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Abstract

We use a simple hard-core gas model to study the dynamics of small exploding systems. The system is initially prepared
in a thermalized state in a spherical container and then allowed to expand freely into the vacuum. We follow the expansion
dynamics by recording the coordinates and velocities of all particles until their last collision points (freeze-out). We have found
that the entropy per particle calculated for the ensemble of freeze-out points is very close to the initial value. This is in apparent
contradiction with the Joule experiment in which the entropy grows when the gas expands irreversibly into a larger volume.
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Energetic nucleus—nucleus collisions open a unique  For this study we employ a simple gas model where
possibility to study explosive dynamics of strongly in- the constituent particles collide like billiard balls and
teracting many-body systems in the laboratory. Highly follow the classical Newtonian dynamics. This model,
excited matter produced in such collisions expands first introduced for simulating heavy-ion collisions in
into vacuum until its constituents decouple (the freeze- Ref. [3], was recently applied [4] for investigating
out stage). There exist many models for describing this de-equilibration dynamics in expanding matter. We
process which range from simple macroscopic to fully consider a gas of identical balls of radigs which
microscopic ones. Within thermal and fluid dynamical perform classical nonrelativistic elastic scatterings at
models it is usually assumed that the matter expansionimpact parameters < 2r. with conservation of en-
is isentropic, i.e., proceeds at constant entropy. On the ergy and momentum. Rotational degrees of freedom of
other hand, as well known from statistical physics [1], the balls are ignored. The initial system consistsvof
only slow reversible processes conserve entropy. It is such particles placed randomly within a sphere of ra-
known from the Joule experiment [2] that the entropy dius R, rejecting configurations where particles over-
grows if the state of the system changes too fast. In this lap within the hard-core distance. The particle veloc-
Letter we examine the entropy conservation hypothe- ities are generated from a Gaussian distribution with
sis on the basis of a microscopic model. varianceT /m whereT is interpreted as temperature.

Then the particles are allowed to collide for a certain
time (“cooking” stage) in order to fully equilibrate the
E-mail address: bondorf@nbi.dk (J.P. Bondorf). system. For our simple interaction the total energy of
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the gas is obviously given by the ideal-gas relation Our simulations show that the transition from the slow
E =3NT/2 independent of gas density. to fast expansion is rather sharp and takes place at wall
In our simulations we arbitrarily choose conven- velocities of approximately.6¢;.
tional nuclear scales: the mass of the constituent par-  More difficult problems arise when gas or fluid ex-
ticle is m = 940 MeV/c?, the hard core radius is  pand into the vacuum without any container. The ques-
r. = 0.5 fm, and the initial radius of the gas sphere tion which we want to address is whether the expand-
is R = roN/3. Most simulations are performed with ing matter itself generates a sort of wall effect which
ro = 1.2 fm corresponding to the normal nuclear den- may simulate an isentropic process. This question is
sity po ~ 0.14 fm3. To investigate the role played closely related to the problem of freeze-out and collec-
by the finite-size effects we have performed simula- tive flow in exploding systems. The simplest scenario
tions for 4 systemsy = 50, 100, 200 and 400. This  which is often used in the literature is to say that the
covers the range of baryon numbers actually achiev- system expands isentropically until all interactions be-
able in heavy-ion collisions. The initial average en- tween the constituents cease. Then the change in the
ergy E; ~ 118 MeV per particle and the correspond- internal energy of the matter is transferred into a col-
ing temperaturd; ~ 78 MeV were chosen to safely lective flow energy. But the problem is that the freely
ignore quantum and relativistic effects. The character- expanding system has no well-defined volume. In our
istic sound velocity for an ideal gas at this temperature previous study [4] we have defined the instantaneous
iscs ~ /T/m=~0,186¢ volume by taking a high, 20th, moment of the particle
When the gas is confined in a container the particles spatial distribution. For each time step we have defined
collide not only with each other but also with the the entropy as = — )", pxIn px wherepy is the oc-
container wall. When the container expands the gas cupation probability of the phase space &eti the co-
particles loose energy and momentum while colliding moving grid. This entropy was compared with a refer-
with the moving walls. In the case of slow expansion ence entropyes defined for the equilibrated system of
these losses are rapidly redistributed over all particles the same volume. From simulations at different initial
and the gas remains in thermal equilibrium. This conditions for a system of 50 particles we have found
case corresponds to the reversible process when thethat the equilibration measurtE = exp(S — Sref) at
temperature decreases with volume according to the late times was not equal to 1 but rather close to 0.6.
adiabatic relation Below we adopt a slightly different strategy using
Tvr—1 — const ) the rr_li(_:r_oscopic ir_1formation on the freeze-out field.
- The initial state is prepared in the same way as
where y ~ 5/3 is the adiabatic index. However, before but now after a “cooking” stage the container
when the expansion is fast fewer particles reach wall is completely removed and the gas is allowed
the wall and the energy losses are smaller than to expand freely into the vacuum. It is important to
needed for the adiabatic expansion. In the case of stress that this free expansion starts from a state with
a very fast expansion of the container no particles well-defined temperature and density. All particles
can collide with the wall and therefore the energy are followed until their last collision when their
of the gas remains constant. If the wall stops at coordinates and momenta are recorded. For each
a larger radius, the gas will eventually relax to a system we generate many such events and define the
new equilibrium state in the larger volume. The freeze-out field as the set of all such coordinates and
relaxation time can be estimated asR/c;. Since momenta. As demonstrated in Ref. [4], these fields are
the total energy and accordingly the temperature is nonlocal in space and time, in contrast to a simplified
practically unchanged, the entropy of the equilibrated Cooper—Frye picture [6] assuming a sharp freeze-out
gas increases due to the larger volume, as expectechypersurface. We point out also that the number of
for a fast irreversible process. This simple physics is freeze-out points per event is generally less than the
behind the Joule experiment. Although the traditional number of particles because some particles leave the
Joule experiment was performed with nonspherical system without any collision (see Table 1).
containers, the general principles are obviously valid  After obtaining the freeze-out field we calculate the
for the spherical geometry considered in this Letter. average characteristics of the phase space occupation.
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Table 1
In this table,neventis the number of eventsifeezeis the number
of freeze-out pointsFeeze is the freeze-out fraction defined in 0.1r
the text, sinita and sfingl are the inital and final entropy per '
particle, respectively. Notice that the freeze-out fraction increases g 0.08
with system size, and that the final freeze-out entropy per particle 2
approaches the inital value for larger systems g 0.061
3o
N nevent Nfreeze Fireeze Sinitial Sfinal ‘g’
50 128 3848 0.60 2.68 3.27 g'j 0.04}
100 64 4388 0.69 2.69 3.07 g
200 32 4673 0.73 2.71 2.97 =
400 16 5048 0.79 2.70 2.75 0.02f
0 s . ‘ : :
0 2 4 6 8 10 12 14

Utilizing spherical symmetry of the system we divide
it into a number of spherical shells of radRy.
For each shell we calculate the average density of Fig. 1. Radial density of freeze-out points for free expansion of the
freeze-out pointso(r), collective velocityu(r) and gas spheres WitN_: 50, 109,3200 and 400. The initial tfemperature
temperaturel (r). The collective velocity is defined 78 MeV and density 04 fm~3 of the gas are the same in all cases.
simply as the mean radial velocity of frozen-out
particles in a given shell, i.e., betwe®&p and Ry 1,

r (fm)

in the phase space. Here one can use an analogy with
1 M the microwave background radiation in the Universe

ulry=v(r) = N Z v (r), (2) which keeps its entropy constant despite the fact that
kica the photons have decoupled from the matter at the

where N; is the number of freeze-out points in this "€combination stage a long time ago. _

shell, >, Nx = N. The temperature is determined To make statistical errors similar for different

from the variance of velocities in the shell, assuming SyStéms, the number of generated events is chosen

the ideal-gas relation, to be inversely proportional to the system's particle
number (see Table 1). This guarantees that the total
T(r)= %(ﬁ(r) — 92(r)), (3) number of freeze-out points is approximately the same

for all considered systems. The dynamical simulations
and the mean-square velocity is defined in the standardwere performed with the time step of 0.5 fenwhich

way, was sufficient to resolve practically all collisions.
Ny The results of the simulations are presented in
- 1 2 Figs. 1-4 and Table 1. Because of the limited statistics
v(r)=—E ve(ri). 4) . o . .
Ny 7 the spatial distributions shown in the figures are
1=

sensitive to the binning of data. Most calculations were
final entropy of the gas. Since at this late stage of of equal volumes#® binning). This guarantees uniform
expansion the gas is very dilute one can use the ideal-gtagistical errors for the bulk parts of distributions
gas formulae. The freeze-out entropy in a given shell ¢ |eads to enhanced fluctuations on their tails.

is defined as Moreover, for unambiguous separation of flow and
Vie/2 27 k2 \ /2 thermal components the radial bin size should be
S(r) = NiIn ; = . (® sufficiently small.
Nk)\.:;’- mT (r)

It is necessary to emphasize that the spatial charac-
and the total entropy is obviously given by the sum teristics presented in Figs. 1-4 correspond to sampling
over the shells. We believe that this definition of of freeze-out pointsirrespective of the times when par-
entropy is valid despite the fact that it is applied not ticles have actually decoupled from the system. They
to the real gas but to the ensemble of freeze-out points represent the whole freeze-out history and in this re-
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Fig. 2. Radial profiles of the collective velocity at freeze-out.

Notations are the same as in Fig. 1. Fig. 4. Radial distribution of the entropy per particle at freeze-out.

Notations are the same as in Fig. 1.

1101

1o N=50 In the tail region the density rapidly drops to zero
< over a radial distance of about 2-3 fm. Such behavior
g 8o 100 should be anticipated from the general consideration
g 7of 200 of the freeze-out process [6]. The tail is formed by
§ 60L 400 particles emitted through the surface at early times and
5 sl the inner part contains particles from the bulk freeze-
‘g a0l out.

8 Fig. 2 presents the collective velocity profiles
g% calculated on the freeze-out fields. With a certain

201 degree of imagination one can recognize a Hubble-

10t like behavior. As expected the collective velocity

o s A . . - - o grows to the outer edge' of the distribution. The peak
r (fm) value of about 0.5-0.6 is reached somewhere in the

tail region. This value is in good agreement with
gasdynamical calculations [5] predicting for leading
particles a velocity of aboutc3.

The temperature profiles presented in Fig. 3 are in
spect differ from the time evolution of the gas char- a certain sense complementary to the flow profiles.
acteristics usually presented in gasdynamical calcu- One can see that the temperature reaches maximum
lations. We believe that this representation is more values at the edge of the bulk region and these
adequate for calculating observable characteristics of values decrease progressively with the system’s size.
small exploding systems. This is especially true for This can be explained by the fact that the freeze-out
the interpretation of experimental data on energetic process in larger systems develops at later stages of
nucleus—nucleus collisions. expansion leading to lower freeze-out temperatures.

Fig. 1 shows the spatial density of freeze-out points As well known (see, e.g., Ref. [5]), in a macroscopic
averaged over all events. In all cases it has a bulk part system the freeze-out temperature approaches zero
and a tail. The bulk density is about 0.1 partigies® and the whole thermal energy is finally transformed
and almost independent of the system. This should beinto collective flow. We clearly see the transition from
compared with an initial density of 0.14 particlés?. “small” to “large” systems by analyzing the average

Fig. 3. Radial profiles of the temperature at freeze-out. Notations are
the same as in Fig. 1.



J.P. Bondorf et al. / Physics Letters B 575 (2003) 229-233 233

number of collisions per particle. As we see from our particles were initially in thermal equilibrium with the
simulations, this number scales roughlwas'. While rest of the system. Thus they should carry away ap-
it is only about 1 forN = 50 (small system), it is  proximately the same amount entropy per particle as
already 2-3 forN = 400 (mesoscopic system), and in the initial state. Therefore, we expect that the total
will be about 10 forN = 5000 (large system). entropy of the system is also approximately conserved.
Finally we come to the most interesting quantity, In conclusion, we have used a simple model for a
i.e., the entropy per particle as defined by Eq. (5). repulsive gas to study the explosive dynamics of small
Fig. 4 shows the corresponding profiles. One can seesystems. We have demonstrated that in the course of
two clear features. First, the entropy per particle is free expansion the temperature drops and collective
rather constant over the bulk region and its value varies flow develops in the gas. In contrast to our expecta-
very little with the system size. Second, there is a tions we have found that the entropy per particle de-
significant rise in the entropy per particle in the tail fined on the freeze-out field is almost conserved even
region well above the bulk value 2—-3. Moreover, the in systems with a few hundred particles. This justifies
smaller the system the stronger the rise. This latter the application of thermal and hydrodynamic models
trend can be explained by the bigger volume per for describing matter evolution in energetic collisions
particle in the outer tail region. of medium and heavy nuclei. Based on these results
Now we can go back to our discussion of entropy we put forward a new interpretation of the old Joule
conservation. For this analysis we use the total entropy experiment. The gas expansion in this case is approxi-
per particle calculated at freeze-out and compare it mately isentropic at freeze-out before the particles hit
with the initial entropy. The latter is calculated by the wall. Then the entropy is produced while the sys-
applying the same Eq. (5) for the whole gas in the tem equilibrates in the larger volume.
initial volume. The results are presented in Table 1
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