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Abstract. We present a hierarchy of polynomial time lattice basis reduction algorithms that stretch
from Lenstra, Lenstra, Lovasz reduction to Korkine-Zolotareff reduction. Let A (L) be the length
of a shortest nonzero element of a lattice L. We present an algorithm which for keN finds a
nonzero lattice vector b so that |b|?> < (6k)"/ A (L)2. This algorithm uses O(n*(Vk**°**+ n?) log B)
arithmetic operations on O(n log B)-bit integers. This holds provided that the given basis vectors
b,,...,b,€Z" are integral and have the length bound B. This algorithm successively applies
Korkine-Zolotareff reduction to blocks of length k of the lattice basis. We also improve Kannan’s
algorithm for Korkine-Zolotareft reduction.

1. Introduction

We introduce and analyse novel algorithms for the reduction of lattice bases
b,,..., b, €R? of arbitrary rank n. This computational problem is equivalent to the
reduction of positive definite quadratic forms. Gauss [4] gave reduction algorithms
for rank 2 and 3. Let B be the maximal Euclidean length of the input basis vectors.
The Gaussian reduction algorithm on an integer input basis b,,...,b,€Z", n=2
or 3, terminates after at most O(log B) arithmetic operations, see [11]. All arithmetic
steps are on integers with at most O(log B) bits.

Reduction for quadratic forms of arbitrary dimension was first studied by Hermite
[71, Korkine, Zolotareff [9] and Minkowski [15]. Korkine and Zolotareff as well as
Minkowski considered lattice bases b,, . .., b, with the property that b, is a shortest
(nonzero) lattice element. Minkowski requires this property for all subbases
b, ..., b, for i=1,...,n Korkine and Zoloiareff considered bases so that this
property holds for the orthogonal projection of the subbases b;, ..., b, in the linear
space (¥;_; b, R)*. No efficient algorithm is known for finding a shortest element
in lattices of arbitrary rank. Van Emde Boas [2] proved that deciding whether a
given lattice element is | ||-shortest (|| [« is the maximum norm) is NP-complete.
So presumably this problem is intractable and the problem of finding a shortest
lattice element is likely to be hard.

Recently, Lovisz [13] proposed a natural extension of the Gaussian reduction
algorithm to lattices of arbitrary rank, see [13]. The Lovdsz algorithm, called
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LLL-reduction, applied to a lattice basis b,,...,b,€Z" successively performs a
Gaussian reduction step for the smallest reasonable i to the projection of b;, b;.,
in the subspace (¥,_; b; R)*. This algorithm finds a lattice element that is at most
2"=Y/2 times longer than the shortest lattice element. The algorithm runs in
O(n*log B) arithmetic steps on integers with at most O(n log B) bits. LLL-reduction
is a basic tool for solving various Diophantine computaticnal problems, such as
factoring polynomiais with rational coefficients, solving linear systems of inequalities
over the integers, finding linear Diophantine approximations, breaking knapsack

ea
cryptosystems a.s.0. The alsproo of the Mectens conjecture by Odlyzk

] ,

has shown that Mmkowskl reductlon can be done w1th1 n°) log B arithmetic steps.

In this paper we introduce a hierarchy of reductlon concepts that stretch from
LLL-reduction to Korkine-Zolotareff reduction, and which run in polynomial time
for lattices of arbitrary rank. We call a lattice basis b,,..., b, k-reduced if for
i=1,...,n—k+1 the projection of b,, ..., bj.x_, in (Z,-<.- b, R)* forms a Korkine-
Zolotareff-reduced basis of rank k. Thus k-reduced lattice bases are locally Korkine-
Zolotareff reduced. For k =2 the conzept of k-reduced bases is essentially equivalent
to LLL-reduction; for n= k =2 it coincides with Gauss reduction and for n=k it
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reduction.

In Section 3 we present relaxed reduction concepts that permit proving polynomial
time bounds. To obtain a polynomial time bovad we restrict Korkine-Zolotareff
reduction to pairwise disjoint blocks. We discuss two alternatives to relate the
reducticn of adjacent blocks, semi k-reduction and semi block 2k-reduction. Semi
block 2k-reduction of an integer lattice basis b,,...,b, is performed within
O(n*(k*/***™®) + n?) log B) arithmetic steps with O(n log B)-bit integers. This time
bound differs from that for LLL-reduction only by a constant factor depending on

. Semi biock zx-reaucuon finds a lattice vector that is at most (6k%)"/* times as

method to ex.snd a given shortest lattice vector to a lattnc
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merely performs a sequence of Lovasz reduction steps and from time to time an
exhaustive search for a shortest lattice vector. As a consequence, all integers occurring
in the computation have at most O(n log B) bits. On an integer input basis b,,..., b,
the algorithm performs at most n"/***™+0O(n*log B) arithmetic operations on
O(n log B)-bit integers.

In Section 5 we prove the above-mentioned time bound for semi k-reduction and
for semi block 2k-reduction. In particular, we explain how to apply Korkine-
Zolotareff reduction to k-blocks and how to keep track of block transformations.
In Appendix A we outline the reduction algorithm of Lovasz for LLL-reduction
and of Gauss for the reduction of rank 2 lattice bases. We also give a practical
algorithm for Korkine-Zolotareff reduction of lattices with rank <S3.

2. Various concepts of basis reduction

Let R’ be the d-dimensional real vector space with the usual inner product ( , )
and Euclidean length |y]=(y, y)"/% A discrete, additive subgroup L=R? is called
a lattice. Every lattice L is generated by some set of linearly independent elements
b,,...,b,€ L, called a basis of L,

L=3 bZ={ab;+---+a,b,|a,,...,a,eZ}.
i=1

The rank of L is n and the determinant d(L) of lattice L is defined by d(L)=
det[(b;, b);<. :<n]"/> Let A(L) be the length of a shortest (nonzero) element in L.
The determinant and the rank of L do not depend on the choice of a basis. The
purpose of reduction theory is to find a basis consisting of short vectors or,
equivalently, a basis that is nearly orthogonal.

To describe the concepts of reductions we use the Gram-Schmidt orthogonaliz-
ation process. Let b,,..., b,eR? be a sequence of linearl; independent vectors.
We denote by b;(j) the component of b, which is orthogonal to by, ..., b1, and
we set b¥*=b;(j). The vectors b¥,..., b} are linearly independent and mutually
orthogonal; they are called the Gram-Schmidt orthogonalization of b,, ..., b,, and
they can be computed from b,,..., b, by the recurrence

b=lk= bla
i-1
;’ﬁz b,’ - Z M,’Jb;k l= 1, I With [L,',j = <b,’, bf)/(b;k, bf}.
j=1

For completeness let p;;=1 and w,;=0 for i<j. Then L;=Y., bj(i)Z is the
orthogonal projection of L on the orthogonal complement of }.,_; b; R. L, is a lattice
with rank n—i+1. The above notions depend on the order of the basis vectors
b,,...,b,. This will also be the case for the following reduction concepts.
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We call a basis b, ..., b, € R? size-reduced, if
|“j‘j!$% fOl'lSj<iS n. (2.1)

The basis vector b; is size-reduced, if (2.1) holds for this i.

There is a fast algorithm to obtain a size-reduced basis from a given basis. Given
the coefficients p; ; we can in O(nd) airthmetic operations reduce a single b; in size
and update the coeflicients u,; as follows (by [r] we denote the integer that is
nearest to the real number r):

forj=i—-1,...,1

begin

b;=b;— [mi;] b;

forv=1,...,j wm,=pi,— fﬂvuJ v
end

This does not change the coefficients u,; for k> i In order to reduce a basis
b,,..., b, in size we can apply size-reduction to the basis elements in any order
but to keep numbers small one should use the order b,,..., b,.

A basis b,,..., b, is Korkine-Zolotareff reduced (according to [9]) if it is size-
v~duced and if

|b¥|=A(L;) fori=1,...,n @2
The conditions (2.1) and (2.2) were originally introduced in the reduction theory
of positive definite quadratic forms. Hermite [7] in his second letter to Jacobi used
property (2.1) and Korkine and Zolotareff [9] introduced property (2.2).
A basis b,,...,b,eR? is LLL-reduced (according to [13]) if it is size-reduced
and if
|6 <§bis (D)> fori=1,...,n—1. (2.3)

The number # in condition (2.3) is there to permit proving a polynomial time bound
for LLL-reduction. The number 3 can be replaced by any number which is greater
than 1.

Basic properties of LLL-reduced bases have been established in [13]. It follows
from

%Ibﬂzslbiﬂ(l‘”z and | <3
(where (2.3) respectively (2.1) have been used) that
|bF = 2G - DIbH < 2(|bi (D)~ 3bF).
Hence,
|b¥? <2|b¥, [ (2.4)

Let Ay,..., A, A, = A denote the successive minima of lattice L, i.e., A = A;(L) is
smallest real number ¢ for which there exist i linearly independent lattice vectors
of length <c. The lengths of the basis vectors b,, ..., b, of an LLL-reduced basis
give a rough approximation of the successive minima of L.
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Theorem 2.1 (Lenstra et al. [13)). Every LLL-reduced basis b,,...,b, of lattice L
satisfies

2 b/ AI<2" fori=1,...,n.

A tighter approximation of the successive minima is obtained by Korkine-
Zolotareff reduced bases (see [11]) as follows.

Theerem 2.2. Every KXorkine-Zolotareff reduced basis b,, ..., b, of lattice L satisfies
2 .
4 Slbil s(l'*'3)
(i+3) A} 4

fori=1,... n

We are going to introduce lattice bases that are locally Korkine-Zolotareff reduced.
Let us call a basis b, ..., b, k-reduced if it is size-reduced and if b,(i), ..., by r_,(i)
is a Korkine-Zolotareff reduced basis for i=1,...,n—k+1. We call the vector
sequence b;(i), ..., bi.x_1(i) a k-block. This notion extends the role of 2-blocks in
LLL-reduction to arbitrary k-blocks. The 2-blocks b,(i), b;.,(i) of an LLL-reduced
basis are semi-Korkine-Zolotareff reduced (they would be Korkine-Zolotareff
recluced if the number % in (2.3) were replaced by 1).

We call a lattice basis b, ..., b block 2k-reduced if it is size-reduced and if all
2k-blocks

b,-k+‘(ik+ 1), ey b(,-+2)k(ik+ 1) for l=0, S -2

are Korkine-Zolotareff reduced. Every 2k-reduced basis is block 2k-reduced. Every
block 2-reduced basis is LLL-reduced.
The quality of k-reduced bases is closely related to the lattice constant

a; = max |—b-lli

bk
where the maximum is taken over all Korkine-Zolotareff reduced bases b,, ..., b
of rank k lattices. We call the numbers «, the Korkine-Zolotareff constants. Note
that a, < ay., holds for all k. This is true since every Korkine-Zolotareff reduced
basis b, ..., bx., extends to a Korkine-Zolotareff reduced basis by, ..., b+ by
adjoining an arbitrary vector b, that is orthogonal to b,,..., b+, and which has

the same length as b,.

Theorem 2.3. Every k-reduc=d basis b,, . .. , b, satisfies |b,|>< "/ *"VA(L)? pro-
vided that k —1 divides n —1.

Proof. Let v=Y,  uvb =Y, , 0:b¥ be a shortest lattice element, and let p:=
max{i|v; # 6}. We have &, = v, €Z and A(L)’=|v|*= v%|b}|*=|b{[’. On the other
hand, every k-reduced basis b,, ..., b, satisfies

|b¥>< a|bk > forj<k-1,i+j<n.
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Inductive application of this bound yields
|b¥P < ai|b}i® forjsv(k—1),itj<n
Thus we obtain

|b1|2 = ]bﬂzS a(kn-—l)/(k—l)lb:l:|2$ a;‘n-l)/(k—l)A(L)Z 0

The strength of Theorem 2.3 depends on the Korkine-Zolotareft constants a;. It
can easily be seen that a,=%, a;=3, a;"? (a3"/* respectively) is the height of the
regular triangle (tetrahedron respectiveiy) with unit edge length. Thus, for k =2 the
upper bound |b,[*<(3)"'A} of Theorem 2.3 improves the upper bound |B,><2""'A}
of Theorem 2.1. This improvement is achieved by replacing the number 3 in condition
(2.3) by 1.

We will establish upper bounds on «a; depending on the Hermite constants. The
Hermite constant v, is the maximal vaiue of A{L)>d(L) >" where L ranges over
all lattices of rank a. The values v, are known for n<38, see [1], and Appendix A:
n=1, y2=v%, y;=2"3 y,=v2. For arbitrary n, Minkowski’s Convex Body
Theorem implies (see [1, chapter 1X.7]):

4 2/’!
Vn S-F(l +2)
o 2
which yields y, <2%n for all n=2.

Lemma 24. Let b,,..., b, be a Korkine-Zclotareff reduced basis; then

*2< r/(n-1) l/(n i-1) " F3 2 n=i)
|bY|°< va H Yo~ 1 Ib¥

i=j+1

holds for j=1,..., n—1. Here we take ['[?=l to be 1.

fi o)

Proof. By definition of y, we have
b = AL 70 41" =

By eliminating |b}|*=|b,|? on the right-hand side this yields
2/(n-1V;
b= y=( 1 16%1)

which proves the lemma for j = 1. We prove the inequality of the lemma by induction
on j. On the right-hand side of the induction hypothesis for j we replace |b},,|* by
the upper bound

b < (n=i)/(n=j=1) " b 2/(n=j=1)
e [l I6¥

i=j+2

i=2

(which is the case j=1 for the Korkine-Zolotareff reduced basis b(j+
1),...,b,(j+1)), and we obtain the inequality of the lemma forj+1. O
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Corollary 2.5. a,<k'"'™" for all k=2, where In is the !sgarithm to basis e.

Proof. Applying the inequality of Lemma 2.4 to a Korkine-Zolotareff reduced basis
b,,..., b, with j=k—1 yields

- b ] LIlL_-‘\k:-z IllL, _ RS
CARSE A | I 7 Ar T
i=1
W omoin%kl2 oo M(k-1)_1/(k-2) 1
= YaOk{Uk| Wit 0 = V¢ Yi-1 Y
We conclude from v, <3k and 1/(k-1)+-- -+ =Ink that §, < k™ for k=2. [J

Covollary 2.5 :mplies that lim, a} *=1. Therefore, by Theorem 2.3, every k-
reduced basis b,. ..., b, of lattice L satisfies

|by)*< (1 +&)""A(L)

increases. It is an open proble whether a, = k",
The unper boul d on a, may be weak. We give a second method to bound
|by2/ A (L)* for k-reduced bases depending on the constant

[ \p¥12. .. 1p¥2 \Vk
B '=max( 1211 19kl )
k T
\N[VE- ] U2kl /

where the maximum is taken over all Korkine-Zolotareff reduced bases b,, ..., by
of rank 2k lattices.

Thooo o £ Eaoges Rlasl b sodiand hacic b af lastioo T entichies 1B 12<
LUHCUICIN 4&LU. LUECTY UIULR LR-TEUULER UUDLD Ujy ooy Uy Uf WWIIILE L SUIRJICD (U | ==
m BMIN(L),
kPk N )

Proof. Every block 2k-reduced basis b, , ..., b, satisfies

i8R 12, § sk 1° - nkipx . 12 o N P

10k +,] W ) = Pkl0|k+k+ll IU.k+2k| IoriI=v,...,m—ec.
Recursive applicaiion cf .i:is bound yields

ibﬂz !h*'2< Bpklb LJ..I'Z A !bfk.;.k!z. (2-5)
w — mk TR P 1 o . — e f 2l Nl el e mon
Let v=Y"" 1,i: be a shortest lattice element. Set u =max{i|v; #0;, and suppose
[T Y =ML I AL sl L1 _ 2y /(F\ cnlat 2.1 Qiemna h T
WTHIK S U S\VT LK LT LK, UICT [U)| = AL ], S0 ICL V= 1. OlIILL Uy, s Omk 1S
Bl A o liaa? ot oY =20 we have
MOCK 2n-TediUCea g 014 ) ¥V W nave

Since |b,)*< y(1b¥} - - - |»¥])** this implies

lbP<v.gia(i <ypr ALy O
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An upper bound for B can be obtained from Lemma 2.4.
Theorem 2.7. B; <4k’.

Proof. Let b,,..., by be a 2k-reduced basis. Application of Lemma 2.4 to
bi(i), ..., by (i), n=2k—i+1 and using the bound y,,_; =<2k yields

|b’,—"|2$(Zk)(Zk_H'l)/(2k_i)+l/(2k—i_')+"'+l/k(|b’,f+1| v lbazkk )Z/k

< (2k)*(|b¥.i] - - - [bEDY* fori=1,..., k
This implies
|bF1 - - - |bF* < (2k)* |bFl* - - - 6%

and thus proves the theorem. []

Theorem 2.6 yields a stronger performance bound than Theorem 2.3 when using
the above upper bounds on «;, B;. Every 2k-reluced basis b,,..., b, of a lattice
L of rank n with k dividing n satisfies, by . .eorem 2.6,

|byf* < (4K)™ A (L),
whereas Theorem 2.3 only shows
lbllzs (2k)(l+ln(2k))"/2kA (L)Z

Substituting the result of Lemma 2.4 into the definition of B, and simplifying yields
the bound

k
Be< [ v32<. (2.6)
i=1

In particular, 8, =%, B,<1.59, B; <191, B,<2.25; hence, B}/' =$=<1.34, B3/*<1.26,
V3i<1.24, BY4<1.23.

3. Polynomial time algorithms for semi block 2k-reduction and semi k-reduction

No polynomial time algorithm is known for k-reduction and for block 2k-
reduction. To obtain polynomial time bounds we relax these concepts to semi
k-reduction and to semi block 2k-reduction. A similar relaxation accounts for the
transition from 2-reduction to LLL-reduction.

The time analysis for LLL-reduction is based on the observation that a reduction
step changes only a single Gramian determinant d,:= Il;<: |b¥?, i=1,...,n, and
this d; is decreased by at least a factor 3. Korkine-Zolotareff reduction of a k-block
b.,j(s+1),j=1,... k, may change d, fori=s+1,...,s+k—1 and possibly some
of these d; increase. To enable an analysis similar to LLL-reduction we apply
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Korkine-Zolotareff reduction only to pairwise disjoint k-blocks by.;(ik+1), j=
1,..., k. Let the rank n of the lattice be n = mk. For a lattice basis b,, ..., b, let

k i—1
Ci=M bk, D:i=11C fori=0,...,m-1.
j=1 j=0

Then Korkine-Zolotareff reduction of the 2k-block by.j(ik+1), j=1,...,2k,
leaves all D; with j# i unchanged and if C;=3iBC,,,, it decreases D, by at least
a factor 3.

We call a size-reduced basis b,,..., b, semi block 2k-reduced if properties
(3.1)-(3.3) below hold. We call it semi k-reduced if only properties (3.2) and (3.3)
hold.

C,<3ipkC.,, fori=1,...,m—1. (3.1)
|bE)P<2|b%.,)* fori=1,...,m—1. (3.2)

the k-blocks by.;j(ik+1) for j=1,..., k are Korkine-Zolotareff
reduced for i=0....,m—1. (3.3)

Every block 2k-reduced basis is semi block 2k-reduced. Every k-reduced basis is
semi k-reduced. The presence of the numbers 5 in (3.1) and 2 in (3.2) is to permit
proving a polynomial time bound. We can replace 3 by any number larger than 1,
and 2 by any number larger than 3. Two disjoint, reduced k-blocks can be linked
either by property (3.1) or (3.2).

Theorem 3.1. Every basis b,, ..., b, of lattice L which is semi block 2k-reduced
satisfies |by|* <2y (36x)™ *A(L).

Proof. Let v =7 ; v;b; be ashortest lattice element. Set . =max{;j|v; # 0} and suppose
ik < p < (i+1)k. By definition of y, we have for i=2

b, < mDY* = nCV*< % (3B) > CIL4,
where the last inequality derives from condition (3.1). Since @; < a;,, it follows
from (3.3) that |bg_yy+;|* < oy |b%)* for 1<j <k,

k
Cilf=T1 bl < arl|bEL.
j=1

On the other hand, using first (3.2) and then (3.3) we find
|bE?=<2|bk |?<2lv)*=2A(L)

Thus, if i=2, we have
|b:|* < 2% (38) ™ > A(L)’.

For i=1 the above argument shows |b,|*<2y,a,A(L)? and |b,|=A(L) holds if
i=0. [J
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Algorithm A for semi block 2k-reduction of a basis b,, ..., b

(1) (start) For i=0,..., m—1 apply Korkine-Zolotareff reduction to the k-block
b,'k+j(ik+ l) fij; Lyoooy k.

(2) (next i) Take the smallest i <m that violates either (3.1) or (3.2) and stop if
there is no such i.

(3) (reduction step) If |bk|*>2|b% .,|*, reduce by, in size, permute by and by,
and apply Korkine-Zolotareff reduction to the two k-blocks b,.;(s+1), j=
1,...,k for s=(i—1)k and s=ik.

If C;>3BKC..1, then apply Korkine-Zolotareff reduction to the 2k-block
b j(s+1),j=1,...,k with s=(i—-1)k.
(4) Ga to (2).

An algorithm for Korkine-Zolotareff reduction of an integer lattice basis
b,,..., b,€Z" is given in Section 4 (see Algorithm C). In Section 5 it is explained
how to apply this algorithm for Korkine-Zolotareff reduction of a 2k-block ( k-block,
respectively). We give a high-level description of this subroutine which will be
analysed in Section 5.

Subroutine for Korkine-Zolotareff reduction of the 2k-block b, (s +1), j=1,...,2k

(1) Find a unimodular 2k x 2k matrix H such that right multiplication of the matrix
[bs+j(s+1),j=1,...,2k] by H yields a Korkine-Zolotareff reduced basis. For
this, use Algorithm C as described in Section 5.

(2) [bssjy j=1,...,2k]:=[bs;, j=1,...,2k]H.

(3) Reduce b;.,,..., b,y in size.

The constants B, that occur in Algorithm A are not known. However, Algorithm
A performs sufficiently well, even if B, is replaced by a reasonable upper bound
for B,. For instance, we can use the upper bound 4k* from Theorem 2.7. For the
performance analysis of Algorithm A we will use known upper bounds for 8, rather
than the unknown value S,.

The number of Korkine-Zolotareff block reductions in Algorithm A

We assume that the given lattice basis b, , ..., b€ Z? is integer and generates
a lattice of rank n = mk contained in R? with d =0O(n). We also assume a bound
B eNsuch that, initially, |b;|*< B holds fori =1, ..., n, and thus, C;,< B*, D,< B¥* <
B". The Gramian determinants D; =det[(b,, b,)1<,,<ua]=|b¥|* - - - |b%|* are positive
integers and all components of b,(j) with I < ik are integer multiples of D;".

The old and new values corresponding to a reduction step satisfy D" <3D?",
D} = D" for j#i. In case |b%|*>2|b% . ,|*, this follows from

b5 P < G+ s D3 P <33T

Since, initially, D;< B" and, on termination, D;=1 holds for j=1,...,m, the
number of reduction steps is at most O(mnlog B) and thus the number of

Korkine-Zolotareff reductions of k-blocks (2k-blocks, respectively) is at most
O((n*/k) log B).
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The time bound
In Section 5 we will show that Algorithm A performs at most

O(n*(VK*°® + n?) log B)

arithmetical steps on integers with at most O(n log B) bits. This gives the following
theorem.

Theorem 3.2. Semi block 2k-reduction of a lattice basis b, , ..., b, € Z* with n= mk,
d =0(n), max,|b,|>< B can be done with at most O(n* (v k**°) + n?) log B) arithmetic
operations on O(n log B)-bit integers.

For fixed k the asymptotic time bound for semi block 2k-reduction differs only
by the constant factor k from the time bound for LLL-reduction. Korkine-Zolotareff
reduction of a k-block with k<35 is almost as easy as LLL-reduction of a k-block,
see Algorithm D in Appendix A.

It is interesting to consider Algorithm A for large k. We choose k as to equalize
the time bound of Algorithm A and the guaranteed bound on |b,|*A(L)™2.

Corollary 3.3. For k = |2v/n|, semi block 2k-reduction uses n”"/***¥™ + 0(n* log B)

arithmetic steps on O(n log B)-bit integers and finds a lattice vector b,#0 with
lb1|2)t(L)_2 = nﬁ/2+o(ﬁ)_

Proof. The tume bound follows from Theorem 3.2 and the bound for |b,|?A(L)™?
from Theorems 2.6 and 2.7. [

Theorem 3.4. Every semi k-reduced basis b,, ..., b of lattice L satisfies |b,)><
2" 'a A (L)%

Proef. We clearly have A(L)’=min{|b¥||1<s<km} and for ik<s<(i+1)k, we
have
|5y* < ene| b (by (3.3))

<2ay|b¥.) (by (3.2))

<(2a,)'|b%+|* (by induction)

< Qay)'aulb¥* (by (3.3)).
Thus we obtain |b,*<2" 'afA(L). O
Algorithm B for semi k-reduction of a basis by, ..., by
(1) (start) For i=1,..., m, apply Korkine-Zclctareff reduction to the k-block

b,k+_,(lk+ 1),j= 1, ceey k.

(2) (reduction step) While there exists an i <m such that |b%|*>2|b%.,|*, reduce

by in size, permute by, and b, ,, and then apply Korkine-Zolotareff reduction
to the two k-blocks b, ;(s+1), j=1,...,k, for s=(i—1)k and s = ik.
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Comparing the performance of semi block 2k-reduction and of semi k-reduction

The time bound of Theorem 3.2 also holds for Algorithm B. Since Algorithm B
applies biock reduction to smaller and pairwise disjoint blocks, it uses simpler
subroutines. The generated lattice bases have the following properties:

Algorithm A: The conditions (3.2), (3.3) imply (use Theorem 2.3)

log(|b,*/A(L)*) < (m—1) log(2ex)

n

n
<-— +
<k(1+lnk)logk X

(by Corollary 2.5)

~ol® 2
-O(k(log k) )

Algorithm B: Properties (3.1), (3.2), (3.3) imply (use Theorem 2.1 and Corollary
2.5)

n
log(|b,)*/A(L)?)<1+log v+ (1+1n k) log k+7(-5 log(3Bx)

= O(-,-lek log k) = O(g log k).
In particular, Corollary 3.3 for Algorithm B becomes: For k = |2v/n|, semi k-reduction
uses ai most n”"/2*°™ + O(n*log B) arithmetic steps on O(n log B)-bit integers and
finds a nonzero lattice vector b, satisfying |b,|>/ A(L)?= n®/"/?egn+ot/n)

These asymptotic bounds favor Algorithm A to Algorithm B even when Algorithm
B works on double length blocks. However, this may be misleading due to the
weakness of the known upper bound on a,. For instance, we have a; =3 (v is the
height of the tetrahedron with unit edge length), thus, by Theorem 3.4, Algorithm
B for k=3 finds a basis with |b,[*<3-3"*"'A(L)%

Finally, let us compare Algorithms A and B for k =3 and LLL-reduction for the
case that the technical constants in (2.3), (3.1) and (3.2) are replaced by the infimum
of the admissible values. We obtain the following performance guarantees:
LLL-reduction with % in (2.3) replaced by 1, i.e., 2-reduction

[bi>< ()" 'A(L)* < 1.34""A(L).
Algorithm B for k =3 with constant 2 in (3.2) replaced by %
|b,)><(3-)A(L)* by Theorem 3.4 and a; =3
<2"2A(L)Y*<1.26"A(L)%.
Algorithm A for k=3 with constant 1 in (3.1) and % in (3.2)

|by|* <3a3y,85 *A(L)? by Theorem 3.1
<2-2'3(1.91)"*72A(L)* since a;=3, y;=2"3, B;<1.91
= (1.91)"2A(L)? by (2.6)

<1.24"A(L)>.
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This comparison indicates that Algorithm B outperforms Algorithm A for small
values k.

4. An improved version of Kannan’s algerithm for Korkine-Zolotareff reduction

Korkine-Zolotareff reduction is a main building block for semi block 2k-reduction
and for semi k-reduction. Kannan [8] has proposed an algorithm for reducing a
lattice basis b, , ..., b, € Z? in the sense of Korkine-Zolotareff which is polynomial
time for fixed n. We present this algorithm along with some improvements to speed
up running time and to reduce the bit length of integers used in the computation.
The main modifications to Kannan’s algorithm occur in steps (2) and (5) of Algorithm
C.

Algorithm C for Korkine-Zolotareff reduction

(1) (initiation) Let b,,..., b, Z? be the given basis. Apply the Lovisz algorithm
for LLL-reduction (see Appendix A) to the basis b, , . .., b, but use the technical
constant 1.01 instead of 1.

(2) (recursion step) Apply Korkine-Zolotareff reduction to the basis b,(2), ..., b,(2)
of L,; apply all basis transformations of this process to the vectors b,,..., b,
rather than to their projections. After each exchange b; <> b,,,, make sure that
|wijl<3forj=i-1,...,1.

(3) If |byJ*>>2|b¥}*, then apply Korkine-Zolotareff reduction to b,, b, via the
Gaussian algorithm (see Appendix A). Go to (2).

(4) (search for a shortest vector v=Y,_, vb;) Enumerate all nonzero integer vectors
(vy,-..,v,) that satisfy 0=< v, <|b,|/|b%| and

n 2 _ n / n \ 2 i
(£ oumns) 1071710 5 (5 ovmes) 037) forj=n-t,0o1
=j

v=j+1 \k=v
Choose (v, ..., v,) that minimizes

n n 2
o =5 (3 ouses ) 152
If |v| =|b,|, go to (6).

(5) (extend v to a lattice basis) Put by:= v, apply the Lovasz algorithm (see Appendix
A) to the linearly dependent system by, b,, .. ., b,, run this algorithm until b, =0
and take the current vectors b, ..., b, as new basis.

(6) Apply Korkine-Zolotareff reduction to the basis b,(2),..., b,(2) of lattice L,;
apply all basis transformations to the vectors b,, ..., b, rather than to their
projections. After each exchange b,<b,,,, make sure that |u; | <1 for j=
i-1,...,1.

Proof of correctness. On termination, the basis b,,..., b, is Korkine-Zolotareff
reduced since it starts with a shortest lattice vector b, (by steps (4) and (5)); by
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step (6), the basis b,(2), ..., b,(2) is Korkine-Zolotareff reduced and |i1| <3 holds
for i=2,...,n Step (4) finds a shortest nonzero lattice vector v as is shown in
Lemma 4.1 below. It remains to be shown that step (5) extends b, = v to a lattice
basis v=b,,..., b,. The Lovdsz algorithm in step (5) exchanges b,=v and b, iff
|Bol>> 3b, — [(bo, b1)/{bo, bo)] bol’, and since |bo| = A (L), this holds iff b, € byZ. (Here
[r] is the integer nearest to the real number r.) Thus, after the first exchange
v = bye> b,, we have b, =0 and step (5) terminates with a lattice basis v=b,,..., b,.

Lemma 4.1 (Kannan). otep (4) of Aigorithm C finds a shortest nonzero lattice vector
c

most n n/2+o(n) _“:41.----.:
ana terminates a_]ler ai A (] arunmeulc

- -
Jj=1 \k=j

Therefore, the search for a shortest lattice vector v can be confined to integer vectors
(vy,...,v,) satisfying

2

{n \ \ o
(.,2 1) |b*' <|b| - 2 ‘( Z vkﬂk,v) b forj=1,...,n—1.

1 \k=v

Since iZZ:,- Uk ti ;| <|bii/|b}], the number of vaiues for v; when given v;,,__v, is at
~l a -
2| i

S | MENINE 1N T . .
most 04|/ |Uj'l . 1Nnus§, at most
n-—1
1B 1/IB¥ TT (190K 171651 4 1)
1I%1/1%a1 11 \L4i2i/ 19511 1)
j=2
choices for (v,,..., v,) need to be tested when searching for v. Following Kannan
we perform the search for a shortest lattice ector v only when |b, I2s2!b’2"!2 To

o
Q
=
=
Q
W
=)
8
)
[~2
Q
<
o
b o
=
-
=
3
7]
Q
£
w
(¢}
-
=
o
=]
c
B
~2
(4]
Lo |
=]
-
o
=
=
[«]
[+
w
5"
H
o~
S’
F
v'
£
o
[
w
w
[
3
o

w.l.c.g., that |bf|<|b|| for j=2,..., n since otherwise v;=v;,,=---= v,, =(. This
implies that the above number of choices for (v,,..., v,) is at most

', 3"2(V2A (L))" (L)

n
j=1i

By definition of the Hermite constant y,_, we have the upper bound

< (]8‘)’,,_1)(".-”/2=\/n"+0(")

cinra 11 Qrim Ay /m = IA.—\_! FCamea tlata sera cnn alend ~boem A . ~ Lintns Dosalag
ORIV LR,y SUP Yp/ i ==\CA) . TULH LIS WU 30U Uiadl SWOP (4) HHIUD 4 dNULLIUHL lallile
vect r v uc; 10 o n"+°(") arithmatic anaratinne M

Ol U RSiig Vi GliuiivuL UpLidauiuvliin. [}

Time analysis
Let A be the first successive minimum of the lattice generated by b,,
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steps (2), (3) are passed at most _[ logz(n 1)]_ +2 ttmes. Hence, step ( 5) is passea at
most (' ~g; n)""°™ times throughout all recursive calls of Algorithm C.

= old

Proof. Let b5, b3 be the vectors b,, b, upon entry of step (2). If |b$'|> A, then
Korkine-Zolotareff reduction in step (2) repiaces b3 by a vector b, satisfying

1Lkl __ v /7 \ -y X7r__1 - s

102 = A1{ Loj < A. Korkine-Zolotareff reduction in s:ep 3) is appiied to the basis
s
1)

£ tha lattica I'/:= l.0|d ZLh Z Th.. an
L L AUV L & v Uya. 111US, ble \J

= v - RN ¢

1fidS a veCior D. sausrymg
[6T°"1* = My(L')* < y, d(L') = V3|5 | b%].

Since |b¥| <A this implies |b°*|/A < (3)"/*V|bS|/A.
Initially, when entering step (2) for the first time, we have by LLL-reduction in
step (1) using the constant 1.01 instead of %:

|b,|/)t<1 352(""V2 (py (A. 3))

thus, after [log,(n—1)]—1 passes, we have
|by)/A<1.352- ()2

To show that there are at most 3 more passes, we note

by at least a factor ($)"/? and we have 1.352<($)"°.

n
|;,new|2 | h¥12 2 |;‘old|2<||~old* 1 ..2 |Roidj2
1“1 —1v2] F’2|I"l l T2 | S

The number of arithmetic aperations

We bound the number of arithmetic operations executed by Algorithm C on input
bases b,, ..., b,eZ? with |b,]%, ..., |b,|>< B. We partition the operations into two
classes:

(1) Ty(n) counts the operations executed within LLL-reduction and Korkine-
Zolotareff 12duction of steps (1), (3) and (5) including these same operations in the
recursive calls of Korkine-Zolotareff reduction in steps (2) and (6).

(2) T»(n) counts the operation of step (4) including these same operations in the
recursive calls of Korkine-Zolotareff reduction in steps (2) and (6).
® T,(n): We have

Ty(n)<[3+log, n]Ty(n—1)+vn""",

Here 2+ [log, n] bounds the number of passes through steps (2) and (3); To(n—1)
is a time bound for steps (2) and (6); vn"**™ bounds the number of operations
of step (4) as has been shown above. The recursion formula yields T,(n)=vn""*'".
® T,(n): The progress of the reduction process is related to the number

|3

D:= l ib?IZ(ﬁ—ii.

iy —
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Each exchange step b,_, <> b, of the Lovisz algorithm decreases D by at least a
faactor 1.017 . The value of D can only incr=ase in step (5) during LLL-reduction
of the linearly dependent system by, b, ..., b,. To keep track of this increase we
take in step (5) a slightly different invariant D defined by

ami bf #0

where b is the component of b; that is orthogonal to b,,...,b;_, and r,=
#{j|b; #0,0=<j=<i}. Since b, =0 holds for exactly one », we have for this »

(i+1 fori<uw,

r= .
’ 11 fori>w.
Ennk Avn‘nonnn otoawm h, ‘_\'l, f\r ’kﬂ ‘ l\‘!';b" ')‘l"l\“’ ™ IMm B’ﬂn (<\ Aﬂl\,ﬂnnﬂl\ ﬁ k\l
.QAwvil GAUllallsb Dl\vP Uk_l ‘—’Uk Vi UiV BNV TAOL Gali\ViIitiiiiL 111 DI.UP \J, WBWWwivaowvd &7 U
at least a factor 2 as has been shown in [3, Lemma 2]
On termination of step (5) we have b, =0 and thus D and D coincide. We show
that
NN (A1)
/=& L7 \**.1)

holds upon entry of step (5).
To prove inequaiity (4.1) we note that

lbol=<|bl, BT <|b}fP<2|b% |* fori=1,...,n—1.
Let b} =0; then

Il.+|"(r! r)< *|2(n—i—1) - (alL*k [2\n—i-1 .- -,

10i =<|0il <49l ri<iy,

|bi " < |bFP for i> .

We obtain inequality 4.1) »y multiplying the latter inequalities for i-—=
0,...,v—-Lv+1,...,n

Upon entry of Algorithm C we have D < B™ and D=1 on termination. Each
exchange step of the Lovasz algorithm decreases D by at least a factor 1.01”". Each
pass of step (5) increases D by at most a factor <2, It follows from Lemma 4.2
that the totai number of passes of step (5) within alii recursive cails of Korkine-

\n+o(n)

Zolotareff reduction is at most (iog n) . Therefore, the total number of exchange

teps by, <> b, made in Algorithm C is

O(n’log B)+ (log n)"*°™,

s

t most

172}

If d =0{n), then each exchange step costs O(n?*) arithmetic operations for size-
reduction and thus

T!(n) =0(n*log B)+ (log n)"*°™,

r T\(n) and T,(n) we see that Algorithm C uses at most
\/n'"’°""’+0(n‘i log B)

arithmetic steps.
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The size of the integers involved

Algorithm C executes a sequence of Lovasz reduction steps which either transform
the current lattice basis b,,..., b, or in step (5) a linearly dependent set of n+1
generators of the lattice. Throughout these exchange steps we have by formulae
(1.30)-(1.34) of [13]

i ;| <2"(nB)" 12 (4.2)
|bil < n*(4B)", (4.3)

where B is a number such that max|b,|*< B holds for the input basis b,, ..., b,.
These bounds have been proved for the Lovasz algorithm when working on a basis
of the lattice but they also hold when the Lovasz algorithm transforms a set of
generators of the lattice. The bounds (4.2) and (4.3) hold throughout Algorithm D
(see Appendix A). An exchange b, < b,,, is only performed when

|b¥?<2|b}.,|* holds for j=1,...,i-1,

and after an exchange b, <> b,,, we make sure that |u, ;| =3 holds for j=1,...,i
We see from the above bounds that throughout the execution of Algorithm C the
numerator and denominator of the rational number |u, ;| have at most O(n log B)
bits. Therefore, all integers within execution of Algorithm C have at most O(n log B)
bits.
So for w- have proved the following theorem.

Theorem 4.3. Let b,, ..., b, €Z° be a lattice basis with |b,|’, ..., |b,/’< B, d =0(n).
Then Korkine-Zolotareff reduction is done via Algorithm C with at most vn"**"" +
O(n*log B) arithmetic operations on O(n log B)-bit integers.

Remarks. We have improved Kannan’s algorithm and his analysis in several ways.

(i) Korkine-Zolotareff reduction of b,, b, in step (3) is more efficient than a
simple exchange b, < b,. The number of recursive Korkine-Zolotareff reductions
of lattices of rank n—1 in Algorithm C is at most [log, n]+2 whereas it may be 3n
in Kannan’s algorithm.

(ii) Since our algorithm in step (5) executes a sequence of LLL-reduction steps
on the current basis b,, . .., b, we obtain an O(n log B) bound on the bit length of
the integers occurring in the algorithm, whereas Kannan only proves a O(n’log B)
bound.

(iii) We can decrease the bit length of the integers used by Algorithm C from
O(n log B) to O(n+log B) by replacing the Lovisz reduction algorithm by the
reduction algorithm in [17]. This algorithm reduces ar integer lattice basis by, ..., b,
such that |, ;| <0.55 holds for 1<j<i<n and property (2.3) is satisfied. If the
input basis vectors have length at most B, the algorithm terminates after at most
O(n*log B) arithmetic steps on O(n+log B)-bit integers.

(iv) The improved time bound for Korkine-Zolotareff reduction also improves
the time bounds for the closest vector problem and for integer programming. In the
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closest vector problem we are given an integer lattice basis b,,...,b,€Z" and a
rational point b € Q"; we search for 2 lattice vector with minimal Euclidean distance
to b. In integer programming we are given m X n and m X 1 integer matrices A and
b and we decide whether there is an integer vector x€ Z" such that Ax <b. Each
of these problems can be solved via Algorithm C using at most n°™+0(n* log B)
arithmetic steps on integers with polynomial length. This follows from corresponding
algorithms in [8)] and [3] which solve these problems via Korkine-Zoiotareff
reducison.

5. The time bound for semi bleck 2k-reduction and for semi k-reduction

The unimodular transformations occurring in Korkine-Zolotareff subroutines

We consider the application of Korkine-Zolotareff reduction as a subroutine in
Algorithms A and B. During Korkine-Zolotareff reduction of a k-block bj.;(ik+1),
Jj=1,..., k, the algorithm does not update the current block by, - - . , bi+«. Instead,
it updates the numbers g+, u+; for 1<j<wvs<k, |b},.[> for v=1,...,k and the
unimodular k X k-matrix H that transforms the input block to the current block, i.e.,

[ ?ll:-ri-ls seey fl:-ll-k] = [bik+l secvey bik+k]H'

Initially, H =1 and each LLL-reduction step operates on H via multiplication from
the right by the matrix

v,v+1

for an exchange by, < by,

- o
O em

or j  for astep by, = by, +rby.;.

| 1]
When Algorithm C in step (5) extends the current basis by a shortest lattice vector
v = by, the matrix H is extended by the Oth column with the coordinates of b,. On
termination of step (5) we have b, =0 and the Oth column is eliminated frora H.
On termination of block reduction the new basis vectors are obtain=d by the matrix

multiplication [by,,,..., by+i]=[bus1,.... by+r]H.
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The additional arithmetic operations for updating the matrix H do not change
the order of the time bound of Algorithm C. The entries of th: matrix H have at
most O(n log B) bits as is skiown in the following lemma for the case k = n.

Lemma 5.1. Let Algorsinan C be given an input basis b,,...,b,eZ? with
|by)%, ..., |b.|< B. Then the transformation matrix H satisfies ||H|| < n*2"B"+"3
throughout the computation.

Here H is the matrix that transforms the input basis b,, ..., b, into the current
basis, i.e., [b",..., b, 1=[b,,..., b,]H, and ||H|| is the maximal absolute value
of the entries of H.

Proof. The input basis b,, ..., b, satisfies the equation

[by,...,b,1=[b},...,b}IM"

where the (n x n)-matrix M has entries y, ;. At any stage of Algorithm C the current
basis satisfies a coriespording equation

[bS™, ..., b = [b§"™*, ..., b *IML,.
It follows from
[b1™,...,b3"1=[by,..., b, ]JH
and the two previous equations that
[(b¥, b )bF| )1~ ijek Miwr=M" H.
This implies
1< 1M max Kb, 5758 | Mo . (1)

iV

We have [b$"*|>< B since max;|b}| does nc: increase. The inequality |b}|*= B~
follows from max;|b;|*< B. So we see

[(b¥, b5"™)||bF| > < |b;“™||b¥| ' < BT, (5.2)
From the definition of the matrix M we see

M| <n|lb,..., b1 " I[BT, - .., 631
We have ||[by, ..., b,]""||< B"* from |b¥[’< B and thus |b}|< B implies

IM™'||<nB" "2, (5.3)

It remains to bound the entries u{i" of M,,. During LLL-reduction of a basis
by,...,b,eZ" with |b,% ..., |b,)>< B, the numbers u;" are bounded as [u};|<2"
(nB"~")"2, see [13, formulae (1.32)-(1.34)]. This bound also holds when the Lovész
algorithm, in step (5) of Algorithm C, transforms a linearly dependent generator

system of the lattice. Thus || M, || <2" (nB"~')"/? holds throughout Algorithm C.
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From this and from the inequalities (5.1)-(5.3), we conclude [[H|<
n3.52nB(n+l)l.S. D

The size of the integers involved in Algorithms A and B

All integers occurring throughout the computation have at mos: O(n log B) bits.
This holds for the integers occurring within LLL-reduction by the analysis in [13]
for the integers occurring within Korkine-Zolotareff reduction by Theorem 4.2, and
for the =ntries of the matrix H by Lemma 5.1. Also, throughout the computation,
max,.|b¥| does not increase, and thus |b,|* < nB aiways hoids after reducing &, in size.

k*72+°‘§3+0(ka log B)-}-O(kin)"‘O(”zk) (5.4)

arithmetical steps on O(n log B)-bit integers. The first two terms count the operations
for Algorithm C; they alsc count the operations for updating the unimodular matrix
H which describes the block transformation. O(k’n) operations are needed for
multiplying the block vectors with H and O(n’k) arithmetic steps are used for
size-reduction of the block vectors after block reduction. We have seen in Section
3 that the number of subroutines for Korkine-Zolotareff block reduction throughout
Algorithm A is at most O((n?/k) log B).

We next show that the costs counted by the O(k* log B) term in (5.4) are majorized
by the other costs when summing up over the O((n*/ k) iog B) biock subroutines

——al ___ A L W YR

in Aig()nmm A. 1NC UK lOg B ] term paruy covers the costs for the excnange swps

i To prove the claim we analyse these cosis in more detail.
“Mﬂ anteuy n? lonrmthm A wa hava n=n“ |l.*|2(n"|)< n-z e n> 1 halde An
lel Ull‘l] i maullllllll T3 WY j1aAve lli=l |u. I ~ @GRl L/ = 4 VIS Vil
termination. Fach exchanoe h. & reduces D bv at leact 2 factor ¢ (1.01. resnec-
termination. ach exchange D, <> Oi+; recuces L) by at feast a factor 5 { 1.O%, respec
uvelv) We see fmm n‘qua!i:y (4 _) that D ir g ases at most by a factor 2° when

Algorithm C. Step (5) of Algorithm C is passed at most (log k)"*°“" times dunng
Korkine-Zolotareff reduction o a k-block (this follows from Lemma 4.1). From
these bounds we see that there are at most

o{n log B+ (log k) ™' & k |og3)

k
exchange steps b; <> b;,, over all block subroutines of Algorithm A. Each exchange
step costs O(k°) arithmetic steps for updating the numbers p,; corresponding to the
block. Therefore, aii exchange steps within block subroutines of Algorithm A cost
at most

O((log k)***® + k*)(n* log B)
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arithmetic steps. It now fuliows from (5.4 that tiie G((a’/ k) log B) blo.k subrauines
of Algorithm A ccst at moct

O(n*log B+ k""" "“'n’ log B)

arithmetical steps on Ci{n log B}-bit integers. This bound also covers the comus for
all the other steps of Algorithm A and thus proves Theorem 3.2
The same running time analysis carries over to Algorithm B.

Appendix A. Reduction algorithms

For completeness of the paper we include an outline of the basis reduction
algorithm in [13] and explain its relation to the Gaussian algorithm for the reduction
of rank 2 lattice bases. We also include a practical algorithm for Korkine-Zolotareff
reduction of lattices of rank at most S.

The Gaussian algorithm transforms a basis b,, b, R? into a basis of the same
lattice that satisfies the reduction conditions (A.1) and (A.2).

'I‘z.:l\z- (A.1)
[by <154, (A.2)

The Gaussian algorithm (for Korkine-Zolotareff reductiou of rank 2 lattice bases)
(1) by:=b,~[(b,, b))}b,| %} b,.
(2) If |by|>|b,], then (exchange b, and b,, go to (1)); otherwise terminate.

Here [a] denotes the integer nearest to the real number a and (b,, b)|b,|"* = u,,.
On an integer input basis b,, b,€ Z° with length bound |b,}%, |b;)* < B, the Gaussian
algorithm takes at most O(log B) iterations, see [11].

The Lovasz reduction algorithm successively applies Gaussian reduction to 2-
blocks b,_,(k—1), b.(k—1). We outline this algorithm and omit the detaiis tc
compute and to update the numbers , ;, |b¥_,| and |b,(k - 1)|. The Lovdsz algorithm
transforms an integer lattice basis b,,..., b, € Z? into an LLL-reduced basis, i.e.,
a basis that satisfies (2.1) and (2.2).

The Lovisz algorithm for LLL-reduction of rank = iattice bases

(1) (initiation) k:=2.

(2) by:=by — [ptak-1}br-,.

(3) (excharce step) If |bf_,|* > %|b.(k—1)[*, then (exchange b,, b,_y; if ¥ >2, then
k:=k—1, and go to (2)).

(4) For j=k—-2,...,1do b, :=b, — [, ;] b,

{(5) If k<nm, then {k=k+1, go to (2)); otherwise terminate.
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For practical purposes the constant % in step (3) sheuld be replaced by 1.01. Then
an exchange step achieves

|bF2 = b (k= 1)P = pis o|bE [ = (1.017' = 0.25)|bF_,|*
o o et nalnn AL AL T e har alaneitlions
Hence, we nave, on ermination O1 ¢ L.0OVasZ aigoriiiiin,
|b¥2<1.352|bF_\[° fork=1,...,n (A.3)
Alggrithm D for Korkine—Zolotareff reduction of a basis with rank n<S5§
(1) (initiation) Let b, ..., b,€ Z% n<5, be the given lattice basis; s:=1
(2) Apply LLL-reduction to the basis b,(s), ..., b,(s) but use the rechmcal constant

1.01 instead of 3. Apply all basis transformatxons during this reduction to th=
vectors b, ..., b, rather than to their projections. (On termination we have
|b¥<1.01 |biy (i) and |p; | <3 for 1<j<isn, p;=1)

(3) Reduce b,,..., b, in size.

(4) (search for a shortest vector v(s)e L, v =Z)'.'=s v;b;) For t=n,n—1,...,s+1
enumerate all integer vectors (v,..., %) that satisfy v,=1 and, for j=

t—1,...,5
[132 j=4,
|« | 14 j=3,
Ik‘:,-""'“’“’l\]o98 j=2,
Lo.84 j=1

Choose ¢, v,, ..., v, that minimizes

t [ 1t 2
2
o) =X | E v ) [b]]
j=s \v=j
vl r'e AN ) 19 s Y
if jo(s)| =|b¥ go to (6).
ey oot IR L L \e_ f Ly e 4 AL fL ._ L r 1L '}
5) v “L;:s v.v., (b, b)=(v, b5). If s=n—1, then (b,=b,— [pnn-1]1b,—1 and

tammarsend

() c:=c+1 an to (D)
\Vj o SV A gV TV (&)

Correctness of Algorithia D
Correctness of step (4): We show that a shortest vector v(s) in L, is found. Let
v=Y._, v,b, be a shortest lattice vector and ¢:=max{r||v,| # 0}. Then we h.ve

|6, = v)* = 07| b¥[*= v? 1.3527""'|b,|?

bv (A3). and thus n2< 4 hence lpl=1 e can accume that » = 1- atharwice we
J \ e’ J g SRAENS vAZWED U’ j, llvllvv, |U’! a VYV W Wwiiil OOV WiLIAWw LidGaL V' l’ NFLAAWi YV AOW Y W

replace v by —o. The integers v,, ..., v, satisfy, for j=¢—-1,...,1,

/1 \ 2 °

*(2 2 2 -4

(T vuma; ) 163 < b2~ b3 <|byP(1-1.3527%),

\v=j 7
hence
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o
[
w

and therefore,

(129 -2

Ix..u. Jji=%

' 4 I 114 P }
l - <{1.1-v J=95,
Uil SV1noe :i—»9
lv=j i lu.:o J =<,
nNeA -1

\V.O" _""lo

The number of possible choices for (v,,..., v,) is at most 3°22=36fort=5,3-22=12
for t =4, 4 for ¢t =3, and 2 for ¢t = 2. The total number of integer vectors (v,,..., v,)
that are to be checked for dimension n=35 and s =1 is at most 54.

5): since v, =1, b, is an integer combination of v =Z: . v,",-
£ <

. Y SR

fore, the transformation o

o
-
(4]
o
~—
unh
~—
l<l
X
e
[=N
w
=Y
1
[¢]
€
o
[
(71
o o
w

Time nnglv is

H

For ﬁxed n, the LLL-algonthm runs in 0(log B) arlthmetlc operatlons on O( leg B)-
bit integers. Algorithm C for t=n,n—1,...,2 applies LLL-reduction to a basis of
dimension t. To count the additional operations of step (4) we note that, for s=1,
there at at most 36+ 12+ 4+ 2 = 54 distinct integer vectors (v,, ..., v,) to be checked
for t =4, 3, 2, 1. The total number of integer vectors (v, ..., v,) that are checked in
thestagess=1,2,..., n—1 of Algorithm C is at most 54+ 18+ 6 +2 = 80. This proves
the following proposition.

> ___ . ___ A = AT__ .1 ___ ™ ___1 _ Er__¥c__ T _a___Mr _ B . et . a. = L._2_
rroposiiion A.l. Algorunm L) Gappiies NOrKine-coioiarejy reauciion i a oasiy
b L~ 79 il e e & IE K 12 Ih 12 D ¢ 22000 at sanct NN A lna B arithmotin
UlyeeeyOUn €L WIRTO. 1J |D1],...,[0] =D, Usés ai mosi U\a 10g v arinmeiic
nnorntinne nn (Mlao R_hit intooorc
UPCIRIIUVIED U v‘.vs U’ (7433 ""Ds"h’
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