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Abstract

Here, we present a peptide‐based linear mixed models tool—PBLMM, a

standalone desktop application for differential expression analysis of pro-

teomics data. We also provide a Python package that allows streamlined data

analysis workflows implementing the PBLMM algorithm. PBLMM is easy to

use without scripting experience and calculates differential expression by

peptide‐based linear mixed regression models. We show that peptide‐based
models outperform classical methods of statistical inference of differentially

expressed proteins. In addition, PBLMM exhibits superior statistical power in

situations of low effect size and/or low sample size. Taken together our tool

provides an easy‐to‐use, high‐statistical‐power method to infer differentially

expressed proteins from proteomics data.
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1 | INTRODUCTION

The advances in mass spectrometry instrumentation
nowadays allow for the quantification of multiple pep-
tides per protein (up to a few hundred) during shotgun
proteomics experiments. Quantification accuracy of dif-
ferent peptides during mass spectrometry runs is highly
dependent on the physical properties of individual pep-
tides and might differ from run to run due to technical
constraints. Therefore, outlier peptides can bias the
quantification accuracy of the whole protein and need to
be carefully assessed during differential expression ana-
lysis. However, in most downstream analysis workflows
for differential expression analysis, the peptide level in-
formation is ignored and summed to a single protein
quantification used for statistical analysis.1,2 While these
workflows are commonly applied and represent easy and
intuitive methods for statistical analysis, they discard the

obtained information on peptide level, which leads to
loss of statistical power.3 In recent years, the first ap-
proaches using linear models for differential expression
analysis have been transferred from microarray experi-
ments to proteomics.4–7 These are capable of carrying out
statistical analyses on the peptide level. However, only a
few packages use some of the peptide information for
statistical analysis8,9 and are often only available for
certain workflows, such as label‐free quantification.9

Linear mixed models (LMMs) in general have been
suggested and used for statistical inference before (no-
tably, the exact model differs from study to study) and
despite them having shown great statistical power,3,6,8,9

there is no easy‐to‐use package or standalone application
published so far that is also applicable to multiplexed
proteomics. To solve this issue we present peptide‐based
linear mixed models (PBLMM), a standalone desktop
application for differential protein expression analysis
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from shotgun proteomics experiments, especially those
applying isobaric labellings, such as tandem mass tags
(TMT) or iTRAQ. We compare PBLMM to currently used
tools, such as MSstatsTMT10 or limma4 and found
PBLMM to provide statistical benefits over these meth-
ods, depending on the use‐case.

1.1 | Statistical model of PBLMM

In the implemented statistical model, the expression of
each protein is separately modelled by a linear mixed‐
effects model:

y β βX u ε= + + + ,i j i i j, 0 ,

where yi,j denotes the jth measurement of expression of
peptide i, β0 is the individual protein's global intercept, βX
is the linear combination of indicator variables encoding
categorical experimental conditions, ui is the additive ran-
dom intercept of peptide i with ui∼N (0, σPeptide

2 ), and εi j,
are residual errors with εi j, ∼N (0, σε

2 ). Note that this col-
lapses to ordinary linear regression when there are no
multiple peptide measurements per protein.

In the absence of further experimental conditions, the
variance of the response variable yi,j can be described by
the sum of the variance components (σ2) peptide, tech-
nical replicate (TechRep), and multiplex, as well as un-
explained residual variance σε

2 :

σ σ σ σ σ= + + + .y ε
2

Peptide
2

TechRep
2

Multiplex
2 2

i

The variance components reduce when no technical
replicates and/or different multiplexes are present. This

setup makes PBLMM aware of most experimental de-
signs that are commonly used in proteomics.

Since the input matrix is log2 transformed, the
treatment coefficients from the models can be interpreted
as log2 fold changes and p values for the main treatment
effects can be extracted. The null hypothesis tested is that
the coefficient for the tested term equals zero and the
factor is not meant to explain the protein expression.
Therefore a low p value indicates the importance of the
factor and a low likelihood of the fold change is 0 for
the tested treatment. To control the false discovery rate
(FDR), we applied multiple testing corrections by the
Benjamini–Hochberg FDR method.11 The application
automatically calculates differential analysis between all
condition pairs possible.

2 | RESULTS

We created two implementations of the PBLMM statistical
model described above (Figure 1A): (i) for user‐friendly
analysis, we implemented the PBLMM algorithm into a
standalone desktop application with a graphical user in-
terface and (ii) a Python package containing additional
parameters, processing steps and pipelining features to
facilitate customisable data analysis workflows.

To test how PBLMM performs compared to other
commonly used methods, we created a ground truth
dataset, consisting of a TMTpro 12‐plex containing
spiked‐in Escherichia coli digests in a human background
in different known ratios (Figure 1B). We then per-
formed differential expression analysis using different
classical protein level statistics and PBLMM: (i) sum‐
based protein rollup (peptides are summed for each

FIGURE 1 Statistical evaluation of peptide‐based linear mixed model (PBLMM). (A) Scheme of PBLMM desktop application and
modular python package. (B) Scheme of the ground truth dataset composition. Different amounts of Escherichia coli digest were spiked into
a fixed HeLa background. Peptides were tandem mass tag labelled and fractionated by offline reverse phase HPLC into 24 fractions. (C)
Receiver operating characteristic curves of p values generated by different statistical tools/tests as predictors of species. Statistics for samples
with twofold changes were used for this graph
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protein before statistical inference), followed by Student's
t‐test, (ii) sum‐based protein rollup, followed by limma,4

and (iii) PBLMM. Receiver operating characteristic
(ROC) curve analysis showed that PBLMM outperforms
the alternative classic methods on our test dataset
(Figure 1B). Notably, we found that the difference be-
tween statistical approaches was less pronounced with
very high effect sizes (e.g., fourfold). We thus performed
our analysis with lower effect sizes throughout this study.

2.1 | PBLMM shows advantages with
small effect size and low replicate number

While methods using protein‐based statistics exhibit high
statistical power in situations where enough replicates are
present to sufficiently estimate variances of indicator vari-
ables, they inherently lack statistical power in experimental
designs that rely on low numbers of replicates or study low
fold changes across conditions. In these cases, the use of
peptide‐level data provides additional statistical power. For
each sample and protein, multiple peptides are measured
giving a better complete view of the different variance
sources, biological, or technical. We tested PBLMM
against the current state‐of‐the‐art tool MSstatsTMT5,10

(Figure 2A). MSstatsTMT uses flexible LMMs to infer dif-
ferential expression between biological conditions from
TMT data. However, the LMMs are fitted on protein levels,
previously inferred from an additive linear model on pep-
tide level data. Here we used our fractionated ground truth
dataset from before and validated the statistical power of
both tools. In the ROC analysis, both tools show compar-
able performance. However, when we applied standard
FDR cut‐offs, such as 0.05 or 0.01 (either alone or in
combination with additional fold change cut‐offs), protein‐
level statistics failed to detect any significantly changed
proteins at a small effect size of 1.5‐fold (Figure 2B). This
effect has been already discussed by others and represents a
common problem in proteomics experiments.12 In contrast,
the enhanced statistical power of our peptide‐based model
was able to detect several hundred significantly changed
proteins. While both methods performed comparably at a
higher effect size with three replicates, we also observed
more pronounced differences during the analysis of only
two replicates (Figure 2C). Here, only the peptide‐based
model was able to correctly detect differentially expressed
proteins, although with a slightly inflated empirical FDR
that could be easily controlled by applying additional fold
change cut‐offs. Since large experiments with tens to hun-
dreds of conditions are becoming more and more popular
and naturally suffer from lower replicate numbers,13,14

statistical models for their analyses become increasingly
important.

We next hypothesised that also the estimation of
technical variation between runs can benefit from peptide
data. Thus, we generated another ground truth dataset
and measured the resulting multiplex three times as
technical replicates (Figure 3A). While the differentially
expressed proteins clearly separated from the background
(i.e., human proteins) when analysing differences inside
one multiplex (Figure 3B), the data points started to
converge when looking at the data across the different
replicate injections (Figure 3C). The technical variation of
the background proteins between MS runs was higher
than the effect size, thus masking the real effects. Linear
models are able to divide these effects and calculate the
technical and biological variance separately, leading to
high statistical power. When we applied our peptide‐based
model in conjunction with internal reference scaling
preprocessing,15 we observed an improvement in statis-
tical power compared to the protein level quantification,
although nine replicates (three replicates for each three
MS runs) were present for each condition (Figure 3D).

Taken together, we found that PBLMM performed
comparably to other state‐of‐the‐art statistical tools and
provides distinct advantages in situations commonly
observed in biological or medical experimental designs,
such as experiments with low effect sizes or low numbers
of replicates. These advantages are beneficial for large
scale experiments, which would not be feasible with the
currently required high number of replicates, and con-
ditions with small effects sizes.

3 | DISCUSSION

Statistical data analysis of proteomics experiments needs
adjustments for each experiment since it is heavily in-
fluenced by multiple parameters. The effect size is not
only determined by the biological effects but also strongly
affected by instrumentation. Advances in instrumenta-
tion are occurring rapidly and many different instru-
ments are used in proteomics facilities worldwide, each
influencing the effect size and technical variance in their
own way. In addition, applied measurement methods,
offline fractionation, and sample preparation are varying
a lot across laboratories. Therefore, each experiment may
have its own statistical needs that may not be covered by
single tools. Consequently, we think that the choice of
the statistical tools should ideally depend on the experi-
mental setup.

LMMs have proven to be able to account for several of
these aspects, like technical or subject variance, and
therefore provide more advanced hypothesis testing. We
showed that PBLMM is able to perform similarly or
better than state‐of‐the‐art methods like MSstatsTMT
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FIGURE 2 Peptide‐based linear mixed model (PBLMM) displays advantages with small effects sizes and low replicate numbers. (A)
Receiver operating characteristic analysis of statistical parameters of PBLMM compared to MSstatsTMT with two effect sizes: 1.5‐fold effect
size and 2‐fold effect size. (B and C) Number of true and false discoveries with different commonly used false discovery rates (FDR) and fold
change cut‐offs. Grey and red rectangles schematically represent number of replicates used in statistical analysis: (B) n= 3; (C) n= 22. Blue:
true discoveries; Yellow: false discoveries
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depending on the experimental setup. Strikingly, we
found that, for several scenarios, using the peptide in-
formation directly for differential expression analysis,
strongly enhanced the statistical power, while main-
taining a low FDR. Especially testing biological condi-
tions with low effect sizes (as observed in mild
treatments) or a low number of replicates (as observed in
high‐throughput experiments) benefited from the addi-
tional information provided by the individual peptides.
We anticipate that the power of statistical tools might not
be adequately reflected solely by ground truth datasets,
however, these datasets represent the only quantifiable
source of statistical power and accuracy together with
purely simulated datasets. Importantly, PBLMM is easily
accessible as an interactive desktop tool and thus allows
it to be used broadly used in different analyses pipelines
and for all different types of input data.
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