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MULLER’S RATCHET IN A NEAR-CRITICAL REGIME:

TOURNAMENT VERSUS FITNESS PROPORTIONAL SELECTION.

JAN LUKAS IGELBRINK, ADRIÁN GONZÁLEZ CASANOVA, CHARLINE SMADI,
AND ANTON WAKOLBINGER

Abstract. Muller’s ratchet, in its prototype version, models a haploid, asexual popu-
lation whose size N is constant over the generations. Slightly deleterious mutations are
acquired along the lineages at a constant rate, and individuals carrying less mutations
have a selective advantage. The classical variant considers fitness proportional selection,
but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et
al. [EPW09] we propose a parameter scaling which fits well to the “near-critical” regime
that was in the focus of [EPW09] (and in which the mutation-selection ratio diverges
logarithmically as N → ∞). Using a Moran model, we investigate the“rule of thumb”
given in [EPW09] for the click rate of the “classical ratchet” by putting it into the context
of new results on the long-time evolution of the size of the best class of the ratchet with
(binary) tournament selection, which (other than that of the classical ratchet) follows an
autonomous dynamics up to the time of its extinction.

In [GSW23] it was discovered that the tournament ratchet has a hierarchy of dual
processes which can be constructed on top of an Ancestral Selection graph with a Poisson
decoration. For a regime in which the mutation/selection-ratio remains bounded away
from 1, this was used in [GSW23] to reveal the asymptotics of the click rates as well
as that of the type frequency profile between clicks. We will describe how these ideas
can be extended to the near-critical regime in which the mutation-selection ratio of the
tournament ratchet converges to 1 as N → ∞.
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1. Introduction

Muller’s ratchet is a prototype model in population genetics. Originally it was con-
ceived to explain the ubiquity of sexual reproduction among eukaryotes despite its many
costs [Mul64, Fel74]. In its bare bones version, Muller’s ratchet models a haploid, asexual
population whose size N is constant over the generations. The neutral part of the random
reproduction is given by a Wright-Fisher or a Moran dynamics. Slightly deleterious muta-
tions are acquired along the lineages at a rate m, and individuals carrying less mutations
have a selective advantage. The classical variant of Muller’s ratchet considers fitness pro-
portional selection, where the selective advantage of an individual carrying κ deleterious
mutations over a contemporanean that carries a larger number κ′ of deleterious mutations
is s

N (κ′ − κ). Since the mutation mechanism is assumed to be unidirectional, every once
in a while the type with the currently smallest number of mutations κ will disappear from
the population. As Herbert Muller puts it in his pioneering paper [Mul64], “an irreversible
ratchet mechanism exists in the non-recombining species . . . that prevents selection, even if
intensified, from reducing the mutational loads below the lightest . . . , whereas, contrariwise,
’drift’, and what might be called ’selective noise’ must allow occasional slips of the lightest
loads in the direction of increased weight.” Every slip of the lightest loads is what we call
a click of the ratchet. The question “How often does the ratchet click?” was asked by
Etheridge, Pfaffelhuber and one of the present authors in [EPW09], and there it was found



MULLER’S RATCHET IN A NEAR-CRITICAL REGIME 3

that
γ :=

m

s log(Nm)
(1)

is “an important factor in determining the rate of the ratchet”. Specifically, under the
assumption 1 ≪ Nm ≪ N , [EPW09] states the following Rule of Thumb:

(RT) The rate of the ratchet is of the order Nγ−1mγ for γ ∈ (12 , 1), whereas it is ex-

ponentially slow in (Nm)1−γ for γ < 1
2 .

For a polynomial mutation rate m = N−β, 0 < β < 1, the condition that γ remains
constant (or at least bounded away from 0 and ∞) as N → ∞ amounts to the requirement
that the mutation-selection ratio

θ :=
m

s
is of the order logN as N → ∞.
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Figure 1. This is an illustration of the Rule of Thumb (RT) predicting
the order of magnitude of the interclick times of the classical ratchet. Each
data point was obtained by pooling the first 4 interclick times from 100
simulations of the (classical) ratchet for the corresponding parameter con-
figuration (N,β, δ) in the (β, δ)-scaling (2). In the exponential regime, (RT)
predicts for the interclick times an order of magnitude exp(cN1−β−δ). We
see from panel (A) that the constant c is difficult to estimate from simula-
tions up to N = 104, but c = 2.3 as chosen there seems to give a reasonable
fit. For the polynomial regime, (RT) predicts the order of N1−δ, which fits
very well in the situation of panel (B).

We will thus focus on a family of parameter scalings which we call the (β, δ)-scaling of
the classical ratchet:

m = N−β, θ = δ logN. (2)
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This means that we consider moderate mutation-selection, with m and s scaling with the
same power −β in N . Still, the mutation-selection ratio θ diverges logarithmically in N ,
and (together with β) the factor δ in front of logN turns out to be critical for the click
rate. In the (β, δ)-scaling, (1) takes the form

γ =
δ

1− β
.

The condition 0 < γ < 1 from (RT) restricts the pair (β, δ) to the triangle

∆ := {(β, δ) : 0 < β, 0 < δ < 1− β}.
The polynomial and the exponential regime predicted by (RT) thus correspond to

P := {1
2 < γ < 1} = {(β, δ) ∈ ∆ : 1

2(1− β) < δ < 1− β}, (3)

E := {0 < γ < 1
2} = {(β, δ) ∈ ∆ : 0 < δ < 1

2(1− β)}, (4)

and the predictions for the orders of magnitude of the expected interclick times take the
form

N(Nm)−γ = N1−δ = Ne−θ for γ ∈ (12 , 1), (5)

exp
(
const(Nm)1−γ

)
= exp

(
constN1−β−δ

)
for γ ∈ (0, 12). (6)

In view of the predicted transition from polynomial to exponential click rates we refer to
P ∪ E as a near-critical regime. See Figure 1 for an illustration of (RT) via simulations.

As observed by John Haigh ([Hai78]), in the deterministic limit (N → ∞ andm, s not de-
pending on N) the type frequency profile in equilibrium becomes Poisson with parameter θ.
Consequently, Ne−θ is asymptotically equal to the size of the best class in equilibrium, and
the rule (5) goes along with Haigh’s prediction that the rate of the ratchet should be pro-
portional to the inverse of the size of the best class (unless the ratchet is not exponentially
slowed down by selection).

The evidence for (RT) that is given in [EPW09] is based on a diffusion approximation
for the evolution of the relative size X0 of the best class (which consists of the individuals
that carry the least amount of mutations in the current population). Because of the fitness
proportional selection, the drift coefficient in this diffusion approximation contains the first
moment M of the type frequency configuration (X0,X1, . . .). In order to obtain an ap-
proximate autonomous dynamics for X0, the empirical first moment M has to be predicted
based on X0. A classical way to do this uses the so-called Poisson profile approximation,
which we will explain in some detail in Section 3.

In the present paper we will consider, apart from the classical one, a variant of Muller’s
ratchet in which fitness proportional selection is replaced by (binary) tournament selec-
tion. This kind of selection has been studied in the context of evolutionary computation
([BT96, BFM00]) and has found attention also in the biological literature [PBB+15]. In
the ratchet’s context this means that selective advantage of an individual carrying κ dele-
terious mutations over a contemporanean that carries a larger number κ′ of deleterious
mutations is constant (say s

N for some s = sN > 0), irrespective of the value of the differ-
ence κ′ − κ. For the Moran version of the tournament ratchet, which was introduced in
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[GSW23] and whose definition we recall in Section 2, this means that “pairwise selective
fights” are always won by the fitter individual.

Other than in the classical ratchet, the size of the (m, s)-tournament ratchet’s best class
follows an autonomous dynamics. As we will see in Section 3, this dynamics is equal to
that of the Poisson profile approximation of the size of the classical (m, s)-ratchet’s best
class, provided that

ρ :=
m

s
= 1− exp(−m/s) = 1− e−θ. (7)

In view of (7) we define, in analogy to (2), the (β, δ)-scaling for the tournament ratchet
as

m = N−β, ρ =
m

s
= 1−N−δ. (8)

We now state the main result of the present paper. Besides extending [GSW23, Theo-
rem 2.3] on the asymptotic rates of clicks from the subcritical to the near-critical regime,
this result also gains importance with regard to [EPW09]’s Rule (RT), in the light of the
correspondence (7) between the tournament and the classical ratchet. Recall definitions
(3) and (4).

Main result (MR). In the (β, δ)-scaling of the tournament ratchet, as N → ∞, the
expected time between clicks is

≍ N
1+β
2 if (β, δ) ∈ P, (9)

≍ exp
(
N1−β−2δ

)
if (β, δ) ∈ E . (10)

Here and below, ≍ stands for logarithmic equivalence, i.e. aN ≍ bN means log aN ∼ log bN ,

or equivalently log aN
log bN

→ 1. See Figure 2 for an illustration of (MR).

While both (RT) and (MR) state the same boundary (γ = 1
2) between the polynomial

and the exponential regime, the exponents differ between (5) and (9) as well as between (6)

and (10). Specifically, in the polynomial regime P the exponent 1+β
2 for the tournament

ratchet is larger than the exponent 1− δ for the classical ratchet.
Here is an explanation for the polynomial regime. The centers of attraction of the

equilibrium profile weights of the best and the second best class differ by the factor N
δ
2 for

the tournament ratchet (see Sec. 4.3), while they are given by the Poisson weights e−θ and
θe−θ for the classical ratchet and hence for the latter differ only by the factor θ = δ logN
(and thus have the same polynomial order N1−δ). This latter factor is only logarithmic in
N ; therefore, when starting the “new best class” at the time of a click in its “old” center
of attraction, the tournament ratchet has a longer way to go than the classical ratchet.
The exponent 1+β

2 in (9) will be obtained by a Green function analysis in the proof of
Theorem 3.2. This analysis will also explain the exponent 1− δ in (5), which corresponds
to Haigh’s prediction, saying that “the interclick times are of the order of the size of the
best class”. An intuitive explanation for the appearance of the exponent 1−β− 2δ in (10)
will be given at the end of Section 3.2.

The exponential rate in (6) has been obtained in [EPW09] by a rescaling of the diffusion
approximation of the so called relaxed Poisson profile approximation. We will explain the
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Figure 2. This is an illustration of the prediction of theMain Result (MR),
which predicts the order of magnitude of the interclick times of the tourna-
ment ratchet. Each data point was obtained by pooling the first 4 interclick
times from 100 simulations of the tournament ratchet for the correspond-
ing value of N . Here, (β, δ) = (0.6, 0.28), which belongs to the polynomial
regime P. Even for N as small as 103 the asymptotics predicted by (MR)
are already observable.

idea of this approximation, and define it in the context of the Moran model, in Section 3.4.
There we will also give an intuitive explanation why the exponent 1−β− δ appears in (6).

Similar as [EPW09], the papers [PSW12, AP13, MPV20] used a diffusion approximation
for the classical ratchet and modications thereof. Metzger and Eule [ME13] consider, as a
proxy to the classical ratchet, a two type Moran model with selective advantage s of class 0
over class 1 and mutation rate m from class 0 to class 1. Their formula (8) corresponds to
our formula 7 but their approximations for the classical ratchet concentrate on a regime in
which θ remains bounded (see the discussion around [ME13, (23)], whereas we focus here
on a regime in which θ diverges logarithmically with N .

In [GSW23] it was discovered that the tournament ratchet has a dual which consists
of a hierarchy of competing logistic processes. The main results of [GSW23] (on the click
rate of the tournament ratchet and its type frequency profile between clicks) were obtained
for the so-called subcritical regime (see Sec. 2.2) and were proved there via duality, with
the help of recent results on logistic processes (see in particular [Lam05, CCM16]). This
“backward in time” view, which comes on top of an Ancestral Selection Graph decorated
with mutation events, will be briefly explained in Section 4.1, since it opens a route for
proving the above stated result (MR) and for analysing the type frequency profile of the
tournament ratchet also in the near-critical regime. In Section 4.4 we will sketch central
ingredients of a proof that the type frequency profile of the tournament ratchet “between
clicks” is (at least in the exponential regime of the (β, δ)-scaling) asymptotically close to
the deterministic equilibrium profile, some of whose properties will be explored in Sec. 4.3.
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2. Muller’s ratchet as a Moran process with mutation and selection

2.1. Model and basic concepts. In the Moran version of Muller’s ratchet, neutral re-
sampling within any ordered pair of individuals happens at rate 1

2N , and mutation from
κ to κ + 1 takes place at rate m/N along each individual lineage. Selective reproduction
for an individual of type κ happens at rate 1

N

∑
j Φ(κ

′ − κ), where the sum is taken over

all those individuals j whose type κ′ is larger (and therefore “worse”) than κ. For the
classical case of proportional selection, one has Φ(κ′ − κ) = s(κ′ − κ), while for the case of
(binary) tournament selection one has Φ(κ′ − κ) = s. In the sequel we will refer to these
two Moran variants of Muller’s ratchet briefly as the classical ratchet and the tournament
ratchet. Both models have (N,m, s) as their parameter triple, and in both models a crucial
role is played by the mutation-selection ratio m

s
. In this section we reserve the symbol s

for the selection parameter. Later, this will be specified as different parameters s and s for
the tournament and the classical ratchet, respectively. The following definition gives the
rates for the type frequencies of the two ratchets.

Definition 2.1.

a) Writing Nκ for the current number of individuals of type κ, the jump rates are
specified as follows:

- Resampling: for κ 6= κ′,
(Nκ, Nκ′) jumps to (Nκ + 1, Nκ′ − 1) at rate 1

2NNκNκ′

- Mutation: for κ,
(Nκ, Nκ+1) jumps to (Nκ − 1, Nκ+1 + 1) at rate mNκ

- Selection: for κ < κ′,

(Nκ, Nκ′) jumps to (Nκ+1, Nκ′−1) at rate

{
s

NNκNκ′(κ′ − κ) for the classical ratchet
s

NNκNκ′ for the tournament ratchet

b) The currently best type is

K∗(t) := min
{
κ ∈ N0 : Nκ(t) > 0

}
.

c) The click times of the ratchet are the jump times of K∗, i.e. the times at which
the currently best type is lost from the population. The type frequency profile seen
from the currently best type has the (random) weights

Xk(t) :=
1

N
NK∗(t)+k(t), k = 0, 1, 2 . . . (11)

In the limit N → ∞ with m, s remaining constant, the stationary (non-random) type
frequency profile (pk)k∈N0 is given by the mutation-selection equilibrium conditions

m(pk−1 − pk) = s pk


∑

k′∈N0

Φ(k′ − k)


 , k = 0, 1, 2 . . . , (12)

where we put p−1 := 0, Φ(0) = 0 and Φ(−d) = −Φ(d) for d ∈ N.
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For the classical ratchet, (12) turns into

m(pk−1 − pk) = s pk(µ − k), k = 0, 1, 2 . . . , (13)

where µ :=
∑

k′ kpk is the first moment of the profile. As already noticed by John Haigh
([Hai78]), this is solved by the Poisson weights with first moment µ = m

s
. Indeed, this is

the unique solution of (13) under the condition p0 > 0.
For the tournament ratchet, (12) turns into

m (pk − pk−1) = s pk


∑

k′∈N0

pk′
(
1{k′>k} − 1{k′<k}

)

 , k = 0, 1, 2 . . . (14)

Here the condition p0 > 0 leads to the requirement m < s and yields p0 = 1− m
s
. Various

properties of the solution (pk′) of (14) are stated in [GSW23] Theorem 2.4. The r.h.s. of
(14) equals

s pk


1− pk − 2

k−1∑

k′=0

pk′


 , k = 0, 1, 2 . . . (15)

A formal analogy between (13) and (14) results because (15) is close to 2s pk(
1
2 − g(k)),

where g is the cumulative distribution function of (pk′). In this sense the role played by
the profile’s first moment in (13) is taken by the profile’s median in (14).

2.2. The subcritical regime of the tournament ratchet.
We now report briefly on the main results of the recent paper [GSW23]. The parameters
of the tournament ratchet will be denoted by (m, s) and its mutation-selection ratio by
ρ := m

s . In [GSW23], as N → ∞, the mutation-selection ratio ρ = m
s is kept constant and

smaller than 1, and it is assumed that m → 0 and mN → ∞. (For technical reasons, mN
is assumed to be of larger order of log logN , which keeps the regime slightly away from
that of weak mutation, in which mN would be of order one as N → ∞.) We will refer
to this regime as the subcritical regime of the tournament ratchet. The main results of
[GSW23] are

Theorem 2.2. In the subcritical regime the click rate of the tournament ratchet on the
1
m-timescale is, as N → ∞, logarithmically equivalent to

e
2Nm

(

1
ρ
−1+log ρ

)

. (16)

Theorem 2.3. In the subcritical regime and for N large, the empirical type frequency pro-
file at generic time points between clicks of the tournament ratchet is with high probability
close to the mutation-selection equilibrium system (14) (pk) with p0 = 1− ρ.

These two theorems are proved in [GSW23] via a hierarchical duality. We will explain
this approach in Section 4, and give an outlook how it can be extended to the near-critical
regime of the tournament ratchet described in Section 1.
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3. A synopsis of the classical and the tournament ratchet

3.1. The dynamics of the best classes.
For k = 0, 1, . . . let Y C

k (t) = NC
K∗+k(t) and Y T

k (t) = NT
K∗+k(t) be the sizes of the (k + 1)st-

best class of the classical and the tournament ratchet, where (NC
κ )κ∈N0 and (NT

κ )κ∈N0

follow the dynamics specified in Definition 2.1. Here we assume that the mutation rate m
is equal for both ratchets, but the selection coefficients are different:

s =

{
m
θ =: s for the classical ratchet
m
ρ =: s for the tournament ratchet.

The jump rates from n to n− 1 are given for both Y C
0 and Y T

0 by

n

(
1

2

(
1− n

N

)
+m

)
, (17)

but the jump rates from n to n+ 1 are different: those of Y T
0 are

n

(
1

2

(
1− n

N

)
+ s

(
1− n

N

))
, (18)

while those of Y C
0 are

n


1

2

(
1− n

N

)
+ s

∞∑

k=1

kXk


 . (19)

where (Xk(t))k∈N0 is the type frequency profile as defined in (11), with (NC
κ ) in place of

(Nκ). Writing

M(t) :=

∞∑

k=1

kXk(t)

for the first moment of the type frequency profile (Xk), (19) takes the form

n

(
1

2

(
1− n

N

)
+m

M

θ

)
. (20)

An inspection of the jump rates in Definition 2.1 reveals that for each k ∈ N the process
(Y T

0 , . . . , Y T
k ) obeys an autonomous dynamics; for k = 0 this is evident from (17) and (18).

For later reference we note here that (Y T
0 , Y T

1 ) has, as N → ∞, the center of attraction

(a, b) ∼ (N(1 − ρ), N
√

1− ρ) (21)

provided Nm → ∞ and ρ → 1.
In contrast to the tournament ratchet, the rates (20) depend not only on the size of

the best class but also on the profile (Xk( t))k≥0 (via its first moment M(t)). There are
various ways to predict M(t) on the basis of Y C(t), and thereby to replace (20) by a rate
which is autonomous; one of these will be described in the next subsection. As conjectured
already by John Haigh [Hai78], such a strategy should work in a regime in which the
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expected time to extinction of Y C
0 typically takes long compared to the relaxation time of

the noiseless classical ratchet. The latter is log θ
s

(see Remark 4.3 [EPW09]), whereas the

time to extinction of a neutral Moran(N)-process starting in Ne−θ is of the order Ne−θ.
Hence this amounts to the parameter regime

Ne−θ ≫ 1

s
,

which in the (β, δ)-scaling (2) just means that (β, δ) ∈ ∆.

3.2. The Poisson profile approximation for the classical ratchet.
A first idea is to think of the profile (Xk)k≥1 as (nearly) proportional to the Poisson profile

πk = e−θ θ
k

k!
, k ≥ 1,

and as the mass π0 −X0 being distributed proportionally upon this profile. This leads to
the so-called Poisson profile approximation of (Xk)k≥1 based on X0, given by

Π(X0) :=

(
X0,

1−X0

1− π0

(
π1, π2, . . .

))
. (22)

(cf [EPW09, (2.5)]). The first moment of Π(X0) is

M(X0) := (1−X0)
θ

1− π0
, (23)

in accordance with [EPW09, (5.3a)]. Plugging this into (20) in place of M leads to the
following Poisson profile approximation of the upward jump rates (20):

n

(
1

2

(
1− n

N

)
+

m

1− e−θ

(
1− n

N

))
. (24)

We denote the birth-and death-process on N0 with downward jump rates (17) and upward
jump rates (24) by YPPA; this process can be seen as an approximation of Y C

0 .

3.3. A correspondence between the classical and the tournament ratchet. A
crucial observation is that the upward jump rates (24) and (18) are equal if and only if
m = s(1− e−θ), which is equivalent to the “dictionary” (7).

Remark 3.1. a) With (7), the jump rates (17) and (18) of the size of the best class
of the (m, s)-tournament ratchet are equal to the jump rates (17) and (24) of the
Poisson profile approximation for the size of the best class of the classical (m, s)-
ratchet. Thus the “dictionary” (7) gives a 1-1 correspondence between the (β, δ)-
scaling for the tournament ratchet defined in (8) and the (β, δ)-scaling for the
classical ratchet defined in (2), with the dynamics of the size of the best class being
preserved under this correspondence.
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b) With π̂0 :=
π0

1−π0
, (24) takes the form

n

(
1

2

(
1− n

N

)
+m+

m

N

(
Nπ̂0 − n(1− π̂0)

)
)
. (25)

Hence in the (β, δ)-scaling (2), (25) is asymptotically equal (as N → ∞) to

n

(
1

2

(
1− n

N

)
+m− c0 (n− a)

)
(26)

with

a := N1−δ, c0 := N−1−β. (27)

Then, as long as n ≪ N , the dynamics (17)&(26) is close to that of a logistic
branching process with standard binary branching term, and parameters a and
c0 given by (27). For (β, δ) ∈ ∆ the center of attraction a becomes large and
the “mean reversion” coefficient c0 becomes small as N → ∞. Here is a quick
intuitive argument why γ = 1

2 marks the boundary between the exponential and

the polynomial regime for the extinction time of both Y C and Y T (which, as we
have seen, have the dynamics (17)&(26) in common). For εa < n < (1 − ε)a,
we roughly see a slightly supercritical binary branching Galton-Watson process
with supercriticality of the order N−1−βN1−δ. When starting with the order of
a = N1−δ individuals, the probability for “long time survival” is high if and only
if N1−δN−β−δ is large, i.e. γ < 1

2 . More specifically, for γ < 1/2 the extinction
probability “in one quick go” is

≍
(
1−N−β−δ

)N1−δ

∼ e−N1−β−2δ
, (28)

which explains (10).

3.4. The relaxed Poisson profile approximation for the classical ratchet.
The Poisson profile approximation of the classical ratchet (which we discussed in Sec-
tion 3.2) predicts that immediately before the time of a click the profile should (at least
concerning its first moment) have features of

Π(0) = 1
1−π0

(
0, π1, π2, . . .

)
.

A simple “shift by 1” would turn Π(0) immediately after the click into

π̃ := 1
1−π0

(
π1, π2, . . .

)
.

However, depending on the parameter constellation, a “relaxation” towards the equilibrium
profile π may have started already before the click. Not least to provide a systematic
framework for previous approaches ([SCS93, GC00] to the approximation of the size of
the ratchet’s best class, [EPW09] suggested to replace the PPA Π(x0) by the so-called
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relaxed Poisson profile approximation RA(x0). This is based on the ratchet’s deterministic
mutation-selection dynamics

dxk(t) =


s
∑

ℓ

xℓ(ℓ− k) +m(xk−1(t)− xk(t))


 dt, k = 0, 1, . . . (29)

(with x−1 ≡ 0) and on its relaxation time

τ :=
log θ

s

which turns out to be the time for which x0(τ) =
e

e−1π0 ≈ 1.6π0 provided x(0) = π̃, see

[EPW09, Remark 4.3]. For A > 0 and x0 ∈ (0, 1), RA(x0) is defined as the profile which
has evolved over time Aτ according to the dynamics (29), starting from some Π(x∗), where
x∗ ∈ (0, 1) is chosen such that the first component of RA(x0) equals x0. It is proved in
[EPW09, Proposition 4.4] that the first moment of RA(x0) is

M̃A(x0) := θ +
θ1−A

exp(θ1−A)− 1

(
1− x0

π0

)
.

For the choice A = 0 this renders the PPA prediction (22), and for the choice A = 1 we
obtain

M̃1(x0) = θ +
1

e− 1

(
1− x0

π0

)
= θ + 0.58

(
1− x0

π0

)
, (30)

which is [EPW09, (5.3b)]. See Figure 3 for a comparison of the quality of the PPA M̃0 and

the RPPA(1) M̃1 prediction of M in the light of simulations. Let us note that, according
to the RPPA rule, (30) is applicable only for those x0 that appear as first component of the
result of the deterministic dynamics started from some Π(x∗) and run over time τ . The
maximal such x0 results for x

∗ := 1, which according to [EPW09, (4.11)] leads to x0 = π0 ·e
and to M̃1(x0) = θ − 1.

Plugging (30) into (20) gives the RPPA(1) upward jump rates

n

(
1

2

(
1− n

N

)
+m− c1 (n− a)

)
. (31)

with

a := Nπ0, c1 :=
0.58m

Nπ0θ
. (32)

Like those of PPA, the downward jump rates of RPPA(1) are given by (17), which is (31)
without the term c1 (n− a). In the (β, δ)-scaling (2), (32) turns into

a = N1−δ, c1 =
0.58

δ

N−β+δ−1

logN
.

We thus see a close analogy between the dynamics (17)&(26) and (17)&(31). However the
mean reversion coefficients c1 and c0 differ by the polynomial order N δ. Replacing −β by
−β + δ turns the r.h.s. of (28) from exp(−N1−β−2δ) into exp(−N1−β−δ). This shows that
the boundary between the polynomial and the exponential regime for the extinction time
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of RPPA(1) is marked by γ = 1, and makes it clear also in the Moran framework that the
clicking rate predicted by (6) is based on RPPA(1) (rather than on PPA).
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Data points
Regression line
PPA prediction
RPPA(1) prediction

Figure 3. This figure is inspired by [EPW09, Figure 6]. It illustrates the
quality of the PPA prediction (22) and of the RPPA(1) prediction (30) of
the profile’s first moment M based on the size Y0 of the best class. For
N = 1.000 we took snapshots of (Y0,M) at times t = 10k, k = 1, 2, . . ..
The plots diplay the estimated regression line with the predictions given by
PPA and RPPA(1). The fit of PPA is worse than that of RPPA(1) for small
γ and becomes better for larger γ. See also [EPW09] Fig. 6 for analogous
simulations based on the Wright-Fisher model.

3.5. On the expected time to extinction of the best class in the (β, δ)-scaling.
In this subsection we focus on the birth-and-death process Y := Y T

0 with jump rates (17)
and (18), and denote its extinction time by T0. Let us emphasise again that this process
has the same dynamics as the process YPPA defined in Section 3.2, provided the mutation
rates are equal and the selection coefficients are translated through the “dictionary” (7).
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The proof of the following theorem, which will be given in Section 5, is based on a careful
analysis of the Green function associated with the dynamics (17)&(18).

Theorem 3.2. Consider the (β, δ)-scaling (8). Then, as N → ∞,

a) For (β, δ) ∈ P,

ENα [T0] ∼ 2
(
1+β
2 − α

)
(logN)Nα, α < 1+β

2 , (33)

ENα [T0] ∼ π3/2

2
N

1+β
2 , α ≥ 1+β

2 . (34)

b) For (β, δ) ∈ E and every sequence n0 = n
(N)
0 such that n0 ≥ N1−δ(1−N−δ)−1,

En0 [T0] ≍ exp
(
N1−β−2δ

)
, (35)

where ≍ denotes logarithmic equivalence (as defined after (10)).

Remark 3.3. a) While (35) cannot be deduced directly from Theorem 2.2, the asymp-
totics of (16) relates nicely to that of (35). Indeed, the exponent in (35) equals
Nm(1− ρ)2, while the exponent in (16) is 2Nmh(ρ) with

h(ρ) = 1
ρ − 1 + log ρ ∼ −1

2
(1− ρ)2 as ρ → 1.

b) In the light of Remark 3.1.a), Theorem 3.2 is relevant not only for the tournament
ratchet, but also for the Poisson profile approximation of the classical ratchet.
Prominent starting values for Y are

– with regard to the tournament ratchet: nT
0 := N1−δ/2, which according to (21)

is the asymptotic center of attraction of the size of its second best class,
– with regard to the classical ratchet: nC

0 := Nπ1 = Nθe−θ, which in the
(β, δ)-scaling equals N1−δδ logN . Figure 4 illustrates that this asymptotics of the
starting value can indeed be seen in simulations of the classical ratchet. The starting
value nT

0 is used in Figure 6, and the starting value nC
0 is used in Figures 5 and 7.

For (β, δ) ∈ P we have

1− δ <
1 + β

2
< 1− δ

2
.

Hence Theorem 3.2.a) gives

EnT
0
[T0] ≍ N

1+β
2 and EnC

0
[T0] ≍ N1−δ,

which meets (9) and (5).
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Figure 4. For N = 100.000 we compare the size of the “new” best class
of the classical ratchet immediately after after a click (as observed by simu-

lations) with Nπ0 = N1−δ, Nπ1 = N1−δδ logN and N1−δ/2, which are the
centers of attraction of the best and the second best class of the classical
ratchet and the center of attraction of the best class of the fancy ratchet (cf.
Remark 3.3. b)). For various fixed values of γ, we consider (the logarithms
of) these quantities as functions of β (recall that δ = γ/(1−β)). Each data
point was obtained by pooling the first 4 interclick times from 20 simula-
tions of the classical ratchet for the corresponding parameter configuration.
Depending on the choice of γ the size of the new best class seems to lie
between Nπ0 and Nπ1, but way below N1−δ/2.
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Figure 5. For fixed population size N = 100.000 the prediction for the ex-
pected interclick time of the tournament based on i) a numerical calculation
of the Green function and ii) Theorem 3.2 are compared with simulations.
Each data point was obtained by pooling the first 4 interclick times from
20 simulations of the tournament ratchet for the corresponding parameter
configuration. Each plot shows this for one fixed value of γ with varying β.
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Figure 6. For fixed population size N = 100.000 the PPA as well as the
RPPA(1) prediction for the expected interclick time of the classical ratchet
are checked via simulations for various values of β and γ. Each data point
was obtained by pooling the first 4 interclick times from 20 simulations
of the classical ratchet for the corresponding parameter configuration. In
agreement with the empirical findings on the size of the new best class
(as reported in Figure 4) we use Nπ1 as a starting value and compute the
expectations of the extinction times of YPPA and of YRPPA(1) by a numerical
evaluation of their Green functions. Each plot shows this for one fixed value
of γ for varying β. In most of the observed scenarios the observed interclick
times are approximated better by RPPA(1) than by PPA.
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Figure 7. This figure is inspired by [EPW09, Figure 5]. The empirical
occupation density of the size of the best class in a simulation of the clas-
sical ratchet is compared to the (numerically computed) Green functions
G0(Nπ1, ·) (of YPPA) and G1(Nπ1, ·) (of YRPPA(1)). The norming constants

are Ci :=
∑

n≥1G
i(Nπ1, n), i = 0, 1. The choice of the starting value Nπ1

is in agreement with the findings reported in Figure 4. Panels (A) and
(B) feature the exponential and the polynomial regime, respectively, with
γ = 0.33 in panel (A) and γ = 0.8 in panel (B). In panel (A) the popu-
lation size is N = 2000 and simulations were run up to (generation) time
t = 2.000. In panel (B) the population size is N = 10.000 and simulations
were run up to t = 10.000. In (A) no click time was observed till time
t = 2000, and in (B) 13 click times occurred till time t = 10000. Panel
(B) may give the impression of a certain clustering of the process of click
times. This may go along with a conjecture stated by Mariani, Pardoux and
Velleret in [MPV20] on the transitory regime where the “relaxation time”
starts to become larger than the interclick times. Here is a quote from the
introduction of [MPV20]: “If [the relaxation time] tR is of the same order
as [the expected click time] tC or larger, we a priori can not exclude that
trains of short interdependent intervals could alter this observed distribution
of interval length. But already if tR is of the same order as tC , there shall
still be long realizations of inter-click intervals after which we can say that
the dependence in the past is forgotten.”
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4. The tournament ratchet near criticality

4.1. A backward-in-time view. We briefly review some essentials of the graphical ap-
proach developed in [GSW23]. This kind of approach dates back to the pioneering work
of Krone and Neuhauser [KN97, NK97] and has been intensely used in mathematical pop-
ulation genetics since then; for some recent related work see for instance [GCS18, CS20,
CHS22]). For fixed parameters N,m, s this approach gives a representation both of the
Moran tournament ratchet as well as of its hierarchical dual, and it is instrumental for
[GSW23]’s proof of Theorems 2.2 and 2.3. Some of the ideas of this proof are summarized
in Figure 1 of [GSW23].

The line counting process of the Ancestral Selection Graph (ASG) is a birth-and death

process on N with upward jump rate sn(N − n) and downward jump rate n(n−1)
2N . The

lineages are decorated by a Poisson point process with intensity m; the number of points
on a (potential ancestral) lineage is the (mutational) load accumulated along that lineage.
The load of a potential ancestor I ′ of an individual I is the mimimum of the loads of the
lineages connecting I and I ′. If all the individuals at time 0 are assumed to be of equal
type, then the type of an individual sampled at time t is the minimum of the mutational
loads carried by the ancestral lineages that lead back from this individual to time 0 (cf.
[GSW23, Remark 4.2]).

We now consider times t, u with 1
s ≪ t ≪ u. For k ≥ 0, the minimum+k load ASG

(back from the total population at time u), denoted by Āu
k =: Āk, consists at any time

t′ ≤ u of all those individuals living at time t′ that are a load (k+ kmin)-potential ancestor
of some individual living at time u, where kmin is the minimum of all the loads of lineages
connecting times t′ and u. We say that t′ is a backward click time along Ā0 if t′ is the time
of a jump of kmin.

For an individual I sampled at time t, and k ≥ 0, the graph made up by its load k
potential ancestors is the load k ASG of I, denoted by Ak = (Ak(t − r))r≥0. We write
Ak(t−r) := #Ak(t−r), and Āk(t−r) := #Āk(t−r), r ≥ 0, for the line counting processes
of Ak and Āk.

Key insights of [GSW23] are that (in the parameter regime considered there)
(i) the process of backward click times along Ā0 is asymptotically close to (and a fortiori

has asymptotically the same rate as) the process of click times of the tournament ratchet,
and

(ii) the type of an individual sampled at time t results with high probability as N → ∞
from its potential ancestry within Ā0.

[GSW23, Lemma 5.1] tells that both A0(t− r) and Ā0(t− r), r ≥ 0, are birth-and-death
processes whose jump rates are given by

ns

(
1− n

N

)
from n to n+ 1,

n

(
m+

n− 1

2N

)
from n to n− 1.

(36)
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More generally, for any k ∈ N0, both the processes (A0, . . . , Ak) and (Ā0, . . . , Āk) have the
Markovian multivariate birth-and death dynamics specified in [GSW23] Lemma 5.1. Let
(Z0, Z1, . . .) be a process whose first k + 1 components have the just mentioned dynmaics.
It is not difficult to check that, asymptotically as N → ∞, the process (Z0, Z1) has center
of attraction

(a, b) ∼
(
2Ns(1− ρ), 2Ns

√
(1− ρ)

)
, (37)

provided that m → 0, Nm → ∞ and ρ → 1. Notably, this is (21) up to the factor 2s. In
the (β, δ)-scaling (37) turns into

(a, b) ∼ (2N1−β−δ , 2N1−β−δ/2).

Starting the process (Z0, Z1, . . .) from (N, 0, 0, . . . ) leads to a process which is similar in
structure to (Y0, Y1, . . . ) started in (N, 0, 0, . . . ): every once in a while, the minimal index

k̂ for which Zk is different from 0 jumps to k̂+1. This process of jump times has the same
distribution as the process of backward click times mentioned above, and in the subcritical
regime was shown to be asymptotically Poisson as N → ∞. For two pairs (β, δ) in the
near-critical regime, Figure 8 shows simulations of the asymptotics of backward interclick
times compared with that of the (forward) interclick times.

4.2. A basic duality relation. For fixed N , let Y0(t) be the number of type 0 individuals
at time t. Assume that at time 0 all individuals are of type 0. The event {Y0(t) > 0} then
occurs if and only if among the individuals living at time 0 there is at least one load
zero potential ancestor of some individual living at time t. Consequently, for Z0 being a
birth-and-death process with jump rates (36), we have

P[Y0(t) > 0 | Y0(0) = N ] = P[Z0(t) > 0 | Z0(0) = N ]. (38)

(More general than (38), [GSW23, Remark 2.5] says that the process Z0 is in hyperge-
ometric duality with the process Y0/N ; see also [JK14] for more details on this notion.)
Such duality relations are a powerful tool to study ancestries in population genetics models
[Möh99, PP13, BCH18].

Let us write τ for the first click time of the tournament ratchet, and T for the extinction
time of Z0. Then (38) translates into

P[ τ > t | Y0(0) = N ] = P[T > t | Z0(0) = N ]. (39)

Integrating (39) with respect to t from 0 to ∞ gives

E[ τ | Y0(0) = N ] = E[T | Z0(0) = N ]. (40)

In the next subsection we will make use of the analogue of (40) that is based on the
graphical approach described in Sec. 4.1.

In [GSW23] the click rate of the tournament ratchet was obtained via the process
(Z0, Z1, . . .), defined at the end of Sec. 4.1. As soon as Z0 gets extinct, the old Zk

becomes the new Zk−1, and in particular the old Z1 becomes the new Z0. The following
result can this be seen as a “dual analogue” of Theorem 3.2. Its proof (which we will not
include in the present paper) follows similar lines as that of Theorem 3.2.
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Theorem 4.1. Denote the extinction time of Z0 by T̂0, and consider the (β, δ)-scaling.
Then, as N → ∞,

a) For (β, δ) ∈ P,

ENα

[
T̂0

]
∼

(
1−β
2 − α

)
(logN)Nα+β , α < 1−β

2 , (41)

ENα

[
T̂0

]
∼ π3/2

2
N

1+β
2 , α ≥ 1−β

2 . (42)

b) For (β, δ) ∈ E and every sequence n0 = n
(N)
0 such that n0 ≥ 4N1−β−δ,

En0

[
T̂0

]
≍ exp

(
N1−β−2δ

)
. (43)
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Figure 8. For two parameter constellations in the near-critical regime,
this displays the outcomes of a simulation comparing (on logarithmic scales
for N up to 104) a long-term average of observed (forward) interclick times
with a long term average of observed backwar interclick times. The left and
the right panel belong to the polynomial and to the exponential regime,
respectively. The backward and the forward rates seem to have (virtually)
the same asymptotics. This still leaves the conjecture that the click time
processes should be asymptotically Poisson in the exponential regime, while
they exhibit clusters in the polynomial regime.

4.3. The equilibrium profile in the deterministic limit. For 0 < ρ < 1 we denote by

p(ρ) = (p
(ρ)
k )k∈N0 the solution of the recursion

p1 = 0, p0 = 1− ρ, ρ(pk − pk−1) = pk


1− pk − 2

k−1∑

k′=0

pk′


 , k ≥ 1. (44)
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For 0 < m < s and ρ := m
s , p(ρ) is the solution of (14) (with s := s), and hence is

the equilibrium frequency profile of the noiseless (m, s)-tournament ratchet. As already
observed at the end of Section 2, the recursion (44) implies

ρ(pk − pk−1) = pk


∑

k′>k

pk′ −
∑

k′<k

pk′


 , k ≥ 1. (45)

Thus pk − pk−1 is positive as long as k is strictly smaller than the median of p(ρ), and it
becomes negative as soon as k is strictly larger that the median. This immediately leads
to the following

Remark 4.2. The mode and the median of p(ρ) have a distance of no more than 1.

It has been proved in [GSW23] that the tails
∑

ℓ>k p
(ρ)
ℓ , k ≥ 0, are given by the k-fold

iterations G
(k)
ρ (u) := Gρ(Gρ(. . . (u))) of the function

Gρ(u) =
1

2

(
1 + ρ−

√
(1 + ρ)2 − 4ρu

)
, 0 ≤ u ≤ 1. (46)

More precisely, [GSW23, Theorem 2.4 d)] tells that
∑

ℓ>k

p
(ρ)
ℓ = G(k)

ρ (ρ) , k ∈ N0. (47)

With regard to the (β, δ)-scaling (8) we put for N ∈ N and δ ∈ (0, 1)

p
(N,δ)
ℓ := p

(1−N−δ)
ℓ , ℓ ∈ N0. (48)

The following result will be proved in Section 5.

Proposition 4.3. For any fixed k ≥ 0 we have the asymptotics as N → ∞
p
(N,δ)
k ∼ N−δ/2k , (49)

∑

ℓ<k

p
(N,δ)
ℓ ∼ N−δ/2k−1

. (50)

The relation (50) invites to approximate the median of p(N,δ) by solving the equation

1
2 = 1−N−δ/2k .

That this strategy works relies on a refinement of Proposition 4.3 which is provided by

Proposition 4.4. a) The asymptotics (49) and (50) are valid up to k of order log logN .
b) The following asymptotics holds true for the median of the type frequency profile:

median(p(N,δ)) ∼ log(log(N δ)/ log(2))

log(2)
as N → ∞. (51)

A proof of this proposition is given in Section 5.
Plugging (51) into (49) (which is allowed because of Proposition 4.4 part a) and recalling

Remark 4.2 we arrive at



MULLER’S RATCHET IN A NEAR-CRITICAL REGIME 23

Corollary 4.5. maxk p
(N,δ)
k → 1

4 as N → ∞.

Remark 4.6. Here is a quick argument based on the recursion (44) which shows that the

weight of the median of p(ρ) is roughly 1
4 as soon as ρ is close to 1. For νk := 1

ρpk we obtain

for all K ∈ N, dividing (45) by ρ2 and summing over k between 1 and K,

0 =

K∑

k=1

(νk − νk−1)−
K∑

k=1


νk


∑

j>k

νj −
∑

j<k

νj







= νK − ν0 −
K∑

k=1

∞∑

j=0

νkνj

[
1{j>k} − 1{j<k}

]

= νK − ν0 + ν0

K∑

k=1

νk −
K∑

k=1

∞∑

j=K+1

νkνj .

For ρ close to 1 and K such that
∑K

k=0 νk ≈ 1
2ρ this gives (since then ν0 = 1−ρ

ρ becomes

small)

0 ≈ νK − ν0 + ν0

(
1
2 − ν0

)
− 1

4 ≈ νK − 1
4 .

4.4. The type frequency profile in the near-critical exponential regime.
In this section we give evidence that, in the near-critical exponential regime (4), the type
frequency profile between clicks is with high probability close to (pk) given by (44). We
will start by briefly reviewing how this was proved in [GSW23] for the subcritical regime.
Resuming the notation of Sec. 4.1 we consider for k ∈ N0 the event

Ek :={there is a coalescence event between Ak and Ā0

but no coalescence event between Aj and Ā0 for j < k}.
In [GSW23] the following was proved for the subcritical regime:

(H) The probability that the randomly sampled individual I has type k is asymptotically
equal to P(Ek).

We conjecture that (H) is valid also in the exponential regime of the (β, δ)-scaling, but
defer the proof of this to future work. The link between (H) and the prediction (48) for
the empirical type frequency profile is established by the following

Claim 4.7. For (β, δ) ∈ E and for each k ∈ N0,

(P(E0), . . . ,P(Ek)) ∼ (p
(N,δ)
0 , . . . , p

(N,δ)
k ) as N → ∞. (52)

In the rest of the subsection we will outline the main mathematical insights that support
this claim. Let us first consider the case k = 0. In the regime E , the quantity a = 2N1−β−δ

is the typical (order of) size which the process Ā0 attains (and keeps) “between clicks”.
As long as A0 and Ā are disjoint, the rate of coalescence events between A0 and Ā on the
Nβ-timescale is

Nβ 1

2N
A0(t− r) · Ā(t− r) ∼ A0(t− r)N−δ. (53)
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The event E0 will thus with high probability go along with the event

Ẽ0 := {A0 reaches an order of magnitude beyond N δ}.
Notably, the condition (β, δ) ∈ E , which is equivalent to 1 − β − δ > δ, ensures that the
center of attraction of A0 is aboveN

δ. However, since A0 starts in 1 and then is only slightly
supercritical, the probability that A0 makes it up to its center of attraction is small for
large N . Indeed, in view of its dynamics (36), (A0(t−r))r≥0 behaves for sufficiently small r
similar to a binary Galton-Watson process. That this approximation is good enough for
our purposes goes along with the following

Lemma 4.8. Let H = (Hr)r≥0 be the binary Galton-Watson process with splitting rate

b := N−β and death rate d := N−β(1 − N−δ). Put R := KNβ+δ logN with K < 1−δ
2 .

Then

1

2N

∫ R

0
E[Hv(Hv − 1)|H survives] dv ∼ 1

2N

2b

b− d
e2(b−d)R =

N−β

N1−β−δ
e2N

−β−δR = o(1).

Proof. This follows from the fact that the second moment of Hr conditioned on survival is

E[H2
r |H survives] = e2(b−d)r +

b+ d

b− d

(
e2(b−d)r − e(b−d)r

)
.

�

As a consequence of this lemma we obtain

Corollary 4.9. The processes (A0(t − r))r≥0 and (Hr)r≥0 can be coupled such that, as
N → ∞, they coincide with high probability up to times r ≪ Nβ+δ logN .

With H as in Lemma 4.8, and with

pH(r) := P(Hr > 0)

we have

E[Hr|Hr > 0] =
1

pH(r)
exp(N−β−δr). (54)

Let us now choose a time r0 such that

Nβ+δ log logN ≫ r0 ≫ Nβ+δ.

We claim that for this r0 we have

N δ logN ≫ 1

pH(r0)
exp(N−β−δr0) ≫ N δ (55)

and
pH(r0) ∼ N−δ. (56)

For checking (56) we recall that for a binary Galton-Watson process (Gτ ) with individual
birth rate 1 and individual death rate 1 −N−δ the generating function F (ζ, τ) := E[ζGτ ]
fulfills

F (0, τ) =
N−δ − 1 + e−τN−δ

(
1−N−δ

)

−1 + e−τN−δ
(
1−N−δ

) .
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Putting

τ0 := r0N
−β (57)

we obtain

pH(r0) = P(Gτ0 > 0) = 1− F (0, τ0),

which meets (56) since τ0 ≫ N δ. Finally, (55) is immediate from (56). This proves
Claim 4.7 for the case k = 0. Let us now turn to k > 0, and abbreviate

p̃k := P(Ek).

In order to argue that (p̃k) satisfies, at least for sufficiently small k, approximately the
recursion (44), we proceed similarly as in the proof of [GSW23] Proposition 11.1, and
consider a standard Yule tree Y with Poisson decoration at rate ρ = 1 −N−δ. For τ0 as
in (57) we have

N δ log logN ≫ τ0 ≫ N δ.

Let Y (τ0) be that part of Y which is below time τ0 (i.e. the tree Y cut at height τ0). Let

L(τ0) be the minimum of the Poisson loads carried by the branches of Y (τ0). By a similar
argument that lead to (54) and (55) one can see that, conditional on {L(τ0) = k}, the

number of branches of Y (τ0) that carry the Poisson load k is of an order (slightly) larger
than N δ. Thus the same argument we used based on (53) for the case k = 0 shows, now for

any fixed k ≥ 0, that conditional on {L(τ0) = k} the event Ek occurs with high probability,
thus implying

p̃k ∼ P(L(τ0) = k) as N → ∞. (58)

We write (pk)k∈N0
:= (p

(N)
k )k∈N0 for the distribution of L(τ0). Let T be a random variable

with standard exponential distribution (playing the role of the first splitting time of Y ),
put

T0 := min(T , τ0)

and given T0 let M0 be a Poisson random variable with parameter T0(1−N−δ).

Decomposing Y (τ0) at the time of the first branching of Y (provided this time is smaller
than τ0) we obtain that L(τ0) solves the stochastic fixed point equation

L(τ0) d
= M0 +min(L

(τ0−T0)
1 , L

(τ0−T0)
2 ), (59)

where, given T0, the random variables M0, L
(τ0−T0)
1 and L

(τ0−T0)
2 are independent.

We are now going to establish a stochastic fixed point equation whose solution is asymp-
totically equivalent to that of (59). To this purpose let M (N) + 1 be a geometrically

distributed random variable with parameter 1−N−δ

2−N−δ = ρ
1+ρ . Let L

(N) be the solution of the

stochastic fixed point equation

L(N) d
= M (N) +min(L

(N)
1 , L

(N)
2 )

where L
(N)
1 and L

(N)
2 are independent copies of L(N) that are also independent of M (N).

Let π(N) be the distribution of L(N). The fact that the distribution weights of the random
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variables L(τ0) and L(τ0−T0) are asymptotically equivalent as N → ∞ strongly suggests
that for all k ∈ N0

p
(N)
k ∼ π

(N)
k as N → ∞. (60)

By applying step 4 of the proof of [GSW23] Proposition 11.1 to the random variable L(N)

(instead of the random variable L figuring there ) and using (60) we obtain the asymptotic
validity of the recursion

p0 = N−δ, (1−N−δ)(pk − pk−1) = pk


1− pk − 2

k−1∑

k′=0

pk′


 .

Together with (58) this gives the assertion (52) of the Claim.

5. Proofs

5.1. Proof of Theorem 3.2. Denote by Y the process whose jump rates are obtained
through multiplying (17), (18) by 1

m = Nβ. Then Theorem 3.2 is an immediate corollary of
the following result, which gives a refined statement on occupation times of Y, depending
on various starting conditions.

Theorem 5.1. a) For (β, δ) ∈ E,

ENα

[∫ T0

0
1{1≤Yt≤Nα} dt

]
∼ 2Nα−β , α < β + δ

ENα

[∫ T0

0
1{1≤Yt≤Nα} dt

]
≈ e2N

α−β−δ
, β + δ < α < 1− δ

EKN1−δ

[∫ T0

0
1{1≤Yt≤Nα} dt

]
≈ exp

(
N1−β−2δK

(
2

ρ
−K

))
, K ≤ 1

ρ

EY0 [T0] ≈ exp

(
N1−β−2δ 1

ρ2

)
, Y0 ≥

1

ρ
N1−δ.

b) For (β, δ) ∈ P,

ENα [T0] ∼ 2
(
(1 + β)/2 − α

)
logNNα−β , α <

1 + β

2
(61)

ENα [T0] ∼ N (1−β)/2π
3/2

2
,

1 + β

2
≤ α. (62)

This we prove now. We denote the time-discrete embedded process corresponding to Y
by Ỹ, and write G̃(m,n) for the expected number of visits at n of Ỹ when starting in m.
Denote by jpj and jqj the upward resp. the downward jump rate of Y from j. Let us start

with an anlysis of G̃(n, n). By standard arguments we have

G̃(n, n) =
1

φ(n)
, (63)
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where φ(n) is the escape probability of Ỹ from the state n, i.e.

φ(n) =
qn

qn + pn
(1− h(n)(n− 1)), (64)

where h(n) : {0, 1, . . . , n} → [0, 1] is Ỹ-harmonic on {1, . . . , n−1} and satisfies the boundary

conditions h(n)(0) = 0, h(n)(n) = 1. Hence (cf. e.g. [GSW23])

h(n)(ℓ) =

∑ℓ−1
j=0 d(j)∑n−1
k=0 d(k)

, ℓ = 0, . . . , n, (65)

where d(k) is the oddsratio product

d(k) :=
k∏

j=1

qj
pj

.

From (65) we obtain

1− h(n)(n− 1) =
d(n− 1)∑n−1
k=0 d(k)

. (66)

Writing G(n, n) for the expected time spent by Y in n when starting in n we observe the
relation

G(n, n) =
1

φ(n)
· 1
n
· 1

qn + pn
.

Combining this with (63), (64) and (66) we arrive at

G(n, n) =
1

nqn
·
n−1∑

k=0

d(k)

d(n − 1)
.

Let us now turn to G(m,n) with m 6= n. For n ≤ m we have

G(m,n) = G(n, n),

such that

G(m,n) = G(n, n) =
1

qn · n

n−1∑

k=0

d(k)

d(n − 1)

=
1

qn · n

n−1∑

l=0

n−1∏

k=l+1

pk
qk

.

while for m > n we have

G(m,n) = G(n, n) ·
∑m−1

l=0 d(l)∑n
l=0 d(l)

. (67)

Writing out (67) gives

G(m,n) =
1

qn · n

n−1∑

k=0

d(k)

d(n− 1)
·
∑m−1

l=0 d(l)
∑n−1

l=0 d(l)



28 J.L. IGELBRINK, A. GONZÁLEZ CASANOVA, C. SMADI, AND A. WAKOLBINGER

=
1

qn · n

m−1∑

l=0

n−1∏

k=l+1

pk
qk

.

In total this gives

G(m,n) =
1

qn · n

m−1∧n−1∑

l=0

n−1∏

k=l+1

pk
qk

. (68)

We now have the following expressions for the jump rates from the state n:

pn =

(
1

2m
+

1

ρ

)(
1− n

N

)

from n to n+ 1 and

qn =
1

2m

(
1− n

N

)
+ 1.

from n to n− 1. We thus have:

qn
pn

=

(
1 +

2m

ρ

)−1(
1 +

2m

1− n/N

)

=




∞∑

k=0

(−1)k
(
2m

ρ

)k



1 + ρ

2m

ρ
+ 2m

∞∑

k=1

(
n

N

)k



=




∞∑

k=0

(−1)k
(
2m

ρ

)k

+ ρ

∞∑

k=0

(−1)k
(
2m

ρ

)k+1



+2m




∞∑

k=0

(−1)k
(
2m

ρ

)k





∞∑

k=1

(
n

N

)k



=


1−

∞∑

k=0

(−1)k
(
2m

ρ

)k+1

+ ρ

∞∑

k=0

(−1)k
(
2m

ρ

)k+1



+2m




∞∑

k=0

(−1)k
(
2m

ρ

)k





∞∑

k=1

(
n

N

)k



=


1− (1− ρ)

∞∑

k=0

(−1)k
(
2m

ρ

)k+1

+ ρ




∞∑

k=0

(−1)k
(
2m

ρ

)k+1





∞∑

k=1

(
n

N

)k

 .

Hence if we introduce

S :=

∞∑

k=0

(−1)k
(
2m

ρ

)k+1

∼ 2m,
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then

qn
pn

= 1− (1− ρ)S+ ρS

∞∑

k=1

(
n

N

)k

.

A second order Taylor expansion thus gives:

1

S
log

qn
pn

= (1− ρ) + ρ

3∑

k=1

(
n

N

)k

− (1− ρ)2

2
S− ρ2

2
S




2∑

k=1

(
n

N

)k



2

+O

(
(1− ρ)3S2 +S2

(
n

N

)3

+

(
n

N

)4
)

= (1− ρ) + ρ
3∑

k=1

(
n

N

)k

− (1− ρ)2

2
S− ρ2

2
S

((
n

N

)2

+ 2

(
n

N

)3
)

+O

(
(1− ρ)3S2 +S2

(
n

N

)3

+

(
n

N

)4
)

In particular, if n is of order at most N1−δ/2,

log
qn
pn

= −(1− ρ)S+ ρS

3∑

k=1

(
n

N

)k

− (1− ρ)2

2
S2 − ρ2

2
S2




3∑

k=1

(
n

N

)k



2

+O
(
N−3β−3δ/2 +N−β−2δ

)

= −(1− ρ)S+ ρS
2∑

k=1

(
n

N

)k

− (1− ρ)2

2
S2 − ρ2

2
S2

(
n

N

)2

+O
(
N−β−3δ/2

)

= −(1− ρ)S

(
1− (1− ρ)

2
S

)
+ ρS

n

N
+ ρS

(
1− ρ

2
S

)(
n

N

)2

+O
(
N−β−3δ/2

)
.

This implies for K < ∞ and n ≤ KN1−δ/2

log d(n) = −(1− ρ)S

(
1− (1− ρ)

2
S

)
n+ ρS

n2

2N
+ ρS

(
1− ρ

2
S

)
n3

3N2
+ o(1)

= −(1− ρ)Sn +S
n2

2N
+S

(
1− S

2

)
n3

3N2
+ o(1).

We will first prove point b).

5.1.1. The polynomial regime. Here we have 1 − β − 2δ < 0. Let us first take α ≤ 1 − δ.
Then for any n ≤ Nα, d(k) ∼ 1 and

G(n, n) ∼ q−1
n ∼ 2N−β .
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Hence
KNα∑

n=1

G(n, n) ∼ 2KNα−β .

Now let us take 1− δ < α ≤ 1− δ/2:

Nα∑

n=KN1−δ

G(n, n) ∼ 2Nα−β

1∫

KN1−δ−α

du

1∫

0

e
(1−ρ)SNαu(1−v)−SN2αu2 1−v2

2N −
(

S−S2

2

)

N3αu3 1−v3

3N2
dv.

For 1− δ < α ≤ 1− δ/2,

(1− ρ)SNαu(1− v)

SN2αu2 (1−v2)
2N

≤ 2N1−δ−α

u

goes to 0 when N goes to infinity and u 6= 0. Likewise,

S
(
1− S

2

)
N3αu3 (1−v3)

3N2

SN2αu2 (1−v2)
2N

≤ 2Nα−1 ≤ 2N−δ/2

goes to 0. We deduce that

Nα∑

n=KN1−δ

G(n, n) ∼ 2Nα−β

∫ 1

KN1−δ−α

du

∫ 1

0
e−SN2αu2 (1−v2)

2N dv

= 2Nα−β

∫ 1

0
dv

∫ 1

KN1−δ−α

e−SN2αu2 (1−v2)
2N du

= 2
Nα−β

√
SN2α−1 1

2

∫ 1

0

dv√
1− v2

∫ √

SN2α−1 (1−v2)
2

K

√

SN1−2δ (1−v2)
2

e−u2
du

∼ 2N (1−β)/2

∫ 1

0

dv√
1− v2

∫ √

SN2α−1 (1−v2)
2

K

√

SN1−2δ (1−v2)
2

e−u2
du.

We have

SN1−2δ (1− v2)

2
→ 0, N → ∞.

If 1− δ < α < (1 + β)/2,
√

SN2α−1
(1− v2)

2
→ 0, N → ∞

and
Nα∑

n=KN1−δ

G(n, n) ∼ 2Nα−β ,
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whereas if (1 + β)/2 < α < 1− δ/2,
√

SN2α−1
(1− v2)

2
→ ∞, N → ∞

and
Nα∑

n=KN1−δ

G(n, n) ∼ 2N (1−β)/2

∫ 1

0

dv√
1− v2

∫ ∞

0
e−u2

du

= 2N (1−β)/2 π
3/2

4
= 2N (1−β)/2

(
π

2

)3/2

. (69)

Let n0 ≤ n. Then from (68),

G(n0, n) =
1

nqn

n0−1∑

l=0

d(l)

d(n− 1)
.

Hence for any ε > 0,

N1−ε∑

n=n0

G(n0, n) ≤ N−β


 1

n0

n0−1∑

l=0

d(l)

d(n0 − 1)




N1−ε∑

n=n0

d(n0 − 1)

d(n− 1)
.

Now notice that for n ≥ N1−δ/2 and N large enough,
qn
pn

≥ 1 +N−β−δ/2.

In particular, for ε < δ/2,

N1−ε∑

n=N1−δ/2

d(N1−δ/2 − 1)

d(n− 1)
≤

∞∑

n=0

(
1 +N−β−δ/2

)−n
∼ Nβ+δ/2.

Moreover we get from the previous computations,

1
N1−δ/2

N1−δ/2−1∑

l=0

d(l)

d(N1−δ/2 − 1)

∼
∫ 1

0
e
(1−ρ)SN1−δ/2(1−v)−SN2−δ (1−v2)

2N
−S

(

1−S
2

)

N3−3δ/2 (1−v3)
3N2

dv

≤
∫ 1

0
e−SN2−δ (1−v2)

4N dv

≤
∫ 1

0
e−SN1−δ (1−v)

4 dv

=
2√

SN1−δ

∫ √
SN1−δ

2

0
e−vdv ∼ N (β+δ−1)/2.
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Hence

N1−ε∑

n=N1−δ/2

G(N1−δ/2, n) ≤ N−β
(√

2N (β+δ−1)/2
)
Nβ+δ/2 ∼

√
2N δ−(1−β)/2.

But from the condition

1− β − δ > 0

we deduce that δ < 1− β and thus for large N ,

N1−ε∑

n=N1−δ/2

G(N1−δ/2, n) = o
(
N (1−β)/2

)
.

Adding (69) yields for any small ε > 0,

N1−ε∑

n=N
1−β
2 +ε

G(N (1−β)/2+ε, n) ≤
N1−δ/2∑

n=N
1−β
2 +ε

G(n, n) +

N1−ε∑

n=N1−δ/2

G(N1−δ/2, n) = o

(
N

1−β
2

)
.

This ends the proof of (62).

Let us come back to the case α < (1 + β)/2. First notice that for ε > 0 such that
α+ ε < (1 + β)/2,

N(1+β)/2−ε∑

n=Nα

G(Nα, n) ∼
N(1+β)/2−ε∑

n=Nα

Nα

nqn
∼ 2

(
(1 + β)/2− ε− α

)
logNNα−β.

Indeed we proved that d(n) ∼ 1 for any n ≤ N (1+β)/2−ε. Now notice that the condition
1−β−2δ < 0 implies that 1−δ < (1+β)/2. Moreover, from the definition of qn and pn we
see that qn/pn ≥ 1 as soon as n ≥ N1−δ. Hence if ε is small enough, 1− δ < (1 + β)/2− ε
and

N(1+β)/2+ε∑

N(1+β)/2−ε

G(Nα, n) =

N(1+β)/2+ε∑

n=N(1+β)/2−ε

1

nqn

Nα−1∑

l=0

d(l)

d(n − 1)

≤ 1

d(N (1+β)/2−ε − 1)

N(1+β)/2+ε∑

n=N(1+β)/2−ε

1

nqn

Nα−1∑

l=0

d(l)

∼ 2ε logNNα−β.

Finally,

N∑

N(1+β)/2+ε

G(Nα, n) =

N∑

N(1−β)/2+ε

1

nqn

Nα∑

k=0

d(k)

d(n− 1)
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≤ 2Nα−β

N (1+β)/2+ε

N∑

N(1+β)/2+ε

d(Nα − 1)

d(n− 1)

∼ 2Nα−β

N (1+β)/2+ε

N∑

N(1+β)/2+ε

1

d(n− 1)
.

But from the Taylor expansion we see that

N∑

N(1+β)/2+ε

1

d(n− 1)
≤
∫ N

N(1+β)/2+ε

e−Sx2 1
4N dx = o (1) .

This concludes the proof of (61).

Let us now focus on point a):

5.1.2. The exponential regime. Here we have 1 − β − 2δ > 0. From the Taylor expansion
we deduce that there are three possibilities:

• If α < 1− δ,

log d(Nα) ∼ −(1− ρ)SNα

• If K ∈ R+,

log d(KN1−δ) = −(1− ρ)SKN1−δ + ρS
(KN1−δ)2

2N
+ o

(
N1−β−2δ

)

• If α > 1− δ,

log d(Nα) ∼ ρS
n2

2N
We will consider the three cases successively.

If α < β + δ,

Nα∑

n=1

G(n, n) ∼ 2Nα−β

∫ 1

0
du

∫ 1

0
e(1−ρ)SNαu(1−v)dv

=
2Nα−β

(1− ρ)SNα

∫ 1

0

1

1− v

(
e(1−ρ)SNα(1−v) − 1

)
dv ∼ 2Nα−β.

Recall that ≈ stands for logarithmical equivalences. If β + δ < α < 1− δ,

Nα∑

n=1

G(n, n) ≈
∫ 1

0
du

∫ 1

0
e(1−ρ)SNαu(1−v)dv ≈ e(1−ρ)SNα ≈ e2N

α−β−δ
.

Now, let us take K ∈ R+. Then:

KN1−δ∑

n=1

G(n, n) ≈
KN1−δ∫

1

dn

n∫

1

exp

(
x

N1+β

(
x− 2

ρ
N1−δ

)
− n

N1+β

(
n− 2

ρ
N1−δ

))
dx
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≈
KN1−δ∫

1

dn

n∫

1

exp

(
1

N1+β
(x− n)

(
x+ n− 2

ρ
N1−δ

))
dx

≈
K∫

0

dλ

λ∫

0

exp

(
N1−β−2δ(u− λ)

(
u+ λ− 2

ρ

))
du

≈
K∫

0

dλ

λ∫

0

exp

(
N1−β−2δu

(
u− 2λ+

2

ρ

))
du.

There are then two possible cases for the last integral:

• If λ ≥ 2/ρ,

∫ λ

0
exp

(
N1−β−2δu

(
u− 2λ+

2

ρ

))
du = O(1).

• If λ ≤ 2/ρ,

∫ λ

0
exp

(
N1−β−2δu

(
u− 2λ+

2

ρ

))
du ≈ exp

(
N1−β−2δλ

(
2

ρ
− λ

))
.

We deduce that

• If K ≤ 1/ρ

KN1−δ∑

n=1

G(n, n) ≈ exp

(
N1−β−2δK

(
2

ρ
−K

))

• If 1/ρ ≤ K,

KN1−δ∑

n=1

G(n, n) ≈ exp

(
N1−β−2δ 1

ρ2

)

Notice that for n ≥ N1−δ, qn/pn ≥ 1 and recall that for n ≥ n0,

G(n0, n) =
1

nqn

n0−1∑

l=0

n−1∏

k=l+1

pk
qk

.

Hence for (2/ρ)N1−δ ≤ n0 ≤ n

G(n0, n) ≤ G
(
(2/ρ)N1−δ , n

)
≤ 1

nqn

(2/ρ)N1−δ−1∑

l=0

(2/ρ)N1−δ−1∏

k=l+1

pk
qk

=
(2/ρ)N1−δq(2/ρ)N1−δ

nqn
G((2/ρ)N1−δ , (2/ρ)N1−δ)
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=
(2/ρ)N1−δq(2/ρ)N1−δ

nqn
O(1).

We deduce that for (2/ρ)N1−δ ≤ n0

N∑

n=n0

G(n0, n) = o

(
exp

(
N1−β−2δ

))
.

This ends the proof of point a).

5.2. Proof of Propositions 4.3 and 4.4.

Proof of Proposition 4.3. We abbreviate pk := p
(N,δ)
k , ρ := 1−N−δ, and proceed by induc-

tion. For k = 0, (49) is true since p0 = 1 − ρ by (44). Let us now assume that for some
k ∈ N the asymptotics (49) is valid for all ℓ < k. This implies in particular the validity of
the asymptotics (50) for this k. Re-arranging (44) we obtain

pk = −1

2


ρ− 1 + 2

∑

ℓ<k

pℓ


+

√√√√√1

4


ρ− 1 + 2

∑

ℓ<k

pℓ




2

+ ρpk−1. (70)

Because of (50), and since ρ− 1 = −N−δ, we have

N δ/2k


ρ− 1 + 2

∑

ℓ<k

pℓ


→ 0 as N → ∞.

This together with (70) implies

N δ/2kpk ∼
√

ρN δ/2kD̄1
pk−1 as N → ∞.

As the r.h.s converges to 1 by induction assumption, this completes the induction step. �

Proof of Proposition 4.4. First notice that for any k ≥ 1,

ρ− 1 + 2
∑

ℓ<k

pℓ ≥ ρ− 1 + 2p0 = 1− ρ ≥ 0.

From the inequality √
a2 + b− a ≤

√
b

which holds for any a, b ≥ 0 and from (70), we get that for any k ≥ 1,

pk ≤ √
ρpk−1 ≤ (ρp0)

(1/2)k = (ρN−δ)(1/2)
k
. (71)

We deduce that for any ε > 0 and k ≤ log logN/(log 2 + ε),

k∑

ℓ=0

pℓ ≤
k∑

ℓ=0

(ρN−δ)(1/2)
ℓ ≤ log logN

log 2 + ε
(ρN−δ)(1/2)

log logN/(log 2+ε)

=
log logN

log 2 + ε
e−δ(logN)

ε
log 2+ε → 0 as N → ∞.
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We deduce that

median(p(N,δ)) ≥ log logN

log 2 + ε
when N is large enough.
From (71) we get

k−2∑

ℓ=0

pℓ ≤ (ρN−δ)(1/2)
k−2

k−2∑

ℓ=0

(ρN−δ)(2
ℓ) ≤ (ρN−δ)(1/2)

k−2
∞∑

ℓ=0

(ρN−δ)ℓ =
(ρN−δ)(1/2)

k−2

1− ρN−δ
.

Adding (70) yields

pk ≥ √
ρpk−1 − pk−1 −

(ρN−δ)(1/2)
k−2

1− ρN−δ
.

Now let us choose a small ε and introduce Kε such that

(ρN−δ)(1/2)
Kε ≤ ε ≤ (ρN−δ)(1/2)

Kε+1
. (72)

Then for any k ≤ Kε,

pk ≥
(√

ρ(1− 3ε/
√
ρ)
)s(k)

(ρN−δ)(1/2)
k
,

where s(k) = 1+1/2+...+1/2k−1 . Indeed this holds for k = 0 and if it holds for k−1 < Kε,

pk ≥ √
ρpk−1 − pk−1 −

(ρN−δ)(1/2)
k−2

1− ρN−δ

=
√
ρpk−1 −

√
ρpk−1

√
pk−1√
ρ

−
√
ρpk−1√
ρpk−1

(ρN−δ)(1/2)
k−2

1− ρN−δ

≥ √
ρpk−1 −

√
ρpk−1

(ρN−δ)(1/2)
k

√
ρ

−
√
ρpk−1

ρ1/2+
s(k−1)

4 (1− 3 ε√
ρ)

s(k−1)
2

(ρN−δ)(1/2)
k−2−(1/2)k

1− ρN−δ

≥ √
ρpk−1


1− (ρN−δ)(1/2)

k

√
ρ

− 1

ρ1/2+s(k−1)/4(1− 3ε√
ρ)

s(k−1)
2

(ρN−δ)(1/2)
k−1

1− ρN−δ




where we used (71) and the induction hypothesis. Adding again the induction hypothesis
and (72) then leads to

pk ≥ √
ρpk−1

(
1− ε√

ρ
− 1

ρs(k)/2(1− 3ε/
√
ρ)s(k−1)/2

ε

1− ρN−δ

)

≥ ρs(k)/2(1− 3ε/
√
ρ)s(k−1)/2(ρN−δ)(1/2)

k

(
1− ε√

ρ
− 2

ε√
ρ

)

= ρs(k)/2(1− 3ε/
√
ρ)s(k)(ρN−δ)(1/2)

k
.

Notice that for any k ∈ N,
s(k) ≤ s(∞) = 2
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and thus
ρs(k)/2(1− 3ε/

√
ρ)s(k) ≥ ρ(1 − 3ε/

√
ρ)2.

In particular, this holds true for k = Kε, and thus

pKε ≥ ρ(1− 3ε/
√
ρ)2(ρN−δ)(1/2)

Kε

= ρ(1− 3ε/
√
ρ)2
(
(ρN−δ)(1/2)

Kε+1
)2

≥ ρ(1− 3ε/
√
ρ)2ε2.

As the (pk)k∈N are non decreasing up to the median (recall (45)), the last inequality implies
that the median is smaller than Kε + 4ε−2. Adding that

Kε ∼
log(log(N δ)/ log(2))

log(2)
as N → ∞

ends the proof. �
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[GCS18] A. González Casanova and D. Spanò. Duality and fixation in ξ-wright–fisher processes with

frequency-dependent selection. The Annals of Applied Probability, 2018.
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