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Abstract. We present a hierarchy of polynomial time lattice basis reduction algorithms that stretch 
from Lenstra, Lenstra, Lovasz reduction to Korkine-Zolotareff reduction. Let 1(L) be the length 
of a shortest nonzero element of a lattice L. We present an algorithm which for k EN finds a 
nonzero lattice vector b so that 1 bl’s (6k’)“” A( Lj2. This algorithm uses 0( n2(Jkk+OckJ + n2) log B) 
arithmetic operations on O(n log B)-bit integers. This holds provided that the given basis vectors 
b I,‘“, b,, E Z” are integral and have the icngth bound B. This algorithm successively applies 
Korkine-Zolotareff reduction to blocks of length k of the lattice basis. We also improve Kannan’s 
algorithm for Korkine-Zolotareff reduction. 

1. Introduction 

We introduce and analyse novel algorithms for the reduction of lattice bases 
b 1,*--Y b, E Rd of arbitrary rank n. This computational problem is equivalent to the 
reduction of positive definite quadratic forms. Gauss [4] gave reduction algorithms 
for rank 2 and 3. Let B be the maximal Euclidean length of the input basis vectors. 
The Gaussian reduction algorithm on an integer input basis b,, . . . , b, E Z”, n = 2 
or 3, terminates after at most O(log B) arithmetic operations, see [ 1 I]. All arithmetic 
steps are on integers with at most O(log B) bits. 

Reduction for quadratic forms of arbitrary dimension was first studied by Hermite 
[7], Korkine, Zolotareff [9] and Minkowski [ 151. Korkine and Zolotareff as well as 
Minkowski considered lattice bases b,, . . . , b, with the property that b, is a shortest 
(nonzero) lattice element. Minkowski requires this property for all subbases 
bi, . . . , b,, for i-d,..., n. Korkine and Zolotareff considered bases so that this 
property holds for the orthogonal projection of ;he subbases bi, . . . , b, in the linear 

space CC,<i j b R)‘. No efficient algorithm is known for finding a shortest element 
in lattices of arbitrary rank. Van Emde Boas [2] proved that deciding whether a 
given lattice element is 11 I],--shortest (11 llW is the maximum norm) is NP-complete. 
So presumably this problem is intractable and the problem of finding a shortest 
lattice element is likely to be hard. 

Recently, Lovasz [13] proposed a natural extension of the Gaussian reduction 
algorithm to lattices af arbitrary rank, see [ 131. The Lovasz algorit 
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LLL-reduction, applied to a lattice basis b, , . . . , 6, E z” successively performs a 
Gaussian reduction step for the smallest reasonable i to the projection of bi, bi+l 

in the subspace (& i b R)*. This algorithm finds a lattice element that is at most 
2(n-*)/2 times longer than the shortest lattice element. The algorithm runs in 
O( n4 log B) arithmetic steps on integers with at most 0( n log B) bits. LLL-reduction 
is a basic tool for solving various Diophantine computational problems, such as 
factoring polynomials with rational coefficients, solving linear systems of inequalities 
over the integers, finding linear Diophantine approximations, breaking knapsack 
cryptosystems, a.s.o. The disproof of the Meitens conjecture by Odlyzko and Te 
tiele [16] is also based on this algorithm. 

Subsequently to the L&sz algorithm, Kannan [8] proposed an algorithm for 
Korkine-Zolotareff reduction which runs in no’“) log B arithmetic steps on 
0( n2 log B)-bit integers. Helfrich [6] using the techniques of LovBsz and Kannan 
has shown that Minkowski reduction can be done within n°Cn3) log B arithmetic steps. 

In this paper we introduce a hierarchy of reduction concepts that stretch from 
LLL-reduction to Korkine-Zolotareff reduction, and which run in polynomial time 
for lattices of arbitrary rank. We call a lattice basis bl , . . . , bn k-reduced if for 
i=l,..., n - k + 1 the projection of bj, . . . , bi+k-l in (Cj<i bj Iw)’ forms a Korkine- 
Zolotareff-reduced basis of rank k. Thus k-reduced lattice bases are locally Korkine- 
Zolotareff reduced. For k = 2 the concept of k-reduced bases is essentially equivalent 
to LLL-reduction; for n = k = 2 it coincides with Gauss reduction and for n = k it 
is Korkine-Zolotareff reduction. We call a lattice basis b, , . . . , bmk block 2k-reduced, 
if the projections of all 2k-blocks bik+l, . . . , bfi+z)k for i = 0, . . . , m - 2 are Korkine- 
Zolotareff reduced. By Theorems 2.6 and 2.7, every block 2k-reduced basis b, , . . . , 6, 

contains a vector that is at most (4k2)“lk times as long as the shortest lattice vector. 
We express this worst-case performance of k-reduced and of block 2k-reduced 
lattice bases in terms of fundamental constants CQ, Pk for Korkine-Zolotareff 
reduction. 

In Section 3 we present relaxed reduction concepts that permit proving polynomial 
time bounds. To obtain a polynomial time bound we restrict Korkine-Zolotareff 
reduction to pairwise disjoint blocks. We discuss two alternatives to relate the 
reduction of adjacent blocks, semi k-reduction and semi block 2k-reduction. Semi 
block X-reduction of an integer lattice basis bl , . . . , b, is performed within 
0( n2( kk/z+C’(k) + n2) log B) arithmetic steps with O(n log B)-bit integers. This time 
bound differs from that for LLL-reduction only by a constant factor depending on 
k. Semi block 2k-reduction finds a lattice vector that is at most (6k2)“lk times as 
long as the shortest lattice vector. Semi k-reduction has the same time bound and 
uses simpler subroutines, but may yield slightly longer basis vectors. Using tht;: 
improvements of Schnorr [17] to the Lo&z reduction algorithm, the integers 
occurring in these algorithms can be reduced to O(log B)-bit integers. 

In section 4 we present an improved versp3n of Kannan’s algorithm for KorErinc- 
Zoisttareff reduction of lattice bases of arbitrary rank. This algorit.& uses a novel 
method to exL\&nd a given shortest lattice vector to a lattice basi!?. The algorithm 

i 
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merely performs a sequence of Lovasz reduction steps and from time to time an 
exhaustive search for a shortest lattice vector. As a consequence, all integers occurring 
in the computation have at most Ojra log B) bits. On an integer input basis bl, . . . , b, 
the algorithm performs at most n n’2+o(n) -+ 0( n4 log B) arithmetic operations on 
0( n log B)-bit integers. 

In Section 5 we prove the above-mentioned time bound for semi k-reduction and 
for semi block 2k-reduction. In particular, we explain how to apply Korkine- 
Zolotareff reduction to k-blocks and how to keep track of block transformations. 
In Appendix A we outline the reduction algorithm of Lovasz for LLL-reduction 
and of Gauss for the reduction of rank 2 lattice bases. We also give a practical 
algorithm for Korkine-Zolotareff reduction of lattices with rank ~5. 

2. Various concepts of basis reduction 

Let I@ be the d-dimensional real vector space with the usual inner product ( , ) 

and Euclidean length Iyl = (y, y)lj2. A discrete, additive subgroup L c Rd is called 
a lattice. Every lattice L is generated by some set of linearly independent elements 
6 1,.•*, b, E L, called a basis of L, 

L= i biZ={a,b,+w*=+a,b,Ia,,...,a”E2}. 

The rank of L is n and the determinant d(L) of lattice L is defined by d( Lj = 

det[(bi, bj)lsi, :sn]1’2. Let A (L) be the length of a shortest (nonzero) element in L. 
The determinant and the rank of L do not depend on the choice of a basis. The 
purpose of reduction theory is to find a basis consisting of short vectors or, 
equivalently, a basis that is nearly orthogonal. 

To describe the concepts of reductions we use the Gram-Schmidt orthogonaliz- 
ation process. Let b, , . . . , 6, E Rd be a sequence of linearl; independent vectors. 
We denote by hi(j) the component of bi which is orthogonal to b,, . . . , bj-1, and 
we set b? = hi(j). The vectors bf, . . . , bz are linearly independent and mutually 

orthogonal; they are called the Gram-Schmidt orthogonalization of b, 9 l . . , b,, and 
they can be computed from b,, . . . , 6, by the recurrence 

b: = b,, 

i-l 
b”= bi - C pi,jbT i = I,. . . , n with pi,j = (bi, bF)/(bT, bT)* 

j=l 

For completeness let pi,i = 1 and pi,j = 0 for i < j. Then Li = cj~i bj( i) H is the 
orthogonal projection of L on the orthogonal complement Of C,i-;i bj R. Li is a lattice 
with rank n - i+ 1. The above notions depend on the order of the basis vectors 
b I,. . . , b,. This will also be the case for the following reduction concepts. 
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. 
We call a basis b, , . . . , b, E Rd size-reduced, if 

IP 1 j,j,Si forlSj<Sn. 

The basis vector bi is size-reduced, if (2.1) holds 
There is a fast algorithm to obtain a size-reduced basis from a given basis. Given 

the coefficients ~i,j we can in O( nd) airthmetic operations reduce a single bi in size 

and update the coeticients p,j as follows (by [r J we denote the integer that is 

nearest to the real number r): 

forj=i-l,...,l 
begin 

bi := bi - [pi, j J bj 

for Y= 1, l l l , j Jui,v’= I_ci,u- [Pi,jJ Pj,v 

end 

This does not change the coefficients pki for k > i. In order to reduce a basis 
b 1, . . . , b, in size we can apply size-reduction to the basis elements in any order 
but to keep numbers small r3ne should use the order bl , . . . , 6,. 

Abasis bl,..., b, is Korkine-Zolotareff reduced (according to [9]) if it is size- 
,*sduced and if 

lb”] = h(Li) for f = 1,. . . , n. (2.2) 

The conditions (2.1) and (2.2) were originally introduced in the reduction theory 
of positive definite quadratic forms. Hermite [7] in his second letter to Jacobi used 
property (2.1) and Korkine and Zolotareff [9] introduced property (2.2). 

A basis b, , . . . , b, E Rd is Uheduced (according to [ 131) if it is size-reduced 
and if 

lb~l”G$lbi+l(i)l’ for i = 1,. . . , n - 1. (2.3) 

The number $ in condition (2.3) is there to permit proving a polynomial time bound 
for LLL-reduction. The number $ can be replaced by any number which is greater 
than 1. 

Basic properties of LLL-reduced bases have been established in [13]. It follows 
from 

~lb”12~lbi+l(i)12 and Ipi+l,ilsf 

(where (2.3) respectively (2.1) have been used) that 

16~12=2(~-~)(b~(2~2((bi+~(i)12-~16~(2). 

Hence, 

lb”l’s 2]bT+,12. (24 

Let A 1, . l . , A,, A 1 = A denote the successive minima of lattice L, i.e., A = Ai( L) is 
smallest real number c for which there exist i linearly independent lattice vectors 
of length SC. he lengths of the basis vectors b,, . . . , b, of an LLL-reduced basis 
give a rough approximation of the successive minima of L. 
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2.1 (Lenstra et al. [15]). Every LLL-reduced basis b,, . . . , 6, of lattice L 

sa tisJies 

21-iQ)bi12/A:S2n-’ fori=l,...,n. 

A tighter approximation of the successive minima is obtained by Korkine- 
Zolotareff reduced bases (see [ 111) as follows. 

Theorem X2. Every Xorkine-Zolotareff reduced basis 6, , . . . , 6, of lattice L satisfies 

4 &(i+3) f 
EGA; 4 

ori=l,...,n. 

We are going to introduce lattice bases that are locally Korkine-Zolotareff reduced. 
Let us call a basis 6, , . . . , 6, k-reduced if it is size-reduced and if hi(i), . . . , bi+k_l( i) 
is a Korkine-Zolotareff reduced basis for i = 1, . . . , n - k + 1. We call the vector 
sequence hi(i), . . . , bi+k-l (i) a k-block This notion extends the role of 2-blocks in 
LLL-reduction to arbitrary k-blocks. The 2-blocks bi( i), bi+l( i) of an LLL-reduced 
basis are semi-Korkine-ZolotarefE reduced (they would be Korkine-Zolotareff 
reduced if the number $ in (2.3) were replaced by 1). 

We call a lattice basis 6, , . . . , bmk block 2k-reduced if it is size-reduced and if all 
2k-blocks 

bik+l(ik+l), . . . , b,i+z,k(ik+l) for i=O,. . . , m -2 

are Korkine-Zolotareff reduced. Every 2k-reduced basis is block 2k-reduced. Every 
block 2-reduced basis is LLL-reduced. 

The quality of k-reduced bases is closely related to the lattice constant 

Ib I 2 

ffk := max * 
lb I k 

where the maximum is taken over all Korkine-Zolotareff reduced bases 6, , . . . , bk 

of rank k lattices. We call the numbers ak the Korkine-Zolotareff constants. Note 
that ey k s ak+l holds for all k This is true since eve&y Korkine-Zolotareff reduced 
basis b2,..., bk+l extends to a Korkine-Zolotareff reduced basis b,, . . . , bk+l by 
adjoining an arbitrary vector b, that is orthogonal to b2, . . . , bk+* and which has 
the same length as 6,. 

2.3. Every k-redut zd basis b,, . . . , 6, satisfies lb,12s Cy(kn-1J/(k-1)A(Lj2 pro- 
vided that k - 1 divides n - 1. 

Let v=C” i=, v,b, = Cy= 1 Bib: be a shortest lattice element, and let 
IviZ:C). We have Q=v~EB and A( 2 = lv12a v#!I12~ lb$l”- Qn the 

hand, every k-reduced basis b,, . . . , b, sat 

lb I r 2S aklbT+jl’ forja k- 1, i+jS n. 
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Inductive application of this bound yields 

16F12S G!zlbf!+jl’ . foriS v(k-I), i+jG n. 

The strength of Theorem 2.3 depends on the Korkine-Zolotareff constants ak. It 
can easily be seen that a2 = $, a3 = $, ari”2 (a;“’ respectively) is the height of the 
regular triangle (tetrahedron respectively) with unit edge length. Thus, for k = 2 the 
upper bound l&l26 ($)“-‘A: of Theorem 2.3 improves the upper bound lb,j2s 2”-‘A: 
of Theorem 2.1. This improvement is achieved by replacing the number $ in condition 
(2.3) by 1. 

We will establish upper bounds on (Ye depending on the Hermite constants. The 
Hermite constant ‘yn is the maximal value of h(L)’ d(L)-2’” where L ranges over 
all lattices of rank n. The values ‘);I are known for n s 8, see [ 11, and Appendix A: 

Yl =l, y2=$, y3=2’j3, y4=& For arbitrary n, Minkowski’s Convex Body 
Theorem implies (see [ 1, chapter 1X.7)): 

which yields ‘yn +n for all ~232. 

Lemma 2.4. Let b,, . . . , b, be a Korkine-Zolotareff reduced basis; then 

holdsforj=l,...,n- 1; Here we take nb, to be 1. 

Proof. By definition of ‘yn we have 

lb,l’= h(L)‘s ‘yn d( L)2’” = ‘yn . 

By eliminating lb?]‘= ]b,l’ on the right-hand side this yields 

2’(n-‘, 

which proves the lemma forj = 1. We prove the inequality of the lemma by induction 
on j. On the right-hand side of the induction hypothesis for j we replace I b~+J” by 
the upper bound 

Z/(n-j-1) 

ase j = 1 for e-Zolotareff reduced basis bj+ 1 (j 4 
ma for j+l. 0 
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corollary 2.5. ak 4 k’“‘” ” jar all k Z= 2, where In is the :Dgarithm to basis e. 

Applying the inequality of Lemma 2.4 to a Korkine-Zolotareff reduced basis 
b 19*--9 bk with j = k - 1 yields 

Ibrl’c #k-l) ‘fi2 ,,~/‘(;-i-l)lb~l2 
i=l 

Corollary 2.5 !mplies that limk art k = 1. Therefore, by Theorem 2.3, every k- 

reduced basis b, . L . . , b,, of lattice L satisfies 

lb11 2< N (1 -iL &k)“-‘A(L)2 

constant that only depends on k and which converges to 0 as k 

an open problem whether ak = k”‘? 

The ?qmr bound on a!k may be weak. We give a second method to bound 
(L-)l for k-rcdueed bases depending on the constant 

l/k 

fik := max 

where the maximum is taken over all Korkine-Zolotareff reduced bases b, , . . . , b2k 

of rank 2k lattices. 

Theorem 2.6. Every block 2k-reduced basis b, , . . . , bmk qf k?tice L satisjies I bl12 s 

yk/%?A(L)2= 

Proof. Every block 2k-reduced basis b,, . . . , bmk satisfies 

Ib$+$ l l * fh$ ++j?;1b$+k+,12 l l l lb$+2k12 for i=o,. . . , m-2. 

Recursive apl&~.iorr cT .:ris bound yields 

ib:l” l . l !b~12Sfl;k[b$+,12 l l l lb$+k12. (2.5) 

Let v = 1 I”_“. a ,h 3~ a shortest lattice element. Set p = max{ i 1 vi # 0}, and suppose 

ju+1) ~+c(u+2)k If +2k,thenIb,[=A(L),soletvH.Sinceb,,...,b,kis 
Mock X-rrriuced autl u(y ) # 0 we have 

16 “~+i(L~k$l)j~Iv(Vk+1)1~A(L) for i-l,...,k. 

f I,-ncz, oc*e lsbtain from (2.5) 
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An upper bound for 

Theorem 2.7. Pk s 4k*. 

Proof. Let b,, . . . , b2k 

C. I? Schnorr 

Pk can be obtained from Lemma 2.4. 

be a 2k-reduced basis. Application of Lemma 2.4 to 

b,(i), * l * 3 b(i), n = 2k - i + 1 and using the bound Y2k-j s 2k yields 

lb”l’s (2k) (*k-i+l)/(*k-i)+l/(*k-i-1)+*.*+1/k 
WX+ll l l l IbTkl)*“‘ 

< (2k)*(lb~+,1 l 9 l lb$$2/k for i = 1, . . . , k 

This implies 

lb I T * l l l lbfl’d (2k)2klbf+112 l l l Ib$f 

and thus proves the theorem. q 

Theorem 2.6 yields a stronger performance bo !md than Theorem 2.3 when using 
the above upper bounds on cyk, Pk. Every 2k-reduced basis bl , . . . , b,, of a lattice 
L of rank n with k dividing n satisfies, by . _leorem 2.6, 

lb112s (4/#%(L)-, 

whereas Theorem 2.3 only shows 

Jb,l*s (2k) (l+W*k))n/*kh (~$2 

Substituting the result of Lemma 2.4 into the definition of Pk and simplifying yields 
the bound 

In particular, & = $, p2< 1.59,&s 1.91,&,<2.25; hence,&“=$s 1.34,&‘*< 1.26, 
pi/’ s 1.24, pi’* s 1.23. 

3. Polynomial time algorithms for semi block 2k-reduction and semi k-reduction 

No polynomial time algorithm is known for k-reduction and for block 2k- 
reduction. To obtain polynomial time bounds we relax these concepts to semi 
k-reduction and to semi block 2k-reduction. A similar relaxation accounts for the 
transition from 2-reduction to LLL-reduction. 

The time analysis for LLL-reduction is based on the observation that a reduction 
step changes only a single Gramian determinant di := T[i~i I bFl*, i = 1, . . . , n, and 
this di is decreased by at least a factor $. Korkine-Zolotareff reduction of a k-block 
bs+j(s+l),j=I,... ,k,maychangedifori=s+l,...,s+k-landpossiblysome 
of these di increase. To enable an analysis similar to LLL-reduction we apply 
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Korkine-Zolotareff reduction only to pairwise disjoint k-blocks bik+i( ik + l), j = 
1 , . . . , k. Let the rank n of the lattice be n = mk. For a lattice basis bl, . . . , bmk, let 

Ci = b Ib$+j129 
j=l 

i-l 

Di=nCj fori=O,...,m-1. 
j=O 

Then Korkine-Zolotareff reduction of the 2k-block bik+j( ik + l), j = 1, . . . ,2k, 

leaves all Dj with j # i unchanged and if Ci 3 $3 k C,+l, it decreases Di by at least 
a factor $. 

We call a size-reduced basis b, , . . . , bmk semi block 2k-reduced if properties 
(3.1)-(3.3) below hold. We call it semi k-reduced if only properties (3.2) and (3.3) 
hold. 

Ci s $piCj+* for J=l,...,m-1. 

l&!42~21b$+,(2 for i=l,...,m-1. 

(3 1) . 

(3.2) 

the k-blocks bik+j( ik + 1) for j = 1, . . . , k are Korkine-Zolotareff 
reducedfor i=O....,m-1. (3.3) 

Every block 2k-reduced basis is semi block 2k-reduced. Every k-reduced basis is 
semi k-reduced. The presence of the numbers $ in (3.1) and 2 in (3.2) is to permit 
proving a poiynomial time bound. We can replace $ by any number larger than 1, 
and 2 by any number larger than $. Two disjoint, reduced k-blocks can be linked 
either by property (3.1) or (3.2). 

Theorem 3.1. Every basis b, , . . . , bmk of lattice L which is semi block 2k-reduced 

satisfies lb,l’ S 2y$YJ&I~)m-2h( L)2. 

Proof. Let v = Cj v#~ be a shortest lattice element. Set p = max{ j I vj Z 0) and suppose 
ik<+(i+l)k By definition of yk we have for ia2 

where the last inequality derives from condition (3.1). Since aj s aj+l, it follows 

from (3.3) that Ibti_l)k+jl* s aklb$I’ for 1 s js k, 

k 

cc l/k 
i-1 = I-I lb $-l)k+j I 2’k c (yklbz12. 

j=l 

0n the other hand, using first (3.2) and then (3.3) we find 

p&l’< ::lb$+J2 s 21v12 = 2h (LJ2. 

Thus, if i Z- 2, we have 

1611’s 2~&(Y&(~&)m-2h (k)2. 

For i = 1 the above argument shows lb,1 262yka&h(L)2, and Ib,l=h(L) holds if 

i=o. U 
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Algorithm A for semi block 2k-reduction of a basis bl, . . . , bmk 

0) 

(2) 

(3) 

(4 

(start) For i = 0, . . . , m - 1 apply Korkine-Zolotareff reduction to the k-block 

b,+j(ik+l) forj=+..,k 
(next i) Take the smallest i < m that violates either (3.1) or (3.2) and stop if 

there is no such i. 
(reduction step) If ]bz]“> 2[b$+J2, reduce 6ik+l in size, permute bik and bik+l, 
and apply Korkine-Zolotareff reduction to the two k-blocks bs+j(s + l), j = 
1 ,...,k, for s=(i-1)k and s=ik. 
If Ci>$piCi+l, then apply Korkine-Zolotareff reduction to the 2k-block 
b,+j(s+l),j=I,...,k with s=(i-1)k 
6s to (2). 

An algorithm for Korkine-Zolotareff reduction of an integer lattice basis 
b I,***, 6,, E iEd is given in Section 4 (see Algorithm C). In Section 5 it is explained 
how to apply this algorithm for Korkine-Zolotareff reduction of a 2k-block (k-block, 
respectively). We give a high-level description of this subroutine which will be 
analysed in Section 5. 

Subroutine for KorkineZolotareff reduction of the 2k-block Q,+j(S + l), j = 1,. . . ,2k 

(1) Find a unimodular 2k x 2k matrix H such that right multiplication of the matrix 
[6,+j(S+l), j=l,..., 2k] by H yields a Korkine-Zolotareff reduced basis. For 
this, use Algorithm C as described in Section 5. 

(2) [bs+j, id,..., 2k]:=[bS,, j=l,..., 2k]H. 
(3) Reduce bsil,. . . , 6s+2k in size. 

The constants Pk that occur in Algorithm A are not known. However, Algorithm 
A performs sufficiently well, even if & is replaced by a reasonable upper bound 
for Pk. For instance, we can use the upper bound 4k2 from Theorem 2.7. For the 
performance analysis of Algorithm A we will use known upper bounds for Pk rather 
than the unknown value Pk. 

The number of Korkine-Zolotarefl block reductions in Algorithm A 
We assume that the given lattice basis 6, , . . . , bmk E Bd is integer and generates 

a lattice of rank n = mk contained in IWd with d = O(n). We also assume a bound 
B E N such that, initially, Ibit s B holds for i = 1, . . . , n, and thus, Ci s Bk, Di s Bik 4 
B”. The Gramian determinants Di = det[(b,, b,)lss,,<ik] = I!$]” l l l Ib$f are positive 
integers and all components of b,(j) with 1 s ik are integer multiples of DF’. 

The old and new values corresponding to a reduction step satisfy Dye” c iDyld, 
D;=, = Dyld for j z i. In case 16X]“> 21b$+,I’, this follows from 

Since, initially, Dj d B” and, on termination, Dj 2 1 holds for j = 1, . . . 9 m, the 
number of reduction steps is at most O(mn log B) and thus the number of 
Korkine-Zolotareff reductions of k-blocks (2 k-blocks, respectively) is at most 
O((n2/k) log B). 
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The time bound 

In Section 5 we will show that Algorithm A performs at most 

0(n2(Jkk+o(k)+ n*) log B) 

arithmetical steps on integers with at most O( n log B) bits. This gives the following 
theorem. 

Theorem 3.2. Semi block 2k-reduction of a lattice basis b, , . . . , b, E Zd with n = mk, 

d = O(n), maxi1 b,l* s B can be done with at most 0( n2(jkk+o(k) + n*) log B) arithmetic 

operations on 0( n log B)-bit integers. 

For fixed k the asymptotic time bound for semi block 2k-reduction differs only 
by the constant factor k from the time bound for LLL-reduction. Korkine-ZolotarefI 
reduction of a k-block with k s 5 is almost as easy as LLL-reduction of a k-block, 
see Algorithm D in Appendix A. 

It is interesting to consider Algorithm A for large k. We choose k as to equalize 
the time bound of Algorithm A and the guaranteed bound on lbll’A( L)-*. 

Corollary 3.3, For k = [2fi], semi block 2 k-reduction uses nJ;;/2+o(J;;) + 0( n4 log B) 

arithmetic steps on 0( n log B)-bit integers and finds a lattice vector b, # 0 with 
lbll*A (L)-* = nJ;;/*+O(J;;)_ 

Proof. The trme bound follows from Theorem 3.2 and the bound for Ib,l*A(L)-* 

from Theorems 2.6 and 2.7. Cl 

Theorem 3.4. Every semi k-reduced basis b,, . . . , bmk of lattice L satis$ies Ib,!‘s 

2”-‘arh( L)*. 

Proof. We clearly have A (L)* a min{ I b:lI 1 <s<km} and fcr ik<s++l)k, we 
have 

l&l* s wclbtl* (by (3.3)) 

s 2a’klb;+,l* (by (3.2)) 

S (2a,)‘lb$+,1* (by induction) 

S (2Q)%Vk] bzl* (by (3.3)). 

Thus we obtain Ib,l* s 2”-‘apA (L)‘. Cl 

Algorit asis b b 1,*-.9 mk 

(0 

(2) 

(start) For i= 1,. . . , m, apply Korkine-Zolotareff reduction to the k-block 
b,+j(ik+ I), j= 1,. . . , k. 

(reduction step) While there exists an i c m such that I b$l* > 2lb$+,l*, reduce 
bik+ 1 in size, permute bik and bik+ 1, and then apply Korkine-Zolotareff reduction 

to the two k-blocks b,+j(s+l), j=l,...,k, for s=(i-l)k and s=ik. 
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Comparing the performance of semi block 2k-reduction and of semi k-reduction 
Tix time bound of Theorem 3.2 also holds for Algorithm B. Since Algorithm B 

applies block reduction to smaller and pairwise disjoint blocks, it uses simpler 
subroutines. The generated lattice bases have the following properties: 

Algorithm A: The conditions (3.2), (3.3) imply (use Theorem 2.3) 

log(lb,l”/~(L)*) 6 (m - I) log(2ak) 

si(I+ln k) log k+i (by Corollary 2.5) 

=O(;(log k)‘). 

Algorithm B: Properties (3.1), (3.2), (3.3) imply (use Theorem 2.1 and Corollary 
2.5) 

log(lb112/A (L)*) s 1 + log yk + (1 + In k) log k +% log($&) 

=O(;k,,, k) =O($og k). 

In particular, Corollary 3.3 for Algorithm B becomes: Fork = [2fiJ, semi k-reduction 
uses c;i most n J;;/2+ow 

+ 
O( 4 1 n og B) arithmetic steps on 0( n log B)-bit integers and 

&finds a nonzero lattice vector b, satisfying I b,(*/ A (L)* = n(J;;‘2)‘og n+“‘J;;). 
These asymptotic boun3s favor Algorithm A to Algorithm B even when Algorithm 

B works on double length blocks. However, this may be misleading due to the 
weakness of the known upper bound on cyk. For instance, we have cy3 = $ (d$ is the 
height of the tetrahedron with unit edge length), thus, by Theorem 3.4, Algorithm 
B for k = 3 finds a basis with lb,l* s 3 l 3”/3-‘A (L)*. 

Finally, let us compare Algorithms A and B for k = 3 and LLL-reduction for the 
case that the technical constants in (2.3), (3.1) and (3.2) are replaced by the infimum 
of the admissible values. We obtain the following performance guarantees: 
LLL-reduction with $ in (2.3) replaced by 1, i.e., 2-reduction 

lb,l*+j)“-‘A(L)*s 1.34”-‘A(L)*. 

Algorithm B for k = 3 with constant 2 in (3.2) replaced by $ 

lb112d($$)A(L)’ by Theorem 3.4 and cu3=$ 

G 2n’3A (L)* s 1.26”A (L)*. 

Algorithm A for k = 3 with constant 1 in (3.1) and $ in (3.2) 

lb I 1 *=+a3y3p;“-*A(L)* by Theorem 3.1 

~2 l 21’3(1.91)n’3-2A(L)2 since (y)=$ y3=2’13, p3< 1.91 

s(1.91)n’3A(L)2 by (2.6) 

6 1.24”h ( L)*. 
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This comparison indicates that Algorithm B outperforms Algorithm A for small 

values k. 

4. An improved version of Kannan’s algorithm for Korkine-Zolotareff reduction 

Korkine-Zolotareff reduction is a main building block for semi block 2k-reduction 
and for semi k-reduction. Kannan [g] has proposed an algorithm for reducing a 
lattice basis b, , . . . , b, E Zd in the sense of Korkine-Zolotareff which is polynomial 
time for fixed n. We present this algorithm along with some improvements to speed 
up running time and to reduce the bit length of integers used in the computation. 
The main modifications to Kannan’s algorithm occur in steps (2) and (5) of Algorithm 
c. 

Algorithm C for Korkine-Zolotareff reduction 

(1) 

(2) 

(3) 

(4) 

(9 

(6) 

(initiation) Let b,, . . . , b, E Zd be the given basis. Apply the Lovasz algorithm 
for LLL-reduction (see Appendix A) to the basis b, , . . . , b, but use the technical 
constant 1.01 instead of $. 
(recursion step) Apply Korkine-Zolotareff reduction to the basis b,(2), . . . , b, (2) 

of L,; apply all basis transformations of this process to the vectors bZ, . . . , b, 

rather than to their projections. After each exchange bi t, bi+, , make sure that 
lpi,jls$ forj= i-l,. . . ,l. 

If ]&I” > 21bz12, then apply Korkine-Zolotareff reduction to bl, b2 via the 
Gaussian algorithm (see Appendix A). Go to (2). 
(search for a shortest vector v = 1 y= t V&i) Enumerate all nonzero integer vectors 

. 

(‘I’ .~~~~~~i’“‘5,“;,:~~~~~~~~~.).l~:l’) for j = n - 1,. . . ,I. 

Choose (q,..., v,,) that minimizes 

b12= i ( i vkP~v)21b:l’* v=l k=v 

If Iv] = ]bJ, go to (6). 
(extend v to a lattice basis) Put b. := v, apply the Lovasz algorithm (see Appendix 
A) to the linearly dependent system bO, b, , . . . , b,, run this algorithm until bo = 0 
and take the current vectors 6,) . . . , 6, as new basis. 
Apply Korkine-Zolotareff reduction to the basis b,(2), . . . , b,(2) of lattice &; 
apply all basis transformations to the vectors b2, . . . , b, rather than to their 
projections. After each exchange bi * bi+l, make sure that Ipi,jl s 5 for j = 
i-l 1. 9***9 

ess. 0n termination, the basis b,, . . . , b, is Korkine-Zolotareff 
reduced since it starts with a shortest lattice vector 6, (by steps (4) and (5)); by 
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step (6), the basis b,(2), l . . , b,(2) is Korkine-Zolotareff reduced and Ipi,,( s 4 holds 

for i=2,..., n. Step (4) finds a shortest nonzero lattice vector v as is shown in 
Lemma 4.1 below. It remains to be shown that step (5) extends bO = v to a lattice 
basis v=bl,..., b,. The Lovasz algorithm in step (5) exchanges b, = v and bl iff 

Ib$> 81b, - [(b,, b,)l(b,, b,)l b,12, and since 1 b,l = h(L), this holds iff b, E b& (Here 

[tJ is the integer nearest to the real number r.) Thus, after the first exchange 
v= b,,++b,, we have bO = 0 and step (5) terminates with a lattice basis v = b, , . . . , b,. 

Lemma 4.1 (Kannan). Step (4) of Algorithm Cjfnds a shortest nonzero lattice vector 
and terminates after at ,most nni2+Oqn’ arithmetic steps. 

Proof. All lattice vectors v = Xi”= t vibi shorter than b, satisfy 

Ivi’= i ( i vkpk-)‘lbf12< lb,12* 
j=l k=j 

Therefore, the search for a shortest lattice vector v can be confined to integer vectors 

(v*, . . . . vn) satisfying 

OS Vn <lbll/lbZl 
and 

Since ICE=j V&--kjJ <Ibl\/lbTl, the number of values for Vj when given ~~+l,_..,Vn is at 
most [21bli/i3~lJ + 1. Thus, at most 

n-l 

lwlb:l l-I ( lw*l/l~~lJ + 1) 
j=2 

choices for ( vl , . . . , vn) need to be tested when searching for v. Following Kannan 
we perform the search for a shortest lattice vector v only when lb112 s 21bf12. To 
bound from above in this case the number of choices for ( vl ). . . , vn), we assume, 
w.l.o.g., that I bJ C I b,l for j = 2, . . . , n since otherwise vj = Vj+l= l l l = Vn = 0. This 
implies that the above number of choices for (v, , . . . , v,) is at most 

jn-2 i lb11 ,3n-2 
j=l 7 lb I 

(J2h (L,))“-’ d( E2)-‘. 

By definition of the Hermite constant T,,._~ we have the upper bound 

< ( 18yn_,)(n-‘)/2 = Jnn+Otn) 

since lim, sup r,/n < (err)-‘. From this we see that step (4) finds a shortest lattice 
vec+sr v using &I”+~“‘) arithmetic operations. Cl 

Time analysis 

Let A be the first successive minimum of the lattice generated by b, , . l l , b,j. 
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Lemma 4.2. Each pass through steps (2), (3) achieves 1 b$"l/ A G ($)1’4~,~, and 

steps (2), (3) are passed at most [log2( n - I)1 +2 times. Hence, step (5) is pas& at 
most (’ \g2 n)“+OCn) times throughout all recursive calls of Algorithm C. 

Proof. Let bold l , bZld be the vectors 6, , b2 upon entry of step (2). If lbytdl > A, then 
Korkine-Zolotareff reduction in step (2) replaces bzld by a vector bz satisfying 
16;) = A 1( L2) s A. Korkine-Zolotareff reduction in step (3) is applied to the basis 
byId, b2 of the lattice L’ := byId E + 62 P. Thus, step (3) finds a vector by’, satisfying 

(b~w12=Al(L’)2~ y2d(L’)=,/$lb;‘dl]b~l. 

Since 1621 G A this implies lby”l/A s ($)i’4m. 
Initially, when entering step (2) for the first time, we have by LLL-reduction in 

step (1) using the constant 1.01 instead of $: 

lb#A s 1.352’n-“‘2 (by (A.3)). 

After passing steps (2), (3) m times, this yields 

lb#A s 1.352 (n-1)2-“-3 
) 

( l+2-‘+-*.+2-m)/4, 
9 

thus, after [log2( n - 1) 1 - 1 passes, we have 

16,1/A s 1.352 l ($)1’2. 

To show that there are at most 3 more passes, we note that each pass decreases 1 b,l 
by at least a factor ($)“’ and we have 1.352 c ($)‘-‘. (In fact, each pass achieves 

IbFw12= Ib;(2+&lb;‘d12~ Ib~‘d*12+~~,,~b’;‘id12~ ($+~)lb;‘“l’). 

Thus, steps (2), (3) are passed at most [log2( n - 1) 1+2 times. •1 

The number of arithmetic operations 

We bound the number of arithmetic operations executed by Algorithm C on input 
bases b,,..., b,, E hd with lb112, . . . , I bn12 s B. We partition the operations into two 
classes: 

(1) T,(n) counts the operations executed within LLL-reduction and Korkine- 
Zolotareff reduction of steps (l), (3) and (5) including these same operations in the 
recttrsive calls of Korkine-Zolotareff reduction in steps (2) and (6). 

(2) T2(i2) counts the operation of step (4) including these same operations in the 
recursive calls of Korkine-Zolotareff reduction in steps (2) and (6). 

T2(n): We have 

T,(n)< [3+log2 nlT,(n -l)+&C’+ocn! 

Here 2 + [log2 n 1 bounds the number of passes through steps (2) and (3); T2( n - 1) 
is a time bound for steps (2) and (6); &zn+o(n) bounds the number of operations 
of step (4) as has been shown above. The recursion formula yields TL( n) = &z~+~(“). 

T,(n): The progress of the reduction process is related to the number 
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Each exchange step &-, ti bk of the Lo&z algorithm decreases D by at least a 

faactor 1.01? The value of D can only inzr?ase in step (5) during LLL-reduction 
of the linearly dependent system b,, b, , . . . , b,,. To keep track of this increase we 

take in step (5) a slightly different invariant 15 defined by 

where b: is the component of bi that is orthogonal to bo, . . . , bi-1 and ri = 
#{jIbi+#O,OOcj<i}. Since bz = 0 holds for exactly one v, we have for this v 

rj = 
{ 

i+l foricv, 

i for i> v. 

Each exchange step bk_, - bk of the LOV~SZ algorithm in step (5) decreases 65 by 
at least a factor i as has been shown in [5, Lemma 21. 

On termination of step (5) we have b. =0 and thus 15 and D coincide. We show 
that 

j[rsY2D (4.1) 

holds upon entry of step (5). 
To prove inequality (4.1) we note that 

lb01 s IhI, lb~l’~Ib~I’~2(bf+,(* fori=l,...,n-1. 

Let bz =O; then 
+ 2(n-r) 

lb I i 
, s b* *(n-i-l) 

I I i S (2~b~+1~2)“-i~’ for i < v, 
+ *(n-r.) 

lb I i 
, < b" *(n-i) 

I I i for i> v. 

We obtain inequality $1) 3-3~ multiplying the latter inequalities for i = 
0 ,..., v-&v+1 ,..., n. 

Upon entry of Algorithm C we have D s Bn2 and Da 1 on termination. Each 
exchange step of the LovSsz algorithm decreases D by at least a factor l.Ol-‘. Each 
pass IBf step (5) increases D by at most a factor ~2”~. It follows from Lemma 4.2 
that the total number of passes of step (5) within all recursive calls of Korkine- 
Zolotareff reduction is at most (log n)“+Otn) . Therefore, the total number of exchange 
steps bk-, - bk made in Algorithm C is at most 

0( n* log B) + (log n)“+O(“). 

If d = O(n), then each exchange step costs 0( n*) arithmetic operations for size- 
reduction and thus 

T’*(n) = 0( n4 log B) + (log n)n+o(n). 

Combining the bounds for T,(n) and T2( n) we see that Algorithm C uses at most 

Jn n+“(n)+ 0( n4 log B) 

arithmetic steps. 
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The size of the integers involved 
Algorithm C executes a sequence of Lovasz reduction steps which either transform 

the current lattice basis b, , . . . , b,, or in step (5) a linearly klependent set of n + 1 
generators of the lattice. Throughout these exchange steps we have by formulae 
(1.30)-( I.34) of [ 131 

lpijl G Z”(nB)‘““‘/* (4.2) 

lbi] G n2(4B)“, (4.3) 

where B is a number such that max]bil*s B holds for the input basis br , . . . , b,. 
These bounds have been proveo for the Lov6sz algorithm when working on a basis 
of the lattice but they also hold when the Lovasz algorithm transforms a set of 
generators of the lattice. The bounds (4.2) and (4.3) hold throughout Algorithm D 
(see Appendix A). An exchange bi c, bi,, is only performed when 

lb?126 21bT+112 holds for j = 1,. . . , i - 1, 

and after an exchange bi * bi+, we make sure that IFi,jla $ holds for j = 1,. . . , i. 
We see from the above bounds that throughout the execution of Algorithm C the 

numerator and denominator of the rational number l+J* have at most O(n log B) 
bits. Therefore, all integers within execution of Algorithm C have at most 0( n log B) 
bits. 

So fzr wp have proved the following theorem. 

Theorem 4.3. Let bl, . . . , 6, d be Q lattice basis with lb,l’, . . . , l&l26 B, d =0(n). 
Then Kopkine-Zolotareff reduction is done via Algorithm C with at most Jnn+o’n’+ 
0(n4 log B) arithmetic operations on 0( n log B)-bit integers. 

Remarks. We have improved Kannan’s algorithm and his analysis in several ways. 
(i) Korkine-Zolotareff reduction of b, , b2 in step (3) is more efficient than a 

simple exchange b, e b2. The number of recursive Korkine-Zolotareff reductions 
of lattices of rank n - 1 in Algorithm C is at most [log, n 1+2 whereas it may be $n 
in Kannan’s algorithm. 

(ii) Since our algorithm in step (5) executes a sequence of LLL-reduction steps 
on the current basis b,, . . . , b, we obtain an O(n log B) bound on the bit length of 
the integers occurring in the algorithm, whereas Kannan only proves a O(n* log B) 
bound. 

(iii) We can decrease the bit length of the integers used by Algorithm C from 
O(n log B) to O(n +log B) by replacing the Lovasz reduction algorithm by the 
reduction algorithm in [ 171. This algorithm reducec PIT integer lattice basis 6, , . . . , b, 

such that Ipi,jl s 0.55 holds for 1 s j C I - ‘-z n and property (2.3) is satisfied. If the 

input basis vectors have length at most B, the algorithm terminates after at most 
0( n4 log B) arithmetic steps on 0( n + log B)-bit integers. 

(iv) The improved time bound for Korkine-Zolotareff reduction also improves 
the time bounds for the closest vector problem and for integer programming. In the 
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closest vector problem we are given an integer lattice basis 6, , . . . , b, E 
rational point b E 9”; we search for a a~~ I-‘tice vector with minimal Euc!idean distance 
to b. In integer programming we are given m x n and m 1 integer matrices A and 
b and we decide whether there is an integer vector XE n such that Ax s b. Each 
of these problems can be solved via Algorithm C using at most no(“)+ 0( n” log B) 
arithmetic steps on integers with polynomial length. This follows from corresponding 
algorithms in [8] abd 233 which solve these problems via Korkine-Zolotareff 
reduciian. 

5. The time bound for mi block 2k-reduction and for semi k-reduction 

The unimodular transformations occurring in Korkine- Zolotareff subroutines 
We consider the application of Korkine-Zolotareff reduction as a subroutine in 

Algorithms A and B. During Korkine-Zolotareff reduction of a k-block bik+j( ik + 1), 
j=i , . . . , k, the algorithm does not update the current block bik+l, . . . , bik+ka Instead, 
it updates the numbers pik+v,ik+j for 1 s i < VG k, 16g+J’ for v = 1,. . . , k and the 
unimodular k x k-matrix H that transforms the input block to the current block, i.e., 

Initially, H = I and each LLL-reduction step operates on H via multiplication from 
the right by the matrix 

u,u+1 

‘0 1 

1 0. 
for an exchange bik+ v * b&+ p+ 1 

j for a Step bik+v := bik+v + rbik+j. 

When Algorithm C in step (5) extends the current basis by a shortest lattice vector 
o = b,, the matrix is extended by the 0th column with the coordinates of bO. On 
termination of ste olumn is eliminated from H. 

is vectors are obtained by the matrix 
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The additional arithmetic operations for updating the matrix N do not than 
the order of the time bound of Algorithm C. The entries of th:: matrix W have at 
most O(n log B) bits as is shown in the following iemma for ihe case k = n. 

mma 5.1. Let Algmtirm C be given an input basis 

lb I 
2 

l , . . . ,I bJ2 s B. 7hen the transformation matrix W satisjes 
throughout the computation. 

Here H is the matrix that transforms the input basis b,, . . . , b, into the current 
basis, i.e., [by’, . . . , b’,“‘] = [b, , . . . , b,]H, and IIH II is the maximal absolute value 
of the entries of H. 

Proof. The input basis b,, . . . , b, satisfies the equation 

Eb 199’-9 b,]=[bf,. . . t b;]MT 

where the (n x &matrix M has entries pi,j* At any stage of Algorithm C the current 
basis satisfies a corresponding equation 

Ib 
cur b, _ -7 [by’*, . . . , b”,“‘“-J MzU,. cur-I _ 
1 9***¶ 

It follows from 

Cb CUT 1 ,... ,b:‘]=[b ,,.. l ,b,,]H 

and the two previous equations that 

[(b?, b~ur*)lb~l-2]~~;,j~k Mz!,= MT H. 

This implies 

IIHII s 11 M-‘(i max I(bF, s,fur*)lbf(-“l IIMcUrlln2. 
4_/ 

(5.1) 

We have lbyr*12 < B since maxjIb” does no: increase. The inequality lb”l’a B-’ 
follows from maxilbi12 s B. So tie see 

(5.2) 

From the definition of the matrix M we see 

IlM-‘II s nll[b, 9. . . , WitI IIPT, . . l 9 b:lb 

We have ll[b,, . . . , b,]-* 11 s B”/’ from 1 bT12 s B and thus I bT(’ 6 B implies 

IIM-‘(1 s ,@“+1)/2. (5.3) 

It remains to bound the entries p:‘J’ of McUc. During LLL-reduction of a basis 
b 19m*m, b, E Bd with lb112, . . . , I b,12 < B, the numbers &y’ are bounded as I&r’1 d 2” 

‘/z, see [ 13, formulae (1.3 1. This bound also h 
step (5) of Al 

system of the lattice. Thus II Jl s 2” (nBR-‘)‘/2 holds throughout Algorithm C. 
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For practical purposes the constant $ in step (3) should be replaced by 1.01. Then 

an exchange step achieves 

~~~(2=~6~(k-l~~Z-~~k_l[b~_,~2~(l.01~’-0.25)~~~_~~2. 

Hence, we have, on termination of the Lovkz algorithm, 

IbXI* c 1.35216~_# for k = 1, . . . , n. (A-3) 

Algorithm D for KorkineZolotareff reduction of a basis with rank n G 

(1) 
(2) 

(3) 
(4) 

(9 

(6) 

(initiation) Let b, , . . . , b, E Ed, n s 5, be the given lattice basis; s := 1. 
Apply LLL-reduction to the basis &is), . . . , b,(s) but use the technical constant 
1.01 instead of 2. Apply all basis transformations during this reduction to the: 
vectors bS, . . . , b,, rather than to their projections. (On termination we have 
IbTIZS 1.01 Ibi+,( i)l’ and lpijls$ for lsj<isn, pi,i=l.) 

’ Reduce b,, . . . , b,, in size. 
(search for a sho.*test vector V(S) E L,, v =Ci”=, vjbj) For t = n, PI - 1,. . . , S+ 1 
enumerate all integer vectors (o,, . . . , v,) that satisfy v, = 1 and, for i = 
t-l ,***¶ s, 

f 1.32 j=4, 

l 0.84 i = 1. 

Choose t, vs, . . . , v, that minimizes 

IV(s)l’= i ( i u.lr,,)'/b:/'= 
j=s v=j 

If Iv(s)1 = lb:1 go to (6). 
V 

l - .- c f=, vi bi, (b,, b,) := (0, b,). If s = n - 1, then (6, := b,, - rp,,,_I j b,_l and 
terminate). 
s:=s+l go to (2). 

Correctness of Algorithm D 
Correctness of step (4): We show that a shortest vector v(s) in L, is found. Let 

v = C r=, v,b, be a shortest lattice vector and t := max{ Y 11 v,l # 0). Then we hive 

Ibl12+12a v:lb:1*~ v;z 1.352-‘+‘lb,[* 

by (A.3), and thus v: ~4; hence, Iv,1 = 1. We can assume that v, = 1; otherwise we 
replace v by -v. The integers v ,,..., vl satisfy, forj=t-l,..., 1, 
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and therefore, 

c 1.32 j=4, 

1 11 i P 
1.14 j=3, 

21~ u,j s 
u=j 0.98 j =2, 

l 0.84 j= 1. 

The number of possible choices for (q, . . . , u,) is at most 3222 = 36 for f = 5,3 l 22 = 12 
for t = 4,4 for t = 3, and 2 for t = 2. The total number of integer vectors (u, , . . . , v,,) 

that are to be checked for dimension n = 5 and s = 1 is at most 54. 
Correctness of step (5): since tr, = 1, b, is an integer combination of v = zIz5 v& 

and !I~, . . . , b,_, . Therefore, the transformation of step (5) yields a new basis 
6 1, . . . , b, of the original lattice. 

Time analysis 
Suppose the input basis bl,. . . ,6,,d satisfies lb,l’, . *. , lb,J2~l? and d =0(n). 

For fixed n, the LLL-algorithm runs in O(log 23) arithmetic operations on O(log I?)- 
bit integers. Algorithm C for t = n, n - 1, . . . , 2 applies LLL-reduction to a basis of 
dimension t. To count the additional operations of step (4) we note that, for s = 1, 
there at at most 36+ 12 +4+ 2 = 54 distinct integer vectors ( vl , . . . , v,) to be checked 
for t = 4,3,2,1. The total number of integer vectors (v,, . . . , v,) that are checked in 
thestagess=1,2,...,n- 1 of Algorithm C is at most 54+ 18 + 6 + 2 = 80. This proves 
the following proposition. 

Proposition A.1. Algorithm D applies Morkine-Zolotarefl reduction to a basis 

b 1, . . . , bn c Zd with n G 5. If lb,l’, . . . , 16,,12 s B, It uses at most O(d log B) arithmetic 

operations on 0( log IS) -bit rn tegers. 
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