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PREDICTION ERROR IN THE WORD N1 2

Abstract14

Do early effects of predictability in visual word recognition reflect prediction error?15

Electrophysiological research investigating word processing has demonstrated predictability16

effects in the N1, or first negative component of the event-related potential (ERP).17

However, findings regarding the magnitude of effects and potential interactions of18

predictability with lexical variables have been inconsistent. Moreover, past studies have19

typically used categorical designs with relatively small samples and relied on by-participant20

analyses. Nevertheless, reports have generally shown that predicted words elicit less21

negative-going (i.e., lower amplitude) N1s, a pattern consistent with a simple predictive22

coding account. In our preregistered study, we tested this account via the interaction23

between prediction magnitude and certainty. A picture-word verification paradigm was24

implemented in which pictures were followed by tightly matched picture-congruent or25

picture-incongruent written nouns. The predictability of target (picture-congruent) nouns26

was manipulated continuously based on norms of association between a picture and its27

name. ERPs from 68 participants revealed a pattern of effects opposite to that expected28

under a simple predictive coding framework.29

Keywords: N1, N170, Prediction, Predictive Coding, Word Recognition30
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PREDICTION ERROR IN THE WORD N1 3

Can Prediction Error Explain Predictability Effects on the N1 during31

Picture-Word Verification?32

Introduction33

Readers and listeners routinely use context to predict upcoming semantic and34

lexical content. Evidence for such predictive processes arises from both behavioural and35

neural correlates of language comprehension (Kuperberg & Jaeger, 2016; Luke &36

Christianson, 2016; Pickering & Gambi, 2018; Rayner et al., 2011; Van Petten & Luka,37

2012), with demonstrated facilitation for the processing of predicted information38

(Federmeier, 2007; Pickering & Garrod, 2013).39

A key question in this area is, how early in the processing stream are predictive40

processes able to modulate visual word recognition? One early stage in visual word41

recognition which may be sensitive to prediction involves the processing of visual word42

forms. A word form can be defined as the visual pattern of a single written word,43

comprised of smaller orthographic components (e.g., letters, letter bigrams, graphemes,44

strokes). While some electrophysiological evidence suggests sensitivity to orthographic45

variables in an earlier posterior P1 component peaking at around 100 ms after word46

presentation (e.g., Nobre et al., 1994; Segalowitz & Zheng, 2009; Sereno et al., 1998), the47

event-related potential (ERP) component most identified as an index of orthographic48

processing across different scripts is the first posterior negative-going wave, the N1 (Bentin49

et al., 1999; Lin et al., 2011; Ling et al., 2019; Maurer, Brandeis, et al., 2005; Maurer et al.,50

2008; Pleisch et al., 2019). The N1 is also sometimes referred to as the N170 due to the51

timing of its peak in some studies, at around 170 ms. This typically occipitotemporal,52

negative-going component shows reliable differences between orthographic and53

non-orthographic stimuli (e.g., words elicit more negative-going N1s than false-font strings54

do; Appelbaum et al., 2009; Bentin et al., 1999; Eberhard-Moscicka et al., 2016; Maurer,55

Brandeis, et al., 2005; Maurer, Brem, et al., 2005; Pleisch et al., 2019; Zhao et al., 2014).56

Accounts of orthographic processing often stress the importance of top-down57
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PREDICTION ERROR IN THE WORD N1 4

predictions, and their interactions with bottom-up sensory input. For instance, the58

interactive account of the ventral occipito-temporal cortex (vOT), a region which is a likely59

generator of the N1 ERP component (Allison et al., 1994; Brem et al., 2009; Cohen et al.,60

2000; Dale et al., 2000; Maurer, Brem, et al., 2005; Nobre et al., 1994; Taha et al., 2013;61

Woolnough et al., 2021), suggests that sensitivity to orthography arises through the62

synthesis of bottom-up visuospatial information and top-down predictions informed by63

prior experience and knowledge (Price & Devlin, 2011). Such accounts exist within a64

predictive coding framework, according to which the brain utilises higher-level information65

to build, maintain, and continually update a generative model (or hierarchical series of66

generative models) of sensory information (Friston, 2010; Rao & Ballard, 1999; Rauss67

et al., 2011). A key feature of such accounts is that higher-level predictions cause68

lower-level features to be preactivated, and that the difference between the bottom-up69

sensory input and top-down predictions corresponds to a prediction error, which the brain70

attempts to minimise (Clark, 2013; Walsh et al., 2020).71

In a predictive coding framework, prediction errors are determined by two key72

attributes: the magnitude of the error, and the precision or certainty of the error (Feldman73

& Friston, 2010; Kanai et al., 2015). Feldman and Friston (2010) likened the error signal to74

the calculation of the t statistic, where magnitude of an observation (i.e., mean, or mean75

difference) is divided by the inverse of its precision (i.e., standard error). Prediction errors,76

weighted by precision in this manner, can be conceptualised as representing the degree of77

“surprise” associated with a set of observations under a specified hypothesis.78

Firstly, the magnitude of the error should determine the size of the error signal, with79

larger prediction errors resulting from greater mismatch between descending (top-down)80

predictions and ascending (bottom-up) sensory input. In neutral (non-biasing) contexts, a81

predictive coding account that includes learning of statistical regularities over extended82

periods would assert that error signals should vary as a function of stimulus regularity.83

More specifically, a predictive coding account of orthographic processing would expect error84
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PREDICTION ERROR IN THE WORD N1 5

signals to vary as a function of the size of the difference between a general orthographic85

prior (e.g., an average word form) and a presented word form. Some recent findings appear86

to support the notion that the N1 reflects a neutral-context error signal, with greater87

distance from an orthographic prior eliciting greater amplitude (Gagl et al., 2020), while88

the profile of the N1’s sensitivity to word form regularity over experience matches that89

expected under a predictive coding account (Huang et al., 2022; Zhao et al., 2019).90

Secondly, the precision or certainty of the prediction error should influence the91

response, with more certain descending predictions, and more certain ascending sensory92

input, eliciting greater error signals when predictions are violated. In neutral contexts,93

predictions, and certainty about them, may not be expected to vary much from a94

context-general prior. Indeed, it is easier to envisage the expected role of prediction95

precision for orthographic processing in biasing contexts, where precision is more variable96

than it is in neutral contexts. A predictive coding model of orthographic processing that97

allows for online, context-informed updating of orthographic priors would expect that the98

predictability of word forms should influence error responses, with more predictable99

contexts eliciting stronger error signals when word forms are prediction-incongruent, and100

weaker error signals when prediction-congruent. For instance, a sentential context that101

elicits a clear and reliable prediction for an upcoming word (i.e., that has high Cloze102

probability) should show a larger prediction error difference, between succeeding103

prediction-congruent and -incongruent word forms, than should a more neutral sentential104

context that is consistent with a large number of low-probability candidate words.105

In this paper, we examine whether a simple predictive coding account that includes106

online updating of context-biased predictions and expectations can explain neural activity,107

captured in the N1, elicited by a word in context. Specifically, we examine whether108

sensitivity to prediction error in the N1 is dependent on contextual predictability, as a109

predictive coding account would expect. We hypothesise that according to a simple110

predictive coding model, the N1 should be larger for prediction-incongruent than111
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PREDICTION ERROR IN THE WORD N1 6

prediction-congruent word forms, in a manner dependent on the level of predictability, with112

greater differences at higher levels of predictability. Studies examining the effect of113

predictability on the N1’s amplitude and latency have principally manipulated readers’114

expectations for specific visual word forms. Here, expectations are typically biased via115

linguistic contexts, where an initial text varies in how predictable it makes an upcoming116

target word form. In an alternative approach, bias is achieved via non-linguistic cues, such117

as cross-modal contexts and manipulation of task demands.118

Biasing Word Form Predictions via Linguistic Cues119

Readers’ predictions of upcoming word forms are generally manipulated via120

linguistic cues. In these studies, a target word’s predictability is typically determined in a121

pre-experiment norming study, operationalised via Cloze probability (i.e., the probability122

that the target is correctly guessed given its preceding context). Such a measure of word123

form predictability aligns closely with the concept of prediction precision or certainty in a124

predictive coding account.125

Recent ERP investigations that have manipulated sentential context have also often126

varied word frequency, with the assumption that an interaction of predictability with word127

frequency would provide evidence for top-down influences on lexical access. Such studies128

have demonstrated effects in the N1, although the pattern of effects observed across studies129

is varied (for a review, see Sereno et al., 2019). While effects often extend to earlier and130

later components, we limit our discussion to those involving predictability within the N1131

window. Except where noted, electrodes analysed for the N1 were located132

occipitotemporally, and sentences were displayed word-by-word, using different word133

presentation rates or stimulus onset asynchronies (SOAs). It is important to note that the134

designated ‘N1’ time window differs across studies, as illustrated in Figure 1. Our review of135

studies utilising sentential contexts is presented chronologically. Sereno et al. (2003), using136

a 450 ms SOA, manipulated predictability (low, high) and word frequency (low, high), and137

found an interaction of these factors in the N1 (132-192 ms) across posterior and anterior138
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PREDICTION ERROR IN THE WORD N1 7

sites (comprising their first factor in a spatial factor analysis). Their predictability effect139

demonstrated less negative amplitudes at higher predictability, but only for low (and not140

high) frequency words. In a similar study, but using a 700 ms SOA, Penolazzi et al. (2007)141

manipulated predictability (low, high), word frequency (low, high), and, additionally, word142

length (monosyllabic words with an average of 4.08 letters, vs. disyllabic words with an143

average of 6.25 letters). In a 170-190 ms window, they found that high predictability144

conditions showed a more negative-going amplitude over centroparietal sites than low145

predictability conditions, but, unlike Sereno et al. (2003), found no interaction with word146

frequency. In addition, no significant interaction was observed with length. In a German147

study, Dambacher et al. (2012) varied predictability (low, high) and word frequency (low,148

high) in three experiments using different SOAs. At the shortest SOA of 280 ms, but not149

at SOAs of 490 or 700 ms, they found an interaction of predictability and frequency in the150

early portion of the N1 (135-155 ms). For high predictable words only, there was a151

frequency effect, with low frequency words showing a more negative-going amplitude than152

high frequency words over posterior sites. In a later N1 window, from 190 to 260 ms,153

Dambacher et al. reported an effect of frequency, but no interaction with (or main effect154

of) predictability. In a study measuring both eye movements and EEG during normal155

reading, Kretzschmar et al. (2015) manipulated items’ predictability (low, high) and156

frequency (low, high). Testing only bilateral centroparietal electrodes, their fixation-related157

potentials (FRPs) demonstrated a main effect of predictability in a 150-200 ms window,158

with high predictable words showing a more positive-going amplitude than low predictable159

words, but without any interaction with frequency. Finally, Sereno et al. (2019)160

manipulated both predictability (low, high) and frequency (low, high). While the first,161

context sentence was presented in full, the second sentence containing the target word was162

presented word-by-word, with a short, 300 ms SOA. Sereno et al. (2019) found a163

predictability-frequency interaction in the N1 (160-200 ms). A predictability effect emerged164

only for high frequency words. Amplitudes to low predictable words, in comparison to those165
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PREDICTION ERROR IN THE WORD N1 8

to high predictable words, were more positive-going over left-hemisphere sites, but more166

negative-going over right-hemisphere sites. In sum, while these studies using sentential167

contexts have reported predictability effects in the N1 window, it is clear that the timing168

and topography of effects, as well as interactions with frequency, have been inconsistent.169

Figure 1
N1 windows in predictability studies.

Segalowitz and Zheng (2009)

Wang and Maurer (2020)

Wang and Maurer (2017)

Strijkers et al. (2015)

Chen et al. (2015)

Chen et al. (2013)

Bentin et al. (1999)

Kim and Gilley (2013)

Kim and Lai (2012)

Sereno et al. (2019)

Kretzschmar et al. (2015)

Dambacher et al. (2012)

Penolazzi et al. (2007)

Sereno et al. (2003)

120 140 160 180 200 220 240 260
Latency (ms)

Some studies analysed two N1 windows (e.g., onset and offset). N1 windows reported to
show a predictability effect are highlighted in black, while N1 windows that failed to show
a predictability effect are highlighted in grey. Studies are listed in order of their mention in
our review. For reference, the blue region displays the N1 period that we pre-registered.

Instead of manipulating error precision or certainty as the above studies have by170

varying predictability, A. Kim and Lai (2012) manipulated the orthographic error171

magnitude. Using a 550 ms SOA, the target word or alternative orthographic versions of it172

were presented in contexts that were acutely predictive of the target (MCloze=.90).173

Contexts were followed by the predictable target word (e.g., cake), an orthographically174

similar pseudoword (e.g., ceke), an orthographically dissimilar pseudoword (e.g., tont), or a175

consonant-string nonword (e.g., srdt). Consistent with an orthographic explanation for176

prediction effects in the N1, relative to targets, N1 (175-205 ms) amplitude was more177
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PREDICTION ERROR IN THE WORD N1 9

negative-going for orthographically dissimilar pseudowords and nonwords (i.e., when178

orthographic prediction error magnitude was greater). Orthographically similar179

pseudowords, while significantly different from all other conditions in the earlier P1,180

elicited N1 components more similar in amplitude to target words.181

Another linguistic cue that has been manipulated is grammaticality. A. E. Kim and182

Gilley (2013) demonstrated effects of syntactic anomaly on the N1. Sentences leading to a183

strong prediction for the determiner, the, were presented unchanged or with the determiner184

replaced with an agrammatic preposition (e.g., The thief was caught by the/for police). The185

left-lateralised occipitotemporal N1 (170-270 ms) was more negative-going with the186

syntactically anomalous preposition than with the determiner. As the authors point out,187

the N1 effect is unlikely to be evidence for sensitivity to syntax per se. Rather, given188

evidence of the N1’s sensitivity to orthographic features, it is probably more accurate to189

posit that the high predictability of the determiner’s orthographic features elicited a less190

negative-going N1 when these predictions were confirmed.191

A. E. Kim and Gilley (2013) simultaneous manipulation of orthography and syntax192

highlights a prevalent issue within the literature: namely, altering the visual word form193

necessitates alteration of the semantics, syntax, and/or plausibility of the sentence or wider194

discourse. Another limitation shared by studies using word-by-word presentation of195

sentences is that ERPs elicited by the target word can become difficult to disentangle from196

ERPs elicited by preceding or succeeding words, especially if the SOA is short or197

unjittered. While fast presentation times of sentential contexts and targets are useful for198

demonstrating that early modulation by predictive processes extends to realistic reading199

rates, their application may not be necessary to demonstrate that such modulation can200

occur. It is also of note that in a recent review of ERP studies using sentence- and201

discourse-level contexts to examine early neural correlates of word form prediction,202

Nieuwland (2019) concluded that findings thus far have been weak, inconsistent, and in203

need of more replication attempts. Moreover, most studies to date were not pre-registered204
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PREDICTION ERROR IN THE WORD N1 10

and often used inappropriate analysis models that did not account for measurement205

variability, raising questions about false positives in that literature.206

Biasing Word Forms via Non-Linguistic Cues207

Effects of prediction and expectation may alternatively be investigated using208

paradigms that modulate non-linguistic features of tasks and stimuli. In one approach,209

identical or suitably matched stimuli are presented under different task instructions (e.g.,210

Compton et al., 1991). For instance, participants are more likely to predict and show211

sensitivity to lexical variables if given a word-nonword task than one which requires212

judgements on a non-lexical dimension, such as font colour. In a French study, Bentin et al.213

(1999) presented words, pseudowords, and consonant strings in a series of different tasks214

requiring participants to mentally count the word targets (oddballs) among word and215

nonword distractors. The tasks included lexical decision (word vs. nonword), semantic216

categorisation (i.e., abstract vs. concrete words or nonwords), and rhyme judgement (i.e.,217

rhymes vs. does not rhyme with "-ail"). Although plots of ERPs and topographies suggest218

a trend towards a task-stimulus-hemisphere interaction on the N1 (140-200 ms), with the219

difference between orthographically plausible and implausible stimuli being larger in the220

tasks requiring lexical or semantic processing than in the rhyme task, the effect of task was221

not tested as a factor, such that any task-stimulus interaction is very difficult to interpret.222

Chen et al. (2013) compared ERP responses to target words in lexical decision and223

semantic categorisation (i.e., word vs. person’s name) tasks to a condition with minimal224

task demands, namely silent word reading. They identified an effect of task on the N1225

(144-176 ms), with a more negative-going N1 for words observed in lexical decision and226

semantic categorisation than in silent word reading. In a similar study, Chen et al. (2015)227

further suggested that the degree to which variables like frequency and imageability affect228

activity in the N1 (144-176 ms) was task-dependent. For instance, Chen et al. (2015)229

showed that increases in word frequency were associated with decreases in source-space230

activity during the N1, and that, crucially, this effect was larger in lexical decision than in231

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2023. ; https://doi.org/10.1101/2023.08.07.552265doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.07.552265
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREDICTION ERROR IN THE WORD N1 11

semantic decision (i.e., word vs. person’s name) or silent word reading. In a French study232

examining word frequency effects across different go/no-go tasks, Strijkers et al. (2015)233

similarly reported that ERP amplitude in a period including the N1 (150-250 ms) was234

more sensitive to word frequency (with more negative amplitudes for higher frequency235

words) during a semantic categorisation (i.e., animal vs. non-animal) than a colour236

categorisation (i.e., blue vs. non-blue) task. Wang and Maurer (2017) applied a similar237

paradigm to examine how task modulated the effect of script familiarity on the N1238

(125-253 ms) ERP. Chinese-reading participants were presented on each trial with either239

familiar Chinese characters or stroke-matched, unfamiliar Korean symbols, in three tasks:240

repetition detection, colour categorisation, and delayed naming (where participants would241

respond “symbol” to Korean characters). Wang and Maurer (2017) showed that the N1’s242

sensitivity to character familiarity (with more negative amplitudes for unfamiliar Korean243

symbols than familiar Chinese characters) was greater in delayed naming and colour244

categorisation tasks than in a repetition detection task. This effect was specifically245

observed in the N1’s offset period of 172-253 ms, where onsets and offsets are defined246

respectively as the periods in the component’s time window which precede and succeed its247

peak. That the effect of character familiarity differed between colour categorisation and248

repetition detection is not straightforward to interpret, as these tasks may be expected to249

require similarly shallow processing of orthography. Nevertheless, the difference between250

delayed naming (which necessitates orthographic processing) and repetition detection251

(which does not) is suggestive of an effect of task demands on sensitivity to orthographic252

familiarity. Related non-sentential approaches to biasing participants’ word form253

predictions include an attempt to alter expectations for different types of script. Wang and254

Maurer (2020) found that native Mandarin speakers’ N1 sensitivity (onset 127-162 ms;255

offset 162-212 ms) to character familiarity, where unfamiliar Korean characters elicit256

greater N1 offset amplitudes than familiar Chinese characters, was greater when257

participants were led to expect Chinese characters.258

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2023. ; https://doi.org/10.1101/2023.08.07.552265doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.07.552265
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREDICTION ERROR IN THE WORD N1 12

In addition to task manipulations, non-sentential semantic contexts, leading to259

predictions for specific words or categories of words, have also been used to investigate260

predictive processing. In an ERP study, Segalowitz and Zheng (2009) presented words and261

pseudowords for lexical decisions in two conditions: words were either drawn from a single262

category (e.g., animals), or from five different semantic categories. Segalowitz and Zheng263

reported an interaction between stimulus type (word vs. pseudoword) and expectation (one264

vs. five categories) in the N1 (158-178 ms), wherein expectation affected N1 amplitudes for265

words but not for pseudowords. Their finding suggested that the N1 was sensitive to the266

greater predictive strength of a single semantic category. Using a similar paradigm, Hauk267

et al. (2012) compared ERPs in lexical (word vs. pseudoword) and semantic (living vs.268

non-living) decision tasks, showing that effects of category relevance were observed in the269

semantic decision task as early as 166 ms (data were analysed continuously, with no N1270

window definition). This finding suggests, consistent with the findings of Segalowitz and271

Zheng, an early sensitivity to category relevance during the N1 which, given the N1’s272

robust sensitivity to orthography, is likely to reflect an influence of semantic-level273

predictions on orthographic processing.274

In another attempt to modulate top-down expectancy without linguistic context,275

Dikker and Pylkkanen (2011) implemented a picture-noun phrase verification task. An276

image of a target object alone or an image of objects related to the target object was277

followed by a written noun phrase (article + noun) denoting the target object. They278

manipulated congruency and predictability. For congruent trials, the noun phrase referred279

to a food/drink or animal (e.g., the apple or the monkey) that matched the prior image of280

the object presented on its own or ‘contained’ in a stylized image (e.g., a grocery bag or281

Noah’s Ark, respectively). In the incongruent condition, the noun phrase did not match282

the prior image (single object or collection of objects). Predictability was considered high283

when the target object appeared on its own, and was considered low when the target object284

could be inferred to exist within the stylized images. Example conditions for the noun285
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phrase, the apple, are determined by its preceding image as follows: an apple (congruent,286

high predictability), a banana (incongruent, high predictability), a bag of groceries287

(congruent, low predictability), or Noah’s Ark (incongruent, low predictability). Noun288

phrases (40 food/drink, 40 animal) were repeated four times across conditions. Although289

Dikker and Pylkkanen did not examine effects in the MEG equivalent of an N1 window,290

they did find effects of congruency only in the high predictive condition (i.e., the apple291

preceded by an apple vs. a banana image) in temporal windows preceding (∼100 ms) and292

succeeding (250-400 ms) the N1. Their stimuli were designed to minimise orthographic293

similarity between congruent and incongruent pairs of noun phrases (i.e., maximising the294

magnitude of orthographic errors), suggesting that the authors anticipated that any early295

sensory effect of predictability may be related to orthographic processing. With only 7296

participants, the study likely lacked the sample size necessary to identify such an effect in297

an N1-like window. Indeed, in a related paradigm using fMRI, Kherif et al. (2011)298

presented picture and word prime-target pairs under four conditions: conceptual identity,299

semantically related, shared initial phoneme, and unrelated. In addition, the prime was300

either masked (after 33 ms) or not. The stimulus types of prime-target pairs were either301

matching (word-word with varying typography, or picture-picture with different views) or302

non-matching (word-picture or picture-word). In the unmasked conceptual identity303

condition, Kherif et al. showed priming effects in the left vOT (likely generator for the N1)304

for matching and non-matching stimulus types. Specifically, they showed that targets305

elicited reduced left vOT activity if preceded by congruent primes, regardless of whether306

the stimulus types were of matching or non-matching stimulus types. Assuming that307

picture identity is not directly processed in the left vOT, these findings suggest that308

higher-level processes link the identity and content of pictures to orthographic309

representations of word forms. However, Kherif et al.’s use of fMRI prevents interpretation310

of the timing of such effects - its coarse temporal resolution means that mapping of picture311

content to representations in vOT could occur so late as to be irrelevant to initial312
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orthographic word recognition processes.313

One advantage of paradigms like picture-word verification tasks is that the314

researcher can control and manipulate variables like predictability and specificity of the315

picture-word relation. This was demonstrated in the design used by Dikker and Pylkkanen316

(2011), where the picture preceding the target word unambiguously biased participants’317

expectations to a single word form (with an image of one clearly identifiable object), or318

instead biased a set of semantically related possible word forms (with an image inducing319

multiple object candidates). Such a manipulation is comparable to the use of Cloze320

probability in sentential contexts or single versus multiple category priming, and similarly321

aligns with the concept of error precision or certainty.322

The Present Study323

In the present study, we adapted the picture-word verification paradigm to examine324

the role of Predictability in prediction effects on the N1. We presented participants with325

PICTURE-word pairs that were congruent (e.g., ONION-onion) or incongruent (e.g.,326

ONION-torch). Predictability of the congruent word was a continuous variable, dependent327

upon how often the noun is reliably used in naming the picture (Figure 2). By328

manipulating both Congruency and Predictability of word forms, we were able to examine329

whether the effect of Congruency on the N1 (sensitivity to prediction error) is contingent330

on Predictability (certainty or precision of prediction errors), in the manner expected331

according to a simple predictive coding account of the N1 in which observed N1 magnitude332

indexes prediction error.333

We hypothesised, consistent with such a predictive coding account, that that there334

would be a Congruency-Predictability interaction in which at the highest levels of335

Predictability, N1s elicited by picture-incongruent words would be more negative-going336

than those elicited by picture-congruent words, while at the lowest level of Predictability337

picture-congruent and -incongruent words should elicit N1s of similar magnitude. We338

anticipated three patterns of results that would have been consistent with this hypothesis:339
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Figure 2
Illustration of the experimental stimuli.
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PICTURE-word pairs were either congruent (e.g., NAPKIN-napkin) or incongruent (e.g.,
NAPKIN-weasel), while predictability of congruent picture-word pairs varied continuously.
Ten example picture-congruent and -incongruent pairs are presented, with their predictabil-
ity corresponding to the histogram bin they appear above.

(1) higher levels of Predictability lead to a reduction in N1 magnitude only for340

picture-congruent words, with no such effect for picture-incongruent words (Figure 3a);341

(2) higher levels of Predictability lead to an increase in N1 magnitude only for342

picture-incongruent words, with no such effect for picture-congruent words (Figure 3b); or343

(3) higher levels of Predictability lead to both a reduction in N1 magnitude for344

picture-congruent words and an increase in N1 magnitude for picture-incongruent words345

(Figure 3c).346

In our power analysis, we focused on the first of these possible patterns of results,347

but importantly, the Congruency-Predictability interaction term that we pre-registered to348

test our hypothesis (https://osf.io/jk3r4) would capture any of these patterns, as the349

interaction term’s coefficient would be in the same direction in all cases.350

In our analysis, we found a pattern of effects counter to our pre-registered hypothesis351

(Figure 3d), with a Congruency-Predictability interaction in the opposite direction. An352

exploratory Bayesian analysis revealed that the observed interaction was 59.98 times more353

likely than our hypothesis. Based on these findings, we argue our results suggest that such354

a simplistic predictive coding account is, at least on its own, insufficient to explain the355
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pattern of prediction effects observed in the N1 during a picture-word verification task.356

Figure 3
A comparison between the predicted (a,b,c) and observed (d) patterns of results.
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The predicted pattern of results was based on a predictive coding interpretation of the
N1, according to which the magnitude of the N1 should be smaller for picture-congruent
words relative to picture-incongruent words, and to a greater extent as Predictability
increases. The observed pattern of results depicts the fixed effect predictions from the
pre-registered linear mixed-effects model, with dashed lines depicting 95% bootstrapped
prediction intervals (estimated from 5,000 bootstrap samples).

This study was pre-registered at https://osf.io/jk3r4 and the reported methodology357

and planned analysis conform to that specified in the pre-registration, except for two358

changes: an accidental change to timing of stimuli, and a lowering of the EEG high-pass359

filter cut-off. We explain these changes in the relevant sections, and demonstrate in360

Supplementary Materials F that the change to the high-pass filter cut-off had minimal361

effect on the results and conclusions. All data and code are available at362

https://osf.io/389ce/.363

Method364

The experiment included two separate tasks: The principal picture-word task was365

preceded by a localiser task to account for between-participant variability in the N1’s366

timing and location. The details of stimulus selection and control as well as presentation367
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timing are provided in the following sections. For clarity, we first introduce the overall368

Congruency-Predictability design of the picture-word task. In this task, pictures of single369

objects are presented, followed by a noun, and participants decide whether the noun370

corresponds to the object. The level of Predictability of the noun was determined from371

norms of possible terms used to label a set of individual pictures (Brodeur et al., 2014).372

The most frequent, modal name agreement varied across pictures. Thus, level of noun373

Predictability was continuous and varied between 7% and 100%. The Congruency of the374

noun was either congruent (matching the modal name of the picture) or incongruent (a375

semantically unrelated noun matched across several lexical variables).376

Materials: Picture-Word Task377

A total of 400 words were selected with LexOPS (Taylor et al., 2020), a package for378

the generation and control of lexical variables in the R programming language (R Core379

Team, 2021). There were 200 words per Congruency condition, with one congruent and one380

incongruent word per image. A list of the full set of stimuli is available in Supplementary381

Materials A. The experimental stimuli are summarised in Figure 4. First, stimuli were382

filtered according to norms collected by Brysbaert et al. (2019), such that at least 90% of383

participants knew each word. In addition, stimuli were filtered such that all words were384

nouns according to the dominant part of speech data from SUBTLEX-UK (van Heuven385

et al., 2014), and had a mean concreteness rating above 4 (on a Likert scale from 1, least386

concrete, to 5, most concrete) according to Brysbaert et al. (2014). Images were taken from387

the Bank of Online Standardised Stimuli (BOSS) norms (Brodeur et al., 2014), a large388

database of images with normed statistics, including percentage of name agreement, which,389

critically, we used as a measure of Predictability. Words were identified as possible390

picture-congruent words if they were listed as the most frequent (i.e., modal) name for any391

image in the BOSS norms, and were identified as possible picture-incongruent words if they392

were not.393

Picture-congruent and -incongruent words were matched item-wise across five394
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Figure 4
Summary of the picture-word stimuli.
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Each panel depicts how a single variable was controlled. (a) Probability densities for
variables which were matched item-wise between picture-congruent and picture-incongruent
conditions, and distribution-wise between counterbalanced stimulus Sets 1 (in yellow) and 2
(in blue). Points representing pairs of words which are matched item-wise are joined by lines.
Points’ positions are jittered slightly along the x-axis for visibility. (b) Probability densities
for two variables matched only in a distribution-wise manner between the counterbalanced
stimulus sets: Cosine PPMI (Positive Pointwise Mutual Information) Semantic Similarity
from SWOW (Small World of Words; De Deyne et al., 2019), and modal name agreement
from the BOSS norms. These variables cannot be matched between Congruency conditions
because only a single value describes each matched congruent-incongruent word pair.

lexical variables, with specific tolerance ranges, as follows: (1) word length (number of395

characters), exactly; (2) concreteness according to Brysbaert et al. (2014), within ±.25; (3)396
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Zipf frequency (a logarithmic scale of word frequency) according to SUBTLEX-UK, within397

±.125; (4) character bigram probability (calculated from SUBTLEX-UK), within ±.0025;398

and (5) OLD20 (the average Orthographic Levenshtein Distance of the 20 closest399

neighbours to a given word; Yarkoni et al., 2008) calculated from the LexOPS inbuilt400

dataset, within ±.75. To ensure that picture-incongruent words were not inadvertent401

possible descriptors for images, the cosine positive pointwise mutual information (PPMI)402

measure of associative semantic similarity calculated from the Small World of Words403

(SWOW) word association norms (De Deyne et al., 2019) was minimised to be ≤.01404

between each image’s matched picture-congruent and picture-incongruent words. To ensure405

picture-incongruent words did not share orthographic features with their respective406

picture-congruent words, orthographic Levenshtein distance between matched items was407

maximised. As items were also matched in word length, this meant all matched pairs of408

words had a Levenshtein distance equal to their number of characters. The variable used to409

index the Predictability of picture-congruent words was percentage of modal name410

agreement, which was sampled pseudo-randomly (picture-congruent words were not411

selected if no incongruent match could be identified fitting the constraints specified above)412

from the BOSS norms, and varied continuously in the generated stimuli from 7 to 100%.413

As the participants were recruited in the United Kingdom, possible congruent and414

incongruent picture-word pairs were excluded if we identified the words as less frequent in415

British English (e.g., sidewalk) or if they were modal names for images that the Canadian416

participants of the BOSS norms are likely to have been more able to name or distinguish417

(e.g., buffalo, bison). In addition, picture-word pairs were excluded if words were identified418

as shortened versions of nouns (e.g., limo, chimp) or alternate names for the same object419

(e.g., motorbike, motorcycle). Candidate picture-incongruent words were additionally420

excluded if images were not representative of the images in the BOSS (e.g., waiter or421

church, as there were no other images of people or entire buildings in the BOSS), or if they422

were unimageable despite their high concreteness value (e.g., item). Plural words (e.g.,423
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sticks) were excluded, as most images in the BOSS have modal names that are singular.424

Finally, four images with modal names nut, trumpet, spinach, and tuba were excluded, as425

we judged these names to be incorrect descriptions of their images.426

To avoid repetition effects, each image was presented once, with participants427

viewing either the associated picture-congruent or picture-incongruent word. This was428

counterbalanced by splitting the stimuli pseudo-randomly into two equally sized stimulus429

sets, referred to as Set 1 and Set 2. Each participant was presented with only one of these430

stimulus sets. Pictures followed by congruent words in Set 1 were followed by incongruent431

words in Set 2, and vice versa. To minimise any systematic difference between the432

counterbalanced groups, the split of stimuli was selected to maximise the empirical433

distributional overlap (Pastore & Calcagnì, 2019) between the two stimulus sets in relevant434

variables. Specifically, the stimulus sets were selected from 50,000 random splits to435

maximise the overlap between the distributions of the following seven variables: (1)436

percentage of modal name agreement according to the BOSS norms; (2) cosine PPMI437

semantic similarity according to the SWOW; (3, 4) Zipf word frequency and character438

bigram probability according to SUBTLEX-UK; (5) word concreteness (Brysbaert et al.,439

2014); (6) word length; and (7) OLD20. Variables that were also matched item-wise440

between the conditions were matched distribution-wise separately within each Congruency441

condition. This ensured there were minimal systematic differences in distributions between442

conditions or stimulus sets.443

To generate stimuli for practice trials, 20 matched pairs of picture-congruent and444

-incongruent words were generated using the same pipeline as above, except that word445

frequency, word concreteness, and character bigram probability were not matched446

item-wise. The practice stimuli were generated from images and words not used in the447

experimental stimuli. The same practice trials were presented to all participants.448

Before embarking on the electrophysiological picture-word experiment, we first ran a449

proof-of-concept behavioural experiment using a different stimulus set generated from a450
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very similar pipeline. We anticipated that increased Predictability should cause faster451

response time (RT) for congruent trials and have either no effect or a minimal effect on452

performance for incongruent trials. The results from this behavioural validation are453

presented in Supplementary Materials B. In short, we observed the pattern of results454

consistent with our expectations, with Predictability leading to faster RTs for congruent455

trials, but having almost no effect on incongruent trials.456

Materials: Localiser Task457

The precise location of the N1, and timing of its peak amplitude, is known to vary458

across studies and among participants. As such, we did not specify a common N1 electrode459

or timepoint shared among all participants before data collection. Instead, we employed a460

localiser task to identify, within an appropriate region and time period of interest, the461

electrode and timepoint at which each participant’s maximal sensitivity to orthography462

emerges (i.e., more extreme amplitudes for words than false-font stimuli). This data could463

then be used to extract N1 amplitudes in the picture-word task, while accounting for464

variability among participants in timing and topography of orthographic processes.465

For the localiser task, three categories of stimuli were presented for 100 trials each466

(Figure 5). These consisted of matched triplets of words (Courier New font), false-font467

strings (BACS2serif font), and phase-shuffled words. The comparison between words and468

false-font strings is a standard measure of N1 sensitivity to orthography, with previous469

evidence suggesting a more robust difference than exists between nonwords and words470

(Brem et al., 2018; Maurer, Brandeis, et al., 2005; Pleisch et al., 2019). However,471

phase-shuffled words were employed as an alternative comparison for exploratory analyses,472

with equal spatial-frequency amplitude and permuted spatial-frequency phase. Similar473

phase-shuffled word stimuli have shown robust differences to word forms in fMRI474

investigations of vOT activity (Rauschecker et al., 2012; Rodrigues et al., 2019; White475

et al., 2019; Yeatman et al., 2013).476

To generate the localiser stimuli, a large list of suitable words (N=27,332) was477
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Figure 5
Ten example stimuli for each stimulus type in the localiser task.

Each row represents a matched triplet of word, false-font string, and phase-shuffled word
stimuli. The phase-shuffled word images were generated uniquely for each trial.

identified by filtering the word prevalence norms of Brysbaert et al. (2019) to only contain478

words known by at least 90% of participants and which were not selected for the main479

experiment. A representative sample (N=100) of this list was generated by maximising480

distributional overlap (Pastore & Calcagnì, 2019), between the sample and the full list of481

candidates, on 13 variables where observations were available: (1) word prevalence482

(Brysbaert et al., 2019); (2) length (number of characters); (3) word frequency in Zipf in483

SUBTLEX-UK (van Heuven et al., 2014); (4) part of speech according to SUBTLEX-UK;484

(5) character bigram probability calculated from SUBTLEX-UK; (6) OLD20 (Yarkoni485

et al., 2008) calculated from the LexOPS dataset (Taylor et al., 2020); (7) concreteness486

(Brysbaert et al., 2014); (8) age of acquisition (Kuperman et al., 2012); (9, 10) average487

lexical decision response time (RT) and accuracy according to the British Lexicon Project488

(Keuleers et al., 2012); and (11, 12, 13) the emotion ratings of valence, arousal, and489

dominance (Warriner et al., 2013). Similarity in the categorical variable of part of speech490

was maximised with dummy-coded variables (0 or 1 for absence or presence of a category,491

respectively). Distributional similarity across all variables was maximised by selecting from492

500,000 random samples the sample with the highest total distributional overlap with the493
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full list of possible words. Distributions of the selected sample of words are summarised in494

Figure 6. The full list of stimuli for the localiser task is presented in Supplementary495

Materials C.496

Figure 6
Distributions of key variables illustrate the similarity between the selected localiser stimuli
words (sample) and the list of words from which they were drawn (population).

Valence Zipf Frequency

Lexical Decision RT OLD20 Prevalence

Concreteness Dominance Lexical Decision Accuracy

500 900700600 800 2 84 6 1.2 2.41.6 2.0

1 532 4 2 84 6 0.25 1.000.50 0.75

5 2010 15 2 84 6 0.00 0.030.01 0.02

Population

Sample

Age of Acquisition Arousal Bigram Probability

2 84 6 2 64
Value

D
en

si
ty

a

Length

0 5 10 15 20
0.00
0.05
0.10
0.15

P
ro

po
rt

io
n

b
Part of Speech

adjective adverb name noun preposition verb
0.0
0.1
0.2
0.3
0.4
0.5

Value

Panel a shows distributional similarity of continuous variables. Panel b shows similarity
in length (all integer values) as a histogram showing proportions, and the similarity in the
counts of each part of speech category as a bar plot of proportions. Only the part of speech
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speech categories, such as determiner or number, were selected in the sample.

The false-font strings consisted of characters from the Brussels Artificial Character497
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Set (BACS; Vidal et al., 2017) in BACS2serif font. In this way, we had an item-wise498

false-font match to each word, where every Courier New character in the word stimuli is499

replaced with a BACS character matched in the number of strokes, junctions, terminations,500

and serifs. The phase-shuffled stimuli were generated by using a Fourier transformation to501

extract the phase and amplitude from the word images. Phase values were randomly502

shuffled (i.e., permuted), such that the overall distribution of phase could be preserved,503

while amplitude values were unchanged. An inverse Fourier transformation was then used504

to generate a new image with the original amplitude values, but with phase randomly505

shuffled. To prevent phase shuffling from producing noticeably large changes in contrast,506

the phase shuffling was done on a version of the word image with 50% of the original507

contrast. After the inverse Fourier transformation, the contrast of the generated508

phase-shuffled image was readjusted to equal that of the original word image. To avoid509

repeating the same stimuli across participants more than necessary, unique phase-shuffled510

images were generated for each trial, for each participant.511

Versions of the localiser task’s stimuli were also created in green, to signal the512

participant to respond. For words and nonwords, this was done by simply changing the513

font colour to green. To preserve image intensity, the colour of phase-shuffled images was514

changed by altering pixels in the following way. For pixels in which the value in the green515

channel was less than 50% of the maximum intensity (i.e., the intensity of all channels in516

the grey background), values in red and blue channels were altered to equal the value in517

the green channel for that pixel. For all other pixels, the values in red and blue channels518

were set to 50% of the maximum intensity.519

Participants520

The sample size of 68 participants was decided via a power analysis using521

Monte-Carlo simulations of a realistic effect size (Supplementary Materials D). This522

revealed that with ≥68 participants we could expect >80% statistical power in the long523

run (Figure 7). All 68 participants (40 female, 27 male, 1 non-binary) were monolingual524
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native English speakers. Participants were randomly allocated into one of the four525

combinations of stimulus set (Set 1, Set 2) and response group (i.e., the left-right mapping526

of the two response buttons for affirmative and negative responses), such that each527

combination of stimulus set and response group comprised 17 participants. No participants528

reported diagnosis of any reading disorder. Ages ranged from 18 to 37 years (M=22.69,529

SD=4.9), and all participants reported having normal or corrected-to-normal vision.530

Participants’ handedness was assessed via the revised short form of the Edinburgh531

Handedness Inventory (Veale, 2014), with participants only permitted to take part if they532

scored a laterality quotient of +40 indicating right handedness. Exclusion criteria for533

participants were determined prior to data collection as follows: (1) if 10 or more channels534

showed an offset more extreme than ±25 mV (as measured on the BioSemi acquisition535

software, ActiView), or (2) if more than 5% of the trials were lost due to technical issues536

with the EEG system. As no participants satisfied these criteria, no participants were537

excluded after data collection. Data collection was approved by the Ethics Committee of538

the institution at which the data were collected (application number: 300200117).539

Figure 7
Estimated relationship between number of participants and statistical power.
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Black points and error bars depict point estimates ±99% Binomial confidence intervals, each
from 500 simulations. As 500 simulations provides a noisy estimate, we interpolated the
relationship between N and power via a loglinear, logit-link Binomial model. The orange
region depicts the 99% confidence intervals of this loglinear model.
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Procedure540

Stimuli were presented on a VPixx Technologies VIEWPixx screen (resolution541

1920*1080 pixels, diagonal length 23”, model VPX-VPX-2004A). Participants completed542

the experiment on a chin rest positioned 48 cm from the centre of the screen. Stimuli were543

presented on a grey background equal to 50% of the maximum intensity in each colour544

channel, roughly 12.3 cd/m2. The experiment was written using the Python library545

PsychoPy (Peirce, 2007), and all code and materials are available in the repository546

associated with the study. All stimuli were presented centrally (horizontally and547

vertically). All trials in both tasks were presented in a pseudo-randomised order, such that548

no more than five consecutive trials required the same response from the participant. Trials549

were randomised across blocks, with the exception of the practice block, for which trials550

were randomised within the one block.551

A mistake in the lab setup, which we discovered after data collection, meant that552

the display screen was running at 120 Hz rather than an expected 60 Hz. As we were553

controlling stimulus presentation by screen refreshes, this meant that all our stimuli were554

presented for half the expected durations. For this reason, the veridical stimulus durations555

described here differ from those described in the pre-registration.556

Participants started with the localiser task, in the form of a lexical decision task557

(Figure 8a). The localiser task began with 30 practice trials, and was then followed by558

300 trials split into 5 blocks of 60 trials. Each trial began with the bullseye fixation target559

recommended by Thaler et al. (2013) (outer and inner circle diameters were 0.6° and 0.2°560

of visual angle), presented for 150 ms. This was followed by a jittered interval of between561

150 and 650 ms, during which the screen was blank. The stimulus (word, false-font string,562

or phase-shuffled word image) was then presented at a height of 1.5° (width of 1.07° for one563

character). Words and false-font strings were presented in white (80 cd/m2), in the564

respective fonts of non-proportional Courier New and BACS2serif font. The stimulus was565

visible for 250 ms, after which the font colour changed to green to signal participants to566
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respond. Participants were requested to respond once after the stimulus changed colour,567

quickly and accurately, to indicate whether the stimulus they saw in each trial was either a568

word or not a word. The stimulus remained on screen until the participant responded.569

Responses were given with the right and left control (‘Ctrl’) keys of a QWERTY keyboard,570

with the mapping of affirmative and negative responses counterbalanced across571

participants. After the participant had responded, there was a delay of around 100 ms572

(variable as data was saved to disk during this interval), and then the next trial began.573

Figure 8
Trial structure of the (a) localiser task and (b) picture-word task.
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This figure is illustrative and the sizes are not to scale; in the experiment, images were in
fact presented at a much larger scale than words.

After the localiser task, participants completed the picture-word task (Figure 8b),574

comprising an initial practice block of 20 trials, followed by 200 trials split into 5 blocks of575

40 trials. As in the localiser task, each trial in the picture-word task began with the576

bullseye fixation point, presented for 150 ms, after which there was a blank screen for a577

jittered interval of between 150 and 650 ms. An image was then presented for 1000 ms, at578

a size of 10x10°. The bullseye fixation point was then presented again for 150 ms, followed579
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by another interval jittered between 150 and 650 ms. The word was then presented in580

white Courier New font, at a height of 1.5° (width 1.07° for one character). After 500 ms,581

the word turned green, and participants could provide their response to indicate whether582

the word described the image they saw. The word remained on screen until the participant583

responded. As in the localiser task, responses were given with the right and left control584

(‘Ctrl’) keys of a QWERTY keyboard, with the mapping of affirmative and negative585

responses counterbalanced across participants, but kept consistent within participants586

across the two tasks. After participants had responded, there was a delay of around 100 ms587

(again, variable as data was saved to disk during this interval), and then the next trial588

began. There was no deadline for participants to respond. The instructions given to589

participants for the picture-word task are presented in Supplementary Materials E.590

The first blocks of both tasks consisted of practice trials with 10 exemplars for each591

stimulus type (word or false-font string or phase-shifted image, and congruent or592

incongruent noun for the localiser and picture-word tasks, respectively), during which593

participants were additionally given immediate feedback on their accuracy for each trial.594

These practice trials were followed by green text reading "CORRECT!" if the participant595

responded correctly, or else by red text reading "INCORRECT!", presented in Courier New596

font with a height of 1.5°, for 1000 ms. Participants had self-paced breaks between blocks597

for each task. Before the practice trials and at the start of every experimental block,598

participants were presented with instructions for the task (available in Supplementary599

Materials E), summarising what would occur in each trial, and specifying that they600

should respond as quickly and accurately as possible once the stimulus turned green. These601

instructions also specified which keys participants should press to indicate their decision.602

After each experimental block, including the practice trials, participants were presented603

with their average accuracy and median response time. After the practice trials,604

participants were additionally given the option to run the practice trials again. In the605

experimental blocks, no trial-level feedback was provided.606
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Recording607

EEG data were recorded using a 64-channel BioSemi system, sampling at 512 Hz,608

with an online low-pass filter at the Nyquist frequency. Electrodes were positioned in the609

standard 10-20 system locations. Four electro-oculography (EOG) electrodes were placed610

to record eye movements and blinks: 2 were placed to the sides of eyes (on the right and611

left outer canthi), and 2 below the eyes (on the infraorbital foramen). Electrode offset was612

kept stable and low through the recording, within ±25 mV, as measured by the BioSemi613

ActiView EEG acquisition tool. Electrodes whose activity exceeded this threshold were614

recorded but were removed (and interpolated) in data preprocessing.615

Preprocessing616

The following section details the procedure applied to EEG data from each617

individual session, with the same pipeline being applied to both the localisation task and618

picture-word task unless otherwise specified. EEG preprocessing was achieved using619

functions from the EEGLAB (Delorme & Makeig, 2004) toolbox for MATLAB (MATLAB,620

2022) or OCTAVE (Eaton et al., 2020). For both tasks, trials were excluded if responded to621

incorrectly (N=368, or .02%, in localiser task, N=226, or .02%, in picture-word). Further622

trials were excluded if responded to later than 1500 ms after the word (or nonword)623

changed colour (N=41, or .002%, in localiser task, N=42, or .003%, in picture-word).624

Channels recorded as having offsets ±25 mV during data acquisition were removed625

from the data (in both tasks, 56 channels, or 1.27%, were removed across all participants),626

with their activity to be later interpolated. The EEG data were then re-referenced to the627

average activity across all electrodes and filtered with a 4th order Butterworth filter628

between .1 and 40 Hz. To counteract the distortion in signals’ timing (phase) that is629

inherent to causal filters, the filter was applied in both directions (i.e., two-pass), with the630

MATLAB function, filtfilt(). In our pre-registration, we specified that we would apply a631

Butterworth filter with a bandpass of .5-40 Hz. However, after the pre-registration, we632

considered that, consistent with research into the effects of high-pass filters (Rousselet,633
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2012; Tanner et al., 2015; VanRullen, 2011), this could produce artefactually early effects.634

As a result, we lowered the high-pass filter to a less problematic .1 Hz. For comparison,635

demonstrating that our change to the pre-registered pipeline had minimal effect on the636

results or our conclusions, the results using the original filter are presented in637

Supplementary Materials F.638

Segments of data outside of experimental blocks (i.e., in break periods) were639

identified and removed so they did not impact the independent components analysis (ICA)640

applied later in the pipeline. Blocks were identified as beginning 500 ms before stimulus641

presentation in the first trial of each block, ending 500 ms after the end of the last trial’s642

epoch. To reduce the impact of occasional non-stationary artefacts with high amplitude643

(such as infrequent muscle movements), artefact subspace reconstruction (ASR; Chang644

et al., 2020) was used with a standard deviation cutoff of 20 to remove non-stationary645

artefacts. Following this, an ICA was run on the data to identify more stationary artefacts.646

The ICA was run using the FastICA algorithm (Hyvärinen & Oja, 1997), with a recorded647

random seed for reproducibility. The ICA was run on a copy of the data with channel648

offsets removed to allow for better sensitivity to electro-oculogram (EOG) artefacts649

(Groppe et al., 2009). The ICLabel classifier (Pion-Tonachini et al., 2019) was used to650

automatically identify artefacts which were eye- or muscle-related. Components classified651

by ICLabel as eye-related or muscle-related with a probability of ≤85% were removed from652

the data. Following eye movement artefact removal, activity from channels which were653

removed was interpolated via spherical splines (Localiser: M=1.14 per participant,654

SD=1.58; Picture-Word: M=1.68, SD=2.03), as implemented in EEGLAB. Trials were655

then epoched and baseline-corrected to the 200 ms preceding stimulus presentation. For656

the localiser task, stimulus presentation refers to the time point at which words, false-font657

strings, or phase-shuffled images were presented; in the picture-word task, stimulus658

presentation refers to the target word.659

For the planned analysis, we pre-registered an approach to maximise sensitivity to660
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effects of Congruency and Predictability on the N1. To encompass the typical topography661

and timing of the posterior left-lateralised N1, we selected eight occipitotemporal662

electrodes (Figure 9; electrodes O1, PO3, PO7, P5, P7, P9, CP5, and TP7) and a 120-200663

ms window. In contrast to some previous studies whose N1 windows extended beyond 200664

ms, we set 200 ms as an upper bound for the possible maximal timepoint in the main665

analysis, to ensure effects were indeed restricted to the N1, and not later components like666

the N400. For each participant, we identified the electrode that showed maximal sensitivity667

to orthographic information in the N1 during the localisation task. Specifically, each668

participant’s “maximal electrode” (within the region of interest and selected time window)669

was the one which showed the largest mean amplitude difference, in the expected direction,670

across all localiser trials between word and false-font string stimuli. The expected direction671

was a more negative-going N1 for words than for false-font strings, a pattern based on672

previous findings (Appelbaum et al., 2009; Bentin et al., 1999; Eberhard-Moscicka et al.,673

2016; Pleisch et al., 2019; Zhao et al., 2014). Each participant’s “maximal timepoint” was674

the timepoint at which the maximal electrode showed the greatest sensitivity to the675

word-versus-false-font difference in the expected direction. Each participant’s maximal676

electrode and maximal timepoint were then used to extract their trial-level N1 amplitudes677

from the picture-word task. To reduce the influence of noise on trial-level data, the678

trial-level N1 amplitudes in the picture-word task were calculated as the maximal679

electrode’s mean amplitude across 3 timepoints: the participant’s maximal timepoint, and680

the timepoints immediately preceding and following it. At the recorded sample rate of 512681

Hz, this is equivalent to a window of 5.85 ms (i.e., 1/512*3) centred on the maximal682

timepoint.683

Results684

The planned analysis (pre-registered at https://osf.io/jk3r4) examined whether the685

hypothesised effect of a Predictability-dependent reduction of N1 amplitudes for686

picture-congruent words was observed at the electrode/timepoint in which each participant687
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Figure 9
The left-lateralised occipitotemporal region of interest selected for the N1 (highlighted in
red).

showed maximal sensitivity to orthography. We then present exploratory analyses, which688

respectively examine the Bayesian probability that our data are consistent with the689

hypothesis, and delineate the time-course of the Congruency-Predictability interaction. We690

also conducted exploratory behavioural analyses, which we report in the supplementary691

materials, examining behavioural results in the picture-word study (Supplementary692

Materials G), and EEG and behavioural results from the localiser task (Supplementary693

Materials H)694

Planned Analysis695

The planned analysis tested the pre-registered hypothesis of a696

Congruency-Predictability interaction in which N1 amplitudes are reduced (i.e., less697

negative going) for picture-congruent trials than for picture-incongruent trials, and in698

which this difference is greatest at the highest levels of predictability, and smallest at the699

lowest levels of predictability. This was based on the notion that the N1 indexes prediction700

error in biasing contexts. We did not find evidence in favour of this hypothesis.701

The trial-level N1 amplitudes from the picture-word task were modelled using a702

linear mixed-effects model fit with the R package lme4 (Bates et al., 2015), estimating the703

maximal random effects structure justified by the experiment’s design (Barr et al., 2013) as704

detailed in the section on the power analysis. The model was fit using the bobyqa optimiser705

(Powell, 2009). In lme4 syntax, the formula for the mixed-effect model was specified as:706

amplitude ~ 1 + congruency * predictability +707
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(1 + congruency * predictability | participant_id) +708

(1 + congruency | image_id) +709

(1 | word_id)710

711

In this formula, amplitude is the trial-level N1 amplitude in microvolts, while712

congruency is a deviation-coded categorical variable indicating whether a given trial’s word713

was picture-congruent or -incongruent, and predictability refers to the proportion of name714

agreement in the BOSS norms, normalised between 0 and 1. A consequence of this coding715

method is that the model’s intercept reflects the predicted amplitude at the lowest level of716

Predictability, averaged across both levels of Congruency, while the slopes’ coefficients are717

standardised and directly comparable in their magnitude. The variables of participant_id,718

image_id, and word_id, in the formula, identify each trial’s participant, image, and word,719

respectively.720

The fixed effect relationships predicted by the model are presented in Figure 10.721

The model intercept, reflecting the average N1 amplitude at the lowest level of722

Predictability, was estimated to be β=-3.35 µV (SE=.50). The fixed effect of Congruency723

from this model was estimated as β=-.02 µV (SE=.32), which captures that, at the lowest724

level of Predictability (7%), N1 components for picture-congruent and -incongruent words725

were estimated to be very similar (.02 µV difference). The main effect of Predictability was726

estimated as β=.16 µV (SE=.29), meaning that N1 amplitudes, averaged across congruent727

and incongruent conditions, were only .16 µV less negative-going at the highest level728

(100%) than at the lowest level of Predictability (7%). The effect of interest, the729

interaction between Congruency and Predictability, was in the opposite direction from that730

hypothesised, estimated as β=-1.02 µV (SE=.50). As the polarity of our predictions was731

explicitly specified, we interpret these results as a failure to find evidence in favour of the732

hypothesis.733

To describe the estimated interaction, for picture-incongruent words, the effect of734

Predictability was estimated to be β=.66 µV (SE=.35), while for picture-congruent words,735
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Figure 10
Fixed effect predictions from the planned analysis of the picture-word task.

−40

−20

0

20

40

25 50 75 100
Predictability (%)

N
1 

A
m

pl
itu

de
 (

µV
)

a

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

25 50 75 100
Predictability (%)

N
1 

A
m

pl
itu

de
 (

µV
)

b

Picture−Word Congruency Congruent Incongruent

(a) Model-derived fixed-effect predictions, visualised over results from all trials (individual
points). (b) Fixed-effect predictions visualised alone for visibility, with dashed lines depicting
the bounds of 95% bootstrapped prediction intervals (estimated from 5,000 samples), where
bootstrapped predictions were generated using the bootMer() function of lme4. For feasibility,
bootstrapped predictions were generated from a version of the model that lacked random
slopes.

the effect of Predictability was estimated to be β=-.37 µV (SE=.38). As such, the slopes736

for the effect of Predictability in both Congruency conditions were in directions737

inconsistent with our predictive coding hypothesis.738

For comparison, we also analysed the data altering aspects of our planned analysis739

method: first using the maximal electrodes that would be identified from the comparison740

between words and phase-shuffled words, and second using averages within the741

occipitotemporal region of interest (Supplementary Materials I). These exploratory742

analyses revealed very similar patterns of effects, with estimates of the743

Congruency-Predictability interaction similarly inconsistent with our hypothesis, which we744

derived from a simple predictive coding account of the N1.745
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Exploratory Bayesian Analysis746

We observed a Congruency-Predictability interaction in the opposite direction (i.e.,747

negative) to what we expected under our predictive coding hypothesis (i.e., positive). To748

explicitly quantify the probability of our predictive coding hypothesis, we fit a Bayesian749

implementation of the model described in the planned analysis, in STAN (STAN750

Development Team, 2023) via brms (Bürkner, 2017). This model was fit to the same data,751

and estimated the same hierarchical formula, with the same Gaussian link function as that752

described above, but was specified with weakly informative priors for the fixed effects.753

Specifically, the prior for the fixed effect intercept was specified as a normal distribution of754

mean -5, and SD 10, while all fixed effect slopes’ priors were specified as normal755

distributions centred on 0, with SDs of 5. Covariance matrices were assigned flat priors,756

and default priors for brms were used for random effect SDs and the sigma parameter of757

the normal distribution. The model was fit with 5 chains and 5000 iterations per chain758

(split equally between warmup and sampling) such that there were a total of 12,500759

posterior samples. Consistent with the linear mixed-effects model we fit via lme4, this760

analysis revealed a median posterior estimate for the Congruency-Predictability interaction761

of β=-1.03 µV (89% highest density interval = [-1.8, –.24]; Figure 11). We calculated,762

given this posterior distribution, that the Congruency-Predictability interaction is 59.98763

times more likely to be less than 0, than it is to be greater than zero (that is, BF01), which764

we consider to be strong evidence against our hypothesis.765

Exploratory Time-Course Analysis766

To examine the time-course of effects, we fit separate linear mixed-effects models to767

sample level data for the left-lateralised occipitotemporal region of interest, with variables768

coded as described for the planned analysis. For feasibility, data were downsampled to 256769

Hz, and the models did not estimate random slopes. To account for variability between770

electrodes, and for per-participant differences in topography, random intercepts were771

estimated for each combination of participant and electrode. In lme4 syntax, the model772
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Figure 11
Posterior density for the Congruency-Predictability interaction.
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The region of the posterior distribution consistent with the predictive coding hypothesis
(where β>0) is highlighted in red. The point and horizontal line below the density plot
depict respectively the median estimate and 89% highest density interval of the posterior
distribution.

formula was specified as follows:773

amplitude ~ 1 + congruency * predictability +774

(1 | participant_id) +775

(1 | participant_id:electrode_id) +776

(1 | image_id) +777

(1 | word_id)778

779

The results (Figure 12) reproduced findings from the planned analysis, with780

increases in Predictability associated with more negative (larger) N1 amplitudes for781

picture-congruent words, and with less negative (smaller) N1 amplitudes for782

picture-incongruent words. The Congruency-Predictability interaction of interest remained783

negative, and thus in the opposite direction to that hypothesised, throughout the N1.784

The sample-level analysis additionally suggested that the difference was largest in785

the N1’s offset period (succeeding the peak). A later Congruency-Predictability interaction786

was also observed, peaking at around 400 ms (possibly resulting from effects in the N400787

component) in the opposite direction to that observed for the N1’s offset. To better788

understand the time-course of the Congruency-Predictability interaction, we examined the789

time-course of the effect of Predictability for picture-congruent and -incongruent words790

separately (i.e., simple effects; Figure 13). This showed more clearly that Predictability791
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Figure 12
Time-course of fixed effects from the sample-level analysis of the left-lateralised
occipitotemporal region of interest.
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(a) Time-course of fixed effects estimates, with blue-shaded regions depicting 95% confidence
intervals. The model intercept (reflecting amplitudes at the lowest level of Predictability)
is depicted as a grey line on each panel to provide a reference for timing and magnitude of
effects. (b) Fixed-effect predictions for picture-congruent and -incongruent words at levels
of Predictability from 10 to 100%, in steps of 10%. (c) Same data as (b), but split by
Predictability rather than Congruency.
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reduced amplitudes in the N1 for picture-incongruent words, but increased amplitudes for792

picture-congruent words. This difference peaked around 225 ms, but reversed in direction793

after 300 ms. It is of note that the peak of the observed effects in the N1 was later than794

originally anticipated (the planned analysis was limited to ≤200 ms). Nevertheless, the795

model intercept (Figure 12a) clearly shows that these effects peaked during the N1’s796

offset period.797

Figure 13
Time-course of the effect of Predictability for picture-congruent and -incongruent words.
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Central lines depict effect estimates, derived from sample-level models that were coded such
that the model intercept lay at the respective levels of picture-word Congruency. Estimates
reflect ERPs for words at the maximum level of Predictability, minus those at the minimum
level of Predictability. Shaded areas depict 95% confidence intervals of model estimates.

Discussion798

In the present study, we tested whether a simple predictive coding account could799

explain online prediction effects on the amplitude of N1 ERP components elicited by words800

in biasing contexts. We biased expectations for upcoming words via images of varying801

predictability. Based on a predictive coding framework, we hypothesised that there would802

be an interaction between picture-word Predictability and Congruency in which N1803

amplitude scales with prediction error. Planned analyses failed to find evidence for this804

hypothesis, and exploratory analyses revealed, despite strong evidence for prediction effects805
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in the N1, that the direction of the interaction was opposite to that expected under the806

hypothesis. Specifically, increases in Predictability were associated with greater-amplitude807

N1s for picture-congruent words, and smaller-amplitude N1s for picture-incongruent words.808

On this basis, we conclude that a simple predictive coding explanation of the N1 cannot809

explain predictability effects observed in the picture-word verification task used here.810

In recent years, predictive coding models have been increasingly applied to explain811

neural phenomena observed during language processing. This includes predictive coding812

perspectives on the N1 specifically (e.g., Gagl et al., 2020; Huang et al., 2022; Zhao et al.,813

2019), or its likely generator, vOT (Price & Devlin, 2011), and other areas of language814

processing. For example, consider the well-researched N400 ERP component, generally815

recognised since its initial identification as capturing activity related to semantic processes816

(Kutas & Federmeier, 2011; Kutas & Hillyard, 1980). The N400 shows sensitivity to word-817

and sentence-level surprise or predictability (Delaney-Busch et al., 2019; Lau et al., 2013;818

Lindborg et al., 2023; Mantegna et al., 2019; Van Petten & Kutas, 1990), in a manner that819

may be consistent with predictive coding (Bornkessel-Schlesewsky & Schlesewsky, 2019;820

Eddine et al., 2023; Rabovsky & McRae, 2014). Similar interpretations have been made of821

other signals, as capturing prediction errors for phonological, semantic, or syntactic822

representations (Fitz & Chang, 2019; Gagnepain et al., 2012; Van Petten & Luka, 2012;823

Ylinen et al., 2017; Ylinen et al., 2016). Indeed, emerging evidence supports the broader824

contention that naturalistic language comprehension utilises a predictive coding hierarchy825

spanning the language network (Caucheteux et al., 2023; Schuster et al., 2021; Shain et al.,826

2020).827

We do not believe our findings refute the existence of predictive coding mechanisms828

during the N1. Instead, we argue that a simple predictive coding account of the N1, in829

which the component’s amplitude straightforwardly indexes prediction error in a manner830

dependent on prediction certainty, is insufficient to explain the pattern of effects we831

observed in the picture-word verification task we used here. For a predictive coding model832

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2023. ; https://doi.org/10.1101/2023.08.07.552265doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.07.552265
http://creativecommons.org/licenses/by-nc-nd/4.0/


PREDICTION ERROR IN THE WORD N1 40

to better account for these data, it would require elaboration. One feature that may be833

relevant is the nature of the task. We elected to use a picture-word verification task as it834

encourages explicit prediction of word forms from non-linguistic contexts. However, this835

task paradigm may alter predictive processing of word forms in two key ways. First,836

participants will have soon learned that the observed word form only matches its preceding837

image 50% of the time, which could have interacted with the effect of Predictability838

(prediction certainty) in unexpected ways. Second, the requirement for explicit verification839

of prediction congruency may have encouraged artificial processing strategies that are not840

representative of naturalistic word recognition and reading processes. To better understand841

whether and how such factors influence any possible predictive coding effects on the N1, we842

could manipulate prediction error magnitude and precision while the participant’s task843

instructions do not explicitly require processing of the cue. For instance, we could use a844

picture-word priming design (Sperber et al., 1979; Vanderwart, 1984), presenting845

picture-word pairs, as in the current study, but ask participants to respond with lexical846

decisions. Here, prediction error magnitude could be operationalised as the orthographic847

distance between the string (whether word or non-word), and precision as the848

predictability of a word given its picture. We believe that such an approach could provide849

insight into whether, and which, features of the paradigm we used could have resulted in850

the unexpected pattern of results. Finally, it is possible that dynamics of predictive851

processing were influenced by the slow presentation rate employed in the present study,852

relative to more naturalistic reading paradigms. Indeed, previous research has highlighted853

the importance of presentation rate in prediction effects during reading (e.g., Dambacher854

et al., 2012), and recent findings have shown that unpredictability in stimulus presentation855

timing (e.g., with jittered inter-stimulus intervals) may interfere with predictive processes,856

as indexed by the mismatch negativity component (Tsogli et al., 2022). This explanation of857

our results could be tested by study designs examining how the congruency-predictability858

interaction varies over stimulus onset asynchronies of different durations. In sum, while859
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predictive coding mechanisms may ultimately underlie the pattern of effects we observed,860

the simple account we have tested requires elaboration, informed by insights from other861

paradigms, for it to explain why our current pattern of effects is opposite to that expected.862

Nevertheless, we acknowledge the possibility that the insufficiency of predictive863

coding accounts to explain the data we observed may reflect a more fundamental864

shortcoming. To speculate, predictive coding models may account for activity in the N1 in865

previously tested paradigms without accurately describing the underlying neural processes.866

For instance, Luthra et al. (2021) showed that, in spoken word recognition, interactive867

activation models may provide an alternative account of the ERP amplitude reduction868

observed in response to prediction violations, without invoking key features of predictive869

coding models. Indeed, effects indicative of predictive processing may emerge in a system870

that that lacks any representations of, or mechanisms implementing, predictions or871

prediction errors, instead only implementing pattern completion (Falandays et al., 2021).872

It is tentatively possible that the picture-word verification paradigm we applied here may873

be a scenario that employs the same neurocognitive processes in the N1 as those employed874

in other paradigms, but elicits cognitive dynamics whose corresponding neural activity875

reveals differences from a predictive coding model. It is possible that processing indexed by876

the N1 can only be explained by a model distinct from the predictive coding framework,877

even though predictive coding models may correlate with patterns of activity seen in most878

paradigms. Justifying the development of such a model, distinct from predictive coding,879

would require much more evidence for the shortcomings of a predictive coding account, and880

we do not believe our study provides the insights necessary to speculate on the form such a881

model could take.882

If a predictive coding account is to explain prediction-driven modulation of activity883

in the N1, or any component, we believe it is vital for researchers to consider the884

informational content of representations whose processing is indexed by the component885

which is thought to capture prediction error. In a hierarchical model of predictive coding,886
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where levels of the hierarchy utilise different representational formats, the interaction887

between ascending input and descending predictions must involve some mapping of888

higher-level onto lower-level representations. For instance, if semantic context can influence889

processing that is closer to sensory input and indexed by early ERP components (e.g.,890

Enge et al., 2023; Getz & Toscano, 2019; Segalowitz & Zheng, 2009), then higher-level891

semantic information must be translated into predictions of upcoming lower-level sensory892

signals. In the case of our study’s modulation of the N1, where the N1 is largely implicated893

in visual-orthographic processing (Bentin et al., 1999; Brem et al., 2018; Ling et al., 2019;894

Maurer, Brandeis, et al., 2005), predictions of upcoming words must be translated into a895

visual-orthographic code. Such a mapping could be expected to be very computationally896

lossy; predictions for visual-orthographic features of a single word should be expected to897

also confer facilitation for words that are orthographically similar, yet picture-incongruent.898

From one perspective, mapping of predictions to lower-level representations may be899

considered a requisite for a phenomenon to be considered top-down modulation (Rauss900

et al., 2011). This relates to a long-standing debate on whether prediction effects at the901

lexical level of language processing necessitate top-down input informed by higher-level902

semantic processes, or could instead result from perhaps more parsimonious intralexical903

effects (Fodor, 1983; Forster, 1979). A similar argument could be made that context effects904

on the N1 could be interpreted as intra-orthographic, resulting from local interactions in a905

possible orthographic module. As an example, the orthographic features of the word form906

fish may preactivate features of the word form chips simply through learned co-occurrence907

rather than top-down modulation, entirely within an orthographic processing module that908

possesses nothing approaching a semantic representation. Such facilitation could be909

implemented via an extension to classic interactive activation models (e.g., McClelland &910

Rumelhart, 1981) in which there are excitatory lateral connections between word-level911

units whose strength is determined by co-occurrence frequency. We consider this point to912

highlight an advantage of paradigms such as ours, that use non-linguistic contexts (e.g.,913
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task instructions, images, etc.) to cue upcoming words and word forms. Effects of context914

that map across representations in this way necessitate transfer of information across levels915

of the processing hierarchy, and may thus be considered stronger evidence for an influence916

of top-down predictions.917

An aspect of the predictive coding account that our design did not fully test also918

relates to this idea of representational mapping. We dichotomised the variable of919

congruency (prediction error magnitude), with orthographic Levenshtein distance920

maximised between picture-congruent and -incongruent word forms. However, prediction921

error magnitude should also be expected to vary continuously, from unpredicted word922

forms that are less to more orthographically similar to the predicted word form. This is923

comparable to Gagl et al.’s (2020) use of a pixel distance metric to calculate the continuous924

distance between a presented word form and a context-neutral prior. Such an approach925

could be applied to biasing contexts by instead calculating the orthographic distance926

between a presented word form and a context-informed prior, where the probability of927

observing certain pixels (or orthographic features) could be up-weighted proportional to928

prediction certainty. We believe such an approach could provide useful insights in929

elucidating the pattern of effects we observed.930

In sum, we tested a simple predictive coding account of the word-elicited N1, but931

failed to find evidence in favour of it. Exploratory analyses suggest that the pattern of932

effects in the Congruency-Predictability interaction were in the opposite direction to that933

expected under a simple predictive coding model. We argue that such a model is934

insufficient to explain the pattern of effects we observed, and we have identified avenues of935

future research that could better delineate how predictive processes interact with936

processing during the N1.937
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