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We present a massively parallel framework for computing tropical-
izations of algebraic varieties which can make use of symmetries 
using the workflow management system GPI-Space and the com-
puter algebra system Singular. We determine the tropical Grass-
mannian TGr0(3, 8). Our implementation works efficiently on up 
to 840 cores, computing the 14763 orbits of maximal cones under 
the canonical S8-action in about 20 minutes.
Relying on our result, we show that the Gröbner structure of 
TGr0(3, 8) refines the 16-dimensional skeleton of the coarsest fan 
structure of the Dressian Dr(3, 8), except for 23 orbits of special 
cones, for which we construct explicit obstructions to the real-
izability of their tropical linear spaces. Moreover, we propose al-
gorithms for identifying maximal-dimensional cones which belong 
to positive tropicalizations of algebraic varieties. We compute the 
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Tropical varieties
Tropical Grassmannians

positive Grassmannian TGr+(3, 8) and compare it to the cluster 
complex of the classical Grassmannian Gr(3, 8).

© 2023 The Author(s). Published by Elsevier Ltd. This is an open 
access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).
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1. Introduction

While massively parallel computations are a standard method in numerical simulations, the use 
of large scale parallelism is still a fundamental challenge in many areas of computer algebra. In this 
paper, we develop a massively parallel algorithm for computing tropicalizations. The process of trop-
icalization associates to an algebraic variety a tropical variety, which is a polyhedral complex. This 
complex can be regarded as a combinatorial shadow of the original algebraic variety, since it retains a 
multitude of properties of the algebraic variety. Tropicalization thus constitutes the fundamental con-
nection between algebraic and tropical geometry. This connection has very successfully been used, for 
example, to obtain enumerative results on the algebraic side, the first and most known being Mikhalk-
in’s determination of the Gromov-Witten invariants of P 2 (Mikhalkin, 2005). Another example which 
demonstrates the usage of the connection between algebraic and tropical geometry is Adiprasito’s, 
Huh’s and Katz’s development of the combinatorial Hodge theory which allowed to prove many cen-
tral conjectures in combinatorics; see for example Adiprasito et al. (2018). Tropical varieties also arise 
naturally in many areas beyond mathematics, such as optimization (Allamigeon et al., 2018), biol-
ogy (Speyer and Sturmfels, 2004; Yoshida et al., 2019), economics (Tran and Yu, 2019; Baldwin and 
Klemperer, 2019), and theoretical physics, for example celestial mechanics (Hampton and Moeckel, 
2006; Hampton and Jensen, 2011), mirror symmetry (Gross and Siebert, 2006; Böhm et al., 2017), 
and scattering amplitudes (Arkani-Hamed et al., 2016).

The process of tropicalization is often challenging due to the combinatorial complexity of the re-
sulting tropical variety and the fact that known algorithms require a large number of Gröbner basis 
computations. Parallelization is hence a necessity to handle current research problems.

For parallelization, our approach builds on the Singular/GPI-Space framework for massively 
parallel computations in computer algebra, which has already been successfully used in various 
large scale applications in algebraic geometry, geometric invariant theory and high-energy physics
2
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(Böhm et al., 2021b; Ristau, 2019; Böhm and Frühbis-Krüger, 2021; Böhm et al., 2018; Reinbold, 
2018; Bendle et al., 2020a,b, 2021). This framework is based on the idea of separation of coordination 
and computation. The mathematical core algorithms are implemented in the computer algebra sys-
tem Singular (Decker et al., 2021), while the coordination is handled by the workflow management 
system GPI-Space (Pfreundt and Rahn, 2019), which uses Petri nets for the modeling of concurrent 
algorithms.

Our implementation solves the so far unsolved problem of designing an efficient large scale parallel 
traversal of tropical varieties. We find that our approach is highly efficient and that the overhead of 
communication between threads is not an issue. Considering our main example, which is determining 
the tropical Grassmannian TGr0(3, 8) via tropicalization of the respective Grassmannian, we observe 
that our implementation scales well up to 840 cores (the largest number we have tried) and, in fact, 
shows a parallel efficiency significantly larger than one, see Section 3.4. We attribute this primarily 
to the algorithm finding a faster path to the final result when being executed on large amount of 
resources, relying on the randomized nature of the execution of a Petri net.

Our algorithm builds on the method originally developed by Bogart et al. (2007) and implemented, 
in a sequential way, by Jensen in Gfan (Jensen, 2017), and later (in more generality) in Singular, see 
Markwig and Ren (2019). The method is based on the fact that the tropicalization of an irreducible al-
gebraic variety is the support of a polyhedral complex which is connected in codimension one and is 
a subcomplex of the Gröbner complex. Thus, the tropical variety can be determined via a hypergraph 
traversal with the vertices of the graph corresponding to the maximal polyhedra and the edges cor-
responding to their codimension one faces. To pass from one maximal cone to its neighboring cones, 
we compute tropical links using an algorithm described in Hofmann and Ren (2018), which relies on 
triangular decomposition and Puiseux expansions.

In addition to tropicalization, we also provide the first general algorithm that computes maximal-
dimensional cones of positive tropicalizations as introduced by Speyer and Williams (2005). While 
tropical varieties arise from solutions of systems of polynomial equations, positive tropical varieties 
arise from solutions that are positive and real. They have been related to graphical models in algebraic 
statistics (Pachter and Sturmfels, 2004) and, more recently, semialgebraic sets in non-archimedian 
semidefinite programming (Allamigeon et al., 2020; Jell et al., 2022) and scattering amplitudes in 
high-energy physics for planar four-dimensional theories (Arkani-Hamed et al., 2016). It is also con-
jectured (Speyer and Williams, 2005, Conjecture 8.1) that they encode the combinatorics of cluster 
algebras of finite type. This was proven recently by Brodsky and Stump for a number of important 
cases (Brodsky and Stump, 2018).

One class of tropical varieties of particular interest and the main source of examples in this article 
are tropical Grassmannians TGr0(k, n). In algebraic geometry, Grassmannians Gr(k, n) parametrize all 
k-dimensional linear spaces in K n for a given field K . In tropical geometry, their tropicalizations 
TGrp(k, n) parametrize all k-dimensional tropical linear spaces in Rn that are realizable over a field 
K of characteristic p. In both algebraic and tropical geometry, Grassmannians form one of the most 
important classes of moduli spaces and offer a strong basis for the understanding of general (tropical) 
varieties.

Aiming at a continuation of the work of Speyer and Sturmfels (2004) and Herrmann et al. 
(2009) on tropical Grassmannians, we use our implementation to compute the tropical Grassman-
nian TGr0(3, 8). Thus, we give a positive answer to Question 37 in Herrmann et al. (2014) on whether 
its computation is feasible. Furthermore, we compare TGr0(3, 8) to the Dressian Dr(3, 8) described in 
Herrmann et al. (2014). The Dressian Dr(k, n) parametrizes all k-dimensional tropical linear spaces 
in Rn , also known as valuated-matroids, independent of their realizability and is generally of higher 
dimension than the tropical Grassmannian TGrp(k, n) it contains. We show that the Gröbner structure 
on TGr0(3, 8) refines the 16-dimensional skeleton of Dr(3, 8) with exception of 23 extended Fano cones
for which explicit obstructions for the realizability of tropical linear spaces are presented.

We then turn to the positive tropicalization of Grassmannians. In applications, the real points on 
Gr(k, n) and their tropicalization on TGr0(k, n) are linked, for example, to the soliton solutions of 
the Kadomtsev-Petviashvili equation (Kodama and Williams, 2013a) with positivity corresponding to 
regularity at all times (Kodama and Williams, 2013b, 2014). We employ our algorithms to compute all 
maximal-dimensional cones of TGr+(3, 8) and compare them to the cluster complex of Gr(3, 8). We 
3
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verify that (Speyer and Williams, 2005, Conjecture 8.1) holds, which is proven to be true in Brodsky 
and Stump (2018). This serves as a verification of our computations, and as an alternative proof of 
the conjecture in this specific case. Recently, two groups of researchers, Arkani-Hamed et al. (2021)
as well as Speyer and Williams (2021), have independently proven that the support of the positive 
tropicalization TGr+(k, n) of the Grassmannian is the so-called positive Dressian Dr+(k, n). The study 
of the positive part of tropical Grassmannians as well as positive flag Dressians is currently a very 
active research area; see for example Boretsky et al. (2022); Joswig et al. (2021). A general overview 
on positive geometries is presented in Lam (2022).

This article is organized as follows: In Section 2, we fix our notation, and recall some background 
on tropical geometry required in the subsequent sections. In Section 3, we present our massively 
parallel algorithm for computing tropical varieties with symmetry, which is described in terms of a 
Petri net. We give details on our implementation in the Singular/GPI-Space framework. Moreover, 
we discuss the computation of the tropical Grassmannian TGr0(3, 8) using our implementation, and 
provide timings on much time the computation required. In Section 4, we discuss the data produced 
on TGr0(3, 8), we analyze its natural fan structures using polymake (Gawrilow and Joswig, 2000), and 
compare the Grassmannian to the Dressian Dr(3, 8). In Section 5, we propose general algorithms for 
computing all maximal-dimensional cones in a tropical variety Trop(I) which belong to the positive 
tropicalization Trop+(I). These algorithms exploit the symmetry of Trop(I) even though Trop+(I)
itself need not be entirely symmetric. In Section 6, we compute all maximal-dimensional cones in 
TGr+(3, 8) and compare them to the cluster complex of Gr(3, 8), verifying that Speyer and Williams 
(2005, Conjecture 8.1) holds. In Section 7, we discuss three open questions arising from this article 
on the fan structure of tropical varieties, the connection to cluster complexes and the topology of real 
tropicalizations.

All data and other auxiliary materials are available on the website of the Singular/GPI-Space

project under the following URL:

https://www.mathematik.uni -kl .de /~boehm /singulargpispace /tropical .htm

Polynomial data is provided in Singular format, while polyhedral data is available in polymake for-
mat. The computations were performed using Singular 4-1-2 and polymake 4.3.

Acknowledgments We would like to thank Santiago Laplagne (Universidad de Buenos Aires) for his 
implementation of the Newton-Puiseux algorithm in the Singular library puiseux.lib, Mirko Rahn 
(Fraunhofer ITWM Kaiserslautern) for his invaluable support with GPI-Space, Lukas Ristau (TU Kaiser-
slautern) for his work on combining Singular with GPI-Space, Christian Reinbold (TU München) for 
his work on fan traversals using Singular and GPI-Space, Christian Stump (Ruhr-Universität Bochum) 
for his insight into cluster algebras, and Charles Wang (Harvard University) for his advice on cluster 
complexes. We also like to thank the anonymous referees for their detailed feedback which helped to 
improve the manuscript significantly. We would like to express our greatest gratitude to Fraunhofer 
ITWM Kaiserslautern for providing us with the necessary computing resources.

2. Background

In this section, we fix our notation by briefly going over some basic concepts of immediate rel-
evance to us. Our notation is largely compatible with that of Maclagan and Sturmfels (2015), with 
the exception that we will use polynomials instead of Laurent polynomials and the max-convention 
instead of the min-convention. This is because the software that we will be presenting in the latter 
sections is built on infrastructure using polynomials and the max-convention.

Convention 2.1. For the remainder of the section, let K be an algebraically closed field with a 
non-trivial valuation ν : K ∗ → R, ring of integers O K , and residue field K. We fix a splitting 
μ : (ν(K ∗), +) → (K ∗, ·) and abbreviate ta := μ(a) for a ∈ ν(K ∗).We use (·) to denote the canonical 
projection O K → K, and we fix a multivariate polynomial ring K [x] := K [x1, . . . , xn].
4
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Fig. 1. Visualization of both definitions of the linear hypersurface Trop(〈l〉) where l = x + y + 1.

Definition 2.2. The initial form of a polynomial f =∑α∈Nn cαxα ∈ K [x] with respect to a weight 
vector w ∈Rn is given by

inw( f ) :=
∑

w·α−ν(cα) maximal

t−ν(cα)cα · xα ∈ K[x],

whereas the initial ideal of an ideal I � K [x] with respect to w ∈Rn is given by

inw(I) :=〈inw(g) | g ∈ I〉 �K[x].

The equality in the next definition of a tropical variety is part of the Fundamental Theorem of 
Tropical Algebraic Geometry (Maclagan and Sturmfels, 2015, Theorem 3.2.3). Note that the Fundamental 
Theorem in Maclagan and Sturmfels (2015) is given for Laurent polynomial rings, but also holds in 
the setting of polynomial rings.

Definition 2.3. Let I � K [x] be an ideal and V (I) ⊆ K n its corresponding affine variety. The tropical 
variety of I is defined to be

Trop(I) := cl
({

(−ν(z1), . . . ,−ν(zn)) ∈Rn | (z1, . . . , zn) ∈ V (I) ∩ (K ∗)n})
= {

w ∈Rn | inw(I) contains no monomial
}
,

where cl(·) denotes the closure in the euclidean topology.

Example 2.4. Let K = C{ {t} } be the field of complex Puiseux series and ν its natural valuation. Con-
sider the linear ideal I = 〈x + y + 1〉 ⊆ K [x, y]. Fig. 1 shows Trop(I) using both definitions, with 
valuations resp. weight vectors highlighted.

Tropical geometry usually involves Laurent polynomials K [x±] and takes place in the algebraic 
torus (K ∗)n . When working with polynomials, it is therefore important to assume all ideals to be 
saturated with respect to the product of all variables, or saturated in short.

Theorem 2.5 (Structure theorem for tropical varieties (Maclagan and Sturmfels, 2015, Theorem 3.3.5)). Let 
I � K [x] be a saturated prime ideal of dimension d. Then Trop(I) is the support of a balanced polyhedral 
complex, pure of dimension d, connected in codimension 1.
5
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Definition 2.6. We define the Gröbner polyhedron of a homogeneous ideal I � K [x] around a weight 
vector w ∈Rn to be

C w(I) := cl
(
{v ∈Rn | inv(I) = inw(I)}

)
.

The Gröbner complex �(I) is the collection of all Gröbner polyhedra of I .

Proposition 2.7 (Maclagan and Sturmfels, 2015, Theorem 2.5.3). Let I � K [x] be a homogeneous ideal. Then 
C w(I) is a closed convex polyhedron for all w ∈ Rn, and �(I) is a finite polyhedral complex. In particular, 
Trop(I) is the support of the subcomplex of the Gröbner complex consisting of all Gröbner polyhedra whose 
initial ideals contain no monomials.

For the sake of simplicity, we will restrict ourselves to what is commonly called the constant 
coefficient case, see Convention 2.8. While the parallel framework described in Section 3 works in full 
generality, the rest of the paper falls in this very special case.

Convention 2.8. From now on, assume that the field K is either Q{ {t} }, C{ {t} } or F p{ {t} } for some 
prime number p, and that all ideals are homogeneous as well as generated by polynomials with 
coefficients in Q, C or F p .

In particular, all Gröbner polyhedra will be conic, i.e., they are invariant under scaling with a 
positive real number, and we will therefore refer to the Gröbner polyhedra and Gröbner complexes as 
Gröbner cones and Gröbner fans.

Additionally, all Gröbner cones in this paper will be inside the tropical variety unless explicitly 
specified otherwise. This means that maximal or maximal-dimensional Gröbner cones will only be 
(inclusion) maximal or maximal-dimensional among the Gröbner cones on the tropical variety, i.e., a 
maximal-dimensional Gröbner cone is a Gröbner cone C w (I) ⊆ Trop(I) with dim C w(I) = dim Trop(I).

Moreover, we will use Trop(I) to denote both the set in Definition 2.3 and the subfan of the 
Gröbner fan covering it by Proposition 2.7. In written text, we will refer to the latter as the Gröbner 
structure on Trop(I).

Finally, let us recall the definition of Grassmannians.

Definition 2.9. Let 1 ≤ k ≤ n. In the following, we will abbreviate the n-element set {1, . . . , n} by [n]
and the set of all k-element subsets of [n] by 

([n]
k

)
. The Grassmannian Gr(k, n) is the variety defined 

by the ideal

Ik,n :=
〈
PI, J

∣∣ I ∈ ( [n]
k−1

)
, J ∈ ( [n]

k+1

)〉⊆ K
[

pL
∣∣ L ∈ ([n]

k

)]
,

where

PI, J :=
∑
j∈ J\I

(−1)|{i∈I | i< j}|+|{ j′∈ J | j′> j}| · pI∪ j · p J\ j.

The ideal Ik,n is commonly referred to as a Plücker ideal or a Grassmann-Plücker ideal, while the PI, J

are commonly called quadratic Plücker relations. Note that PI, J is a trinomial if and only if |I ∩ J | =
k − 2, in which case we will refer to them as 3-term Plücker relations. The 3-term Plücker relations 
do not generate the Plücker ideal if n ≥ k + 3 ≥ 6, but they always generate the Plücker ideal up to 
saturation, see Herrmann et al. (2009, Section 2).

The tropical Grassmannian is the tropicalization of the variety of the Plücker ideal, and we will 
denote it by TGrp(k, n) := Trop(Ik,n), where p is the characteristic of the field K . This is well-defined, 
as the tropical Grassmannian only depends on the characteristic of K , since the coefficients of the 
Plücker relations are integers.
6



D. Bendle, J. Böhm, Y. Ren et al. Journal of Symbolic Computation 120 (2024) 102224
Fig. 2. The bipartite graph � illustrating the computation of the tropical variety Trop(I).

Similarly to the classical Grassmannian, its tropicalization TGrp(k, n) is the easiest example of 
a non-trivial moduli space. Each point on TGrp(k, n) corresponds to the tropicalization of a k-
dimensional linear space in the projective space Pn−1.

In this article, we will mainly focus on the case p = 0, k = 3, and n = 8. This is a continuation of 
the two articles Speyer and Sturmfels (2004) and Herrmann et al. (2009), which discuss the tropical 
Grassmannians TGrp(2, n), TGrp(3, 6) and TGrp(3, 7).

3. Parallel computation of tropical varieties

In this section, we discuss our algorithm for computing tropical varieties, its formulation in terms 
of Petri nets, and its technical realization relying on our infrastructure for massive parallelization.

We would like to stress that computing tropical varieties in this article means computing tropical 
varieties of an arbitrary polynomial ideal specified by a finite generating set. There are special cases 
for which specialized potentially more efficient algorithms exist; for example if the ideal is zero-
dimensional (Görlach et al., 2022; Kulkarni, 2020), linear (Rincón, 2013; Hampe et al., 2019), if a 
tropical basis of the ideal is known (Jensen et al., 2017), or if the Gröbner fan coincides with a 
secondary fan, which allows to use software like topcom or mptopcom (Rambau, 2002; Jordan et al., 
2018).

We start out by recalling the building block algorithms used in our approach for computing tropical 
varieties:

3.1. Computing tropical varieties

The general framework for computing tropical varieties of polynomial ideals has remained un-
changed since its initial conception in Bogart et al. (2007) and implementation in Gfan (Jensen, 2017). 
Tropical varieties are computed by computing all Gröbner polyhedra of the Gröbner complex, which 
are contained in the tropical variety. In the special case described in Convention 2.8, the defining in-
equalities and equations can be read off classical Gröbner bases (Fukuda et al., 2007b, Proposition 2.6). 
The general case requires so-called tropical Gröbner bases (Chan and Maclagan, 2019) or, equivalently, 
standard bases (Markwig et al., 2017; Markwig and Ren, 2017).

Computing the tropical variety is best described as the traversal of the following bi-partite graph 
� illustrated in Fig. 2: Fix a polynomial ideal I � K [x]. For the sake of simplicity, assume that I is 
equidimensional, so that Trop(I) is pure. Let C be the set of all maximal Gröbner polyhedra contained 
in Trop(I). Let F be the set of facets of the polyhedra in C . Let � be the bi-partite graph with 
vertices C ∪ F and edges {(σ , τ ) ∈ C × F | σ ⊇ τ }. Note that Trop(I) and consequently � need not be 
connected unless I is primary over the algebraic closure K . To compute Trop(I), it suffices to compute 
the defining inequalities and equations of all Gröbner polyhedra in C .

The start of the traversal requires computing at least one maximal polyhedron σ ∈ C for each 
connected component of �. This can be done by adding a generic linear ideal of complementary 
dimension to I . The tropicalization of the resulting zero-dimensional ideal then yields a point on each 
connected component of Trop(I).
7



D. Bendle, J. Böhm, Y. Ren et al. Journal of Symbolic Computation 120 (2024) 102224
Given σ ∈ C , computing all adjacent τ ∈ F is done by computing all facets of the maximal polyhe-
dron σ . Given τ ∈ F , computing all adjacent σ ∈ C is more involved and done in the following two 
steps:

1. Tropical link: For any u ∈ Relint(τ ), Trop(inu(I)) is called a tropical link, as it describes Trop(I)
locally around u. It is also referred to as the star of Trop(I) (Maclagan and Sturmfels, 2015, Lemma 
3.3.6). It has a lineality space of codimension 1, which allows it to be computed using specialized 
algorithms. The computation of tropical links has been the bottleneck of the algorithm for a long 
time. This bottleneck has been resolved through newer developments.

Newer versions of gfan (v0.6 onward) rely on the algorithm in Chan (2013), which constructs the 
tropical link by computing sufficiently many and sufficiently generic projections. Our implementation 
relies on the algorithm in Hofmann and Ren (2018), which reduces the problem of constructing the 
tropical link to computing zero-dimensional tropical varieties by intersecting with tropical varieties of 
complementary dimension. The computation of the zero-dimensional tropical varieties is then done 
with polynomial system solving techniques over local fields. Both algorithms rely heavily on the sim-
ple combinatorial structure of the tropical link.
2. Gröbner walk: The Gröbner walk (Collart et al., 1997; Fukuda et al., 2007a) is a well-established 
technique for transforming Gröbner bases with respect to one ordering to another. It is used to com-
pute Gröbner bases with respect to the different orderings required to read off the inequalities and 
equations of the Gröbner cones in the special case described in Convention 2.8. There is a straight-
forward generalization of the Gröbner walk to standard bases for the general case (Markwig and Ren, 
2017), the only difficulty being the construction of the Gröbner polyhedra. Constructing Gröbner cones 
for the case in Convention 2.8 relies heavily on computing reduced Gröbner bases, and the absence of 
a well-ordering renders the reduction process impossible. If the ideal is homogeneous however, the 
ordering on it is still sufficiently close to a well-ordering that it allows for a partial reduction of the 
standard basis that is sufficient for constructing Gröbner polyhedra.

3.2. Massive parallelization in computer algebra

Our implementation builds on a framework for massively parallel computations in computer al-
gebra (Böhm et al., 2021b; Ristau, 2019), which combines the computer algebra system Singular

with the workflow management system GPI-Space. This framework originated in work on a parallel 
smoothness criterion for algebraic varieties (Böhm et al., 2021b; Ristau, 2019), and has been used in 
Reinbold (2018); Böhm et al. (2021a) to realize a massively parallel traversal of a complete fan for 
computing GIT-fans. For an overview and more applications, see Böhm and Frühbis-Krüger (2021); 
Böhm et al. (2018) and Bendle et al. (2020a,b, 2021), respectively. The results of the current section 
extend the traversal of complete fans developed for the GIT-fan algorithm to pure fans connected in 
codimension with application to the computation of tropical varieties. The results are based on the 
thesis of the first author (Bendle, 2018).

The workflow management system GPI-Space is based on the idea of separation of coordination 
and computation (Gelernter and Carriero, 1992). In the coordination layer it uses the language of 
Petri nets (Petri, 1962) to model a computer program in the form of a concurrent system. It allows 
for running parallel computations on anything from a personal computer to large scientific computing 
clusters, and consists of the following three main components (Böhm et al., 2021b, Section 4):

(1) a distributed runtime system managing available resources and assigning jobs to resources,
(2) a virtual memory layer allowing processes to communicate and share data,
(3) a workflow manager tracking the global structure and state of a program formulated in terms of 

a so-called Petri net.

Definition 3.1. A Petri net is a finite bipartite directed graph N = (P , T , F ), where P and T are disjoint 
vertex sets called places and transitions respectively, and where the set of edges F ⊆ (P × T ) ∪ (T × P )

is called the set of flow relations. Given p ∈ P and t ∈ T , we call p an input to t if (p, t) ∈ F and p an 
output of t if (t, p) ∈ F .
8
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consume empty
if empty(	)

split
if not empty(	)

e

Fig. 3. Petri net unwrapping a list.

Petri nets depict a static model of the algorithm, with transitions representing processes and places 
which can hold data passed between them. The dynamics of the algorithm, i.e., its execution, is de-
scribed via the notion of markings representing the data present on the places:

Definition 3.2. Let (P , T , F ) be a Petri net. A marking M is a map M : P → N≥0, and we say a place 
p ∈ P holds k tokens under M if M(p) = k.

We call a transition t ∈ T enabled if M(p) > 0 for all p ∈ P with (p, t) ∈ F . In this case, the 
transition t may be fired by consuming one token of each input and returning one token in each 
output, which leads to a new marking M ′ given by

M ′(p) := M(p) − |{(p, t)} ∩ F | + |{(t, p)} ∩ F |
for all p ∈ P . We denote the firing process by M

t−→ M ′ . A Petri net with a marking is executed by 
firing a random enabled transition.

An important principle one usually adheres to in modeling the state of algorithms via markings in
GPI-Space is locality: Firing enabled transitions should not block other enabled transitions from firing 
simultaneously.1 To ensure this, one can, for example, impose restrictions on places in a way that 
any token that is in an input to multiple transitions can only be consumed by a single well-defined 
transition.

Example 3.3. In Fig. 3 we show an example of a Petri net, which unwraps a list of tokens. In illustra-
tions of Petri nets, places are drawn as circles while transitions are shown as boxes. In the illustration, 
we specify conditions using the notation “if (not) condition”. Note that conditions usually refer-
ence names of places while the conditions are actually imposed on the tokens held by the respective 
places. In the example, both split and consume empty have input 	. However, split only con-
sumes non-empty lists from 	 splitting off one entry and placing it on e, while consume empty
only consumes empty lists. Thus, there is always a single well-defined transition that can fire.

While markings are the basic tool for describing the dynamics of algorithms (and in the funda-
mental theory the only tool), there are two important extensions of the concept of Petri nets realized 
in GPI-Space to facilitate the efficient use of Petri nets for practical programming purposes: Tokens 
are allowed to carry data (this corresponds in the theory to so called colored Petri nets). Moreover, 
transitions are allowed to take some time to execute, accommodating the situation that transitions 
have consumed their input, but have not yet produced their output (referred to as timed Petri nets).

As a consequence of locality, enabled transitions may fire simultaneously. This includes single en-
abled transitions with enough input tokens to fire multiple times (Fig. 4 top), which is referred to as 
data parallelism, and multiple enabled transitions with separate input tokens (Fig. 4 bottom), which is 
referred to as task parallelism.

3.3. Parallel traversals of tropical varieties

Fig. 5 shows the Petri net modeling the traversal of tropical varieties as outlined in Section 3.1. 
In addition to the standard Petri net arrows, dashed arrow indicate read-only access to places (typi-
cally containing a single token). Moreover, dotted arrows indicate read/write access of transitions to 

1 A typical exception to this principle is a Petri net in which multiple transitions utilizing different algorithms but producing 
identical results for identical input compete for a given amount of tokens on a common input place.
9



D. Bendle, J. Böhm, Y. Ren et al. Journal of Symbolic Computation 120 (2024) 102224
t t
t2

s

t1

t2

s

t1

t2

t1t2

Fig. 4. Data parallelism (top) and task parallelism (bottom).
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Fig. 5. Petri net modeling the traversal of a tropical variety.

storage units. A token consumed by the transition governs which data is written to or read from the 
storage unit. The determination of the maximal cones relies on the computation of Gröbner bases in 
combination with convex geometry, while the computation of the neighboring cones requires to find 
tropical links. We separate these fundamental task to accommodate different job sizes. The Petri net 
consists of the following places and transitions.

Place s: This place holds a single control token which allows the transition starting cone to fire 
exactly once at the start of the computation.
Place I: This place contains read-only input data including the given ideal and its symmetries, which 
are required by the transitions computing the starting cone, its facets and neighbors.
Transition starting cone: Computes a random maximal Gröbner cone of the tropical variety and 
places it on m. This happens exactly once, at the beginning of the computation, since the transition 
consumes the structureless token indicted as a black dot in the figure.
Place m: This place holds the maximal Gröbner cones of the tropical variety as they are produced in 
the course of the algorithm and are supposed to be inserted into the external storage.
Transition store cone: Takes a Gröbner cone and inserts it into the external storage as long as the 
cone is not already processed. Subsequently, it replaces the boolean token in e1 by true or false
depending on whether unprocessed cones remain in the storage.
Place e1: Holds a single token with value true if the storage contains unprocessed cones, and false
otherwise. This token is consumed and written by the transitions store cone and get cone thus 
preventing both transitions to access the storage simultaneously.
Transition get cone: Retrieves an unprocessed Gröbner cone and marks it as processed, provided 
that e1 holds a token with value true.
Transition facets: Computes the facets of a Gröbner cone.
10
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Table 1
Timings for computing the tropical Grassmannians TGr0(3, 7) and TGr0(3, 8) in parallel.

TGr0(3,7)

nodes cores time [s] speedup eff.

1 1 792.8 1.000 1.000
1 2 382.8 2.070 1.035
1 4 191.1 4.147 1.037
1 8 98.1 8.080 1.001
1 12 74.1 10.691 0.891
1 16 58.0 13.653 0.853
2 24 42.8 18.522 0.772
2 32 39.7 19.942 0.623

TGr0(3,8)

nodes cores time [s] speedup eff.

1 15 98926.1 *15.000 *1.000
2 30 37398.7 39.675 1.322
4 60 14486.3 102.435 1.707
8 120 6597.3 224.925 1.874
16 240 3297.9 449.955 1.874
24 360 2506.0 592.125 1.645
32 480 2001.7 741.285 1.544
40 600 1509.6 982.935 1.638
48 720 1267.3 1170.855 1.626
56 840 1188.2 1248.825 1.487

Transitions store facet and get facet: These are analogous to store cone and get cone, 
handling facets instead of cones.
Place e2: Analogous to place e1 for the case of facets.
Transition neighbors: Computes all maximal Gröbner cones of the tropical variety which are inci-
dent to a given facet.

The algorithm terminates if e1 and e2 each hold a token with value false, that is, no unprocessed 
cones and facets remain in the storages, and moreover the input places to store cones and store 
facet are empty. This is checked via token counters, which were omitted from Fig. 5 for clarity of 
presentation.

3.4. Timings for the tropical Grassmannian

Table 1 illustrates the timings (in seconds) for computing the tropical Grassmannians TGr0(3, 7)

and TGr0(3, 8) in dependence of the number of CPU cores used in the respective computation. More-
over, the column speedup lists the ratios between the single- and multi-core computation times, 
while the column efficiency specifies the parallel efficiency obtained by dividing the speedup 
by the number of cores. Note that, due to the size of TGr0(3, 8), a sequential (1-core) computation 
was not feasible. All efficiency numbers are thus based on the 15 core timing (marked with ∗ in 
Table 1).

The computations were run on a cluster at the Fraunhofer ITWM (Fraunhofer ITWM, 2018). Each 
node of the cluster is fitted with two Intel Xeon E5-2670 processors and 64 GB of memory, amount-
ing to 16 CPU cores per node at a base clock of 2,6 GHz (no hyperthreading). The computations of 
TGr0(3, 8) were done with a fixed configuration of 15 compute jobs and one storage interface job per 
node.

As shown in Table 1, computing TGr0(3, 7) scales favorably up to 8 CPU cores, whereafter a notice-
able drop in efficiency can be observed. This is expected, since up to symmetry TGr0(3, 7) is covered 
by only 125 cones, and hence eventually the number of cores exceeds the maximum queue size.

Fig. 6 shows the timings and the efficiency graph for TGr0(3, 8). The timings scale very well, with 
no significant drop in efficiency, even to more than 800 cores. Due to the significantly larger size of 
TGr0(3, 8) we do not encounter the queue size effect. There is no visible decrease in efficiency when 
increasing the core count (as one perhaps would have expected from classical multi-threaded settings 
of parallelism due to increased communication overhead).

In fact, we observe a surprising surge in efficiency around 60 cores. One should note that a com-
prehensive analysis of this behavior is non-trivial due to the interaction of various algorithmic and 
technical effects. We have identified two possible explanations the observed behavior: One reason we 
attribute to technical properties of the cluster hardware: In Böhm et al. (2021b), experiments on the 
same cluster with another algorithm have shown that distributing the number of used processor cores 
over more machines can lead to a speedup, which is arising from mitigating a memory bottleneck. 
However, leading to a speedup in a range of about 30%, this can only partially explain the behavior 
of the efficiency graph, which we attribute mainly to a different effect, which was also observed in 
11
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Fig. 6. Timings and efficiency of TGr0(3,8).

Böhm et al. (2021b) in a different setting (testing smoothness of algebraic varieties): Massively paral-
lel implementations can lead to a superlinear speedup by allowing the randomized algorithm to find a 
faster path to the final result. In our setting different paths correspond to different choices of distinct 
sets of representatives of the orbits under the finite symmetry group action. It is important to note 
that although in theory such an effect can also be realized by time-slicing on one or few cores, this 
is not at all practicable in our setting since continued loading and unloading of large amounts of data 
is highly inefficient. Taking advantage of the observed speedup thus requires a honestly massively 
parallel approach.

4. Tropical Grassmannians and Dressians

In this section, we compare the tropical Grassmannian TGr0(3, 8) to the Dressian Dr(3, 8) de-
scribed in Herrmann et al. (2014), i.e., we compare the moduli of realizable tropical linear spaces or 
realizable valuated matroids with the moduli of all tropical linear spaces or valuated matroids. The 
main difficulty stems from the fact that both are covered by thousands of cone orbits with respect to 
the sizeable group S8. We begin with a brief introduction and some formal definitions.

Definition 4.1. Let 1 ≤ k ≤ n and recall the 3-term Plücker relations PI, J from Definition 2.9. The 
Dressian Dr(k, n) is the intersection of their tropical hypersurfaces:

Dr(k,n) :=
⋂
I, J

Trop(P I, J ),
12
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where the intersection is taken over all sets I ∈ ( [n]
k−1

)
, J ∈ ( [n]

k+1

)
with |I ∩ J | = k − 2. By definition, the 

Dressian is the support of the common refinement of the Gröbner subfans covering Trop(P I, J ). We 
refer to this polyhedral fan as the Plücker structure and we will use Dr(k, n) to denote both the set 
and the polyhedral fan covering it.

Unlike the Gröbner structure on TGrp(k, n), the Plücker structure is the coarsest possible structure 
on Dr(k, n): for any two vectors that lie in distinct maximal cones there is a tropical 3-term Plücker 
relation whose maximum is attained twice, but on different terms. Thus, a positive combination of 
these vectors attains the maximum only at a single term.

The Dressian is a tropical prevariety, i.e., it is the intersection of the tropical hypersurfaces of a 
finite generating set. Usually, tropical prevarieties and tropical varieties have little in common besides 
one being trivially contained in the other. In fact, merely testing both objects for equality is a hard 
task (Theobald, 2006; Görlach et al., 2021), and it is unclear what distinguishes a generating set for 
whom equality holds, commonly called a tropical basis (Joswig and Schröter, 2018).

Due to the inherent combinatorics of the Plücker ideal and the 3-term Plücker relations, the Dres-
sian is interesting for many reasons:

• The Dressian is the moduli space of all tropical linear spaces, also known as valuated matroids. 
Similar to the Grassmannian in algebraic geometry, the Dressian can be regarded as one of the 
simplest moduli spaces in tropical geometry.

• The hypersimplex 
(k, n) is the moment polytope for the torus action on the complex Grassman-
nian. The Dressian Dr(k, n) consists of all points in the secondary fan of 
(k, n) which induce 
matroid subdivisions (Gel’fand et al., 1987; Maclagan and Sturmfels, 2015). Moreover, the Plücker 
structure coincides with the secondary fan structure on Dr(k, n) (Olarte et al., 2019).

• Recent work of Huh and Brändén (Brändén and Huh, 2020, Theorem 8.7) regard the Dressian 
Dr(d, n) as the tropicalization of the space of Lorentzian polynomials supported on 
(d, n), i.e., 
on the basis of the uniform matroid of rank d on n elements.

There are several explicit computational and theoretical results which relate the Dressian to the 
tropical Grassmannian sitting inside it. In particular, all existing computations verify that the Plücker 
structure of the Dressian coarsens the Gröbner fan structure of the tropical Grassmannian in charac-
teristic p = 0, i.e., that there is a subfan of the Dressian supported on the tropical Grassmannian. This 
subfan is generally strictly coarser than the Gröbner fan restricted to it. A brief summary of these 
structures can be found in Remark 4.2 and Remark 4.3.

Remark 4.2. The tropical Grassmannian TGrp(2, n) with the Gröbner structure is independent of the 
characteristic, has 2n−1 − n − 1 rays in �n−3

2 � orbits and (2n − 5)!! maximal cones. The number of 
Sn-symmetry classes equals the number of trivalent trees with n leaves (OEIS Foundation Inc., 2020, 
A000672). It is the moduli space of tropical lines, phylogenetic trees with n labeled leaves, and tropi-
cal rational curves of genus 0 with n marked points. This structure is the coarsest fan structure. The 
tropical Grassmannian and Dressian agree. The rays correspond to split hyperplanes and the tropical 
Grassmannian is isomorphic to the split complex. The connected matroids in the corresponding ma-
troid subdivisions are sparse paving matroids. See Speyer and Sturmfels (2004), Herrmann and Joswig 
(2008) and Joswig and Schröter (2017) for further details.

Remark 4.3. The tropical Grassmannian TGrp(3, 6) is independent of the characteristic, the Dressian 
and tropical Grassmannian have the same support, but the Gröbner structure is a refinement of the 
Dressian. To be precise, there is a cone over a three-dimensional bipyramid in the Plücker struc-
ture which the Gröbner structure refines into three cones over tetrahedra. The tropical Grassmannian 
TGrp(3, 6) with the Gröbner structure is a simplicial fan.

The tropical Grassmannian TGrp(3, 7) depends on the characteristic. The Gröbner structure on 
TGr2(3, 7) is coarse, but not a subfan of the Dressian Dr(3, 7). The Gröbner structure on TGrp(3, 7)

is a refinement of the Plücker structure if p �= 2. The number of rays and maximal cones is summa-
13
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Table 2
The number of rays and maximal cones of the tropical Grassmannians TGrp(3, n)

for n = 6, 7 and all p with the Gröbner structure (G) inherited from the Gröbner 
fan or the coarsest Plücker structure (D) inherited from the Dressian. The columns 
“orbits” contain the number of Sn orbits of rays resp. maximal cones.

d n p G/D # rays # orbits # max. cones # orbits

3 6 any G 65 3 1035 7
3 6 any D 65 3 1005 7
3 7 p = 2 G 751 7 252 420 125
3 7 p �= 2 G 721 6 252 000 125
3 7 p �= 2 D 616 5 211 365 94

rized in Table 2. Further details can be derived from Speyer and Sturmfels (2004) and Herrmann et 
al. (2009).

We extend the previous results by combining our computation in Section 3 with the following 
corrected result of Herrmann et al. (2014) describing the Dressian Dr(3, 8).

Proposition 4.4 (Herrmann et al., 2014, Theorem 31). The Dressian Dr(3, 8) is a non-pure 17-dimensional fan 
with an 8-dimensional lineality space, it consists of 15 470 rays in twelve S8-orbits and 117 595 485 cones of 
dimension 16 in 4 789 S8-orbits.

Remark 4.5. Our computations showed that the data of Herrmann et al. (2014) misses a 16-
dimensional simplicial cone of orbit size 840. The orbit is represented by a cone containing the corank 
vector of the sparse-paving matroid with non-bases 015, 024, 067, 126, 137, 235, 346, 457. It is a 
cone whose eight rays all correspond to vertex splits all lying in the same S8-orbit. The 840 cones 
are the only 16-dimensional cones with that property.

The following theorem is a summary of a large scale computation using Singular, polymake and 
the framework described in Section 3.

Theorem 4.6. The Gröbner subfan supported on the tropical Grassmannian TGr0(3, 8) is a 16-dimensional fan 
with an 8-dimensional lineality space, it consists of 732 725 rays in 95 S8-orbits and 278 576 760 maximal 
cones in 14 763 S8-orbits.

Moreover, the coarsest fan structure supported on TGr0(3, 8) is the Plücker structure, i.e., a subfan of the 
Dressian, consisting of 15 470 rays in twelve S8-orbits and 117 445 125 maximal cones in 4 766 S8-orbits.

Proof. We computed the tropical Grassmannian TGr0(3, 8) with the Gröbner structure using the 
methods of Section 3.

In order to confirm that the Plücker structure on TGr0(3, 8) is well-defined, we tested that the 
relative interior of any 16-dimensional Dressian cone is either contained in or disjoint to TGr0(3, 8). 
For that, we verified that any maximal Gröbner cone on TGr0(3, 8) is contained in a 16-dimensional 
Dressian cone, and that every 15-dimensional Gröbner cone on TGr0(3, 8) intersecting the relative 
interior of a 16-dimensional Dressian cone is contained in exactly two maximal Gröbner cones. �
Remark 4.7. It is known that the Dressian Dr(3, 8) has 14 S8-orbits of 17-dimensional cones whose 
relative interior does not intersect the tropical Grassmannian TGr0(3, 8) as each matroid subdivision 
induced by such relative interior point contains a parallel extension of the Fano matroid as a cell; see 
Hampe et al. (2019, Remark 5.4).

Moreover, there are 23 S8-orbits of 16-dimensional cones in the Dressian Dr(3, 8) whose relative 
interior does not intersect the tropical Grassmannian TGr0(3, 8) as well. All of these cones sit in one of 
the 17-dimensional cones and each matroid subdivision induced by a relative interior point contains 
a cell that is either the matroid polytope of a parallel extension of the Fano matroid or a principle 
extension of a circuit hyperplane of the Fano matroid.
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Thus, the following polynomial is a witness for the aforementioned of all these 37 = 14 + 23
Dressian orbits:

f :=2 p123 p467 p567 − p367 p567 p124 − p167 p467 p235 − p127 p567 p346 − p126 p367 p457

− p237 p467 p156 + p134 p567 p267 + p246 p567 p137 + p136 p267 p457 ∈ I3,7 ⊂ I3,8,

i.e., for any of the aforementioned 37 orbits D ⊆ Dr(3, 8) there exists a Dressian cone σ ∈ D such 
that inw( f ) = 2 · p123 p467 p567 for all relative interior points w ∈ Relint(σ ).

This observation agrees with Hampe et al. (2019, Proposition 5.5), which states that regular ma-
troid subdivisions that contain matroid polytopes of extensions of the Fano matroid lead to points in 
the Dressian that are not on the tropical Grassmannian.

As an immediate consequence, we get:

Theorem 4.8. The quadratic Plücker relations together with the cubic polynomials in the S8-orbit of f form a 
tropical basis of the Plücker ideal I3,8.

Proof. By definition, the Plücker relations generate the Plücker ideal I3,8. Recall that Dr(3, 8) is 17-
dimensional. By Remark 4.7 or alternatively (Hampe et al., 2019, Remark 5.4), the polynomials in 
S8 · f are witnesses for all 17-dimensional cones of Dr(3, 8), i.e., for every point w inside a 17-
dimensional cone of Dr(3, 8) there is a σ ∈ S8 with w /∈ Trop(σ · f ). In Theorem 4.6 we verified that 
any 16-dimensional cone of Dr(3, 8) either lies on TGr0(3, 8) or has a relative interior disjoint to it. 
In Remark 4.7, we verified that the polynomials in S8 · f are witnesses for the latter. �

During our computations, we also encountered the following phenomenon, which will be relevant 
for Section 6.2. Unfortunately, this structural result does not hold for higher tropical Grassmannians 
as we discuss in Section 7.

Theorem 4.9. For any v ∈ TGr0(3, 8) and w ∈R56 we have

v and w lie in the relative interior of the same cone of Dr(3,8)

⇐⇒ inw(I3,8) : p∞ = inv(I3,8) : p∞,

where (·) : p∞ denotes the saturation by the product of all Plücker variables.

Proof. The statement was proven through explicit computations in Singular. Note that it suffices to 
verify that weight vectors in the same Dressian cone have the same saturated initial ideal, because 
weight vectors in different Dressian cones have different saturated initial ideals:

Let w, v ∈ TGrp(k, n) be in two distinct Dressian cones, which means there exist a three term 
Plücker relation P = s0 + s1 + s2 such that inw(P) �= inv(P), and assume that inw(Ik,n) : p∞ =
inv(Ik,n) : p∞ . We now distinguish between two cases.

The first case is inw(P) �=P and inv(P) �=P , say inw(P) = s0 + s1 and inv(P) = s0 + s2. Then

s0 = inw(inv(P)) ∈ inw(inv(Ik,n) : p∞) = inw(inw(Ik,n) : p∞) ⊆ inw(Ik,n) : p∞

contradicting that inw(Ik,n) and inv(Ik,n) are monomial free. Note that the inclusion above holds 
because inw(inw(Ik,n) : p∞) is generated by elements of the form inw(h) with pα · h ∈ inw(Ik,n), and 
because we have pα · inw(h) = inw(pα · h) ∈ inw(inw(Ik,n)) = inw(Ik,n), i.e., inw(h) ∈ inw(Ik,n) : p∞ .

The second case is inw(P) = P or inv(P) = P , say inw(P) = s0 + s1 + s2 and inv(P) = s0 + s2. 
As s0 + s1 + s2 and s0 + s2 are elements of inw(Ik,n) and inv(Ik,n), respectively, both polynomials 
are also elements of their saturation which coincide by assumption. Hence, s1 = (s0 + s1 + s2) − (s0 +
s2) ∈ inw(Ik,n) : p∞ = inv(Ik,n) : p∞ , again contradicting that inw(Ik,n) and inv(Ik,n) are monomial 
free. �
15
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> ring r = 0,(a,b,c,d,x,y),dp;
> ideal I = x*(a-b)-y*(c-d), x*(c-d)-y*(a-b);
> LIB "tropical.lib";
> tropicalVariety(I);
RAYS MAXIMAL_CONES
-1 0 0 0 0 0 # 0 {0 2} # Dimension 4
-1 -1 0 0 -1 0 # 1 {1 2}
-1 -1 0 0 0 0 # 2 {2 3}
-1 -1 0 0 1 0 # 3 {0 7}
0 0 0 0 -1 0 # 4 {0 11}
0 0 0 0 1 0 # 5 {1 4}
0 -1 0 0 0 0 # 6 {3 5}
0 0 -1 0 0 0 # 7 {2 6}
1 1 0 0 -1 0 # 8 {4 8}
1 1 0 0 0 0 # 9 {5 10}
1 1 0 0 1 0 # 10 {6 7}
1 1 1 0 0 0 # 11 {6 11}

{7 9}
LINEALITY_SPACE {8 9}
1 1 1 1 0 0 # 0 {9 10}
0 0 0 0 1 1 # 1 {9 11}

Fig. 7. Singular code for Example 4.10 (output cleaned up for clarity).

Fig. 8. Tropical variety in Example 4.10.

In general, the Gröbner structure on a tropical variety is far from being as coarse as possible, 
which incurs many iterations in the traversal of the tropical variety that might seem unnecessary. 
For example, there is a maximal cone in the tropical Grassmannian TGr0(3, 8) equipped with the 
Plücker structure that is refined into 2620 maximal cones with the Gröbner structure. Therefore, an 
important open question is whether the tropical variety can be equipped with a natural polyhedral 
structure that is coarser than that of the Gröbner fan.

Theorem 4.9 states that saturated initial ideals provide such a structure for the tropical Grassman-
nian TGr0(3, 8). While it is unknown whether it holds for all tropical Grassmannians over fields of 
characteristic 0, the result does not generalize to arbitrary tropical varieties. The following shows a 
tropical variety where gluing the Gröbner cones with the same saturated initial ideal yields a set of 
cones that do not fit together as a polyhedral fan:

Example 4.10. Consider the homogeneous ideal

I := 〈x(a − b) − y(c − d), x(c − d) − y(a − b)〉 �C{{t}}[a,b, c,d, x, y].
Fig. 7 shows a Singular computation which reveals that its tropical variety Trop(I) in R6 is four-
dimensional with a two-dimensional lineality space. The Gröbner subfan supported on Trop(I) con-
sists of 12 rays and 16 maximal cones. Fig. 8 shows the intersection Trop(I) with Lin(e1, e2, e3, e5), 
which removes the two-dimensional lineality space and whose maximal cones are contained in either 
16
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Lin(e1, e2, e3) or Lin(e1 + e2, e5). In other words, the following equality holds both in terms of sets 
and polyhedral complexes:

Trop(I) =
((

Trop(I) ∩ Lin(e1, e2, e3)
)∪ (Trop(I) ∩ Lin(e1 + e2, e5)

))
+ Lin(e1 + e2 + e3 + e4, e5 + e6).

The intersection Trop(I) ∩ Lin(e1, e2, e3) resembles the standard tropical plane in R3 with two op-
posing maximal cones barycentrically subdivided, while the intersection Trop(I) ∩ Lin(e1 + e2, e5)

resembles R2 divided into octants. In the second intersection all saturated initial ideals with re-
spect to relative interior points of maximal cones are generated by a − b and c − d, which can easily 
checked by hand: I contains the polynomials p = (x2 − y2)(a − b) and q = (x2 − y2)(c − d), and for 
any weight vector of the form w = λ1 · (e1 +e2) +μe5 with μ �= 0 the initial forms inw(p) and inw(q)

will be monomial multiples of a − b and c − d, respectively. Therefore, gluing all Groebner cones of 
Trop(I) that have the same initial ideal does not yield a polyhedral fan.

5. Computing positive tropicalizations

In this section, we recall the notion of positive tropicalization by Speyer and Williams (2005). 
Further, we introduce algorithms for testing which maximal-dimensional Gröbner cones lie in the 
positive tropicalization. These algorithms exploit the symmetry of the tropical variety even though 
the positive tropicalization inside of it may not be symmetric with respect to it.

We distinguish between cones whose initial ideals are binomial and cones whose initial ideals 
are not. For binomial cones, we state a simple combinatorial algorithm. For non-binomial cones, we 
reduce the problem to dimension zero which can then be tackled symbolically, numerically or with a 
mix of both. In Remark 5.18 we briefly discuss the challenges of testing whether lower-dimensional 
cones lie in the positive tropicalization.

Convention 5.1. For the remainder of the section, let K :=C{ {t} } be the field of complex Puiseux series 
and let R>0 denote the set of complex Puiseux series whose lowest term is real and positive:

R>0 :=
{∑

α≥λ

cαtα ∈ K
∣∣ 0 �= cλ ∈ R> 0

}
.

Fix an ideal I � K [x] := K [x1, . . . , xn] that is generated over the subfield of real Puiseux series, i.e., 
Puiseux series with real coefficients. In particular, any Gröbner basis of I will consist of polynomials 
whose coefficients are real Puiseux series and any initial ideal of I will be generated over R[x].

We will further assume that there is a group S acting on K [x] via signed permutation of the 
variables, i.e., for each group element σ ∈ S there is a permutation |σ | ∈ Sn and a sign vector uσ ∈
{±1}n such that σ · xi = uσ ,i · x|σ |(i) . The action of S on K [x] induces an action of S on K n acting via 
signed permutation of the coordinates. By considering the coordinatewise valuation (K ∗)n →Rn , we 
in turn obtain an action of S on Rn acting via (unsigned) permutations of the coordinates.

We will assume that I � K [x] is invariant under the action of S on K [x], so that both V (I) ⊆ K n

and Trop(I) ⊆Rn are invariant under the action of S on their ambient spaces.

Example 5.2. Consider the following action of the symmetric group on n-elements Sn on the polyno-
mial ring K [xI | I ∈ ([n]

k

)]:
Sn × K

[
xI | I ∈ ([n]

k

)]→ K
[
xI | I ∈ ([n]

k

)]
, (σ , xI ) �→ σ · xI := sgn(σ (I)) · xσ (I),

where for I = {i1, . . . , ik} with i1 < · · · < ik the sign sgn(σ (I)) is (−1) raised to the number of trans-
positions needed to sort the tuple (σ (i1), . . . , σ(ik)).

One can show that the Plücker ideal In,k is invariant under the Sn action above. Hence, for any p
the tropical Grassmannian TGrp(3, 8) is invariant under the action

Sn ×R(n
k) → R(n

k),
(
σ , (w I )I∈([n])

) �→ (wσ (I))I∈([n]).
k k

17
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Definition 5.3. We define the positive tropicalization of the variety of I � K [x] to be

Trop+(I) := cl
(
ν
(

V (I) ∩ (R>0)
n))⊆ Rn,

where again ν(·) denotes coordinatewise valuation and cl(·) denotes the closure in the euclidean 
topology.

For the sake of convenience, we call a weight vector w ∈Rn , an initial ideal inw(I) �C[x], and a 
Gröbner cone C w(I) ⊆ Trop(I) positive if w ∈ Trop+(I).

Note that under the Fundamental Theorem of Tropical Geometry, positive tropical varieties also 
admit an algebraic description:

Proposition 5.4 (Speyer and Williams, 2005, Proposition 2.2). Let I � K [x] be an ideal. Then

Trop+(I) =
{

w ∈Rn
∣∣ inw(I) monomial free and inw(I) ∩R≥0[x] = 〈0〉

}
.

In particular, Trop+(I) is covered by all positive Gröbner cones if I is homogeneous.

As an easy corollary, we get that positivity only depends on the saturated initial ideals, which will 
be relevant in Section 6.2.

Corollary 5.5. Let I � K [x] = K [x1, . . . , xn] be an ideal and let w, v ∈Rn be two weight vectors with inw(I) :
(
∏n

i=1 xi)
∞ = inv(I) : (∏n

i=1 xi)
∞ . Then

w ∈ Trop+(I) ⇐⇒ v ∈ Trop+(I)

Proof. The statement follows directly from the following two easy equivalences:

• inw(I) is monomial free if and only if inw(I) : (∏n
i=1 xi)

∞ �= 〈1〉,
• inw(I) ∩R≥0[x] = 〈0〉 if and only if (inw(I) : (∏n

i=1 xi)
∞) ∩R≥0[x] = 〈0〉. �

5.1. Binomial cones

We decide positivity of binomial cones using the description of Proposition 5.4. Note that in this 
paper a binomial is a polynomial with exactly two distinct monomials, and a binomial ideal is an ideal 
generated by binomials. We begin by recalling a well-known result on the Gröbner bases of binomial 
ideals, and derive an easy test for positivity of binomial ideals from it.

Proposition 5.6 (Eisenbud and Sturmfels, 1996, Proposition 1.1). Any reduced Gröbner basis of a binomial 
ideal consists of binomials or monomials.

Lemma 5.7. Let J �R[x] be a monomial-free binomial ideal, G ⊆ J a reduced Gröbner basis of J with respect 
to any ordering >. Then

J ∩R≥0[x] = 〈0〉 ⇐⇒ G ∩R≥0[x] = ∅.

Proof. ⇒: Trivial, as G ⊆ J and 0 /∈ G .
⇐: By Proposition 5.6 and because J is monomial-free, the Gröbner basis G consists solely of bi-
nomials. Since each element of G is normalized by definition, it contains only normalized binomials 
whose non-leading coefficient must be negative. Then the S-polynomial of any polynomial f ∈ R[x]
with respect to a Gröbner basis element g ∈ G ,

spoly>( f , g) := lcm(LT>( f ), LT>(g)) · f − lcm(LT>( f ), LT>(g)) · g,

LT>( f ) LT>(g)

18
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will preserve the parity of f , i.e., if f ∈ R≥0[x] then also spoly>( f , g) ∈ R≥0[x], possibly
spoly>( f , g) = 0.

Now assume there is a non-zero polynomial f ∈ J ∩R≥0[x]. As G is a Gröbner basis, dividing f
with respect to G will yield remainder 0. However, the division with respect to G is merely a nested 
chain of S-polynomials of f with respect to a sequence (g1, . . . , gr) of possibly repeating elements 
gi ∈ G:

spoly>(spoly>(. . . spoly>( f , g1) . . . , gr−1)︸ ︷︷ ︸
=: fr �=0

, gr) = 0.

Abbreviating the penultimate non-zero S-polynomial with fr , this implies two things: First, as 
spoly>( fr, gr) = 0, fr must be a multiple of gr . Second, because spoly preserves the parity of f
and f ∈ R≥0[x], we also have fr ∈ R≥0[x]. Both together contradict that G contains only binomials 
with a positive and a negative coefficient. �
Proposition 5.8. Let C w(I) ⊆ Trop(I) be a maximal cone with inw(I) binomial, and let G ⊆ inw(I) be a 
reduced Gröbner basis of inw(I) with respect to any ordering >. Then for any element σ ∈ S we have

σ · C w(I) ⊆ Trop+(I) ⇐⇒ σ · G ∩R≥0[x] = ∅ and σ · G ∩R≤0[x] = ∅.

Proof. As G ⊆ inw(I) is a reduced Gröbner basis with respect to the ordering >, σ · G ⊆ inσ ·w(I) will 
be a Gröbner basis with respect to the ordering >σ defined by

xα >σ xβ :⇐⇒ xσ ·α > xσ ·β,

where σ acts on the exponent vectors as it does on the weight space Rn .
By Proposition 5.6, G consists solely of binomials and hence so does σ · G . Moreover, σ · G is 

reduced up to normalization. It is reduced up to multiplication by ±1, since σ acts by signed permu-
tation. The claim then follows from Lemma 5.7. �
Example 5.9. Consider the Grassmannian Gr(2, 5), whose Plücker ideal I is generated by the following 
3-term Plücker relations:

I := 〈p12 p34 − p13 p24 + p14 p23, p02 p34 − p03 p24 + p04 p23, p01 p34 − p03 p14 + p04 p13,

p01 p24 − p02 p14 + p04 p12, p01 p23 − p02 p13 + p03 p12〉 �C{{t}}[pij |0≤i< j≤4].
The Petersen Graph in Fig. 9 illustrates the combinatorics of the tropical Grassmannian TGr0(2, 5)

modulo its 5-dimensional lineality space generated by∑
0≤i< j≤4

i �=k �= j

ei j for k = 0, . . . ,4,

where ei j denotes the unit vector in direction of pij in the weight space. Each vertex denotes a 
ray generated by the negative of the inscribed unit vector, and each edge denotes a maximal cone 
spanned by two rays. The edges in red are the maximal cones inside the positive tropical Grassman-
nian TGr+(2, 5).

The weight vector w := −e01 − e23 lies in the interior of a maximal cone C w (I). Its corresponding 
initial ideal inw(I) is generated by the following binomial reduced Gröbner basis:

G :={p02 p13 − p12 p03, p02 p14 − p12 p04, p02 p34 − p03 p24, p03 p14 − p13 p04,

p12 p34 − p13 p24}.
Thus, according to Lemma 5.7, w is contained in TGr+(2, 5). Moreover, consider the two transposi-
tions (14), (34) ∈ S5, which act on the coordinate ring as follows:
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e01

e23

e04 e12

e34

e24

e14

e13 e03

e02

w

(34)

(14)

Fig. 9. The tropical Grassmannian TGr+(2, 5) and its positive cones. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

(14) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p01 �→ p04, p13 �→ −p34,

p02 �→ p02, p14 �→ −p14,

p03 �→ p03, p23 �→ p23,

p04 �→ p01, p24 �→ −p12,

p12 �→ −p24, p34 �→ −p13,

and (34) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p01 �→ p01, p13 �→ p14,

p02 �→ p02, p14 �→ p13,

p03 �→ p04, p23 �→ p24,

p04 �→ p03, p24 �→ p23,

p12 �→ p12, p34 �→ −p34.

Applying them to G yields

(14) · G =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−p02 p34 + p24 p03,

−p02 p14 + p24 p01,

−p02 p13 + p03 p12,

−p03 p14 + p34 p01,

p24 p13 − p34 p12

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ and (34) · G =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p02 p14 − p12 p04,

p02 p13 − p12 p03,

−p02 p34 − p04 p23,

p04 p13 − p14 p03,

−p12 p34 − p14 p23

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Hence, by Proposition 5.8, (14) · w = −e04 − e23 lies on the positive tropical Grassmannian TGr+(2, 5), 
whereas (34) · w = −e01 − e24 does not.

From Proposition 5.8, we obtain the following simple algorithm:

Algorithm 5.10 (Positivity of binomial cones).

Input: (G, S), where
• G ⊆ inw(I) �C[x], a reduced Gröbner basis of a binomial initial ideal inw(I),
• S , a group as in Convention 5.1.

Output: S+
w(I) := {σ ∈ S | σ · C w(I) ⊆ Trop+(I)}, the set of symmetries which map C w(I) into 

Trop+(I).
1: return

⋂
g∈G {σ ∈ S | σ · g has coefficients with mixed parity}

Remark 5.11. By Bossinger et al. (2017, Proof of Lemma 1), any maximal C w (I) ⊆ Trop(I) of multiplic-
ity one has a primary initial ideal inw(I) and a binomial radical 

√
inw(I). And since(

inw(I) positive ⇐⇒√inw(I) positive
)

and σ ·√inw(I) =√inσ ·w(I) ∀σ ∈ S,

we can use Algorithm 5.10 to test positivity within their orbit.
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5.2. Algorithm for general cones

We decide positivity of general maximal Gröbner cones using Definition 5.3. The idea is to reduce 
the problem to dimension zero, for which we can explicitly compute the signs of the finite number 
of roots.

We begin with recalling a central lemma for the proof of the Fundamental Theorem of Tropical 
Geometry, which allows us to read off positivity from the zeroes of the initial ideal.

Lemma 5.12 (Maclagan and Sturmfels, 2015, Proposition 3.2.11). Let w = (w1, . . . , wn) ∈ Trop(I), then

V (inw(I)) ∩ (C∗)n ={(t−w1 z1, . . . , t−wn zn) |
(z1, . . . , zn)∈V (I) ∩ (C{{t}}∗)n with ν(zi)=wi}.

In particular, C w(I) ⊆ Trop+(I) if and only if V (inw(I)) ∩Rn
>0 �= ∅.

Proof. For the ⊆ inclusion, consider Maclagan and Sturmfels (2015, Proposition 3.2.11) which proves 
the statement for prime ideals. To show that the same statement holds for non-prime ideals, assume 
without loss of generality that I is radical and consider a decomposition I = P1 ∩ · · · ∩ Pk , where each 
Pi is prime. It suffices to show the following which will allow us to apply (Maclagan and Sturmfels, 
2015, Proposition 3.2.11) to each Pi :√

inw(I) =√inw(P1) ∩ · · · ∩√inw(Pk).

One can show that both sides of the equation above are generated by polynomials that are weighted 
homogeneous w.r.t. w . So let h ∈ √

inw(I) be weighted homogeneous. Then for some 	 > 0 we have 
h	 ∈ inw(I). Since h	 remains weighted homogeneous, there is an f ∈ I such that inw( f ) = h	 . The 
decomposition I = P1 ∩ · · · ∩ Pk then straightforwardly implies that h ∈ √

inw(P1) ∩ · · · ∩ √
inw(Pk). 

Now let h ∈ √
inw(P1) ∩ · · · ∩ √

inw(Pk) be weighted homogeneous. Then there is an 	 > 0 such that 
h	 ∈ inw(Pi) for all i. Since h	 remains weighted homogeneous, there are f i ∈ Pi such that inw( f i) =
h	 . By considering f = f1 · . . . · fk ∈ I we can straightforwardly follow that h ∈ √

inw(I).
For the ⊇ inclusion, consider z := (z1, . . . , zn) ∈ V (I) ∩ (C∗)n with ν(z) = w . Then for any f ∈ I

we have f (z) = 0 by definition, which necessarily implies inw( f )(t−w1 z1, . . . , t−wn zn) = 0. Hence, 
z ∈ V (inw(I)) ∩ (C∗)n .

The second part note Proposition 5.4 implies that C w (I) ⊆ Trop+(I) if and only if w ∈ Trop+(I). By 
definition, the latter is equivalent to there being a z ∈ V (I) ∩ Rn

>0 with ν(zi) = wi . By the definition 
of Rn

>0 and the first part, this is then equivalent to V (inw(I)) ∩Rn
>0 �= ∅. �

The next lemma allows us to reduce the problem to dimension zero.

Lemma 5.13. Let J �R[x] be weighted homogeneous with respect to a weight vector 0 �= w =(w1, . . . , wn) ∈
Zn, say wi �= 0. Then

V ( J ) ∩ (R>0)
n �= ∅ ⇐⇒ V ( J + 〈xi − 1〉) ∩ (R>0)

n �= ∅
and moreover dim( J + 〈xi − 1〉) = dim( J ) − 1.

Proof. ⇐: Clear, as V ( J + 〈xi − 1〉) ⊆ V ( J ).
⇒: Note that the weighted homogeneity of J induces a torus action

C∗ × V ( J ) −→ V ( J ), (a, (z1, . . . , zn)) �−→ (a−w1 z1, . . . ,a−wn zn),

with wi �= 0. Hence, for any z ∈ V ( J ) ∩ (R>0)
n there exists an a ∈R∗ ⊆C∗ with a−wi · zi = 1. �

Algorithm 5.14 (reduceDim, Positivity reduced to dimension 0).
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Input: G ⊆ inw(I) a reduced Gröbner basis where C w (I) ⊆ Trop(I) is a maximal cone.
Output: H , generators of a zero-dimensional ideal J �C[x1, . . . , xn] such that

C w(I) ⊆ Trop+(I) ⇐⇒ V ( J ) ∩ (R>0)
n �= ∅.

1: Compute a basis b1, . . . , bd ∈Rn of the d-dimensional vector subspace

C0(inw(I)) = {v ∈Rn | inv(g) = g for all g ∈ G} ⊆ Rn

such that the matrix B ∈Rd×n with rows b1, . . . , bd is in row-echelon form.
2: Let � ⊆ {1, . . . , n} denote the column-indices of the pivots of B .
3: return H := G ∪ {xi − 1 | i ∈ �}.

Proof of correctness. By Lemma 5.12, we have C w (I) ⊆ Trop+(I) if and only if V (inw(I)) ∩ (R>0)
n �=

∅. By (Bogart et al., 2007, Proposition 2.4), C0(inw(I)) is the set of all vectors with respect to 
whom inw(I) is weighted homogeneous. We can thus apply Lemma 5.13 iteratively d times to ob-
tain V (inw(I)) ∩ (R>0)

n �= ∅ if and only if V ( J ) ∩ (R>0)
n �= ∅. �

Additionally, we require an algorithm for computing the signs of the roots of a zero-dimensional 
ideal. We will treat this part as a black box, and discuss various possibilities in Remark 5.17.

Algorithm 5.15 (sgns, black box for computing signs of real solutions).

Input: H ⊆ J , a generating set of a zero-dimensional ideal J �C[x1, . . . , xn].
Output: sgn(V (H) ∩ (R∗)n) ⊆ {±1}n , where sgn(·) denotes coordinatewise

R∗ −→ {±1}, z �−→
{

+1 if z > 0,

−1 if z < 0.

Combining Algorithms 5.14 and 5.15, we obtain Algorithm 5.16 for positivity within orbits of max-
imal cones.

Algorithm 5.16 (Positivity of maximal-dimensional cones).

Input: (G, S), where
• G ⊆ inw(I) a reduced Gröbner basis where C w (I) ⊆ Trop(I) is a maximal cone,
• S , a group as in Convention 5.1.

Output: S+
w(I) := {σ ∈ S | σ · C w(I) ⊆ Trop+(I)}, the set of symmetries which map C w (I) to Trop+(I).

1: Apply Algorithm 5.14: H := reduceDim(G) ⊆ K [x].
2: Apply Algorithm 5.15: B := sgns(H) ⊆ {±1}n .
3: Construct

P :=
⋃
b∈B

{σ ∈ S | σ · b ≥ 0},

where S acts on {±1}n as it acts on K n and ≥ is coordinatewise comparison.
4: return P

Remark 5.17. Computing the signs of a finite set of points V ( J ) ⊆ Cn for a zero-dimensional ideal 
J �C[x] as in Algorithm 5.15 can be done symbolically, numerically or with a mix of both.

One conceptually straightforward but not necessarily easy option is to approximate V ( J ) using 
numerical algebraic geometry. Once a point in V ( J ) is known with sufficient precision, there are 
algorithms for certifying reality (Hauenstein and Sottile, 2012) and its sign can simply be read off.

Alternatively, one can symbolically compute a triangular decomposition of J into factors of the 
form
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〈p1(x1), xd2
2 − p2(x1), . . . , xdn

n − pn(x1)〉, pi univariate polynomials,

from which one can proceed using numerical algorithms for the univariate case.

Remark 5.18. In this section, we focused on the task for Gröbner cones of maximal dimension in 
Trop(I) for containment in the positive tropicalization. Testing whether a lower-dimensional Gröbner 
cone C w(I) ⊆ Trop(I), say dim C w(I) = d − 	 for d := dim Trop(I) and for some 	 > 0, is significantly 
more difficult.

By Definition 5.3 and Lemma 5.12, a possible method is to test whether the n-dimensional affine 
variety V (inw I) ⊆ Cn has a strictly positive solution. Using Lemma 5.13, this can be simplified into 
checking whether an 	-dimensional affine variety has strictly positive solution. This is a fundamental 
question in real algebraic geometry on the feasibility of (basic) semi-algebraic sets. See Basu (2017)
for a recent comprehensive overview of existing algorithms.

6. The maximal-dimensional cones of TGr+(3, 8)

In this section, we verify (Speyer and Williams, 2005, Conjecture 8.1) for the Grassmannian 
Gr0(3, 8), which relates the combinatorial structure of the positive tropicalization with the combi-
natorial structure of a cluster algebra. This serves as a test for the correctness of our computations, as 
the conjecture has been proven for Gr0(3, 8) by Brodsky and Stump (2018, Remark 2.23).

Cluster algebras are algebras with a remarkable hidden combinatorial structure. First introduced 
by Fomin and Zelevinsky in Fomin and Zelevinsky (2002), cluster algebras are subrings of rational 
function fields K (x1, . . . , xn) generated by a union of overlapping algebraically independent n-subsets. 
These so-called clusters are connected through mutations, rules which transform one cluster to an-
other, and together they form a simplicial complex called the cluster complex. The elements of the 
clusters are referred to as cluster variables. In Fomin and Zelevinsky (2003), Fomin and Zelevinsky 
completely classify all cluster algebras of finite type, i.e., cluster algebras with finite cluster complexes. 
Similar to the Cartan-Killing classification of semisimple Lie algebras, their classification associates 
any finite type cluster algebra to a Dynkin graph. One prominent family of cluster algebras are Grass-
mannians Gr0(k, n), initially shown by Fomin and Zelevinksy for k = 2, later fully proven by Scott 
(2006).

The conjecture of Speyer and Williams is based on observations on the Grassmannians Gr0(2, n), 
Gr0(3, 6), and Gr0(3, 7). By Scott (2006), this makes Gr0(3, 8) the only remaining Grassmannian whose 
cluster algebra is of finite type, i.e., whose cluster complex is finite.

Conjecture 6.1 (Speyer and Williams, 2005, Conjecture 8.1). Let A be a cluster algebra of finite type, 
C its set of coefficient variables, and S(A) its associated cluster complex. If the lineality space of 
Trop+ Spec(A) has dimension |C |, then Trop+ SpecA is abstractly isomorphic to the fan over the 
simplicial complex S(A). If the condition on the lineality space does not hold, then Trop+ SpecA is 
abstractly isomorphic to a coarsening of the fan over the simplicial complex S(A).

The conjecture was proven by Brodsky and Stump (2018) for finite type cluster algebras that are 
either of type A, see Fomin and Zelevinsky (2003, Section 12.2), and of rank at most 8, which includes 
Gr0(3, 8).

6.1. Computing the cluster complex S(Gr0(3, 8))

Thanks to an implementation by Stump, SAGE (The Sage Developers, 2019) features functions 
for computing and analyzing cluster complexes. The algorithm is based on a work of Ceballos et 
al. (2014), and requires the root system of the cluster algebra. The root system for Gr0(3, 8) is the 
exceptional group E8 (Scott, 2006, Theorem 5):

C = ClusterComplex([’E’, 8]);

Sage returns an object of type cluster complex, whose maximal cells can be seen via
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C.facets();

6.2. Computing the positive tropicalization TGr+(3, 8)

Using the algorithms in Section 5 on Theorem 4.6, we obtain:

Proposition 6.2. There is a Dressian subfan supported on the maximal-dimensional cones of the positive trop-
ical Grassmannian TGr+(3, 8). It is a pure 16-dimensional subfan of the Dressian Dr(3, 8) in R56 with an 
8-dimensional lineality space and f -vector (120, 2072, 14 088, 48 544, 93 104, 100 852, 57 768, 13 612).

Proof. By Corollary 5.5, positivity only depends on the saturated initial ideals, and, by Theorem 4.9, 
the saturated initial ideals of TGr0(3, 8) only depend on the Dressian cones.2 It therefore suffices to 
check the 4 766 S8-orbits of Dressian cones in Theorem 4.6 instead of the 14 763 S8-orbits of Gröbner 
cones.

Of the 4 766 saturated initial ideals of Gr0(3, 8) all but one are binomial and thus admissible 
for Algorithm 5.10. The unique non-binomial saturated initial ideal arises from the Dressian orbit 
containing −e015 − e024 − e067 − e126 − e137 − e235 − e346 − e457. Applying Algorithm 5.13 to this ideal 
yields that there is no real solution. Thus, there is no positive cone it its orbit by Algorithm 5.15. 
All functions and data necessary for the computation can be found at the website linked in the 
introduction. �

Note that Speyer and Williams (2005) consider positive tropicalizations with the coarsest structure 
refined by the individual Gröbner fans of all cluster variables. For the cluster variables of Gr0(3, 8), 
recall the following result from Scott (2006):

Theorem 6.3. (Scott, 2006, Theorem 8) The cluster algebra of Gr0(3, 8) possesses 128 cluster variables:

48: Plücker variables pijk where {i, j, k} �= {i, i + 1, i + 2} mod 8.
56: quadratic Laurent binomials with positive coefficients, inherited from Gr0(3, 6), describing six points in a 
special position:

Y 123456 = (p346)
−1 ·
(

p146 p236 p345 + p136 p234 p456

)
and X123456 = Y 234561

and their D8-translates.
24: cubic Laurent trinomials with positive coefficients describing eight points in a special position:

A = (p578)
−1 ·
(

p178 p567 · X123458 + p158 p678 · X123457
)

and

B = (p158)
−1 ·
(

p128 p567 · X123458 + p258 · A
)

and their D8-translates.

Since the Gröbner fans of the Plücker variables consist of a single cone that is the whole space, 
refining with them does not change anything. Hence, it only remains the 80 polynomials X , Y , A and 
B .

Theorem 6.4. The positive tropical Grassmannian TGr+(3, 8) endowed with the Plücker structure and refined 
by the Gröbner fans of all 120 cluster variables of Gr(3, 8) is a 16-dimensional pure simplicial fan in R56

with an 8-dimensional lineality space and f -vector (128, 2 408, 17 936, 67 488, 140 448, 163 856, 100 320, 
25 080). As an abstract simplicial complex, it is isomorphic to the cluster complex S(Gr(3, 8)).

2 Instead of Corollary 5.5 and Theorem 4.9, we could also rely on the recent results of Arkani-Hamed et al. (2021) and Speyer 
and Williams (2021) that the positive tropical Grassmannian TGr+0 (k, n) equals the positive Dressian Dr+(k, n), which implies 
that the Plücker structure on TGr+(k, n) is a coarsening of the Gröbner structure.
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Proof. The refinement was straightforwardly computed by intersecting all maximal Dressian cones on 
TGr+(3, 8) with the maximal cones of the Gröbner fans of the cluster variables.

The isomorphism of the two simplicial complexes was tested using Nauty (McKay and Piperno, 
2014) by McKay, which was called in Polymake through the function fan::isomorphic. The func-
tion takes two objects of type IncidenceMatrix, in our case:

(1) the output of SAGE’s C.facets(), C being the cluster complex of type E8,
(2) the output of Polymake’s $F->MAXIMAL_CONES, $F being the polyhedral fan supported on 

TGr+(3, 8) described above. �
Remark 6.5. Positive tropical Grassmannians equipped with the coarsest structure are lifts of the 
normal fan of a polytope to higher dimensional space. This polytope is the (n −3)-dimensional associ-
ahedron in case of the positive tropical Grassmannian TGr+(2, n); see Speyer and Williams (2005). In 
general this polytope is the Minkowski sum of Newton Polytopes that one derives from a parametriza-
tion of the positive part of the classical Grassmannian. This has been used to compute the positive 
tropical Grassmannians TGr+(3, n) for n ≤ 10, TGr+(4, 8) and TGr+(4, 9). See Arkani-Hamed et al. 
(2021) and He et al. (2020) for further details.

7. Open questions

A frequently arising question on the geometry of tropical varieties is whether they have a natural 
coarsest structure, i.e., whether there is a natural coarsest polyhedral complex supported on them. 
While it is long known that there is no unique coarsest structure (Sturmfels and Tevelev, 2008, Ex-
ample 5.2) and that natural coarsenings of the Gröbner fan exist (Cartwright, 2012), the question 
remains largely open. For the tropical Grassmannians TGrp(2, n), TGrp(3, 6), TGr0(3, 7) and TGr0(3, 8)

is the Plücker structure the unique coarsest fan structure; see Section 4. This naturally gives rise to 
the following two problems:

Problem 7.1. Find a characterization or sufficient conditions on the cones C of the Dressian Dr(k, n)

such that for any v ∈ TGrp(k, n) ∩ C and w ∈R
(n

k

)
we have

v and w lie in the relative interior of the same cone of Dr(k,n)

⇐⇒ inw(In,k) : p∞ = inv(In,k) : p∞,
(1)

where In,k is the Plücker ideal and (·) : p∞ denotes the saturation at the product of all Plücker 
variables.

Problem 7.2. For all cones C ⊆ Dr(k, n) for which the above equivalence (1) does not hold determine 
the (coarsest) polyhedral structure of the set C ∩ TGrp(k, n).

The following shows that such cones exist.

Example 7.3. Consider the two indicator vectors v, w ∈R35 ∼=R(7
3) of bases of the Fano matroid and 

its relaxation the non-Fano matroid, respectively. The vectors v and ε · v + w do lie in the relative 
interior of the same cone of the Dressian Dr(3, 7) for all ε > 0, but v ∈ TGr2(3, 7) and ε · v + w /∈
TGr2(3, 7); see Herrmann et al. (2009). Thus inε·v+w(In,k) : p∞ �= inv(In,k) : p∞ .

A similar pair of vectors is formed by the indicator vectors v, w ∈ R84 ∼= R(9
3) of bases of the 

Pappus and non-Pappus matroid. Again the vectors v and ε · v + w are contained in the relative 
interior of the same cone of the Dressian Dr(3, 9), but v ∈ TGrp(3, 9) and ε · v + w /∈ TGrp(3, 9) for 
small ε > 0 and by Joswig and Schröter (2017, Theorem 35).

If C is a cone of the Dressian Dr(k, n) of dimension (n − k) · k + 2 or higher for which the equiva-
lence (1) holds true then there is no realizable point in the relative interior of C . In addition to any 
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theoretical insight that such a coarsest structure could offer, the question is of direct relevance for 
two practical reasons.

On the one hand, it will improve our understanding for the complexity of tropical varieties and 
consequently also the feasibility of computations in tropical geometry, especially with a view towards 
applications (Leykin and Yu, 2019). Current bounds on the f-vector of general tropical varieties are 
derived from universal Gröbner bases (Joswig and Schröter, 2018), and are thus expected to be far 
from optimal.

On the other hand, it will help with concrete large scale computations. For TGr0(4, 8) and even 
for TGr2(4, 8), i.e., working over the field with two elements, our implementation in Section 3 gets 
stuck on a handful of isolated Gröbner bases containing polynomials of degree 15, for whom simple 
division with remainder takes several days. Having a coarser structure might allow us to skip those 
problematic Gröbner cones which are still few and far in between.
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