 (0.2236)	0.1968 (0.2986)
R-free	0.2943 (0.3324)	0.2898 (0.4187)	0.3242 (0.4791)	0.2227 (0.3722)	0.2332 (0.3624)	0.2205 (0.2814)
Number of non- hydrogen atoms	1742	1644	1784	1271	1122	1507
macromolecules	1554	1573	1684	1059	1020	1316
ligands	105	72	76	110	85	43
solvent	139	20	24	148	58	148
Protein residues	205	208	226	135	134	163
RMS(bonds)	0.006	0.008	0.011	0.009	0.017	0.006
RMS(angles)	0.96	1.14	1.69	1.11	1.69	0.92
Ramachandran favored (%)	98.03	95.63	93.69	97.74	96.21	99.38
Ramachandran allowed (%)	1.97	4.37	5.86	2.26	3.03	0.62
Ramachandran outliers (%)	0	0	0.45	0	0.76	0
Rotamer outliers (%)	0.59	1.16	8.51	0.84	0.88	0.72
Clashscore	6.78	7.35	17.23	3.53	5.62	4.10
Average B-factor	27.24	46.16	57.56	24.55	31.56	17.53
macromolecules	26.94	45.64	56.87	23.63	31.19	16.61
ligands	28.82	61.86	76.29	16.76	29.50	16.37
solvent	29.95	47.15	46.24	34.46	39.63	26.06

^{*}Values in parentheses are for the highest resolution shell.

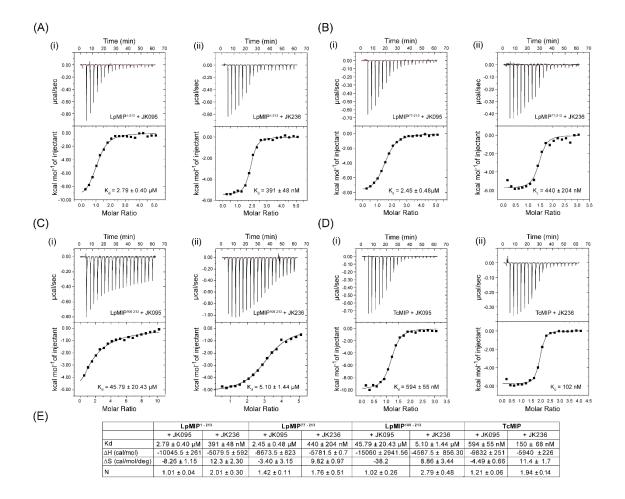
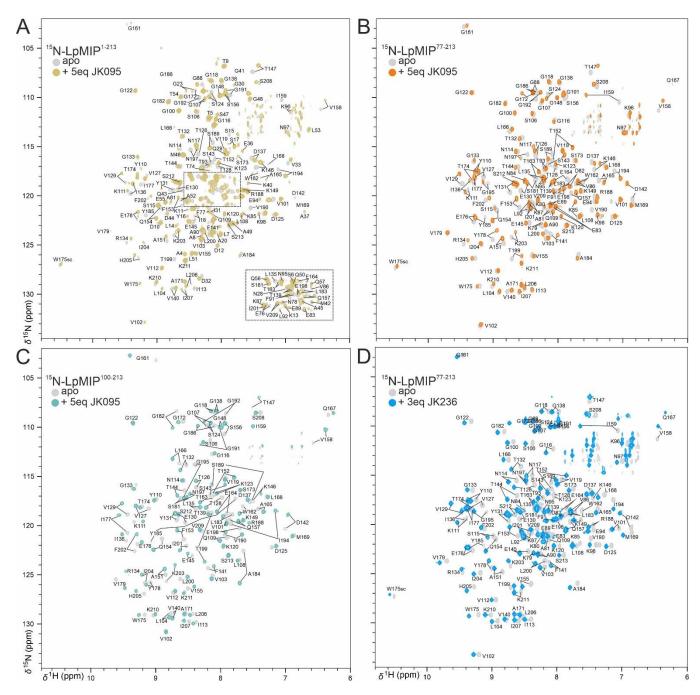
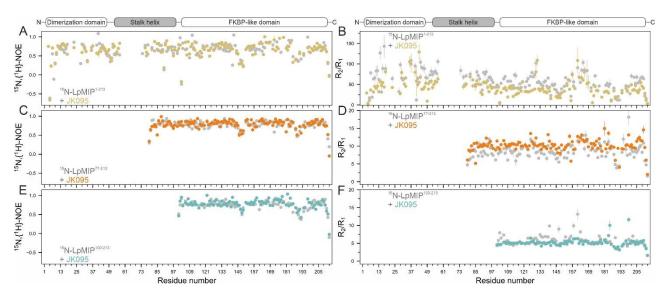
Table S2: Parameters for error estimation of the probability distributions obtained using Tikhonov regularization for full-length LpMIP K80C. Validation was performed as featured in the DeerAnalysis2019 software package¹.

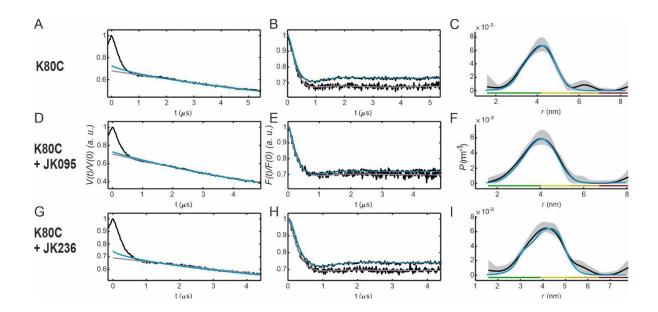
Sample		Regularization				
	dimensionality (d)		starting time window			parameter (α)
	range	steps	range (ns)	steps	$T_{max} (\mu s)$	
K80C	2.8-3.2	9	240-1000	11	5.36	1258
K80C + JK095	2.8-3.2	9	240-1000	11	4.86	1584
K80C + JK236	2.8-3.2	9	240-1000	11	4.38	1000

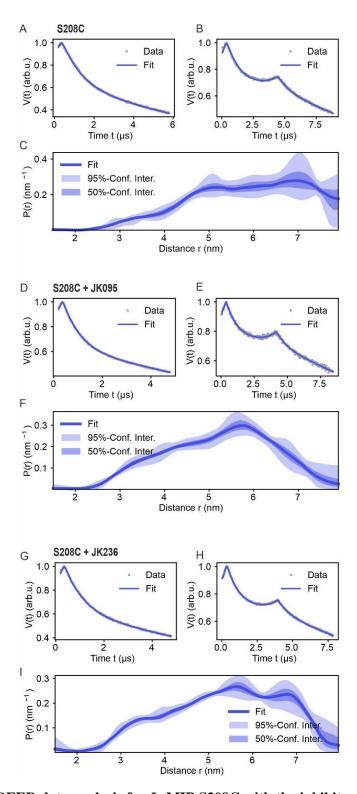
Table S3: SAXS data reporting table for full-length *Lp*MIP.

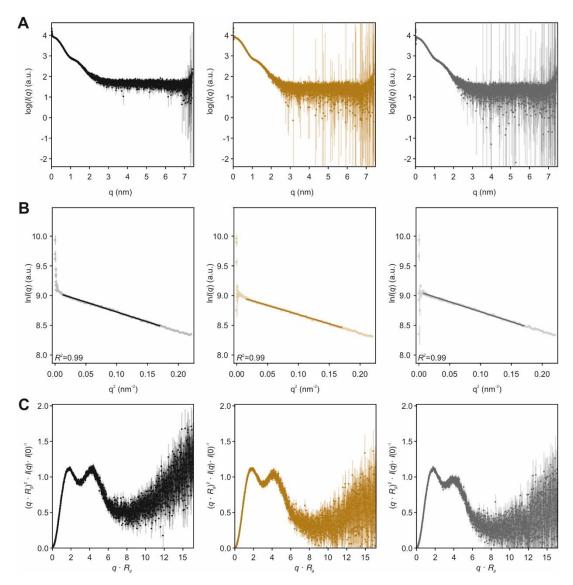
Sample details					
SAMPLE	LpMIP apo	LpMIP + JK095	LpMIP + JK236		
SASBDB Accession Codes	SASxxxx	SASxxxx	SASxxxx		
Organism		Legionella pneumophilia			
NCBI protein accession ID		66489975			
(amino acid range)		1-213*			
SEC-SAXS buffer		20 mM Tris pH 7.5, 10 mM I	OTT		
NaCl concentration		150 mM			
Sample injection volume		45			
Sample injection conc.		10 mg/mL			
SEC column		S200 Increase 5/150			
SEC flow rate	0.3 ml/min				
SEC temperature		20 °C			
Instrument details					
Instrument	EMI	BL P12 bioSAXS beam line, DES	Y, Hamburg		
Exposure time/# frames		0.25 s (2400)			
X-ray wavelength/energy		0.124 nm (9996.5 eV)			
Sample-to-detector distance		3 m			
Scattering intensity scale		Arbitrary unit, a.u.			
SEC-SAXS primary data processing		CHROMIXS (ATSAS 3.0.	1)		
# frames used for averaging	90	78	77		
Working s-range (nm ⁻¹)	0.03-7.43	0.03-7.43	0.03-7.43		
Guinier analysis:					
Primary data analysis software	PRIMUS (ATSAS 3.0.1)				
Guinier $I(0)$ (σ)	8491(8)	8031(10)	7835(8)		
R_{g} (Guinier, nm) (σ)	3.13(0.01)	3.11(0.01)	3.04(0.01)		
sR _g range	0.34-1.30	0.41-1.29	0.27-1.30		
p(r) analysis:					
Method		GNOM 5			
$I(0)$, POR (σ)	8526(7)	8068(9)	7686(8)		
R_{g} (POR, nm) (σ)	3.17(0.1)	3.14(0.01)	3.07(0.01)		
$D_{\text{max}}(\text{nm})$	10.0	10.0	9.4		
Quality of fit, CorMap P / χ^2	2.75E-04 / 1.04	6.7E-0.2 / 1.02	1.7E-0.2 / 1.00		
Porod volume (nm ³)	66	62	63		
Shape classification	flat	flat	flat		
Molecular Weight analysis:					
MW, calculated from amino acid sequence, kDa	45.6 (dimer)	46.5 (dimer with 2x JK095)	46.5 (dimer with 2x JK236)		
MW from SAXS data, kDa	41-46	44-48	46-49		
Rigid body/Normal mode modelling:					
Method		SREFLEX (five individual f	its)		
Symmetry	P1	P1	P1		
Template	8BJC	8BJD	8BJC		
Initial template fit, CorMap P / χ ²	3.10E-59 / 14.30	1.87E-63 / 16.28	7.73E-60 / 10.45		
·	6.76E-03 / 1.16	5.3E-05 / 1.30	2E-06 / 1.75		
	2.56E-08 / 1.26	1.3E-05 / 1.37	7.99E-10 / 1.86		
Final model fit, CorMap P / χ ²	1.24E-11 / 1.32	4.11E-07 / 1.38	7E-06 / 1.88		
	4.23E-04 / 1.32	7.99E-10 / 1.39	8.22E-07 / 1.90		
	1.60E-09 / 1.33	7.99E-10 / 1.42	4.11E-07 / 1.93		

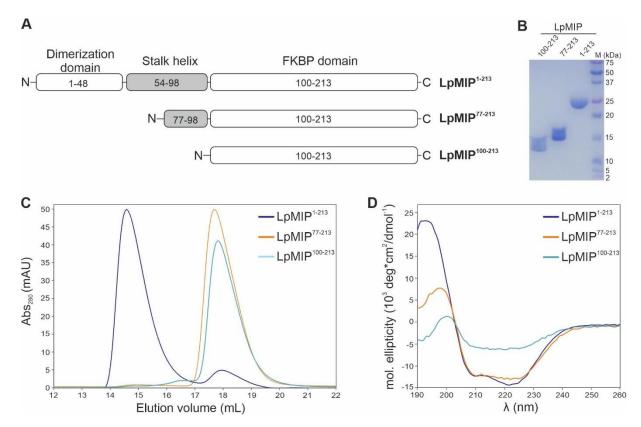
^{*}The nomenclature for LpMIP¹⁻²¹³ used in this manuscript refers to the processed protein after cleavage of the N-terminal signal peptide comprising residues 1-20, which would be denoted as LpMIP²¹⁻²³³ according to the NCBI protein accession ID.

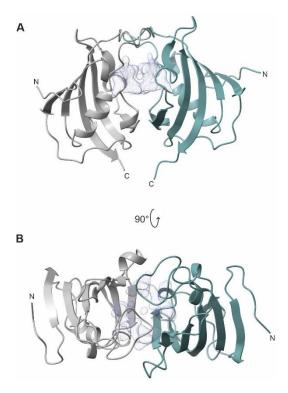




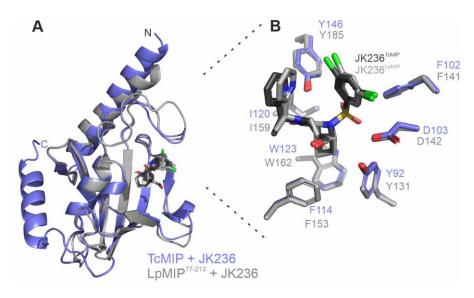

Fig. S1: Isothermal titration calorimetry of *Legionella pneumophila* and *Trypanosoma cruzi* MIP with bicyclic inhibitors. (A) $LpMIP^{1-213}$ (full-length protein), (B) $LpMIP^{77-213}$ and (C) $LpMIP^{100-213}$ with JK095 and JK236 (i and ii, respectively). (D) TcMIP with JK095 (i) and JK236 (ii). Representative ITC traces are shown, all measurements n=2. (E) Fitting parameters for ITC measurements.


Fig. S2: Backbone NMR assignments of LpMIP constructs in the apo and inhibitor bound states. Backbone assignments of (**A**) full-length LpMIP without (grey) and with JK095 (sand), (**B**) LpMIP⁷⁷⁻²¹³ without (grey) and with JK095 (orange), (**C**) LpMIP¹⁰⁰⁻²¹³ without (grey) and with JK095 (teal), and (**D**) LpMIP⁷⁷⁻²¹³ without (grey) and with JK236 (blue). Previously published backbone amide resonance assignments for full-length LpMIP (BMRB entry 7021) and LpMIP⁷⁷⁻²¹³ (BMRB entry 6334) could be partially transferred to our spectra and were verified using 3D assignment experiments under our buffer conditions. In contrast, the assignment of LpMIP¹⁰⁰⁻²¹³ had to be determined de novo, as the ¹H, ¹⁵N-HSCQ spectrum of this construct differed significantly from the resonances of the FKBP domain in both LpMIP⁷⁷⁻²¹³ and full-length LpMIP. The assignment for LpMIP¹⁰⁰⁻²¹³ has been deposited in the BMRB under accession number 51861.


Fig. S3: Fast backbone dynamics of *LpMIP* constructs in the absence and presence of JK095. ¹⁵N, $\{^{1}H\}$ -*NOE* and R_{1}/R_{2} relaxation measurements of full-length *LpMIP* (A, B), *LpMIP*⁷⁷⁻²¹³ (C, D) and *LpMIP*¹⁰⁰⁻²¹³ (E, F) without (grey circles) or in the presence of a five-fold molar excess of JK095 (colored circles).


Fig. S4: PELDOR/DEER data analysis for *LpMIP* **K80C with the inhibitors JK095 and JK236.** (A, D, G) The primary data (black) overlaid with the intermolecular (background) contribution from deep neural network analysis (blue) and Tikhonov regularization (grey). (B, E, H) The background corrected form factors overlaid with the fits. (C, F, I) The corresponding distance distributions.


Fig. S5: PELDOR/DEER data analysis for *LpMIP S208C* **with the inhibitors JK095 and JK236.** The 4-pulse and 5-pulse PELDOR data were globally analysed using the Python based DeerLab program. (A, D, G) The 4-pulse PELDOR data (grey) overlaid with the fit (blue). (B, E, H) The 5-pulse PELDOR data (grey) overlaid with the fit (blue); (C, F, I) The corresponding distance distributions with 50%- (shaded in dark blue) and 95% confidence intervals (shaded in light blue).


Fig. S6 – **SAXS data collection of** *Lp***MIP.** (A) X-ray scattering profiles of *Lp*MIP apo (black), *Lp*MIP + JK095 (brown), and *Lp*MIP + JK236 (grey) plotted as the logarithm of the scattering intensity $\log(I(q))$ (a.u., arbitrary units) versus the momentum transfer, q. (B) Guinier-plots ($\ln I(q)$ vs q^2 , plotted to low-angle: $qR_g < 1.3$) of *Lp*MIP apo (black), *Lp*MIP + JK095 (brown), and *Lp*MIP + JK236 (grey). (C) Dimensionless Kratky-plots for *Lp*MIP apo (black), *Lp*MIP + JK095 (brown), and *Lp*MIP + JK236 (grey) plotted as $(qR_g)^2I(q)I(0)^{-1}$ vs. qR_g .

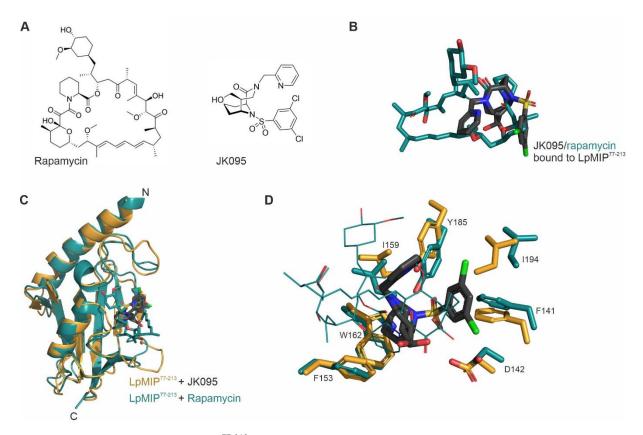

Fig. S7: Purification and structural integrity of *Legionella pneumophila* MIP deletion constructs. (**A**) Schematic of LpMIP constructs used in this study. (**B**) SDS-PAGE of full-length LpMIP (residues 1-213) and N-terminally truncated versions lacking the dimerization domain and half the stalk helix (LpMIP⁷⁷⁻²¹³) or the dimerization domain and the entire stalk helix (LpMIP¹⁰⁰⁻²¹³). (**C**) Analytical size exclusion chromatography of the three LpMIP constructs. Note that LpMIP¹⁻²¹³ forms a dimer, while the two shorter constructs are monomeric. (**D**) Circular dichroism spectra of the three LpMIP constructs displays the expected secondary structure content.

Fig. S8: $LpMIP^{100-213}$ **crystallizes as a dimer.** In the crystal structure of $LpMIP^{100-213}$ (PDB: 8BK6), the two protomers (grey, dark teal) in the unit cell align with an RMSD of 0.327 Å. The JK095 binding site cannot be defined clearly, instead there is density throughout the interface (light grey mesh). Of note, NMR spectroscopically derived rotation correlation times indicate that in solution, $LpMIP^{100-213}$ is monomeric, irrespective whether JK095 is present or not (see main text for details).

Fig. S9: Comparison of *Trypanosoma cruzi* and *Legionalla pneumophila* MIP in complex with a [4.3.1]-aza-bicyclic sulfonamide inhibitor. (A) Overlay of the X-ray structures of TcMIP (blue) and LpMIP⁷⁷⁻²¹³ (grey) in complex with JK236 (PDB-IDs: 8BJE, 8BK4). Both structures align with a backbone RMSD of 0.51 Å. (B) Zoom into the binding site of TcMIP and LpMIP bound to JK236. Between JK236-bound TcMIP and LpMIP⁷⁷⁻²¹³, the inhibitor binding stance is nearly identical and only a single rotamer of the hydroxymethyl group was observed. Likewise, the inhibitor's pyridine-linker methyl-group was solvent exposed in both proteins.

Fig. S10: Comparison of *LpMIP*⁷⁷⁻²¹³ bound to rapamycin or a bicyclic sulfonamide inhibitor. (A) Structures of rapamycin and JK095. (**B**) Overlay of rapamycin (dark teal) and JK095 (grey) bound to *LpMIP*⁷⁷⁻²¹³ (PDB IDs: 2VCD, 8BK5). (**C**) Overlay of *LpMIP*⁷⁷⁻²¹³ in complex with rapamycin (dark teal) or JK095 (orange, ligand shown in dark grey). (**D**) Zoom into the ligand binding site, residues important for ligand contacts are shown as sticks. For better visualization, rapamycin is shown with thin lines.

References for Supporting Information

- 1. Jeschke, G. *et al.* DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. *Appl. Magn. Reson.* **30**, 473–498 (2006).
- Horstmann, M. et al. Letter to the Editor: 1H, 13C, 15N backbone and sidechain resonance assignment of Mip(77–213) the PPIase domain of the Legionella pneumophila Mip protein. J Biomol NMR 31, 77–78 (2005).
- 3. Horstmann, M. *et al.* Domain Motions of the Mip Protein from Legionella pneumophila,. *Biochemistry* **45**, 12303–12311 (2006).
- Fábregas Ibáñez, L., Jeschke, G. & Stoll, S. DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data. *Magnetic Resonance* 1, 209– 224 (2020).