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Abstract 

Cryo-electron tomography (CryoET) resolves individual macromolecules inside living cells. 

However, the complex composition and high density of cells challenge the faithful 

identification of features in tomograms. Here, we capitalize on recent advances in electron 

tomography and demonstrate that 3D template matching (TM) localizes a wide range of 

structures inside crowded eukaryotic cells with confidence 10 to 100-fold above the noise 

level. We establish a TM pipeline with systematically tuned parameters for automated, 

objective and comprehensive feature identification. High-fidelity and high-confidence 

localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, lipid membranes 

and microtubules, and individual subunits, demonstrate that TM is generic. We resolve ~100-

kDa proteins, connect the functional states of complexes to their cellular localization, and 

capture vaults carrying ribosomal cargo in situ. By capturing individual molecular events inside 

living cells with defined statistical confidence, high-confidence TM greatly speeds up the 

CryoET workflow and sets the stage for visual proteomics. 

 

Introduction 

Cryo-electron tomography (CryoET) images the cellular environment in situ without labels and 

with fully preserved context1,2. Recent advances in hardware and acquisition techniques have 

enabled CryoET to routinely image, with high throughput, cell volumes in their native state 

and obtain structures of abundant macromolecular complexes with near molecular 
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resolution3–5. However, lacking a uniform established method, the localization of particles in 

the tomograms remains highly customized, specific to each target, at best semi-automatic, 

and relying on strong manual input (such as definition of geometric surface for large 

pleomorphic assemblies)6–10 or extensive, often manual corrections for the false positives in 

an initial automated assignment3,4,11 . The confident identification of a sufficient number of 

particles for a challenging target such as the nuclear pore complexes (NPC) can thus take 

months or years of manual annotation of literally hundreds of tomograms12,13. Lacking an 

automated, general and reliable localization method, we also have not yet realized the 

promise of visual proteomics14–17 to build molecularly detailed representations of complex 

cellular landscapes from CryoET data. 

Reliable assignment of molecular identities in tomograms is challenging due to both the 

biological context and the specifics of CryoET processing. Cells are crowded environments, 

and the proteins within them are structurally heterogeneous and vary widely in size and 

abundance. The physical limitations of the acquisition procedure further complicate particle 

localization18–20. In CryoET, the electron dose is limited to prevent sample radiation damage, 

which results in a low signal-to-noise ratio in the acquired tilt series. The maximum sample 

tilt of about ±60 degrees results in incomplete angular sampling known as the “missing 

wedge” problem in the 3D reconstruction. In addition, the electron micrographs are 

conventionally captured out of focus. To recover the high-resolution information, it is thus 

necessary to accurately determine the defocus and correct the contrast transfer function 

(CTF)20. Visual proteomics needs to overcome these challenges for the reliable assignment of 

molecular identities to noisy three-dimensional (3D) images of highly complex cellular 

volumes. 

Manual tomogram annotation is still widely used despite being labor intensive, intrinsically 

subjective and incomplete21. Template-based computational approaches22 use known objects 

(templates) and compare them with the data by calculating a similarity metric (usually a 

constrained cross-correlation) 15,16,23–25. In contrast, template-free methods iterate to cluster 

particles and determine patterns without imposing any structure26,27. However, their 

accuracy and efficiency need improvement22. Deep learning algorithms, including 

classification and semantic segmentation, have been applied to CryoET22,28–30. Recently, 

implementations such  as DeepFinder29, DeePiCt30 and TomoTwin31 have shown promising 
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results in segmenting tomograms and identifying the positions of common macromolecular 

complexes.  

However, these methods require extensive annotations for training and are less effective in 

detecting low-abundance particles22, so far limiting their use to detect ribosomes and 

similarly sized particles. Furthermore, they determine only positions and further processing 

is needed to determine particle orientations. 

Template matching (TM)15,16,23–25 is typically used with low-resolution templates of the 

macromolecular complex of interest on down-sampled tomograms to reduce computational 

cost and avoid template bias. Large numbers of false positive hits are removed either 

manually, thereby lowering the objectivity of the approach, or through a multistep 

classification procedure, which is computationally expensive and can fail if the number of 

particles is small. In addition, the data down-sampling limits the ability to localize smaller or 

weak-signal particles32. In theory, the ability of TM to localize the particles with high 

confidence should be connected to the quality of the template and how well it resembles the 

actual data. However, in practice, it has not been objectively shown how TM depends on the 

type of template and parameters such as voxel size, masks, resolution filtering, and the 

number of orientations.  

In this study, we establish a high-confidence TM pipeline and combine it with CryoET imaging 

for visual proteomics of eukaryotic cells. We show that the performance of TM not only 

depends on the size, origin and shape of the template, but also on angular increment in 

orientational sampling, and on tomogram voxel size (magnification), filtering and resolution. 

We demonstrate the power of optimized TM to localize nuclear pore complexes (NPCs), vault 

proteins, ribosomes, proteasomes, microtubules, and lipid membranes, inside a single 

dataset. We establish that TM can identify low-abundance and low-density complexes with 

high fidelity, as exemplified by the identification of ribosome-loaded vaults. We show that TM 

quantitatively captures the diversity of eukaryotic ribosomes in different functional states. 

TM localizes individual subunits of the NPC, microtubule protofilaments, and the large and 

small ribosomal subunits. We provide recommendations for users to optimally set template 

depended search parameters and a parameter estimation software tool.  
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Results 

High-confidence template matching for in situ macromolecule localization 

We comprehensively tested our TM pipeline on tomograms of D. discoideum (EMD-XXXX) 

obtained from lamellae milled with cryo-focused ion beam microscopes4 (see Fig. 1 for the 

workflow and Methods for details on data acquisition). Starting from a library of the best 

available templates for a series of candidate features, we performed TM of each template in 

a tomogram independently and assigned particle identities to the points with high 

constrained cross-correlation (CC). The locations and orientations of the assigned peaks 

permit the visualization and analysis of the spatial interactions of the features. We used a 

total of 18 templates (Table 1) at different voxel sizes and with multiple search parameters 

including the number of orientations and filters (see Methods for details). Templates in the 

library were obtained from different sources including subtomogram averaging (STA), 

homology modelling, the protein data bank (PDB)33, the electron microscopy data bank 

(EMDB)34, and molecular dynamics simulations (see Methods for details).  

We used the STOPGAP35 software framework to calculate the actual cross-correlation 

between templates and tomograms, which maximizes the cross-correlation of the template 

according to its orientation and positions, and already takes missing wedge, angular tilt step, 

defocus, and electron dose into account (see Methods for details). For each template, with 

optimized search parameters (see next section), peaks several standard deviations above 

noise appear in the z-score map. High-confidence peaks correspond to the position where the 

center of the template is placed to best reproduce the data from the tomograms. 

Fig. 1 summarizes the TM procedure. We used a library that includes templates for the NPC, 

the 80S ribosome, and the nuclear envelope obtained by STA from tomograms of D. 

discoideum. For the proteasome36 and microtubule37, we used the human homologous 

structures previously reported (PDB-id: 6rgq, PDB-id: 3jar, respectively). For the vault, we 

created a density map starting from an atomic model generated by homology modeling. With 

each of the templates we performed TM, initially at 4-binned data with a voxel size of 8.704 

Å and then also at higher resolution (2-binned 4.352 Å/voxel and unbinned 2.176 Å/voxel). By 

progressing hierarchically to higher resolution, we aimed to capitalize on the high signal 

content of the data collected with latest generation hardware. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.05.556310doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556310
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 1: Template matching for visual proteomics. A tomogram (slice shown in top left) is cross-
correlated independently with each template in the library (bottom) to identify points with 
high constrained cross-correlation values (zoom-ins with CC z-scores at bottom). From the z-
score maps, three-dimensional localization maps (top right) are generated for visualization58 
and analysis of the spatial interactions of proteins and their complexes. 
 

We transformed the cross-correlation volumes into z-score maps. In this representation, a 

peak at the center of the NPC is typically ~10 standard deviations (𝜎) above the map noise, 

while the vault and the ribosome have peaks with CC values of ~30	𝜎 and ~40 𝜎, respectively 

(Fig. 1). For isolated objects such as the vault or ribosome, the peaks appear insular and sharp, 

while membrane or microtubules show elongated and continuous peaks consistent with the 
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extended and repetitive character of the objects. Remarkably, TM identifies also low density 

and low abundance particles with high fidelity (Fig. 1). Automatic and semi-automatic particle 

detection algorithms have been widely tested for high-contrast and abundant 

macromolecular complexes in tomograms (e.g., ribosomes). However, fundamental 

macromolecular complexes such as the NPC or vault, which are scarce (2-3 copies per 

tomogram) and have low density, are particularly challenging. With optimal parameters, TM 

results in strong peaks for both macromolecular complexes (Fig. 1) and finds all positions 

identifiable by expert inspection. This finding is important in two ways: firstly, these 

complexes are fundamental for our understanding of cellular function, and secondly, given 

their low abundance, harnessing all the particles is key for the visual proteomics analysis. 

 

Optimization of TM parameters 

Optimal TM requires systematic tuning of the bandpass filters (Fig. 2A,B), template (SI Figs. 1 

and 2) and mask size (Fig. 2C), voxel size (SI Fig. 3) and angular sampling (SI Fig. 4). Optimal 

parameter values depend on the quality of the data as well as the size and shape of the object 

(Fig. 2D-F and SI Figs.  1 and 2). In tests on ribosomes, we found that mask tightness has a 

negligible effect as long as the template is completely contained (Fig. 2C). Different masking 

may also affect performance, e.g., with membranes included or excluded for membrane-

associated structures (SI Fig.  5). Ribosome peaks decay sharply with increasing high-pass 

filter, i.e., when low resolution information is gradually removed (Fig. 2A). The low-pass filter 

has a less pronounced effect, although the z-score slightly increased when high resolution 

information was included (Fig. 2B). This analysis implies that, at least for ribosome detection, 

TM detection benefits from retaining high resolution information in the data.  

The impact of other parameters, such as voxel size or the number of orientations sampled, 

depends on the template mass, shape and size as well as the data. Therefore, we developed 

a Python-based tool that allows the user to perform an in silico evaluation of the TM 

parameters (see details in Methods and examples in SI Figs.  1 and 2). The in silico evaluation 

of multiple templates showed that the CC depends almost linearly on the fraction of 

overlapping voxels between the rotated template and the object (Fig. 2D,E). The number of 

overlapping voxels depends on both angular sampling and object shape (Fig. 2E). This effect 

is particularly pronounced for hollow objects such as the vault and elongated structures such 

as protofilaments. In such cases, even small rotations lead to a large decrease in the number 
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of overlapping voxels and hence in the cross-correlation. Fig. 2E also shows objects that 

require finer orientation sampling to be localized with high confidence, requiring more 

computational power for detection. We conclude that general recommendations for 

sampling during template matching cannot be made. Therefore, our pipeline optimizes 

parameters in silico in a template specific manner, prior to analyzing experimental data. 

 

High-confidence TM accounts quantitatively for ribosome localizations 

 

 

Fig. 2: Optimization of the search parameters in template matching. A-C, Dependence of 
the average constrained cross-correlation peak height (z-scores) for 80S ribosomes on the 
high-pass (A) and low-pass filters (B), and on the diameter of the spherical mask (C). In A, no 
low-pass filter was applied, and in B no high-pass filter. The filters are shown in Fourier voxels 
(as defined in STOPGAP). D, Schematic representation of the overlapping voxels (orange) 
when a microtubule is rotated around its optimal orientation by 20 deg. E,F, Dependence of 
the constrained cross-correlation of a template with itself (in silico evaluation) as a function 
of the fraction of overlapping voxels) and the angular distance (F). In E, the CC values for all 
the rotations in a 10 degrees grid are shown. In all cases, error bars correspond to one 
standard deviation. 
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Fig. 3: Template matching locates the 80S ribosome with high spatial and rotational accuracy. 
A, Tomogram slice (EMD-XXXX) showing abundant ribosomes. B, Slice of the z-score map 
obtained from template matching using the template of the 80S ribosome shown in G. C, 
Superimposition of the peaks obtained from template matching (blue circles; sampled every 5 
degrees and with a cross-correlation threshold ≥30𝜎) and the high-confidence localizations 
obtained from an expert multiple-step alignment using Relion38 reported in reference4. D, 
Percentage of the high-confidence Relion particles detected within 10 nm of the TM peaks as a 
function of the rotational sampling (i.e., number of orientations). E,F, Histograms of angular (E) 
and Euclidean distances (F) from the TM peaks to the annotated Relion particles, respectively, 
each obtained for a 20-degree angular sampling. G, Template for 80S ribosome. H,I, Ribosome 
structure obtained by averaging the particles from TM (H, no further processing) superimposed 
on template (I). 
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Reliable particle detection is a prerequisite for a quantitative analysis of the localization and 

interaction of molecular complexes. We assessed the ability of optimized TM to locate 

individual ribosome positions and orientations by comparing the results of TM with existing 

annotations of the cytosolic 80S ribosomes for D. discoideum4. The annotations were 

obtained in a multistep classification procedure using Relion38, as described in reference4, 

which resulted in a map with resolutions of up 4.5 Å. 

Fig. 3 shows the results for TM on 4-binned data (8.704	Å/voxel). Motivated by our in silico 

evaluation (SI Fig. 4), we assessed the effect of the number of orientations by sampling the 

rotational space in angular steps of 30, 20, 10, and 5 degrees (576, 1944, 15192, and 119952 

orientations) and selected TM peaks corresponding to local maxima in the z-score map that 

are above a threshold (Fig. 3). We considered a particle in the ground truth as “TM-detected” 

if it was located within 10 nm (~1/3 of the ribosome diameter) of a TM peak. With increased 

numbers of orientations, the z-scores of the peaks increased and with that the percentage of 

TM-detected particles (Fig. 3C,D; see also SI Figs. 3 and 4). With orientations separated by ~5 

degrees, TM detected ~95% of the 437 previously annotated particles with a mean distance 

to the TM peak of (3.73±1.57) nm and with orientations that closely matched the annotated 

orientations (Fig. 3F). Consequently, the averages of the particles detected and orientated by 

TM recapitulate the density of the 80S ribosome with high sensitivity and accuracy without 

the need for a multistep classification process (Fig. 3H, I). This suggests that TM can be used 

for a quantitative accounting of the particles present in the tomograms. Our analysis shows 

that the comprehensive search of the rotational space enhances the quantitative capability 

of TM in a trade-off with increased computational cost. 

 

High-confidence TM reveals membrane compartments 

Accurate segmentation of membranes is crucial for visualizing cellular landscapes. We tested 

TM for membrane segmentation with models of different origin and size (Table 1, Figs. 1 and 

4). The first template was the map created from a frame in the trajectory of an atomistic 

simulation of a membrane in explicit water (atomic model). The second and third models 

were averages of the nuclear envelope obtained by subtomogram averaging with diameters 

of 43.5 nm (small STA) and 87 nm (large STA), respectively. For comparison, during TM, 

cylindrical masks with a diameter of 34.8 nm were used for both the atomistic and the small 
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STA, while a cylindrical mask with a diameter of 76.5 nm was used for the large STA (see 

Methods).   

The inner and outer membranes of the nuclear envelope were detected using any of the three 

templates (atomistic, small STA, large STA; see supporting video). The atomistic and small STA 

templates performed roughly on par. Increasing the number of orientations (20, 10, and 2 

degrees at 4-binned data with 8.704 Å/voxel) consistently decreased the background noise 

(Fig. 4), sharpening the peaks, and increased the confidence in the TM detection. False 

Fig. 4: Template matching for the segmentation of membranes in 3D. Results in the top, 
middle and bottom row were obtained for templates constructed from a simulated atomic 
membrane and STAs of the nuclear membrane with diameters of 50 (small STA) and 100 
(large STA) voxels, respectively (8.704 Å/voxel). The results from left to right correspond to 
increasing angular sampling of 20, 10 and 2 deg, respectively. Note that the peaks at the 
upper right corner originate from a highly curved vesicle while the two stripes on the right-
hand side of the cross-correlation maps (z-scores) are a microtubule and not a membrane 
(see Fig. 1).  
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positives for the small templates (atomistic, small STA), e.g., from a microtubule segment (Fig. 

4 left; see also Fig. 1) are suppressed by using the large STA template (or, visually, by 

recognizing the lacking 2D extension). However, the large STA model gives only a weak signal 

for curved membranes, pointing to the need for an expanded model set of membrane patches 

of varying curvature.  

Although computationally expensive compared to other segmentation methods, template 

matching for membranes has several strengths. For example, the template matching output 

could be used as an initial annotation for training deep learning algorithms. In addition, TM 

not only predicts the positions of the membranes in the tomogram, but also provides voxel-

by-voxel normal vectors, which in turn enables a detailed analysis of the local properties of 

the membranes. The latter could also be used as an automatic input for triangulation methods 

and/or as a starting point for simulations of membrane dynamics.   

 

TM locates individual subunits down to 100 kDa mass 

 We tested the ability of TM to localize subunits and assign substates of ribosomes, the NPC, 

and microtubule fragments. We generated templates for the subunits of the D. discoideum 

NPC according to its C8 symmetry, microtubule protofilaments, the small (40S) and large (60S) 

ribosomal subunits, and for two prominent 80S ribosome states capturing the ratchet-like 

motion essential for protein synthesis39.  

For the ribosomal subunits, we performed TM on 2-binned data (4.352	 Å/voxel) with 

orientations every 10 degrees, since TM on 4-binned tomograms showed inconclusive peaks. 

A sub-volume of the tomogram was analyzed independently with three different templates: 

80S, 60S, and 40S (Fig. 5). Similar to the 4-binned data (Fig. 3), the TM localized 96.9% of the 

80S annotated ribosomes with CC peaks up to 114 𝜎 (Fig. 5B,C). Furthermore, when 

comparing the positions and orientations of the subunits, TM correctly predicted the location 

of the subunits and their relative orientations (Fig. 5D). Small but noticeable differences 

between the orientations of the subunits with respect to the position of the 80S reflect the 

limited angular sampling. 

Directly from the z-score maps, we could deduce the canonical 8-fold symmetry of the NPC 

(Fig. 6A) after performing TM on 4-binned tomograms (8.704 Å/voxel) and sampling 

orientations every 10 degrees as suggested by our in silico analysis. Two NPCs at the edge of 

the lamella have only 7 (left) and 5 (center) detectable subunits left after the milling process.  
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Fig. 5: Template matching predicts the relative orientations of ribosome subunits and assigns 
ribosome rotational States. A, Tomogram slice. B,C, TM finds the positions of the 80S (green) 
ribosomes annotated with high confidence (96.9% of particles within 2.4±1.5 nm). Two more 
templates were tested, (i) the small (40S - pink) and (ii) the large (60S - blue) ribosomal 
subunits. D, Predicted position and rotation of the 40S and 60S compared to the predicted 
orientation for 80S from TM. Note that the positions and orientations displayed the subunits 
and the 80S were obtained from independent TM calculations. E, Comparison of the 
assignment of the ratchet-like rotational states of the ribosome from TM using a Gaussian 
mixture model40 with existing annotations4 as function of position.  F, Rotated and unrotated 
template. G, Ratio of TM scores as function as function of assigned rotation state (line: median; 
box: interquartile range; error bars: Range). H, Consistency of assignment (annotated as 
rotated: red; unrotated: green). 
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Interestingly, no peaks were detected using an NPC from a different species as a template (SI 

Fig. 5). 

In a high-resolution map (2-binned, 2.446	Å/voxel) and with fine angular sampling (5 degrees), 

TM resolved individual αβ-tubulin dimers as distinct peaks with the 13-fold symmetry of 

microtubules (Fig. 6B). Despite the low combined mass of only 100 kDa, TM achieves good 

statistics both in terms of true positives and (likely) false negatives, using a protofilament 

fragment as reference (SI Fig. 6). SI Fig. 7 further examines the gain in matching confidence 

for microtubule fragments at lower resolution (8.704 Å/voxel, 10 degrees). 

 

TM identifies functional substates 

By comparing the relative TM z-scores on 2-binned data (4.352 Å/voxel) with orientations 

every 10 degrees, we could correctly assign the ratcheting state of the small subunit of 

individual ribosomes in space (Fig. 5E-H). Two known representative ratcheting states of the 

D. discoideum ribosome were used as templates4: rotated (emd-15815) and unrotated (emd-

15812), and the states were assigned using the expectation-maximization algorithm (see 

Methods for details) to predict the mixture of subpopulations (Fig. 5G), similar to previous 

studies40. Although the rotated and unrotated templates share most of the density with only 

a slight rotation of the 40S (Fig. 5F), the TM assignments differentiated between the rotated 

and unrotated states, matching the existing annotations in 77.7% and 82.4% of cases, 

respectively (Fig. 5E,H). It is worth noting that there are other intermediate rotation states, 

and the binding of multiple cofactors to the ribosome along the translation cycle4 may affect 

the TM z-scores and ultimately the state assignment, which may account for non-matching 

particles. 

Overall, these results demonstrate that TM can find subunits of macromolecular complexes 

with high accuracy and precision. The peaks we obtained for NPC subunits, microtubule 

protofilaments, and ribosomal subunits with our TM approach recover known features of the 

particles previously identified by a variety of structural and biochemical approaches4,39,41,42. 

For the 80S ribosome, the TM analysis spatially assigned known functional states of 

translation with good accuracy. The ability to identify individual subunits or conformational 

states within a given tomogram maximizes the use of available information for structural 
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purposes and can lead to the discovery of non-canonical symmetries. By chance, one may in 

this way also capture complex assembly intermediates. 

 

Fig. 6: Template matching detects NPC subunits, microtubule protofilaments and 
ribosome-loaded Vaults. A,B, Perspective view of the three-dimensional constrained cross-
correlation map obtained from template matching using an NPC subunit (A) and microtubule 
section (B). The templates are shown in the upper left-hand corner of each panel. The 8- and 
13-fold symmetries for the NPC and the microtubule, respectively, emerge naturally from 
template matching (zoom-ins with numbered peaks). The NPC subunit and protofilament 
templates were cut from the whole NPC and microtubule templates, respectively. The αβ-
tubulin dimers in B were obtained by masking the protofilament template (orange box).  C, 
From the three-dimensional localization maps generated for visualization58 and analysis, TM 
finds ribosomes inside vaults indicated by the squares (i, ii and iii clockwise from left). In (i), 
the vault (magenta; 54𝜎) containing the ribosome (green; 63𝜎) is near a NPC (gray) and the 
nuclear envelope (purple). In (ii) and (iii), the vaults (32𝜎 and 59𝜎) containing the ribosomes 
(46𝜎 and 	77𝜎) are in the cytoplasm.  
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High-confidence TM identifies vault encapsulated ribosomes in situ 

The biological function of the vault particle remains mysterious. A few interactors binding to 

the inside surface have been reported43,44 which in line with its capsule-like morphology has 

led to speculations that vaults may enclose other particles and transport cargo within the cell. 

To the best of our knowledge, however, evidence for vaults encapsulating cargo in situ is yet 

missing. Three of the vaults in the tomogram of Figs. 5A and 6C contain 80S ribosomes with 

highly significant z-scores (vaults: 54𝜎, 32𝜎, and 59𝜎 ribosomes: 63𝜎, 46𝜎, and 77𝜎, in Fig. 

6C(i)-(iii), respectively). These findings support the hypothesis that vaults can be cargo-loaded 

in situ. Whether the encapsulation occurred during vault biogenesis or by transient opening 

remains to be further investigated. 

 

Discussion 

The comprehensive identification of particles in electron tomograms remains challenging. 

Despite its conceptual simplicity, template matching has been considered a low-precision 

method, and its application has been limited by the low signal-to-noise ratio of tomographic 

data, the scarce availability of suitable templates, and the lack of objective optimization of 

search parameters. Here, we have shown that template matching can identify the positions 

and orientations of multiple macromolecular complexes in living cells with high accuracy and 

fidelity. For this task, templates can be used from multiple sources such as data banks, 

simulations, homology modeling, or volumetric data from the tomograms. For maximum 

efficiency, we developed an in silico parameter optimization software.  

With optimized TM, we achieved a mass resolution of 100 kDa in experimental tomograms of 

a crowded cell. Using a generic template for human tubulin, we could readily localize 

individual αβ-tubulin dimers in a high-resolution CryoET map of D. discoideum cells (Fig. 6B, 

SI Fig. 6). High-confidence TM thus pushes into a particle size regime in situ that covers much 

of cellular biology. 

By exploiting geometric and contextual features, one can further improve the likelihood of 

finding objects by template matching. Vaults, for example, are low-density objects, but their 

unique shape facilitates identification with confidence (Fig. 1 and SI Fig. 1). Spatial extent is 

also important for TM. Another strategy to search for smaller objects is to decrease the voxel 

size (increase magnification), which in this case allowed us to locate ribosomal subunits or 
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distinguish between ribosomal substates. However, the location of smaller isolated objects 

poses an additional challenge: the unambiguous validation of the peaks. In the cases 

presented here, we used annotated data (Figs. 3, 5 and SI Fig. 3) and expert inspection (Figs. 

1, 4, 6 and SI Figs.  5, 7 and 8). However, when considering smaller structures, an increase in 

the number of peaks and volumes of high significance is expected. To overcome this 

challenge, we envision a hierarchical approach in which we mask parts of the volume where 

we have a high confidence of the presence of an object, and then perform a focused search 

for smaller objects. Still, relying on template matching alone may be insufficient and 

additional information, such as abundance data would need to be incorporated to effectively 

analyze TM results.  

The widespread use of template matching is still limited by its computational expense, due to 

the nature of the algorithm that evaluates each voxel in the volume for up to hundreds of 

thousands of orientations. This problem is exacerbated in the current STOPGAP 

implementation with limited parallelization across CPUs. We see significant potential for 

improvement by exploiting the parallel capabilities of graphics processing units (GPUs) as the 

TM algorithm is by construction embarrassingly parallel and relies on Fourier transformation, 

which is highly efficient on GPUs. 

Finally, the TM workflow can readily be combined with AI-based approaches22,28–31. At one 

end of the pipeline, AI can be used to optimize TM parameters and, at the other end, to 

integrate the outputs across template families into classification scores. At the center of the 

pipeline, however, the 3D CC score is highly efficient and captures the relevant physics by 

being rigorously proportional to the log-likelihood for Gaussian noise in the 3D map45 

(Methods).  In future, TM-annotated tomograms can be used to train and validate AI-based 

particle localization methods.  

Taken together, our analysis demonstrates the detection of various objects, with high 

confidence, in cryo electron tomograms acquired with the latest hardware. By expanding the 

repertoire of templates, e.g., from AlphaFold46 and molecular dynamics simulations, TM 

should help us assign molecular identities to the large parts of tomograms currently 

unassigned. High-confidence TM thus changes the workflow in CryoET through fast, 

automated, objective and comprehensive feature identification. In turn, CryoET combined 

with high-confidence TM brings us closer to the goal of visual proteomics: to map the 

positions and orientations of all macromolecular complexes within living cells. 
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Methods 

Experimental tomograms. All tilt series of D. discoideum used in this study, as well as the 

annotations for the ribosomes and their substates were previously reported4. The cell culture, 

sample preparation, data acquisition, and image processing are detailed in the original 

publication. In brief, tilt series were collected at 300 kV on a Titan Krios G2 microscope 

equipped with a Gatan BioQuantum-K3 imaging filter in counting mode and a Titan Krios G4 

microscope equipped with a cold FEG, Selectris X imaging filter, and Falcon 4 direct electron 

detector in counting mode. Projections had a pixel size of 2.176 Å and 1.223 Å, respectively, 

and were acquired in a dose symmetric acquisition scheme47 with 2 deg increments4,48. The 

initial tomogram reconstruction was performed in eTomo from IMOD49 and the established 

parameters were used to reconstruct the tomograms  with 3D-CTF correction using 

novaCTF50. The corrected tomograms were used for TM either in their unbinned form or with 

applied binning of 2, 4 or 8. 

 

Template matching produces maximum-likelihood solution. For Gaussian noise of width 𝜎	in 

the intensities of a CryoET 3D map 𝑀, the likelihood 𝐿 that a feature in the map is consistent 

with a template 𝑇 rotated and translated by 𝑅	is proportional to 

𝐿 ∝ exp 5−
(∑ 9𝑀!"# − (𝑅𝑇)!"#;

$
!,",#

2𝜎$ < 

By multiplying out the square, summing over the voxels 𝑖, 𝑗, 𝑘, and recognizing that the “𝑀$” 

and “(𝑅𝑇)$” terms are constant, we find that 

𝐿 ∝ exp @
(∑ 𝑀!"#(𝑅𝑇)!"#!,",#

𝜎$ A 

The term in the exponent is exactly the cross-correlation CC between map and template 

divided by 𝜎$.	Analogous to single-particle 2D images45, the cross-correlation of template and 

map is thus the log-likelihood scaled by the squared noise amplitude. CC optimization over 

template rotation and translation 𝑅 thus gives the maximum-likelihood solution. 

Template matching. We performed TM using STOPGAP35 for the cases described in Table 1. 

STOPGAP is an open-source freely available Matlab-based code: 

https://github.com/williamnwan/STOPGAP. As input, STOPGAP requires a template, a list of 
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orientations to probe (angular sampling), a “wedge list”, definitions of the filters, and the 

reconstructed tomogram. Details on the preparation of the templates are given below. The 

list of orientations was generated using STOPGAP function generate_angle_list, which 

samples the angle space uniformly on a grid and also takes into account the symmetry of the 

template (see Table 1). The wedge list contains the acquisition parameter information for the 

individual tilts. In particular it must contain: the pixel size, the tilt angle, defocus and electron 

dose. The low-pass filter allows low-frequency signals to pass through while attenuating high-

frequency signals, while high-pass filters allow high-frequency signals to pass through while 

attenuating low-frequency. In STOPGAP, both are defined in voxels defining the radius of a 

spherical mask applied in Fourier space (i.e., these values depend on the dimensions of the 

template). See further details in the STOPGAP documentation. For each template, we 

obtained a map of the maxima CC of the local cross-correlation over orientations, which we 

turned into z-scores as 𝑧 = (CC − 𝜇)/𝜎 with 𝜇 and 𝜎	the average and standard deviation of 

CC values across the map, respectively. 

In silico peak analysis. The template weighting and CC calculation methods from STOPGAP35 

have been ported to Python and extended to output additional information relevant to the 

input parameters. The inputs are the same as for the original TM, but instead of a whole 

tomogram, another small volume is used. The volume can be either the same as the template 

(typically an STA map or a model) or a subtomogram (obtained either based on an existing 

ground truth or by manual picking).  For full peak analysis, one must also provide a density 

mask, a binary map corresponding to the density of the template (or alternatively a threshold 

to create one during the analysis). In addition to the z-score map and the angles map, the 

peak analysis provides additional information from the TM progress as well as the analysis of 

the template and the resulting maps. From the TM progress, it outputs a table showing the 

dependence of the template orientation on the CC scores and on the number of overlapping 

voxels. For the template, it computes the dimensions, the number of voxels in the density 

mask, and a solidity calculated as the number of voxels in the density map divided by the 

volume of its convex hull. It also returns the value of the peak, its exact location, and line 

profiles through the peak along each dimension. The angle map is used to compute three 

maps of angular distances, where each voxel contains the angular distance in degrees 

between the orientation encoded in the angle map and the starting template orientation. The 
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first map contains the angular distance of the full orientation and is computed using a 

quaternion-based cosine similarity formula51. The second map contains the angle between 

the normal vectors of the final and the initial orientation, which encodes the rotation on the 

cone. Complementarily, the third map contains the angle between the in-plane vectors. The 

maps provide information on whether the CC scores are more sensitive to cone or in-plane 

rotation (or neither), and thus can be used to determine sufficient angular sampling. Finally, 

the key results of the peak analysis are summarized in a PDF file to provide an easy-to-read 

overview for the user. While the tool is most useful for determining the optimal setup for 

STOPGAP TM (or deciding its feasibility), it can also be used to analyze the origin of false 

positive results by testing a template against a map containing a different structure. For 

example, a ribosome template can be tested against map containing proteasome to 

determine the pixels size and filtering to distinguish these two with sufficient confidence. 

Similarly, the membrane template can be used against a microtubule structure to determine 

size of the template and mask necessary to pick mostly membranes. Lastly, there is a 

possibility to turn off the missing wedge weighting to analyze its impact on the peak shape or 

add an angular offset to the starting orientation to see how it affects the peak value for given 

angular sampling. 

 

Membrane templates. For the “atomistic” membrane template, we used the final lipid bilayer 

of a 28-ns molecular dynamics simulation of a 40x40 nm2 membrane patch in explicit water, 

using the setup and protocol of reference 52. The “small STA” and “large STA” models were 

obtained as subtomogram averages of the nuclear envelope with diameters of 43.5 nm and 

87 nm, respectively. In TM, cylindrical masks with a diameter of 34.8 nm were used for the 

atomistic and small STA models. For the large STA model, the diameter was increased to 76.5 

nm. 

Creation of density maps from atomic models. In the cases where an atomic model was 

available (membrane and vault), we used the molmap function of ChimeraX 53 with a 

resolution of 3.5 Å. Here, each atom is represented by a three-dimensional Gaussian. The 

width of the Gaussian is given by the resolution, while the amplitude is proportional to the 

atomic number. Afterward, we used EMAN254 to rescale and resample the map and have 

identical voxel size as in the tomograms. 
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Templates for the ribosomal subunits 40S and 60S. To generate templates of the large 60S 

and small 40S ribosomal subunits, the ribosome structure of a translating D. discoideum 

ribosome from EMD-158104  was segmented in ChimeraX53 using the Segger function55. A 

fitted eukaryotic ribosome atomic model (PDB-id: 5LZS56) was used to guide this procedure. 

 

Statistical assignment of ribosomal substates. 

To assign the sub-states of the ribosome 80S, we performed TM using two templates 

corresponding to a rotated (emd-15815) and unrotated ribosomal states (emd-15812). High-

confidence peaks were extracted from each TM map with their respective z-scores.  

For a given particle, defined by its coordinates, we computed the ratio between the two TM 

z-scores as: 

𝑥! =
𝑐𝑐!&'()
𝑐𝑐!&*+'()

 

where 𝑐𝑐!&'() , 𝑐𝑐!&*+'() corresponds to the z-score obtained for the particle I with the 

rotated and unrotated template, respectively. To assign the rotational substates of each 

particle, we used gaussian mixture model (GMM). Specifically, we assumed that the 

distribution of x can be modeled as a linear superposition of two gaussian distributions, one 

for the rotated state and the other for unrotated state. The probability density function of 

the GMM can be written as: 

𝑝(𝒙) = 𝜋'()𝒩(𝒙|𝜇'() , Σ'()) + (1 − 𝜋'())𝒩(𝑥|𝜇*+'() , Σ*+'()) 

where 𝒩(𝜇, Σ)	represents a gaussian probability density function with mean 𝜇 and variance 

Σ.  

To estimate optimal parameters for 𝜋'() , 𝜇! , Σ!, we used the sklearn.mixture57 python 

implementation of the estimation-maximization (EM) algorithm. The EM algorithm alternates 

between computing the expected values of the latent variables (the assignment of each data 

point to a mixture component) and updating the parameters of the GMM to maximize the 

log-likelihood of the observed data. Specifically, the E-step computes the posterior probability 

of each mixture component for each data point, given the current estimates of the 

parameters, while the M-step updates the parameters to maximize the expected complete 

log-likelihood of the data, given the posterior probabilities.  
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Data availability 

The previously published structures for the NPC subunits (Homo sapiens) EMD-14325, EMD-
14328 and EMD-14330, the 80S ribosome (D. discoideum) EMD-15810, EMD-15812, and EMD-
15815, the 20S proteasome (Homo sapiens) EMD-4877 and the microtubule (Homo sapiens) 
EMD-6351 are accessible through the Electron Microscopy Data Bank. The previously 
published structures 7R5J, 6RGQ, and 3JAR are available through the Protein Data Base. The 
remaining EM densities and tilt series used in this study will be deposited the Electron 
Microscopy Data Bank upon publication. 
 

Code availability 

All the code used for this study is part of the public repository: 

https://github.com/turonova/cryoCAT 
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Table 1: Tested cases for template matching. 
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Supplementary Information 

 

 
SI Fig. 1: In silico assessment of cross-correlation for the vault. A-C, Cross-correlation as a 

function of the number of overlapping voxels (A), the position (B), and the angular distance 

(C). D, Template. For the vault, we used its two halves as template, resulting in two peaks 

along the z-direction. E, Scores-map (as in STOPGAP) with a zoom-in onto the peaks (bottom). 

F, Angles map from zoom-in onto cross-correlation. 
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SI Fig. 2: In silico evaluation of the cross-correlation for the large STA membrane. A-D, 

Dependence of the cross-correlation on the number of overlapping voxels (A), position (B), 

angular distance (C) and the used template (D). E, The CC scores map revealed a peak that 

extends into the x-y plane and was unaffected by rotation in the x-y plane, consistent with 

the symmetry of the membrane. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.05.556310doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556310
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

SI Fig. 3: Template matching results for the 80S ribosome with 8-binned data (bin-8: 17.40 

Å/voxel, top row) and 4-binned data (bin-4 of 8.704 Å/voxel, bottom row). A, Tomogram 

slice. B-I, Superimposition of the peaks obtained from template matching (blue circles; 

sampled every 10 degrees with varying cross-correlation thresholds) and the high-confidence 

localizations obtained from an expert multiple-step alignment using Relion38 as described in 

reference 4. The number of peaks as well as the ratio of “TM-found” particles is described in 

the figure. 
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SI Fig. 4: Evaluation of increasing the number of orientations in template matching of 

ribosome 80S using the python tool for in silico evaluation. A, Cross-correlation as a function 

of the absolute number of overlapping voxels for all evaluated rotations. B, Cross-correlation 

as a function of the distance along the z-plane. C, Cross-correlation for all evaluated rotations 

as a function of the angular cone distance. With an increasing number of orientations 

(decreasing angular sampling), more rotations lead to a higher number of overlapping voxels 

and thus to a higher cross-correlation. This effect leads to a broadening of the peak in the 

middle panel.  

 

 
SI Fig. 5: Template matching results for the NPC subunit of two different species.  Cross 

correlation (z-score) maps obtained on the same tomographic volume using different 

templates of the NPC subunit. A-C, z-scores for NPC subunit templates with (A) and without 

membrane (B) for D. discoideum, and (C) with the NPC template for Homo sapiens NPC with 

membrane12. Note that no clear peaks are detected for the Homo sapiens NPC subunit, 

which exemplify the potential of TM for comparing macromolecular complexes of different 

species. 
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SI Fig. 6: Statistics for template matching using a single ~100 kDa αβ-tubulin dimer. A,B, 

Cross correlation (z-score) maps obtained on the same tomographic volume using a template 

containing four microtubule protofilaments (A) and a single αβ-tubulin dimer (B). c, Positions 

of the individual subunits extracted from (A), and adopted as annotated particles, correspond 

to local maxima in the z-score map, above 6𝜎, with a minimum separation of 14 voxels.  D, 

Statistical analysis of the αβ-tubulin dimer localizations in the volume shown in B with the 

positions in C as reference. Shown are the recall = #(true positives) / [ #(true positives) + 

#(false negatives) ] (blue, left axis) and the precision = #(true positives) / [ #(true positives) + 

#(false positives) ]) (orange, right axis) as functions of the threshold applied to the tubulin 

dimer z-score. A position was considered as true positive if it was within 3 nm of a position in 

(C). 
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SI Fig. 7: Effect of the effective template size on matching. The left and right panels show the 

microtubule template (center) with masks of different heights from 5 to 50 voxels 

(transparent outline). Note that only the fraction of the template within the mask is used for 

TM. The middle panels show the z-score maps obtained with the different masks, with mask 

heights indicated. Decreasing the height of the masks, i.e., the size of the template used, 

increases the background noise while decreasing the strength of the microtubule peaks. 
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SI Fig. 8: Template matching results for proteasome 20S. Templates (cyan) are repositioned 

to the position where TM reported high confidence peaks. A-C, Zoomed views of the 

tomogram at the positions identified by TM, showing that the peaks correspond to 

proteasomes. 
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