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Abstract: Recent scientific evidence suggests that chronic pain phenotypes are reflected in metabolomic
changes. However, problems associated with chronic pain, such as sleep disorders or obesity, may
complicate the metabolome pattern. Such a complex phenotype was investigated to identify common
metabolomics markers at the interface of persistent pain, sleep, and obesity in 71 men and 122 women
undergoing tertiary pain care. They were examined for patterns in d = 97 metabolomic markers
that segregated patients with a relatively benign pain phenotype (low and little bothersome pain)
from those with more severe clinical symptoms (high pain intensity, more bothersome pain, and
co-occurring problems such as sleep disturbance). Two independent lines of data analysis were
pursued. First, a data-driven supervised machine learning-based approach was used to identify the
most informative metabolic markers for complex phenotype assignment. This pointed primarily at
adenosine monophosphate (AMP), asparagine, deoxycytidine, glucuronic acid, and propionylcarni-
tine, and secondarily at cysteine and nicotinamide adenine dinucleotide (NAD) as informative for
assigning patients to clinical pain phenotypes. After this, a hypothesis-driven analysis of metabolic
pathways was performed, including sleep and obesity. In both the first and second line of analysis,
three metabolic markers (NAD, AMP, and cysteine) were found to be relevant, including metabolic
pathway analysis in obesity, associated with changes in amino acid metabolism, and sleep problems,
associated with downregulated methionine metabolism. Taken together, present findings provide
evidence that metabolomic changes associated with co-occurring problems may play a role in the
development of severe pain. Co-occurring problems may influence each other at the metabolomic
level. Because the methionine and glutathione metabolic pathways are physiologically linked, sleep
problems appear to be associated with the first metabolic pathway, whereas obesity may be associated
with the second.

Keywords: chronic pain phenotypes; sleep disorders; obesity; metabolic markers; metabolic pathways;
supervised machine

1. Introduction

Recent advances in knowledge of the biochemical basis of the pathophysiological
processes involved in pain have involved metabolic processes in the production or degra-
dation of active endogenous or exogenous molecules relevant to pain modulation [1].
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Metabolic markers have been associated with various pain etiologies, such as rheumatoid
arthritis [2,3], interstitial cystitis [4], or fibromyalgia [5,6]. For example, processes related to
energy metabolism or biochemical changes in lipids and amino acids have been shown to
differ in fibromyalgia patients from healthy controls [7]. In addition, metabolomic markers
have been associated with specific clinical presentations of pain, examples being choline,
phosphocholine, alanine, and taurine levels with the presence of nociceptive or neuropathic
pain [8], ornithine levels with the characteristics of musculoskeletal pain [9], or epiandros-
terone sulfate levels with widespread pain [10,11]. Glutamate levels may also be associated
with nociception for various pain conditions [12].

The interplay between pain and metabolomics is likely complex, as persistent pain
is often accompanied by a host of co-occurring problems which may also manifest at the
metabolomics level. In a recent study of a cohort of 277 patients undergoing tertiary care
for persistent pain, six different pain phenotype parameters yielded a subgroup structure
based primarily on affective pain interference and number of pain areas [13]. Interestingly,
among the 54 non-pain-related parameters, sleep problems proved most relevant for
assigning a patient to the pain phenotype subgroup. A high number of chronic pain
patients suffer from sleep problems. The prevalence for insomnia was 39.8% among those
with fibromyalgia and 25.1% among those with musculoskeletal disorders [14]. Patients
who have higher pain intensity, more widespread pain, and longer lasting pain report more
sleep problems [15,16]. Studies regarding insomnia, obstructive sleep apnea (OSA), and
experimental sleep deprivation and fragmentation have all suggested alterations at the
metabolomics level. These include elevated levels of branched-chain amino acids (BCAAs)
and altered glucose metabolism [17]. Obesity is another problem co-occurring with more
severe pain [18]. It is associated with many metabolomic changes, such as elevated levels
of BCAAs and aromatic amino acids (AAAs), and changes in acylcarnitines, fatty acids
(such as phospholipids), and carbohydrates (such as glucose and mannose) [19].

In the present study, 110 polar metabolite serum markers covering 24 metabolite
classes [20] were acquired from a cohort of patients analyzed previously for pain pheno-
type subgroup structure. We examined the associations of these markers with the identified
subgroups (lower pain intensity and less interfering pain vs. higher pain intensity, more
interfering pain, and more co-occurring problems) [13] in a data-driven approach using
machine learning algorithms [21] and related feature selection techniques [22]. To further
explore the complex reciprocal interactions between pain and co-occurring problems, we
investigated metabolic pathways in relation to obesity and sleep problems, expecting to
find alterations in, for example, amino acid metabolism [17,19]. Finally, we were inter-
ested whether these three analyses would suggest some common metabolomic markers
or interacting mechanisms for those with more severe pain, and co-occurring obesity and
sleep problems.

2. Results

Of the n = 320 patients with persistent pain treated in tertiary care, n = 277 patients
had the necessary information about pain to be included in the previous analysis (Figure 1).
This had established a patient subgroup structure based on relevant pain-related and other
clinical symptoms [13]. Since in 84 of these patients the metabolomics had not been analyzed
(due to patient non-compliance), the cohort analyzed comprised 71 men and 122 women.
Descriptive statistical parameters relating to patient demographics, living situation, other
pains, treatment experiences, comorbidities, and lifestyle are shown in Table 1. The raw
data from the metabolomic markers are shown in Supplementary Figure S1.
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Figure 1. Flowchart showing number of patients and steps of data analysis. The data analysis
followed two main lines: (i) A data-driven, unbiased approach to identify the most informative
metabolomic markers for segregating patient subgroups in relation to the pain- and sleep-related
phenotypes previously identified in the same cohort [13]; and (ii) a hypothesis-driven enrichment
analysis examining metabolomic markers involved in sleep problems and obesity as main features of
the patients’ clinical picture. The figure was created using Microsoft PowerPoint® (Redmond, WA,
USA) on Microsoft Windows 11 running in a virtual machine powered by VirtualBox 6.1 (Oracle
Corporation, Austin, TX, USA).

Table 1. Basic descriptive statistics of information in 53 parameters not primarily used for pain
phenotype clustering [13], collected from the 193 patients included in the present analyses: patients’
demographics, living situation, other pains, medical treatment experiences and comorbidities, and
lifestyle-related parameters. For ordinal and interval-scaled variables, medians with IQRs are re-
ported; for categorical variables, the categories are shown with the counts of patients belonging to
each. Raw non-imputed data are shown; counts < 193 indicate missing data for some patients.

Category Variable n Median Interquartile
Range

Categories and n Per
Category

Demographics Age 193 48 38–56 -

Sex 193 - - Men = 71
Women = 122

Living situation No. of children 193 2 0–2 -

Civil status 192 - -

Married = 75
Registered relationship = 0

Cohabiting = 38
Unmarried = 49
Separated = 25

Widow = 5
Education in years 188 13 11–15.13 -
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Table 1. Cont.

Category Variable n Median Interquartile
Range

Categories and n Per
Category

Type of work 193 - -

Agriculture = 2
Manual work = 15
Office work = 94

Studying or at school = 9
Housewife = 2
Pensioner = 40

Unemployed = 31
Household income 184 4 3–6 -

Missed workdays within
previous 12 mo 173 39 2–180 -

Pain related No. of pain areas 193 3 2–5 -

Duration of pain 193 - -

<1 mo = 0
1–3 mo = 2
3–6 mo = 5

6–12 mo = 23
1–2 y = 30
>2 y = 123

Pain intensity 193 6 5–6.75 -
Affective pain interference 193 7 4.75–8.25 -
Activity pain interference 193 6.67 5.67–8 -

Any neuropathic pain 188 - - No = 117, yes = 71
Low back pain 188 - - No = 132, yes = 56

Musculoskeletal pain other
than back pain 188 - - No = 145, yes = 43

Facial pain 188 - - No = 178, yes = 10
Abdominal pain 188 - - No = 181, yes = 7

Complex regional pain
syndrome 188 - - No = 177, yes = 11

Headache 188 - - No = 184, 1 = 4
Phantom pain 188 - - No = 188
Fibromyalgia 188 - - No = 170, yes = 18

Chronic pain syndrome 188 - - No = 184, yes = 4
Other pain diagnosis 188 - - No = 168, yes = 20

Previous
treatments

Negative treatment
experiences 193 3 1–4 -

Positive treatment experiences 193 4 2–6 -
Physician visits within

previous 12 mo 181 10 5–14 -

Comorbidities Hypertension 192 - - No = 135, Yes = 57
Heart failure 192 - - No = 187, Yes = 5

Angina pectoris 192 - - No = 180, Yes = 12
Diabetes 191 - - No = 175, Yes = 16
Asthma 192 - - No = 160, Yes = 32

Chronic obstructive
pulmonary disease 192 - - No = 186, Yes = 6

Rheumatoid arthritis 192 - - No = 190, Yes = 2
Joint disease other than

rheumatoid arthritis 192 - - No = 141, Yes = 51

Low back pain 192 - - No = 91, Yes = 101
Depression 190 - - No = 135, Yes = 55

Psychiatric disorder other
than depression 192 - - No = 181, Yes = 11

Hypercholesterolemia ever
in life 166 - - No = 94, Yes = 72
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Table 1. Cont.

Category Variable n Median Interquartile
Range

Categories and n Per
Category

Using cholesterol medication 168 - - No = 143, Yes = 25
High blood pressure ever

in life 190 - - No = 107, Yes = 83

Blood pressure medication
use ever in life 85 - - No = 28, Yes = 57

Diabetes type 159 - -

No = 130
No, but elevated blood

sugar = 7
Yes, type 1 diabetes = 4

Yes, type 2 diabetes = 14
Yes, but don’t know type = 1

Yes, diabetes during
pregnancy = 3

Lifestyle Smoking currently 193 - - No = 118, yes = 75
Exercise periods of >20 min

per week 190 2 0–3 -

Hours spent sitting per day 185 6 3.5–9.5 -
Sleep problems index 190 17 14–20 -

Nutritional index 135 1 1–2 -

Drug abuse 135 0 0–0
No = 124

Has used = 10
Dependent = 1

Alcohol consumption
frequency 126 - -

Never = 19
Once a month or less = 43

2–4 times a month = 40
2–3 times a week = 20

4 times a week or more = 4
Body mass index 192 27.82 24.23–32.71 -

Systolic blood pressure,
mm Hg 193 135 124–150 -

Diastolic blood pressure,
mm Hg 193 86 80–94 -

Waist circumference 192 95.25 84.5–106.25 -

2.1. Metabolomic Markers Informative for Pain Phenotype Assignment

Of the analyzed patients, 57 belonged to the subgroup characterized by lower pain
intensity and less pain interference. Sex and age distributions were equal across the
subgroups (sex: χ2 = 0.23101, df (degrees of freedom) = 1, p = 0.6308, age: t = −0.16011,
df = 86.444, p = 0.8732); however, BMI was lower in the patients belonging to the group
with lower pain intensity and less pain interference (26.3 ± 5.15 kg/m2) than in the other
patients (29.2 ± 6.1 kg/m2; t = −3.7273, df = 121.11, p = 0.0002956).

The Boruta feature selection analysis identified five metabolomic markers definitely
important (AMP, asparagine, deoxycytidine, glucuronic acid, and propionylcarnitine), two
others as tentatively important (cysteine and nicotinamide adenine dinucleotide, NAD),
while 90 markers were classified as unimportant and excluded from further analyses
(Figure 2). Of note, none of these markers was found when running the same algorithm
on permuted metabolomic data. Because the five confirmed metabolomic markers were
insufficient in subsequent validation to successfully train a random forest or other clas-
sifier, all seven above-mentioned markers were treated as important for the pain-related
subgroup structure of this cohort. When training random forest classifiers with these
markers (Table 2), balanced classification accuracy was better than random assignment,
and AUC-ROC was 70% (66.3–72.2%). Balanced classification accuracy was also better than
random assignment for the other machine-learning algorithms used to validate the selected
set of metabolomic markers.
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Figure 2. Identification and validation of metabolomic markers relevant for the assignment of patients
to the correct pain phenotype subgroups. (A): Results of the variable selection procedure performed
as random forest-based Boruta analysis, which assesses the measure of importance of a variable based
on the decrease in classification accuracy due to random permutation of values in a 100-fold cross-
validated approach. The importance measure is calculated separately for all trees in the forest that use
the respective feature for classification. Then the mean value and the standard deviation of the loss of
accuracy are calculated and the z-score is used in comparison to an external reference, the so-called
“shadow” features (empty boxes), obtained by permuting the values of the original feature. Green
and yellow boxes represent “confirmed” or tentatively significant features, respectively, i.e., features
that contribute to the classification success and were selected for the validation analyses shown in
the lower line of panels. The red boxes are confirmed as non-informative variables and excluded
from further analysis. The boxes were constructed using the minimum, quartiles, median (solid line
inside the box), and maximum of these values. The whiskers add 1.5 times the interquartile range
(IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. The black circles
indicate outliers from this interval. (B): Results of the Boruta feature selection analysis when instead
of the original data, randomly permuted metabolic marker concentrations were used. The figure was
created using the R software package (version 4.0.2 for Linux; https://CRAN.R-project.org/ [23])
and the R libraries “Boruta” (https://cran.r-project.org/package=Boruta [24]) and “ggplot2” (https:
//cran.r-project.org/package=ggplot2 [25]).

Of note, statistical comparisons of markers between patient subgroups using Wilcoxon–
Mann–Whitney U tests (Figure 3) showed significant effects for two of the selected markers,
AMP (W = 3057, p = 0.0208) and glucuronic acid (W = 3163, p = 0. 04415), both of which
were lower in the low-pain subjects, while, for two others, group differences showed a
tendency toward statistical significance (p < 0.1: asparagine, propionylcarnitine); however,
none of these effects would pass a Bonferroni α correction.

https://CRAN.R-project.org/
https://cran.r-project.org/package=Boruta
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
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Table 2. Performance measures for assigning subjects to the two clusters previously found in the pain
patients [13], of which cluster #1 includes patients with comparatively few body areas in pain, low
interference, little sleep disturbance, and low blood pressure. The performance of machine-learning-
based random forest classifiers is given; for further algorithms, the selected main performance
criterion (balanced accuracy) is shown in Supplementary Figure S2. Classification performance
was measured (i) with the original data, (ii) with data sets designed to provide negative control by
permutation of the original metabolomic parameters, and then with original or permuted data of
those seven metabolomic markers found relevant to the patient subgrouping after feature selection
(Figure 3). Results represent the medians (IQRs in parentheses) of the test performance measures
from 1000 model runs using Monte Carlo resampling. The parameters correspond to the performance
marker set implemented in the R libraries “caret” (https://cran.r-project.org/package=caret [26])
and “pROC” (https://cran.r-project.org/package=pROC [27]).

Parameter Full Feature Set Reduced Feature Set

Feature set Original Permuted Original Permuted

Sensitivity, recall 0 (0–0) 0 (0–0) 31.6 (26.3–36.8) 10.5 (5.3–15.8)
Specificity 100 (97.8–100) 100 (100–100) 88.9 (84.4–91.1) 91.1 (86.7–93.3)

Positive predictive value, precision 0 (0–50) 50 (0–100) 53.6 (45.5–60) 33.3 (22.2–45.5)
Negative predictive value 70.3 (70.3–70.3) 70.3 (70.3–70.3) 75 (73.7–76.9) 70.5 (69.4–71.9)

F1 10 (9.5–10) 10 (10–10) 38.8 (33–45.2) 16.7 (14.3–25)
Balanced Accuracy 50 (49.9–50) 50 (50–50) 59.1 (57.1–62.9) 50.4 (47.8–53.5)

ROC-AUC 50.7 (46.5–56.1) 51.3 (46.7–55.1) 70 (66.3–75.2) 56.1 (49.3–61.6)
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Figure 3. Raw data of the selected metabolomics features presented separately for the two pain and
sleep-related subgroups. The transformed values (log10(x + 1)) are shown; for untransformed values
of all metabolomic markers see Supplementary Figure S1. Individual data points are presented as
dots on violin plots showing the probability density distribution of the variables, overlaid with box
plots where the boxes were constructed using the minimum, quartiles, median (solid line inside the
box), and maximum of these values. The whiskers add 1.5 times the interquartile range (IQR) to the
75th percentile or subtract 1.5 times the IQR from the 25th percentile. Statistical significances are
shown at the top of each panel. The figure was created using the R software package (version 4.0.2
for Linux; https://CRAN.R-project.org/ [23]) and the R libraries “Boruta” (https://cran.r-project.
org/package=Boruta [24]) and “ggplot2” (https://cran.r-project.org/package=ggplot2 [25]).

2.2. Metabolomic Markers Relevant to Obesity and Sleep

Examination of the effects of obesity and sleep problems on metabolomics contin-
ued with univariate statistical analysis (t-test and fold change) and metabolite path-
way analyses. The volcano plot analysis (Table 3), used to visualize the data, showed
metabolomic markers with statistically significant differences when patients with obesity
were compared to those without: 11 amino acids (glutamate, asparagine, glycine, tyrosine,
valine, alanine, isoleucine, symmetric dimethylarginine, creatinine, creatine, citrulline),
three acyl-carnitines (isovalerylcarnitine, propionylcarnitine, hexanoylcarnitine), two alkyl-

https://cran.r-project.org/package=caret
https://cran.r-project.org/package=pROC
https://CRAN.R-project.org/
https://cran.r-project.org/package=Boruta
https://cran.r-project.org/package=Boruta
https://cran.r-project.org/package=ggplot2
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phenylketones (hydroxykynurenine, kynurenine), sugar acid (glucuronic acid), three purine
nucleosides (inosine, adenosine, guanosine), a bile acid (chenodeoxycholic acid), a (5′->5′)-
dinucleotide (NAD), and a pyrimidine nucleoside (cytidine). In the pathway analysis
(Figure 4), the top 10 enriched metabolic routes were related to amino acid metabolism and
energy production, among others. Further detailed results are provided in Supplementary
Table S1.

Table 3. Statistical analysis (fold change and t-test) used in volcano plot for elucidating discerning
markers between obese (BMI > 30) and non-obese patients, and those with recurring sleep problems
and those with normal sleep or only mild sleep problems.

Metabolomic Marker FC log2(FC) Raw.Pval −log10(p)

Obesity

Glutamate 1.1076 0.14741 7.385 × 10−5 4.1317
Asparagine 0.97389 −0.038168 0.00060007 3.2218

Glycine 0.96871 −0.045858 0.0013494 2.8698
Tyrosine 1.0282 0.040139 0.0018034 2.7439

Valine 1.0209 0.029846 0.0019009 2.721
Alanine 1.0211 0.030172 0.0030191 2.5201

Isovalerylcarnitine 1.155 0.2079 0.0053701 2.27
Isoleucine 1.0301 0.042839 0.0061138 2.2137
Symmetric

dimethylargininee 0.88753 −0.17213 0.0066633 2.1763

Propionylcarnitine 1.1127 0.15403 0.0097422 2.0113
Hydroxykynurenine 1.2256 0.29344 0.009839 2.007

Glucuronic acid 1.1245 0.16928 0.011138 1.9532
Creatinine 0.98053 −0.028359 0.012257 1.9116
Creatine 1.0483 0.068066 0.013068 1.8838

Hexanoylcarnitine 1.1638 0.21882 0.020064 1.6976
Citrulline 1.0376 0.053191 0.02039 1.6906

Inosine 1.2492 0.32101 0.02406 1.6187
Chenodeoxycholic

Acid 1.0856 0.11852 0.024663 1.6079

Adenosine 1.2961 0.37413 0.032691 1.4856
Kynurenine 1.0443 0.062527 0.034 1.4685

NAD 0.73752 −0.43924 0.036641 1.436
Cytidine 1.0567 0.079523 0.047004 1.3279

Guanosine 1.4269 0.51284 0.047952 1.3192

Sleep problems
Serine 0.98126 −0.027298 0.017081 1.7675

Symmetric
dimethylarginine 0.91811 −0.12326 0.021126 1.6752

Homocysteine 0.85203 −0.23103 0.021403 1.6695
Dimethylglycine 0.9218 −0.11747 0.028466 1.5457

GABA 0.87712 −0.18915 0.03143 1.5027
Asymmetric

dimethylarginine 0.91048 −0.1353 0.031587 1.5005

Choline 0.96778 −0.047256 0.049881 1.3021
FC = fold change.

In the t-test analysis (Table 3), seven metabolomic markers differed statistically sig-
nificantly when those having recurring sleep problems were compared to those sleep-
ing normally or having only mild sleep problems: six amino acids (serine, symmetric
dimethylarginine, homocysteine, dimethylglycine, GABA, asymmetric dimethylarginine)
and choline. In pathway analysis (Figure 4), the top enriched metabolic routes related to
phospholipid synthesis and methionine metabolism, among others.
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Figure 4. (A): Volcano plot showing the results for elucidating discerning markers between obese
(BMI > 30) and non-obese patients, and those with recurring sleep problems, and those with normal
sleep or only mild sleep problems. FC = 1, p-value < 0.05, BMI > 30/BMI < 30 and recuring/normal
and mild sleep problems. FC = 1, p-value < 0.05 (B): Top 25 metabolic pathways that pathway
enrichment analysis using SMPDB database suggested as having the most alterations, on the left
in relation to obesity, and on the right in relation to sleep problems. The figure has been created
using the MetaboAnalyst software (version 5.0, https://www.metaboanalyst.ca/home.xhtml [28].
(C): Mechanistic model illustrating how problems co-occurring with chronic pain may link at the
metabolomic level. On the partial description of methionine metabolism (right), the blue arrows
show the four metabolomic markers that are decreased in the recurring sleep problems subgroup in
statistical analysis, suggesting downregulated methionine metabolism in this subgroup. Methionine
metabolism is an important source of cysteine, needed for glutathione metabolism (left), and which
appeared altered with obesity. The figure was created using Microsoft PowerPoint® (Redmond, WA,
USA) on Microsoft Windows 11.

https://www.metaboanalyst.ca/home.xhtml
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2.3. Convergences in the Findings between the Machine-Learning Approach and Pathway Analyses

Contrasting the findings from the machine learning approach with pathway analyses
it showed that four metabolites appeared both in the machine-learning-derived algorithm
and in the top 25 metabolic pathways in relation to obesity: NAD (in 18 pathways), AMP
(11), cysteine (4), and asparagine (2). For sleep problems, three of the same metabolites
appeared in the machine-learning-derived algorithm and in the top 25 metabolic pathways:
NAD (in 17 pathways), AMP (4), and cysteine (2). Therefore, markers appearing in all these
analyses were AMP, NAD, and cysteine.

3. Discussion

This study sought first to elucidate metabolomic markers that were associated with
having either a less severe pain phenotype (lower and less interfering pain) or a more
difficult one (higher pain, more interfering pain, and more co-occurring problems). A
data-driven machine-learning-based approach picked seven markers: AMP, asparagine,
deoxycytidine, glucuronic acid, propionylcarnitine, cysteine, and NAD. Analysis of two
common problems that associate with more difficult pain, i.e., obesity and sleep problems,
implicated several metabolomic markers and pathways which may have an effect on pain.
Further, three markers (NAD, AMP, and cysteine) appeared across the results from the
machine learning and pathway analyses.

As described in the methods section, supervised machine learning classification algo-
rithms were used for knowledge discovery rather than biomarker generation. The latter
was not pursued for two reasons. First, the pain-related phenotype is a complex human
phenotype that includes elements of both pain and sleep problems. This phenotype was
based on a previous report of ours that suggested that sleep is a key factor in persistent
pain [13]. The current study aimed to analyze metabolomic factors that may be involved in
the process of pain chronification, not to identify biomarkers for e.g., diagnostic purposes.
Second, understanding the involvement of metabolomic regulation in persistent pain is a
new field of research and previous findings have so far not been able to formulate specific
hypotheses-based metabolomics-derived data. Therefore, the present study aimed to gain
further insight into the role of metabolomic regulation in human persistent pain with a
special focus on the comorbidity of sleep.

Obesity is associated with more severe pain [18] and several mechanisms may explain
this: e.g., heavier weight on joints and spine, depression, or low-grade chronic inflamma-
tory state [29,30]. However, effects from differential metabolomics levels may emerge as
well. As expected, alterations in amino acid metabolism pathways also appeared in this
study [19]. A metabolomic profile, observed here too, of increased levels of BCAAs valine
and isoleucine, and glutamate and alanine, has been hypothesized to reflect an overload of
BCAA catabolism [31]. This may contribute to the development of glucose intolerance or
affect neurotransmitter production, while increased levels of BCAAs may also be associated
with increased inflammation, possibly leading to more pain [32,33]. Elevated glutamate, as
excitatory neurotransmitter related to pain sensation, has been associated with greater pain
in several studies [12]. Another interesting finding was that the metabolomic marker glu-
curonic acid appeared in both the machine-learning algorithm and the obesity-associated
pathway analysis. Glucuronic acid has been shown to activate Toll-Like Receptor 4, leading
to enhanced nociception possibly through the release of cytokines [34].

Sleep problems were associated with decreased levels in four metabolites (choline,
homocysteine, dimethylglycine, and serine) in the methionine pathway. Experimental sleep
deprivation in animals and humans reduces levels of cysteine [35] and homocysteine [36].
In response to simulated night shifts in humans, choline levels and those of two other
metabolites in the methionine pathway decreased [37]. Homocysteine has been of much
interest in research as elevated homocysteine levels have appeared as a risk factor for
several diseases, including cardiovascular disease and dementia, and sleep problems have
been proposed to play a part in this process [38]. However, sleep problems occur in various
forms, and it may be that only obstructive sleep apnea (OSA) or severely reduced sleep
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durations (<5 h) link to elevated homocysteine [39,40]. OSA may induce more pain through
chronic headaches [41] and metabolomic level alterations in OSA, such as disruptions
in amino acid, fatty acid, carbohydrate, bilirubin, and xanthine metabolism, have been
found [17,42]. Associations with metabolomics are often nonlinear and highly complex, as
different pathways interact with one another. For pain relief, stimulating the methionine
pathway has been studied in relation to chronic pancreatitis, hypothesizing that the effects
would be mediated through reduced oxidative stress [43].

As pain, obesity, and sleep problems are showing to have reciprocal relationships, we
were interested in the possible interactions across the metabolomic findings. One marker
appearing in all three analyses was cysteine, a product of the methionine pathway, which is
needed for glutathione synthesis [44]. Our results suggested that the methionine pathway
is downregulated with sleep problems, while obesity associated with an altered glutathione
pathway. If obesity affected glutathione metabolism through elevated glutamate or de-
creased glycine availability [45], could co-occurring sleep problems take the imbalance
further through reduced cysteine availability? Glutathione plays an important role as an
antioxidant defense and its deficit has been studied in relation to several diseases.

NAD, another common marker in the analyses, appeared in most pathways that both
obesity and sleep problem analyses highlighted. Obesity is associated with decreased NAD
levels and increased inflammatory cytokines are proposed as one possible mechanism
for this [46]. Alterations of NAD levels may influence many processes as it has multiple
functions, one of which is to do with the internal circadian clock, which then may play a
part in sleep regulation [47].

Finally, increased AMP levels have been linked to obesity and diabetes [48]. AMP
may also have direct effects on pain [49]. AMP is a hydrolysis product from ATP, a
molecule which cells increasingly release in inflammation, tissue damage, or nerve injury.
AMP is itself hydrolyzed to adenosine, which exhibits antihyperalgesic and antiallodynic
effects. However, persistently elevated adenosine levels are associated with mechanical and
thermal hypersensitivity, suggesting a possible role in chronic pain [50]. In our study, the
serum level of AMP was higher in those with more pain and pain interference, suggesting
that AMP hydrolysis might be affected in a variety of pain conditions, contributing to
increased severe pain.

Strengths and Limitations

This study analyzed metabolomics in pain patients with two complementary ap-
proaches. Data-driven methods may produce subgroup allocations that are more valid
in the real world than those corresponding to some individual pain-related factor. Using
machine learning to search for important combinations of metabolomic markers in pain
subgroups and comparing these results to findings about two significant problems, obe-
sity and sleep, among pain patients is a way to assess the validity of these results. Thus,
combining different analysis strategies can be considered a strength of this study.

In addition, the presented set of metabolic markers derived from the data-driven
part of the analysis has undergone several procedures to validate it and can therefore be
considered as an internally validated result. In particular, (i) none of the markers emerged
when feature selection was performed on permuted data. Moreover, (ii) algorithms other
than random forests could be trained with these metabolic markers to assign cases to the
correct phenotype group with a balanced accuracy that was better than guessing, whereas
(iii) this was unsuccessful when training the algorithms with permuted data indicating that
overfitting was unlikely. In addition, (iv) training the algorithms failed with markers that
were significant in one-dimensional statistical analyses of group differences, suggesting a
rejection of these markers found by simple statistics in favor of the markers found by the
more complex approach pursued here, as discussed in the next section.

Only some, but not all, of the identified metabolomic markers that were instrumental
for the assignment of pain phenotypes by different machine algorithms differed statistically
significantly between the two phenotype groups (Figure 3). At first glance, this might
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call the present results into question. However, a rejection of the presented relevant
metabolomic markers as predictors of pain phenotype due to lack of significance fails to
recognize the high dimensionality of the data set and inadequately reduces it to a multiple
unidimensional problem. In contrast, it has recently been shown that higher significance
does not automatically mean stronger predictive power and variables with strong predictive
power may be sometimes not significant [51]. As the authors of the report state, “the main
difference between finding a subset of variables to be highly significant and finding them
to be highly predictive is that the former involves making assumptions about the exact
distribution of the variables but not knowing it, whereas the latter requires knowing
the distribution of the variables in the classes under study”. Nevertheless, considering
that some of the selected metabolomic markers were different from those that showed
statistically significant differences between subgroups, we repeated the classification step of
the data analysis using only the statistically significant metabolomic markers for algorithm
training. In this case, classification performance fell back to the level of guessing.

The final set of metabolomic markers was found using a feature selection technique
based on random forests, which is an established approach [24,52]. However, several
additional analyses were performed to validate the final set of metabolomics markers.
These included first classification algorithms other than random forests to ensure that the
results were not due to properties of the random forests algorithm. In fact, SVM with
the selected features provided even better classification performance than random forests.
Second, training the algorithms with permuted metabolomics information resulted in their
inability to assign patients to the correct cluster, demonstrating that the presented result
was not due to overfitting or random selection.

Finally, as an alternative to the Boruta approach based on random forests, the method
of least absolute shrinkage and selection operators (LASSO [53]) as a regression-based
method was used as an alternative feature selection technique. LASSO identified alanine,
GABA, serine, proline, betaine, valine, isoleucine, asparagine, creatine, hypoxanthine,
glutamine, glutamate, citrulline, AMP, sorbitol, gamma glutamyl cysteine, guanosine,
chenodeoxycholic acid, taurochenodeoxycholic acid, isobutyryl carnitine, and cysteine
as informative. However, training random forests with this marker set resulted in poor
balanced accuracy of only 51.5% (interquartile range of 49.3–53.1), and other algorithms did
not provide support that this feature set as informative for subgroup assignment. Based
on these observations, the present feature set seems to be sufficiently validated. Neverthe-
less, the small sample size is a limitation that must be considered when generalizing the
present results.

4. Material and Methods
4.1. Subjects and Study Design

The cohort originally comprised n = 320 patients undergoing multidisciplinary therapy
in tertiary pain care, enrolled between September 2013 and November 2016. The Coordi-
nating Ethics Committee of Helsinki and Uusimaa Hospital District approved the study
protocol (29.13.03.00/12). Informed written consent was obtained from all participants. The
only exclusion criteria were active cancer or inability to answer questionnaires in Finnish.
As described previously (see Table 1 in [13]), a total of d = 59 parameters in seven different
categories, namely (i) pain phenotype-related features, (ii) pain etiology-related information,
(iii) psychological parameters, (iv) demographic parameters, (v) lifestyle-related parame-
ters, (vi) information about previous treatments, and (vii) information about comorbidities,
had been acquired from the present cohort. Five of the pain-related parameters were
used for pain-related clustering [13]; the other 54 parameters were not directly included in
this cluster analysis but were used for later interpretation of the pain phenotype-derived
clusters. Only the acquisition of information directly relevant to the present analysis, i.e.,
parameters related to pain, sleep, obesity, and metabolomics, are described below, while
other details of the complete study have been described separately [13].
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4.2. Pain-Related Phenotypes

As previously described [13,18], five pain-related parameters had been acquired from
the patients, namely (i) pain intensity, (ii) activity pain interference, (iii) affective pain
interference (assessed with the Brief Pain Inventory (BPI) [54]), (iv) the number of pain
areas (from the pre-treatment health questionnaire, using an image of the human body on
which the patient had marked areas with pain), and (v) the duration of pain.

Based on the patterns found with these parameters [13], a subgroup of 81 patients
characterized by a relatively smaller number of pain areas and a lower level of affective pain
interference was distinguished at the top level of the cluster dendrogram from the other
patients. In interpreting this pain-related cluster structure with the 54 predominantly non-
pain-related parameters mentioned above, using explainable artificial intelligence (XAI)
type algorithms (i.e., which make cluster assignment transparent and understandable to
non-informaticians (see [55] for another example of XAI in pain research)), sleep problems
were consistently at the top of the rule hierarchy. This indicated that sleep provided the most
relevant information for subgroup assignment, besides the pain-related parameters that
had been used for cluster building. This provided the basis for identifying sleep as a central
factor in chronic pain in the present cohort and provided a mixed pain- and sleep-related
phenotype suitable for the aim of the present study to analyze the role of metabolomics
at the interface of pain and sleep problems. Obesity is another major comorbidity with
both pain and sleep problems and has clear metabolic implications [19] and was therefore
chosen as one of the parameters to be studied in the metabolomic analyses. Those with
obesity are more likely to suffer from various chronic pain conditions (for example chronic
headaches, fibromyalgia, and joint pain) and population studies have suggested obesity as
a risk factor for developing chronic pain. Research on potential biochemical mechanisms
linking obesity with pain is rapidly growing [29].

4.3. Sleep and Obesity Parameters

Sleep problems were assessed using the previous criteria [56]. Briefly, subjective sleep
difficulties were first queried using the sleep item from the 15D Health-Related Quality
of Life (HRQoL) questionnaire [57]. In the 15D sleep item, respondents indicate whether
they have normal sleep or mild, marked, great, or extreme sleep problems. Patients who
reported normal sleep were classified under this category. Patients who reported at least
marked sleep problems were assessed for recurrence of the problems, using the Basic
Nordic Sleep Questionnaire (BNSQ) [58]. This a standardized questionnaire assessing sleep
disturbances that asks about various symptoms in the past three months on a scale of 1 to
5 (1 = never or less than once a month; 2 = less than once a week; 3 = 1–2 nights a week;
4 = 3–5 nights a week; 5 = every night or almost every night). Patients were classified as
having “recurrent sleep problems” if they reported at least one of the following problems:
1 = difficulty falling asleep at least three times per week; 2 = night-time awakenings at least
three times per night, on at least three nights per week; 3 = feeling extremely tired after
waking up in the morning at least three times per week. Additionally, daytime sleepiness
also had to be reported at least three times per week. The remaining patients who neither
reported sleeping normally nor met the criteria for recurrent sleep problems were classified
as having “mild or infrequent sleep problems.” A patient was assigned as obese if the body
mass index (BMI) was 30 or higher. The height and weight information used to calculate
BMI were taken by a nurse while the patient visited the pain clinic for examination.

4.4. Serum Metabolomic Markers

Metabolomics were performed at the Finnish Institute of Molecular Medicine, using
previously published methods [20]. Ten microliters of labelled internal standard mixture
were added to 100 µL of biofluid sample and allowed to equilibrate. A total of 400 µL of
extraction solvent (1% formic acid in acetonitrile) was added for protein precipitation. The
samples were then centrifuged (14,000 rpm; 4 ◦C; 15 min); supernatants were collected
and dispensed into phospholipid removal plate (OstroTM, Waters Corporation, Milford,
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MA, USA), and then vacuum filtered (pressure differential 300–400 mbar; 2.5 min) on a
Hamilton robot vacuum station. A total of 5 µL of filtered sample extract was injected into
an ACQUITY UPLC system coupled to a Xevo® TQ−S triple quadrupole mass spectrometer
(Waters Corporation). Chromatographic separation was carried out with a 2.1 × 100 mm
ACQUITY 1.7 µm BEH amide HILIC column (Waters Corporation) (temperature main-
tained at 45 ◦C). The total run time was 14.5 min including 2.5 min of equilibration step at
a flow rate of 600 µL/min and subsequently, the gradient was created with mobile phase
B (ACN/H2O, 90/10 (v/v), 20 mM ammonium formate, pH at 3) and mobile phase A
(ACN/H2O, 50/50, ammonium formate, pH at 3) according to Nandania et al. [20]. About
5 µL of sample extract was injected with two cycles of washes, seal wash and partial loop.
The detection system, a Xevo® TQ−S MS (Waters Corporation), was operated with polarity
switching electro spray ionization (ESI) having capillary voltage at 0.6 KV in both polarities.
Throughout the experiment the following settings were used: the source temperature
(120 ◦C), desolvation temperature (650 ◦C), high pure nitrogen and argon gas used as
desolvation gas (600 L/hr) and collision gas (0.15 mL/min), respectively. Multiple reaction
monitoring (MRM) acquisition mode was selected for quantification of metabolites (span
time of 0.1 sec). MassLynx 4.1 software (Waters Corporation) was used for data acquisi-
tion, data handling, and instrument control. Data processing was done using TargetLynx
software (Waters Corporation) and metabolites were quantified by using labeled internal
standards and external calibration curves.

4.5. Data Analysis
4.5.1. Data and Analysis Strategy

Data analysis was in two main parts (Figure 1). First, a data-science-based approach,
using machine-learning-based feature selection methods [21,22] was pursued to identify
metabolomic markers that could provide relevant information for assigning a patient
to the correct pain phenotype subgroup. This approach was unbiased with respect to
metabolomic markers or pathways potentially involved in the segregation of pain pheno-
type subgroups, analogously to the approach taken previously in a comparable “omics”-
focused assessment [59]. Second, a metabolic pathway-based, hypothesis-driven approach,
using metabolite set enrichment analysis (MSEA), was pursued to examine biologically
meaningful patterns that are significantly enriched in the quantitative metabolomics data
related to pathways relevant to sleep problems or obesity. The two lines of data analysis
were performed independently by two researchers, resulting in differences in some details
of the analyses, mainly due to the different software tools used and their default settings.
The two parts were conducted independently to avoid mutual influence of the results,
i.e., the characteristics selected in the first part were not considered in the second part
and vice versa, which also allowed internal validation to a certain extent. Full details are
provided below.

The data space in both lines of analysis had the form

D = {(xi, yi)|xi ∈ X, yi ∈ Y, i = 1 . . . n}

that consisted of a so-called input space X with the metabolomic markers collected from
193 patients. In addition, the so-called output space Y was included, which, in the first line
of the analysis, consisted of class or subgroup information on the assignment of patients
to the two pain phenotypes described above, and, in the second line of assignment, to the
recurring sleep problems or obesity subgroups. Losses from the original 320 patients are
due to (i) missing phenotypic information, resulting in only 277 patients being analyzed in
the previous analysis [13], and (ii) metabolic information not available from 84 patients.
Basic descriptive statistics were calculated, and group comparisons were performed using
Wilcoxon-Mann-Whitney-U tests [60,61] or χ2 tests [62], with an α level set at 0.05 and
corrected for multiple testing, according to the proposal of Bonferroni [63]. The main
analyses were conducted independently by two researchers and are described below.
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4.5.2. Data-Driven Association of Metabolomic Markers and Pain Phenotypes

The programming work required for this part of the analyses was carried out in
the R language [64] using the R software package [23], version 4.0.2 for Linux, which
is available free of charge in the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R$-$project.org/. Analyses were performed on an Intel Core i7−10510U (Intel
Corporation, Santa Clara, CA, USA) notebook computer running Ubuntu Linux 20.04.1
LTS 64−bit (Canonical, London, UK)).

Data Preprocessing and Transformation

For the machine learning-based analyses, the data were preprocessed as follows.
Subjects and variables with >20% missing values in the metabolomics information were
eliminated, since for the machine-learning-based analyses, this had been defined as the
limit for imputation, as used previously [13]. Therefore, only 97 metabolomic mark-
ers were included in these analyses. A transformation of the metabolomics data best
suited for their association with the pre-established cluster structure (see above) was
identified by means of PC−corr analysis [65]. This is an algorithm that complements
principal component analysis (PCA) [66,67]. PC−corr attempts various transformations
of the data for optimal segregation of the cohorts along a PC, which is evaluated by
quantitative measures expressed as p-value, area under the receiver−operator charac-
teristic (AUC−ROC), and area under the precision−recall curve (AUPR). Since the first
principal component (PC) captures the largest possible variance in the data, optimum
cluster segregation along this component was searched. This analysis was performed
using an R-script provided with the description of the PC−corr analysis (pccorrv2.R,
https://github.com/biomedical$-$cybernetics/PC$-$corr_net [65]). The analysis resulted
in a recommendation for log transformation of the data as best suited to observe cluster
segregation along the first PC. Missing values were replaced by non-parametric impu-
tation by random forests [68,69], as implemented in the R library “missForest” (https:
//cran.r$-$project.org/package=missForest [70]).

Selection of Metabolomic Markers Informative for Pain−Phenotype Assignment

Metabolomic markers that provided relevant information for patient subgroup assign-
ment were identified using supervised feature selection and machine learning. Feature
selection [22] was implemented with the “Boruta” approach [24], which is based on the
random-forests algorithm [68,69] as a generally well-performing classifier using a tree-based
structure. The Boruta method provides a clear decision on whether a variable is important
or not, derived from a 100-fold cross-validation approach and a statistical evaluation with
p-values defaulting to 0.01 [24]. These calculations were performed with the R package
“Boruta” (https://cran.r$-$project.org/package=Boruta [24]) with the default hyperparam-
eter settings. It should be mentioned that it would be a problem to mix different types of
feature selection algorithms. However, the analyses reported in Sections 2.2 and 4.5.2 of
this paper basically included only a one-dimensional feature analysis. This means that
the relationships between feature dimensions, whether linear or more complex, are not
considered. To further circumvent possible circularity, the Boruta method-based feature
selection was performed again with permuted metabolome data, with the expectation that
the validity of the selected features would be supported if they were not also selected from
permuted data.

Validation of Metabolomic Markers Informative for Pain Phenotype Assignment

To assess whether the selected metabolomic markers indeed provided relevant in-
formation for subgroup assignment, various machine learning classification algorithms
were trained to perform the task of assigning a patient to the correct subgroup, based on
the information provided by the metabolomics data. This was performed with machine
learning for knowledge discovery. The approach assumes that if a classifier can be trained
to assign a patient to the correct class better than by guessing, the features (the metabolomic

https://CRAN.R$-$project.org/
https://CRAN.R$-$project.org/
https://github.com/biomedical$-$cybernetics/PC$-$corr_net
https://cran.r$-$project.org/package=missForest
https://cran.r$-$project.org/package=missForest
https://cran.r$-$project.org/package=Boruta
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markers in the dataset needed by the classifier to accomplish this task) contain relevant
information about the addressed class structure. In this way, the most informative markers
can be identified. Thus, feature selection takes precedence over classifier performance
whereas creating a powerful classifier to identify a biomarker is not the goal. This means
that the analysis can be considered as successful if the class assignment is better than
guessing and the variables needed for this assignment have been identified.

In order to assess whether the feature selection procedure identified a set of vari-
ables that provides enough information for class separation, several different machine-
learning algorithms were trained with both full and reduced feature sets. A 100-fold
cross validation scenario was run on disjoint training (2/3 of the cases) and test (1/3
of the cases) data subsets, randomly drawn from the original data set using Monte
Carlo resampling [71] as implemented in the R library “sampling” (https://cran.r-project.
org/package=sampling [72]). Classification performance was evaluated using standard
measures comprising first balanced accuracy [73] as the main criterion, and then the
AUC−ROC [74], sensitivity, specificity, precision, recall, positive and negative predictive
value [75,76], and the F1 measure [77,78]. These calculations were performed with the
R libraries “caret” (https://cran.r-project.org/package=caret [26]) and “pROC” (https:
//cran.r-project.org/package=pROC [27]).

To address possible circularity arising from feature selection and validation with
random forests only, algorithms of supervised machine learning were selected to cover
different types of classifiers, including methods previously applied to pain-related data [79]
and included (i) random forests [68,69] as the algorithm used for feature selection, (ii)
support vector machines (SVM) [80]), (iii) adaptive boosting [81], (iv) k-nearest neighbors
(kNN) [82], (v) conditional inference trees (CTREE) [83], (vi) classification and regression
trees (CART) [84], (vii) the hierarchical tree−based C5.0 classifier [85], and (viii) the non-
hierarchical rules-generating partial decision trees classifier (PART) [86]. The R libraries
used for these calculations comprised, in the above order of algorithms, “randomForest”
(https://cran.r-project.org/package=randomForest [87]), “kernlab” (https://cran.r-project.
org/package=kernlab [88]), “xgboost” (https://cran.r-project.org/package=xgboost [89]),
“caret”, “party” (https://cran.r-project.org/package=party [83]), “rpart” (https://cran.r-
project.org/package=rpart [90]), “C5.0” (https://CRAN.R-project.org/package=C50 [91],
and “RWeka” (https://cran.r-project.org/package=RWeka [92]). Hyperparameters were
tuned during grid searches (as performed previously [55]). For example, random forests
were built with 500 trees and three features per tree, while the kNNs were used with the
Euclidean distance and the value of k could be selected, based on an actual grid search
performed on each run. SVM was executed with a radial-based Gaussian kernel, while
CART was implemented with a minimum limit of five cases per split and a maximum tree
depth of five decisions. To control possible overfitting, all machine-learning algorithms
were additionally trained with randomly permuted features. The classifier trained with
these data should not perform better than guessing, i.e., should give a balanced accuracy
and an AUC−ROC equal or close to 50%. For examples of R code used for the best-
performing classifiers random forest and SVM, see Box 1.
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https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=kernlab
https://cran.r-project.org/package=kernlab
https://cran.r-project.org/package=xgboost
https://cran.r-project.org/package=party
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=rpart
https://CRAN.R-project.org/package=C50
https://cran.r-project.org/package=RWeka


Int. J. Mol. Sci. 2022, 23, 5085 17 of 21

Box 1. R code details for the best—performing classifiers random forest and SVM.

SVM = {ActualClassifierObject <− ksvm(as.factor(Clusters) ~ ., data=TrainData, kernel=“rbfdot”,
prob.model=TRUE, type = “nu−svc”)}
Defaults of the ksvm support vector machines method (for full details, see https://cran.r-project.
org/web/packages/kernlab/kernlab.pdf):
ksvm(x, y = NULL, scaled = TRUE, type = NULL, kernel =“rbfdot”, kpar = “automatic”,C = 1,
nu = 0.2, epsilon = 0.1, prob.model = FALSE, class.weights = NULL, cross = 0, fit = TRUE, cache = 40,
tol = 0.001, shrinking = TRUE, . . . , subset, na.action = na.omit)
RF = {ActualClassifierObject <− randomForest(as.factor(Clusters) ~ ., data = TrainData, mtry=3,
ntree=500, na.action = na.roughfix)}
Defaults of the randomForest method (for full details, see https://cran.r-project.org/web/
packages/randomForest/randomForest.pdf):
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500, mtry=if (!is.null(y) &&
!is.factor(y)) max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))), weights=NULL, replace=TRUE,
classwt=NULL, cutoff, strata, sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)), node-
size = if (!is.null(y) && !is.factor(y)) 5 else 1, maxnodes = NULL, importance=FALSE, lo-
calImp=FALSE, nPerm=1, proximity, oob.prox=proximity, norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE, keep.inbag=FALSE, . . . )

4.5.3. Pathway-Based Assessment of Metabolomic Markers Relevant to Sleep and Obesity

Pathway-based analyses were performed using prepackaged software tools available
as a web-based comprehensive metabolomics data processing tool MetaboAnalyst (version
5.0, https://www.metaboanalyst.ca/home.xhtml; accessed on 1 September 2021, [28,93].
Metabolites were removed at a threshold of 20% missing values [94]. Log transformation
and autoscaling were used to normalize the data. Missing values were imputed with
k-nearest neighbors algorithm [82] based on similar samples. For univariate analysis, vol-
cano plot analysis was performed using FC = 1 and p-value < 0.05. Pathway enrichment
analyses were performed using the quantitative metabolite enrichment analysis (MSEA)
algorithms in Metaboanalyst [95]. MSEA uses similar algorithms to those originally devel-
oped for Gene Set Enrichment Analysis (GSEA) [96]. KEGG metabolite IDs and a metabolic
pathway-based SMPDB database (containing 99 metabolite sets to normal human metabolic
pathways) were used. Metabolite sets containing at least two entries were used as cut off.
Enrichment ratio was computed by hits/expected.

5. Conclusions

The results of this study suggest several metabolomic markers and pathways that may
play a part in pain becoming more severe for some patients. Some effects may be more
direct, such as our findings about AMP and the hypothesis that this might alter adenosine
metabolism, leading to increased pain sensitivity. However, there may also be many indirect
effects. For example, we found that NAD levels were altered in obesity: NAD appears in
many metabolomic pathways and is associated with many functions, such as circadian
rhythms, which may then influence sleep regulation. Then, as research has suggested,
disturbed sleep may lead to greater pain through several processes. Our findings also
raise the possibility that several problems co-occurring with pain may disturb metabolomic
processes in an additive way: if sleep problems are associated with downregulating the
methionine pathway and obesity with alterations in glutathione metabolism, what effects
might occur when these two problems combine, given the known links between these
pathways? Metabolomics is a promising new approach to gain understanding of processes
in chronic pain, and clearly warrants further research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23095085/s1.
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