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Lytic forms of programmed cell death, like necroptosis, are characterised

by cell rupture and the release of cellular contents, often provoking inflam-

matory responses. In the recent years, necroptosis has been shown to play

important roles in human diseases like cancer, infections and ischaemia/

reperfusion injury. Coordinated interactions between RIPK1, RIPK3 and

MLKL lead to the formation of a dedicated death complex called the

necrosome that triggers MLKL-mediated membrane rupture and necrop-

totic cell death. Necroptotic cell death is tightly controlled by post-

translational modifications, among which especially phosphorylation has

been characterised in great detail. Although selective ubiquitination is rela-

tively well-explored in the early initiation stages of necroptosis, the mecha-

nisms and functional consequences of RIPK3 and MLKL ubiquitination

for necrosome function and necroptosis are only starting to emerge. This

review provides an overview on how site-specific ubiquitination of RIPK3

and MLKL regulates, fine-tunes and reverses the execution of necroptotic

cell death.

Introduction

Mammalian cells are able to actively decide between sur-

vival and cell death and have the option to undergo a

rich palette of different forms of programmed cell death

(PCD). An adequate balancing of the fundamental deci-

sions about life and death underlies organismal develop-

ment and tissue homeostasis, in which some cells are

instructed to die, while others are prompted to divide

and proliferate [1–3]. Disturbances in activating specific

PCD pathways underlie a wide variety of pathophysio-

logical conditions, ranging from tumour formation to

inflammation, infection and acute kidney injury and

organ damage caused by ischaemia-reperfusion [4–6].

At present, around 15 distinct modes of PCD have

been identified, some of which are based on strictly

dedicated signalling pathways, while others use shared

signalling networks [7,8]. Necroptosis, a prototypic

form of lytic PCD, occurs upon membrane permeabi-

lization that depends on the pseudokinase Mixed Line-

age Kinase Domain-Like Protein (MLKL) [8].

Necroptotic cell death decisions rely on the type of

stimulus and cellular context and are controlled by

numerous checkpoints, fail-break mechanisms and reg-

ulatory systems [8]. Among these are proteolytic and

non-proteolytic forms of ubiquitination, in which pro-

teins are post-translationally modified with ubiquitin
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(Ub). Although the role of ubiquitination is reason-

ably well-understood in the regulation of upstream

necroptosis signalling, for example, RIPK1 ubiquitina-

tion, it still remains unclear how end-point modifica-

tions of necroptosis executioner proteins, such as

RIPK3 and MLKL, control or counteract necroptosis.

Therefore, this review provides an overview on recent

advances in site-specific ubiquitination and deubiquiti-

nation in the control of the final execution of necrop-

tosis.

Ubiquitination and regulation by
deubiquitinating enzymes

Ubiquitination refers to the covalent modification of sub-

strate proteins with the small and conserved Ub protein

[9]. Ub is highly conserved and widely expressed; it modi-

fies the vast majority of cellular proteins during their life-

time in eukaryotes and is therefore an important factor

in many biological processes. Failure to adequately bal-

ance ubiquitination is a major cause of a wide variety of

human diseases, like genetic disorders, neurodegenerative

diseases, infections and inflammation [10].

Substrates can be conjugated with one or multiple sin-

gle Ub molecules, or with polymeric chains of different

lengths. Ub chains are generated through linkages via

the internal lysine (K) residues (K6, K11, K27, K29,

K33, K48 and K63) or via the N-terminal methionine-1

(linear, head-to-tail or M1) [9,11,12] of Ub. Apart from

homotypic chain types, consisting of a single type of

linkage, also heterotypic, branched and hybrid chains,

for example, K11/K48 and M1/K63, have been identified

[13–15]. Ubiquitination critically controls the stability

and abundance of substrates by mediating their recogni-

tion and degradation by the 26S proteasome [9]. Apart

from substrate degradation, Ub also serves non-

degradative functions, including DNA damage responses

and signal transduction [12]. In general, mammalian

ubiquitination occurs through the concerted activation

of Ub-activating (E1s), -conjugating (E2s) and -ligating

(E3s) enzymes that use adenosine triphosphate (ATP)

for Ub activation and modification of substrates [16–18].
Besides ubiquitination, around 10 different Ub-like

protein (UbL) families have been discovered, like inter-

feron (IFN)-stimulated gene 15 (ISG15), small Ub-

related modifier (SUMO) and the neural precursor cell

expressed, developmentally downregulated 8 (NEDD8),

each equipped with dedicated E1-E2-E3-like conjuga-

tion machineries and specific biological functions [19].

Extensive cross-modifications of Ub, UbL and addi-

tional post-translational modifications have been

reported [20], for example, the Really Interesting New

Gene (RING)-type E3 Ub ligase RNF4 mediates poly-

ubiquitination of SUMO chains [21] and hybrid Ub-

NEDD8 chains protect against proteotoxicity [22].

Ub signals are recognised by proteins that contain

Ub-binding domains (UBDs) [23], such as Ub-

associated (UBA), Ub-interacting motifs (UIM), zinc

finger (ZnF) and the UBAN [Ub-binding domain in

A20-binding inhibitor of Nuclear Factor-jB (NF-jB)
activation (ABIN and NF-jB essential modulator

(NEMO)]. Up till now, around 25 subfamilies have

been identified that display specificity and selectivity in

Ub-binding targets [20,23].

Ubiquitination is counterbalanced and Ub signals

are dynamically removed from substrates and hydrol-

ysed by the action of deubiquitinating enzymes

(DUBs) [24,25]. Around 100 DUBs have so far been

identified that, based on their domain structure, can be

classified as Ub-specific proteases (USP), ovarian

tumour (OTU), Machado-Josephin domain (MJD),

Ub C-terminal hydrolase (UCH), motif interacting

with Ub-containing novel DUB family (MINDY), the

ZnF and UFSP domain protein (ZUFSP)-related

DUBs and the metalloproteases belonging to the Jab1/

Mov34/Mpr1 Pad1 N-terminal+ (MPN+) (JAMM)

domain family [24,26–30]. Deubiquitination is medi-

ated through at least one Ub-binding site (S1 site) at

the surface of DUBs that recognise residues within the

C-terminus and the I36 and I44 hydrophobic patches

on the surface of Ub [25,31]. DUBs may be non-

specific, substrate-specific, either alone or incorporated

in macromolecular complexes, such as the proteasome

[32] or the Spt-Ada-Gcn5 acetyltransferase (SAGA)

complex [33,34], or may act specifically for certain

chain-types, like specific peptidase 30 (USP30) and

cylindromatosis (CYLD), that allow direct recognition

of Ub chains and targeted degradation of selective Ub

chain types [25]. Additional determinants that define

DUB activity are distal end processing (exo-DUB) or

in-chain processing (endo-DUB), Ub chain length as

well as the removal of mono-Ub modifications or com-

plete chains en bloc [25].

Apart from removing Ub modifications from sub-

strates, DUBs also serve important additional roles in

maintaining cellular Ub homeostasis. Ub is expressed

either as inactive precursors, in which single Ub mole-

cules are fused to the ribosomal proteins L40 and S27A

(UBA52 and UBA80, respectively), or as extended Ub

polymers (UBB and UBC). Importantly, DUBs are

also required to cleave these precursors and to control

the pool of free Ub that can subsequently be used for

conjugation by the E1-E2-E3 machinery [25,35–37].
Besides enzymes that remove Ub modification, UbL

modifications are also dynamically regulated by spe-

cialised DUB-like enzymes, such as the NEDD8-specific
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proteases [38] or the SUMO-specific proteases [39] that

catalyse the removal of NEDDylation or SUMOyla-

tion, respectively. DUBs distinguish Ub and UbL modi-

fications with high accuracy due to the recognition of

unique hydrophobic surfaces on Ub and selective bind-

ing of residues flanking inter-Ub bonds [9,40].

DUB function is strictly controlled by modulating

cellular localisation, abundance and enzymatic activity.

For example, phosphorylation, as well as ubiquitina-

tion itself, regulates the cellular localisation of specific

DUBs [38,39,41–43], while the abundance of other

DUBs is induced by transcriptional regulation, as is

the case for A20 and CYLD by NF-jB activation [44–
46]. DUBs with higher abundance often serve house-

keeping functions, like proteasome- and Ub-mediated

protein degradation [24,25], while others are associated

with specific organelles or cellular structures, such as

the nucleus, nucleolus or endoplasmic reticulum (ER)

and mitochondria or microtubuli [25]

DUB activity is also controlled by phosphorylation,

such as inhibitor of nuclear factor kappa B kinase sub-

unit beta (IKKb)-mediated phosphorylation of the Ub

carboxyl-terminal hydrolase CYLD that positively reg-

ulates its activity [47]. Furthermore, additional modifi-

cations, like SUMOylation and ubiquitination, are

also regulating DUB activity and function [48,49].

Post-translational modifications of Ub itself may also

add additional layers of regulation to DUB function,

as is the case for USP30 that exhibits lesser activity

towards phosphorylated K6-linked poly-Ub compared

with unmodified Ub [50,51].

The extensive regulation of DUB functions ensures

important roles of DUBs in organising DNA damage

responses [52,53], cell cycle [34], inflammation [54,55]

and cell death pathways [40,56]. Failure to regulate the

function of DUBs often leads to dramatic physiologi-

cal consequences and underlies many diseases, such as

several neurological disorders [57–59]. In addition, sev-

eral DUBs are well-known oncogenes or tumour sup-

pressors and are intimately linked to tumour

formation and progression [60–63].

The role of ubiquitination in PCD
signalling

Cell death occurs in many ways and E3- and DUB-

mediated ubiquitination is an important regulator in

the control of cellular signalling and the final execu-

tion of several PCD pathways. In contrast to passive

cell death (necrosis), which is mostly a consequence

of exposure to toxic substances, temperature or pres-

sure, active or programmed forms of cell death rely

on genetically encoded signal transduction pathways.

Some forms of PCD are essential for organismal

development and tissue homeostasis, while others

play clearly defined roles in human diseases and are

often dysregulated in inflammation and oncogenesis

[64]. For example, loss-of-function mutations in key

PCD effector proteins contribute to chemotherapy

resistance, tumour formation and inflammatory

responses in the tumour microenvironment (TME)

[64–67].
At present, around 15 different types of PCD have

been identified, ranging from apoptosis to necroptosis

and ferroptosis [7]. Many modes of PCD are charac-

terised by shared and overlapping signalling pathways,

specific morphological features and different functional

effects on the cellular microenvironment, for example,

lytic or non-lytic forms with direct implications for

local inflammation (necro-inflammation) [4,64]. While

some forms of PCD are initiated by strictly dedicated

and highly specialised signalling networks, others share

similar signalling pathways. Although biochemically,

morphologically and functionally relatively distinct,

necroptosis largely shares NF-jB signalling with (ex-

trinsic) apoptosis. As described in further detail later,

ubiquitination and DUBs serve as important molecular

switches and checkpoints in the control of Tumour

Necrosis Factor a (TNFa)-mediated activation of TNF

Receptor 1 (TNFR1)-induced NF-jB signalling and

the balance between apoptotic and necroptotic cell

death. Apart from TNFa-mediated activation, NF-KB

can also be initiated via activation of TNFR2, Inter-

leukin (IL)-1b, nucleotide-binding oligomerisation

domain-containing protein 2 (NOD2) or toll-like recep-

tors (TLRs), with important functions in the control of

PCD [68–70]. In addition, ubiquitination and deubiqui-

tination tightly control downstream necroptotic events

as well and are critically involved in the timed initiation

and fine-tuning of necroptosis execution [71].

NF-jB signalling typically relies on a well-

orchestrated interplay of degradative and non-

proteolytic forms of ubiquitination and DUB action.

NF-KB comprises a family of transcription factors, like

RelA/p65, that control the expression of numerous

genes involved in pro-inflammatory responses, prolifer-

ation, migration, invasion and angiogenesis [68–70,72].
NF-KB is essential for cell fate control and normal cel-

lular homeostasis and controls cellular responses on

exposure to many different stimuli, like cytokines,

toxic substances or pathogenic microorganisms [68].

Dysregulation of NF-KB underlies cancer, inflamma-

tion and autoimmune diseases as well as a defective

development of immune responses [73]. For example,

constitutive NF-KB activation is a common feature in

a wide variety of tumours, including haematological
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malignancies like leukaemia, myelomas and B-cell lym-

phomas [74,75].

Activation of TNFR1 initiates the recruitment of

the adaptor protein TNFR-associated death domain

protein (TRADD) and receptor-interacting serine/

threonine-protein kinase 1 (RIPK1) to the TNFR1

death domain (DD), through homotypic DD interac-

tions [76]. TRADD serves as platform that further

recruits the E3 ligase TNF-associated factor 2

(TRAF2) and the cellular Inhibitor of Apoptosis

(IAP) protein 1 and 2 (cIAP1/2), creating the pro-

survival TRADD- and RIPK1-dependent complex I

[77–79]. cIAP1/2 modifies several targets in complex I

with K11-, K48- and K63-linked poly-Ub [80–84], that
further recruits the linear Ub-specific E3 ligase chain

assembly complex (LUBAC). LUBAC is composed of

the central catalytic subunit Ran-binding protein 2

(RanBP2)-type and C3H4-type ZnF containing 1

(HOIP), RING finger protein 31 (RNF31, HOIL) and

SH3 and multiple ankyrin repeat domains protein 3

(SHANK)-associated RH domain interactor (SHAR-

PIN) [85–88]. LUBAC modifies several targets, includ-

ing K63-linked poly-Ub, TNFR1, RIPK1 and

TRADD in complex I [13,89–94] and together with

cIAP1/2-mediated ubiquitination recruits and activates

several kinase complexes, like inhibitor of NF-KB

kinase subunits a and b (NEMO/IKKa/IKKb), trans-
forming growth factor-b-activated kinase 1 and

MAP3K7-binding protein 1/2 (TAB1/2)/TGF-b-
activated kinase 1 (TAK1) and TAK1-binding proteins

1 and 2 (TAB2/3) [68,69,95]. TAK1 phosphorylates

IKKb, leading to IKKb-mediated phosphorylation

and K48-dependent ubiquitination and proteasomal

degradation of NF-KB inhibitor a (IKBa) [68–70,95].
IKBa normally retains NF-KB transcription factors

within the cytosol and IKKa/b-mediated degradation

of IKBa allows the nuclear translocation of NF-KB

and activation of pro-survival gene expression [68,95].

In addition, cIAP1/2 negatively regulates non-

canonical NF-KB signalling by controlling the consti-

tutive ubiquitination and proteasomal degradation of

NF-KB-inducing kinase (NIK) [96–102]. Importantly,

upon chemical inhibition or loss of cIAP1/2 expres-

sion, NIK is stabilised and induces the processing of

p100 to p52 and translocation of the NF-KB p52-RelB

dimers to the nucleus to activate non-canonical NF-KB

signalling [98,101,102].

Apoptosis

Apoptosis plays important roles in cellular homeostasis

and is involved in the clearance of damaged and trans-

formed cells, T-cell development and embryogenesis

[1,103]. Central effectors in apoptosis are cysteine-

aspartic proteases, or caspases, that are activated by

autocatalytic cleavage from inactive precursors (pro-

caspases) and mediate substrate cleavage and cell death

[104–106]. Apoptosis is characterised by caspase-

mediated condensation of chromatin, nuclear DNA frag-

mentation, cell shrinkage, membrane blebbing, loss of

adhesion and exposure of phosphatidylserine (PS)

[1,103].

Generally, two distinct modes of apoptosis can be dis-

tinguished. Intrinsic apoptosis is triggered by internal

cell stress and involves pro- and anti-apoptotic B-cell

lymphoma 2 (BCL-2) proteins that mediate mitochon-

drial outer membrane permeabilisation (MOMP),

release of cytochrome c and second mitochondria-

derived activator of caspases (Smac/DIABLO) [107],

leading to the formation of the caspase-9-containing

apoptosome, that activates caspase-3 and -7 [108,109]

(Fig. 1).

In contrast, extrinsic apoptosis is mediated by extracel-

lular cytokines, like CD95 ligand (TNFR superfamily

member 6; Fas), TNFR superfamily member 10C

(TRAIL) and TNFa [76]. Activation of these receptors

induce the assembly of the death-inducing signalling com-

plex (DISC) [110–112] that activates caspase-8, leading to

caspase-3 and -7 activation and cleavage of the BH3-

interacting domain death agonist (BID), that promotes

cytochrome c release and apoptotic cell death [113,114].

Upon TNFa-mediated TNFR1 activation, the cytoplas-

mic TRADD-dependent complex IIa, composed of

TRADD, Fas-associated death domain protein (FADD),

FLICE (FADD-like IL-1b-converting enzyme)-inhibitory

protein (FLIP) and caspase-8 or a RIPK1-dependent

complex IIb, consisting of RIPK1, FADD, caspase-8,

FLIP and RIPK3 (ripoptosome) are formed [115–117].
CYLD is an important DUB that mediates RIPK1 deu-

biquitination to facilitate formation of the TRADD-

dependent complex IIa that induces caspase-8 activation

and apoptosis [118]. Loss of the cIAP1/2 E3 ligases, for

example, by SMAC mimetic-induced K48-linked

autoubiquitination followed by proteasomal degradation,

leads to the formation of the RIPK1-dependent complex

IIb, or ripoptosome, that triggers RIPK1-dependent

apoptosis [119]. Finally, when caspase-8 is inactivated

or inhibited by broad-range caspase inhibitors, like n-ben-

zyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethylketone

(zVAD.fmk), quinoline-Val-Asp-difluorophenoxymethyl

ketone (Q-VD-OPh) and Emricasan (IDN-6556), RIPK1

and RIPK3 cooperate to form the necrosome complex

that allows MLKL activation and necroptosis induction

(discussed later) [120,121] (Fig. 1).

In the regulation of cell fate, RIPK1 acts as central

post-translational hub and can be modified with poly-
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mono Ub as well as M1-, K11-, K48- and K63-linked

Ub chains [80,82,84,86,93,122–124], and perhaps addi-

tional linkages as well [125], often in a complex inter-

play with phosphorylation [126]. Several DUBs, like

CYLD, A20 and potentially OTULIN, have been

reported to be involved in the removal of Ub signals

from RIPK1 and to determine cell fate decisions.

However, many details of RIPK1 deubiquitination and

implications for cell survival still remain unclear.

Apart from M1, K11, K48 and K63 Ub chains, addi-

tional chain linkages are also involved in survival and

cell death signalling. For example, the E3 ligase tripar-

tite motif-containing protein 13 (TRIM13) promotes

TRAF6 modification with K29-linked Ub chains to reg-

ulate NF-KB signalling upon activation of TLR2 [127].

In addition, TRAF6 and TRAF7 mediate K29 ubiquiti-

nation and degradation of the anti-apoptotic protein

cFLIPL [128]. Furthermore, the NF-KB adaptor NEMO

becomes modified with K27 Ub chains that inhibit NF-

KB in dendritic cells, and TRIM23-mediated K27 ubiq-

uitination of NEMO mediates antiviral inflammatory

responses as well [129].

Finally, ubiquitination controls not only regulatory

signalling towards apoptosis, but also the abundance

and function of apoptotic effector proteins (for an

overview see [130]). Generally, apoptotic cells and cel-

lular debris associated with apoptosis are taken up

by neighbouring cells, among them macrophages,

thereby often suppressing local immunological

responses [64–67].

Fig. 1. Shared and unique features of apoptosis and necroptosis. Activation of death receptors (DRs), like TNFR1 by TNFa, triggers pro-survival

NF-jB signalling or, depending on RIPK1 ubiquitination and the caspase-8 (CASP8) status, either RIPK3- and MLKL-induced necroptosis, or

extrinsic apoptosis. CASP8 activates caspase-3 and -7 (CASP3/7) and cleaves BID into truncated BID (tBID) that induces loss of mitochondrial

membrane potential via BAK/BAX oligomerisation and the formation of pro-apoptotic BAK/BAX pores. These pores enable the release of

mitochondrial proteins, like cytochrome c (CytC), that together with Apaf-1 and caspase-9 (CASP9) forms the apoptosome complex. The

apoptosome activates the effector caspases CASP3/7 to induce apoptosis. In addition, Smac/DIABLO is also released from mitochondria and

inhibits X-linked IAP (XIAP) to further activate CASP9 and CASP3/7. In contrast, the intrinsic apoptosis pathway is regulated by the balance

between apoptosis-initiating BH3-only proteins and pro-survival BCL-2 proteins, controlled by cellular damage, oxidative stress, oncogenes and

growth factor deprivation. Ub, ubiquitin, P, phosphorylation.
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Necroptosis

In contrast to apoptosis, necroptosis, or programmed

necrosis, is morphologically characterised by cell swel-

ling and membrane rupture. By doing so, this lytic

form of PCD generally releases damage-associated

molecular patterns (DAMPs), like high mobility group

box 1 (HMGB1), free DNA, RNA and cytokines, such

as TNFa and IFNs [64–67], that further provoke

inflammatory responses in the cellular microenviron-

ment (necro-inflammation) [131,132].

Necroptosis can be triggered via activation of

TNFRs, TRAILRs, CD95, TLRs, NOD2-like recep-

tors (NLRs), as well as via recognition of double-

stranded RNA or receptor activation by IFNs [2–
4,112,119,133]. Necroptosis plays important roles in a

wide variety of human diseases, including inflamma-

tory bowel diseases, ischaemia-reperfusion injury, can-

cer and infections [132]. A common pathway of

necroptosis activation relies on activation of the NF-

jB signalling cascade but, in contrast to extrinsic

apoptosis, requires inhibition, or loss, of the cIAP1/2

E3 ligase activity to prevent RIPK1 ubiquitination and

NF-KB-mediated pro-survival signalling and loss of

caspase-8 activity [133] (Fig. 2).

RIPK1 contains an N-terminal kinase domain

(KD), a RIP homotypic interaction motif (RHIM) and

a C-terminal DD [134,135]. RIPK1 provides a molecu-

lar scaffold that promotes pro-survival functions

through DD-mediated interactions of RIPK1 with

TNFR1, TRADD and FADD [78,136]. In contrast,

the catalytic activity of RIPK1 mediates apoptotic and

necroptotic functions [137] and is further fine-tuned by

post-translational modifications and RHIM-based

interactions with other RHIM-domain containing pro-

teins, like Toll/IL-1 receptor domain-containing adap-

tor inducing IFN-b (TRIF), Z-DNA Binding Protein 1

(ZBP1) and RIPK3 [138–140]. RIPK3 contains an N-

terminal kinase domain and a RHIM motif, flanked

by unstructured C-terminal regions [4,133,141–144].
Activated RIPK1, together with RIPK3, initiates auto-

and trans-phosphorylation steps [145–147] that induce

the formation of a heteroamyloid complex, the necro-

some [148], of which especially RIPK3 oligomerisation

is the driving force in necroptosis [148–154]. In

humans, phosphorylation of RIPK3 at S227 recruits

MLKL into the necrosome, which becomes phospho-

rylated by RIPK3 at residues T357 and S358

[142,151,155], although RIPK3 can also pre-assemble

with MLKL [142,156]. In mice, phosphorylation of

MLKL S345 is essential for necroptosis progression,

illustrating important species-specific differences in the

regulation of necroptosis at the level of RIPK3 and

MLKL activation [157–159]. MLKL contains a four-

helix bundle (4HB), an auto-inhibitory brace region

(BR) and a C-terminal pseudokinase domain (PsKD).

RIPK3-mediated MLKL phosphorylation inducing

conformational changes in MLKL that expose the

MLKL 4HB domain [156,159,160] thereby inducing

the formation of necroptosis-proficient MLKL oligo-

mers which are recruited to biological membranes,

including the plasma membrane [157,159–162], the ER

[163], mitochondria [163] and autophagic compart-

ments, like lysosomes [163–166]. Although activated

MLKL is located on several cellular membranes,

MLKL accumulation at the plasma membrane medi-

ates the release of cellular contents [132,133,161,163]

and most likely leads to necroptotic cell death

[133,151,155,157,163,167] (Fig. 2). How and in what

kind of higher-order structures MLKL mediates mem-

brane permeabilisation still remains unclear and MLKL

trimers [160,168] and tetramers [159], but also hexamers

[163], octamers [169] and higher-order polymers

[150,170,171] have been described. In addition, the

exact mechanisms of how MLKL mediates membrane

disruption remain unclear. Positively charged amino

acids in the human MLKL 4HB interact with phos-

phatidylinositol phosphates (PIPs) and regulate MLKL

binding to biological membranes [162,167,172]. In addi-

tion, murine MLKL residues in the a3 and a4 helix as

well as residues in the first brace helix are important

for necroptosis [173]. Moreover, highly phosphorylated

forms of inositol phosphate 6 (IP6), generated by the

IP kinases inositol polyphosphate multikinase (IPMK),

inositol-tetrakisphosphate 1-kinase (ITPK1) [174] and

inositol pentakisphosphate 2-kinase (IPPK) [175] bind

to the MLKL 4HB and displace the BR to regulate

necroptosis. The appearance of MLKL hotspots at the

plasma membrane correlates with necroptotic mem-

brane damage [170], increased Ca2+ influx and accumu-

lation of PS at the outer leaflet of the plasma

membrane [170,176,177].

Intriguingly, accumulation of activated MLKL at the

plasma membrane is not the endpoint of necroptotic

cell death and several cell-type specific biological mech-

anisms have been identified that can resuscitate necrop-

totic near-death experiences (Fig. 2). For example,

membrane accumulation and necroptotic cell death

downstream of activated MLKL can be inhibited by

monobodies that specifically bind the 4HB of human

MLKL [170]. Phosphorylated MLKL associates with

the lipid raft-resided proteins flotillin-1 and -2 at the

plasma membrane and becomes endocytosed and

degraded by lysosomes in a cell-line specific manner

[164]. Interestingly, plasma membrane-accumulated

MLKL is also controlled by endosomal sorting
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complexes required for transport (ESCRT-), ALIX-,

syntenin- and Rab27-mediated exocytosis that promote

the shedding of MLKL in extracellular necroptotic vesi-

cles, or exosomes, and balance membrane repair

[164,177–180]. By doing so, both endocytic and exocytic

measures balance the execution of necroptosis at the

later stages of MLKL activation (Fig. 2).

Regulation of necroptosis by selective
(de)ubiquitination of RIPK3 and MLKL

Not only the initiation, but also the execution of

necroptosis, as well as the cellular sensitivity towards

necroptotic cell death, is controlled in a fine-tuned

manner by selective ubiquitination. Apart from Ub

modification of RIPK1, site-specific ubiquitination of

RIPK3 and MLKL is emerging as regulatory mecha-

nism of necroptosis execution.

RIPK3 is extensively modified with different types of

poly-Ub linkages on multiple residues scattered

throughout the protein (Fig. 3A,B). Site-selective

RIPK3 ubiquitination affects the RIPK1-RIPK3 inter-

action, the kinase activity of RIPK3 and necrosome for-

mation. RIPK3 ubiquitination occurs in species-, cell

type- and stimulus-specific manners, with different func-

tional consequences related to degradative and non-

degradative forms of ubiquitination as well as positive

and negative effects on necroptosis (Fig. 3A,B). For

example, the E3 ligase Pellino 1 (PELI1) mediates K48-

based ubiquitination, proteasomal degradation and

necroptosis inhibition of human RIPK3 via residue

K363, in a manner dependent on the kinase activity

[181]. Of note, RIPK3 K363 is not present in murine

RIPK3. Interestingly, PELI1 also modifies RIPK1 on

K115, a residue that is conserved between mouse and

human, with K63-linked poly-Ub, depending on the

RIPK1 kinase activity and promotes the RIPK1-RIPK3

interaction to facilitate necroptosis [182] (Fig. 3A,B).

In addition, Carboxyl terminus of Hsp70-interacting

protein (CHIP)-mediated K48-linked ubiquitination of

Fig. 2. Regulation of necroptosis execution. Necroptosis typically occurs upon activation of RIPK1, that involves a complex interplay

between phosphorylation and ubiquitination. Activated RIPK1 interacts with RIPK3 through the RHIM domain, triggering auto- and

transphosphorylation, leading to necrosome formation. Activated RIPK3 recruits and phosphorylates MLKL after which MLKL translocates to

cellular membranes to mediate necroptosis. The initiation of necroptosis can be counteracted by exocytosis and endocytosis of

activated MLKL in a context- and cell type-specific manner. A potential role of site-specific ubiquitination in these events remains unknown.

P, phosphorylation.
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human RIPK3 at K55, K89, K363 and K501 has been

described, of which modification of the conserved K55

and K363 are the main effector lysine residues that

control RIPK3 degradation by the lysosomal pathway

[183]. Loss of CHIP expression stabilises RIPK3 and

sensitises cells towards necroptotic cell death. The reg-

ulatory roles of proteasomal degradation in the control

of RIPK3 expression and necroptosis have been fur-

ther confirmed by the observation that the proteasome

inhibitors MG132 and bortezomib induce accumula-

tion of K48-linked poly-Ub chains at the conserved

K264 in murine RIPK3 [184]. Functionally, blockage

of proteasome-mediated RIPK3 degradation triggered

the increased appearance of RIPK3 oligomerisation,

MLKL activation and necroptosis independently of

caspase-8 [184].

Apart from K48 Ub chains, the hybrid E3 ligase

and DUB A20 affect necroptosis by removing K63-

linked poly-Ub chains from murine RIPK3 at the con-

served K5 and thereby preventing the RIPK1-RIPK3

interaction and necroptosis [56]. In addition, the E3

ligase Parkin suppresses necrosome formation by pro-

moting K33-linked poly-ubiquitination of human

RIPK3 at residues K197, K302 and K364, which are

not conserved in murine RIPK3 [185].

The tripartite motif E3 ligase TRIM25 interacts also

with RIPK3, but not with RIPK1 or MLKL, and

mediates ubiquitination of human RIPK3 at K501

[186]. Although loss of TRIM25 expression sensitised

human and murine cell lines towards necroptosis, due

to TRIM25- and K48-linked poly-Ub-mediated degra-

dation of RIPK3 by the 26S proteasome, RIPK3

Fig. 3. The role of site-specific

ubiquitination of RIPK3 and MLKL in

necroptosis. (A) Ub modifications on RIPK3

and MLKL. Schematic representation of the

domain structures of human RIPK3 (Uniprot

ID: Q9Y572) and MLKL (Uniprot ID:

Q8NB16), with identified Ub acceptor sites.

Ub: ubiquitin, RHIM: RIP homotypic

interaction motif, 4HB: four-helix bundle,

PsKD, pseudokinase domain.

Representations are not drawn on scale. (B)

(Potential) Roles of ubiquitination in the

control of necroptosis. Ubiquitination and

deubiquitination of RIPK1 are important

determinants for initiating necroptotic

signalling (1). Ubiquitination also controls

RIPK3 and MLKL stability and proteasomal/

lysosomal degradation of un-complexed

RIPK3 and MLKL, thereby regulating their

availability for necroptosis (2). In addition,

ubiquitination regulates early and late stage

RIPK1 and RIPK3 functions as well as the

formation of the necrosome (3). Finally, site-

specific ubiquitination of MLKL influences

MLKL oligomerisation, membrane

localisation and membrane rupture, either

by directly influencing MLKL function or

affecting additional, yet unidentified, UBD-

containing effector proteins (4). Of note,

species- and cell type-specific differences in

necroptotic signalling and spatio-temporal

control of necroptosis might be influenced

in different ways by ubiquitination as well.

Ub, ubiquitin, P, phosphorylation.
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K501 is not conserved in mice and the main RIPK3

acceptor lysine in mice remains unknown. Interest-

ingly, TRIM25 has been demonstrated to mediate K63

poly-Ub of RIG-I and IFIH1 [187,188], while

NLRP12 inhibits TRIM25 ubiquitination [189], sug-

gesting potential roles of the regulation of RIPK3

expression in viral responses and innate immunity. In

line with this, a viral inducer of RIPK3 degradation

(vIRD) was identified in orthopoxviruses that bridge

RIPK3 to the SKP1-Cullin1-F-box E3 ligase complex

to mediate RIPK3 degradation and subsequently inhi-

bition of necroptosis [190]. Infection of mice with

vIRD-deficient viruses reduced inflammation, viral

replication and mortality, linking RIPK3 stability and

necroptosis induction to inflammation and virus-host

evolution.

The RIPK3 ubiquitination status is regulated not

only by E3 ligases, but also by DUBs. Recently,

USP22, a DUB which is part of the ATXN7L3,

ATXN7 and ENY2 DUB module of the SAGA com-

plex [34,191,192] has been reported to regulate RIPK3

ubiquitination and necroptotic cell death [193]. Three

novel, USP22- and TBZ-regulated human RIPK3

ubiquitination sites, K42, K351 and K518, have been

identified, of which only K351 is not conserved in

mice. The RIPK3 lysine-to-arginine (K-to-R) muta-

tions K518R and K42R/K351R/K518R increased

necroptotic cell death altering the RIPK3 ubiquitina-

tion status, necrosome formation and MLKL phos-

phorylation [193].

In contrast to the widespread ubiquitination of

RIPK1 and RIPK3, Ub modification of MLKL and its

relevance for necroptotic cell death remains largely

unexplored. MLKL is modified with Ub during necrop-

tosis [194–196] and the molecular mechanisms and cel-

lular consequences of MLKL ubiquitination are

starting to emerge (Fig. 3A,B). A proteome-scale yeast

two-hybrid screen to identify protein-protein interac-

tions in the human liver identified an interaction of

MLKL with the E3 ligase RAD18 [197]. Interestingly, a

modification of MLKL with mono-Ub has very recently

been discovered that likely occurs after MLKL

oligomerisation at membranes and might target MLKL

for proteasomal and lysosomal degradation [198]. Four

Ub sites have been identified in murine MLKL (K9,

K51, K69 and K77), located in the 4HB, and although

mutation of these lysine residues did not affect necrop-

tosis, genetic fusion of the pan-DUB USP21 with subse-

quent loss of MLKL ubiquitination sensitised cells

towards necroptosis, even in the absence of necroptotic

stimuli [198]. Although the E3 ligase responsible for

MLKL mono-ubiquitination remains to be identified,

RAD18 is well-known to modify PCNA with mono-Ub

at stalled replication forks in DNA damage tolerance

[199,200]. The potential involvement of RAD18 in

MLKL ubiquitination remains unclear.

In addition, MLKL has been found to be modified

by K63-linked poly-Ub prior to membrane accumula-

tion in a manner requiring RIPK3-induced phosphory-

lation. Four endogenously ubiquitinated MLKL lysine

residues (K51, K77, K172 and K219) have been identi-

fied in necroptotic murine dermal fibroblasts (MDFs)

with K219 boosting necroptosis. Human MLKL

K230, that corresponds with murine MLKL residue

K219, has been reported as ubiquitination site as well

[201], whereas the MLKL K230Q mutation has also

been identified in colon carcinoma patients [159].

MLKLK219R/K219R bone-marrow derived macrophages

(BMDMs) and MDFs are resistant to necroptosis

induced by various stimuli, while MLKLK219R/K219R

mice are protected against necroptotic tissue injury

induced by the combination of the IAP antagonist

ASTX660 and the caspase inhibitor Emricasan [196].

Concluding remarks

The first glimpses of selective RIPK3 and MLKL ubiq-

uitination already suggest intriguing and crucial regula-

tory roles for necroptosis execution. Multiple forms of

degradative and non-degradative Ub modifications

have been detected in RIPK3 and MLKL, with differ-

ent effects on necroptosis. However, many fundamental

questions remain unanswered. For example, why are so

many different residues on RIPK3 and MLKL modi-

fied with so many different types of Ub modifications?

Can multiple Ub modifications occur on the same

RIPK3 or MLKL molecules or are there specific

RIPK3 and MLKL sub-populations that are selectively

modified? How is RIPK3 and MLKL ubiquitination

regulated in time and cellular space? Which E3 ligases

and DUBs are involved in modifying RIPK3 and

MLKL with ubiquitination? What kind of signalling

functions do non-degradative chains on RIPK3 and

MLKL have and is there any interplay with other UbL

systems? Do Ub chains attract UBD proteins and are

these connected to existing or novel cellular functions

of RIPK3 and MLKL, perhaps even unrelated to cell

death? Unravelling necroptosis signalling in greater

detail will likely answer these questions and provide a

deeper understanding of selective ubiquitination in

necroptosis and its role in human diseases.
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