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Abstract

We study issues of duality in 3D field theory models over a canonical noncommutative spacetime and obtain the noncom
tative extension of the self-dual model induced by the Seiberg–Witten map. We apply the dual projection technique to
some properties of the noncommutative Maxwell–Chern–Simons theory up to first-order in the noncommutative pa
A duality between this theory and a model similar to the ordinary self-dual model is established. The correspondence o
basic fields is obtained and the equivalence of algebras and equations of motion are directly verified. We also com
previous results in this subject.
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1. Introduction

This Letter is devoted to study duality mapping a
model equivalence in the context of three-dimensio
field theories over a canonical noncommutative spa
time (NC) [1]. It is of great theoretical interest t
speculate that the physical world might involve no
commutative coordinates and to ask about poss
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modifications to established concepts in the o
nary quantum field theory. In particular the iss
of duality is such a conspicuous notion in qua
tum field theory that it becomes mandatory to che
if its consequences remain valid when consider
NC-extensions of physically motivated theories a
interesting models. Such studies have been indeed
dergone for the NC-extensions of the electromagn
4D Maxwell theories and for the 3D NC-extensi
of the well-known duality between Maxwell–Chern
Simons versus self-dual models. Although for the l
case we have seen a spate of studies in the recen
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erature, the results do not seem to agree which
motivated us to re-examine this issue.

By employing the Seiberg–Witten map (SWM)[2]
we search for the dual companion of the NC-extens
of the Maxwell–Chern–Simons model (NC-MCS)
to first-order in the noncommutative parameterθ . The
results are therefore valid perturbatively for spa
times with small noncommutativity. This seems ne
essary since a map analog to the SWM is nonexis
for the self-dual model. Therefore the basic strat
in this case has been to look for the NC-extension
duced by the SWM over the MCS model. To find t
NC-extension of the self-dual model (NC-SD), i.
the dual related model to the NC-MCS we emp
the dual projection technique[3]. Following this path
we found the apropriate dual Lagrangians. Moreo
the correspondence for the algebras of the observa
and equations of motion were directly verified, expl
iting the relation between fields of different models
is worth recalling that the nontriviallity of the mod
equivalence studied here comes from the nonlinea
teractions of derivative type in the action due to
noncommutativity of the spacetime.

In ordinary spacetime, the physical equivalence
MCS (topologically massive)[4], shown to represen
a free massive spin one excitation and self-dual[5]
theories has been proven quite useful by Deser
Jackiw in a seminal work[6]. In that paper, duality
was first verified at the level of symplectic structur
for MCS and SD models and then corroborated by
of the master action. This duality equivalence see
important since the SD model was shown to app
in the bosonization of the fermionic massive Thirri
model in the large wavelength limit[7]. The Wilson
loop operator of the dual gauge theory has a natura
pression in terms of the fermion theory showing tha
fermion loop operator may exhibit fractional statistic
Planar gauge theories having excitations with arbitr
spin and statistics have also played important role
the context of other physically interesting phenome
such as quantum Hall effect and high-TC superc
ductivity.

Recently several papers dealing with the extension
of this duality to the noncommutative space have
peared[8–11] and the results found are quite distin
The distinctness seems to have its origin in the
ferent techniques employed. For instance some
thors use the master (or interpolating) action appro
However, in one case the master action is built for
commutative but nonlinear model after the SWM[8]
while in another instance the master action is obtai
before the Seiberg–Witten map[9] running into the
risk that an extension of the SWM might spoil the d
ality mapping. In both instances no check was d
to see if the resulting actions provided the same se
field equations and/or physical observables. In[10] the
duality for the NC-MCS was studied without emplo
ing the SWM. As so, the result is nonperturbative
θ and, consequently, it is difficult to directly compa
that result with the basically perturbative approach
the other works.

A recent contribution[11] claims to have found du
ality as an example of a noncommutative free fi
theory in (2+ 1) dimensions—the Abelian NC-MC
theory. In[11] by exploiting the Seiberg–Witten ma
this result was argued to be expected since unde
above mapping, the NC-Chern–Simons theory redu
to comutative Chern–Simons theory to all orders oθ

and hence the results corresponding to commuta
Chern–Simons theory should hold. It was also poin
out in [11] that no discussions on the symplectic str
ture of the theory or an explicit mapping between
degrees of freedom of the two purported dual t
ories have been attempted so far. It is true that
itself, relating the actions cannot conclusively pro
duality. We agree with the criticism stated in[11]
that the use of a master Lagrangian to prove d
ity is not sufficient; for, although it can be a usef
guide, a direct check is essential to assure the e
tence of duality. The dual related actions obtained
any means should also go through some sort of co
matory test of duality concerning the basic observab
of theories. In fact the approach followed in[11] is
very interesting—after performing the SWM in th
NC-MCS, the author derived the algebra of the
servables for the resulting commutative but nonlinea
theory. By performing a “sort of integration” of th
algebra derived before the author was able to find
alternative representation of the algebra in terms
new vector fields. Hecorrectly interpreted that this
new theory should be dual to the original NC-MC
Therefore, based on established jargon, it should
named as the noncommutativy extension of the s
dual model. However, just like the works preceding
no attempt was done to check if the equations of m
tion coming from these independent representat
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of the common algebra indeed agree with one
other.

In this work we employ another technique, know
as dual projection[3], to establish the corresponden
between actions and fields, along with a direct ver
cation of the equivalence of algebras and equation
motion. The dual projection technique is a canon
transformation aiming to separate the field-variab
responsible for the dynamical character of a given t
ory from those field-variables carrying the represen
tion of the underlying symmetry. Consequently, t
algorithm is able to provide not only the dual pa
of actions but also the correspondence between
fields and, most importantly, to disclose the comm
algebra for the observable carried by both represe
tions.

In this Letter we adopt the dual projection pr
gram to find the dual companion for the NC-MCS
O(θ) of the SWM and check for the consistency
the equations of motion and algebra for both rep
sentations. The next section is devoted to review
noncommutative MCS theory and the application
the Seiberg–Witten map. The resulting Lagrangian
ter the Seiberg–Witten map is analyzed under the d
projection approach and a new extension of the s
dual model to the noncomutative space is found. Af
wards, the correspondence of algebras and equa
of motion are verified. The last section is reserved
the analysis of the results found and to our final
marks.

2. Duality in the noncommutative
Maxwell–Chern–Simons theory

The research in field theories based on spacetim
with intrinsic noncommutative coordinates[12] has
experienced a recent revival after the realization
this concept has a natural realization in string the
ory [13]. In this framework, the commutator of th
coordinatesxµ in the spacetime manifold is give
by

(1)
[
xµ, xν

] = iθµν,

whereθµν is a constant real and antisymmetric mat
with dimensions of (length)2. One way to construct
noncommutative quantum field theory is to prom
an established ordinary theory to a noncommuta
one by replacing ordinary fields with noncommutat
fields and ordinary products with Moyal∗-products.
In the case of the Maxwell–Chern–Simons theory
noncommutative Lagrangian density is defined as[8,
14]

L̂NCMCS=− 1

4g
F̂µν ∗ F̂µν

+ m

2g
εµνλ

(2)×
(

Âµ ∗ ∂νÂλ − 2i

3
Âµ ∗ Âν ∗ Âλ

)
,

with

(3)F̂µν ≡ ∂µÂν − ∂νÂµ − iÂµ ∗ Âν + iÂν ∗ Âµ,

µ, ν,λ = 0,1,2 and metric (gµν) = diag(+−−).
Here the constantg, with mass dimensions, is ne
essary in order to give dimensional consistency to
action, thus the field potentialŝAµ have dimension o
mass and the Seiberg–Witten map can be applied w
out dimensional difficulties. The hat on a field mea
that its associated multiplication is not the ordina
one, but the∗-product (i.e., Moyal product), namely

(Âµ ∗ Âν)(�x) ≡ e
i
2θαβ∂x

α ∂
y
β Âµ(�x)Âν(�y)|�y→�x

= Âµ(�x)Âν(�x)

(4)

+ i

2
θαβ∂αÂµ(�x)∂βÂν(�x) + O

(
θ2),

with θαβ defined as in(1).
The action of theory(2) is invariant under the fol

lowing infinitesimal gauge transformations

(5)δ̂
λ̂
Âµ = ∂µλ̂ + iλ̂ ∗ Âµ − iÂµ ∗ λ̂.

It is important to notice the factor−2i/3 that appears
in the NC-Chern–Simons term has a crucial role
regard to gauge symmetry; for the variation of the N
Chern–Simons Lagrangian must be proportional to
field strengthF̂ µν [14], otherwise gauge symmetry
lost and there is a change in the number of degree
freedom.

In what follows we shall resort to the Seiber
Witten map, i.e., a correspondence between a n
commutative gauge theory and a conventional ga
theory to obtain, up to first-order inθ , a commutative
version of the theory(2). The reason is that although
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is in principle presumably possible to compute phy
cal observables via noncommutative fields, the pro
dure leading to(2) lacks direct information on how t
identify realistic physical variables with specific ope
ators. This map connecting a noncommutative ga
theory with its commutative equivalent was propos
while analyzing open string theory in a magnetic fie
with two different regularization schemes. It perm
the construction of a commutative theory with or
nary gauge transformations having its physical c
tent equivalent to the noncommutative theory. Sin
then this notion has foundmany startling applica
tions and connections to different branches of phy
and mathematics. The SWM ensures the stability
gauge transformations in the commutative and
descriptions—to ensure that a gauge transformatio
Aµ is mapped to a noncommutative gauge transfor
tion of Âµ, it becomes necessary that

(6)Âµ(A) + δ̂
λ̂
Âµ(A) = Âµ(A + δλA),

whose solution, to first order in the noncommutat
parameterθ , leads to the map

(7)Âµ = Aµ − θανAα

(
∂νA

µ − 1

2
∂µAν

)
,

which implies

(8)F̂µν = Fµν + θαβ(FµαFνβ − Aα∂βFµν).

The application of the map to the action given in(2)
results, to first order inθ ,

gLNCMCS = −1

4
FµνFµν

+ 2θαβ

(
FµαFνβFµν − 1

4
FαβFµνFµν

)

(9)+ m

2
εµνλAµ∂νAλ,

which we still call as NC-MCS model as long as
risk of confusion with(2) appears.

It is often claimed that noncommutative theor
with θ0i �= 0 may exhibit difficulties with perturba
tive unitarity while those ones with onlyθ ij nonzero
are acceptable[15,16]. In odd-dimensional spacetime
a totally antisymmetric matrix is necessarily singu
therefore, due to Darboux theorem, it is always p
sible to find a coordinate system where at least
of the coordinates is a commuting one[17,18]. We
let this coordinate be associated with the time ind
henceθ0i = 0. Restricting ourselves to the commuti
time case, the noncommutative extension of the M
model, in first-order ofθ , gives[11]

gLNCMCS = −1

4
FµνFµν + m

2
εµνλAµ∂νAλ

− 1

8
θαβFαβFµνFµν

(10)= −1

2
(1+ θF̃0)F̃

µF̃µ + m

2
AµF̃µ,

whereθ ≡ θ12 andF̃ µ ≡ 1
2εµνλFνλ = εµνλ∂νAλ.

Next we start to discuss the duality mapping.
order obtain the noncommutative extension of the s
dual model (NC-SD) we proceed with the dual proje
tion [3] algorithm. To this end we introduce an aux
iary fieldπµ as follows

(11)

gLNCMCS = πµF̃µ + 1

2
(1− θF̃0)π

µπµ + m

2
AµF̃µ

therefore lowering the order of the differential equ
tions. The above procedure is just an ordinary Leg
dre transform, and the equivalence between(10) and
(11) is easily verified by the substitution of the equ
tions of motion ofπµ into (11)

(12)πµ = −(1+ θF̃0)F̃µ.

Next we disclose a canonical transformation aim
to diagonalize the action in such a way that one s
tor would be a pure gauge, carrying no propaga
degrees of freedom. The other sector, carrying a re
sentation of the dynamics, is therefore the interes
one for considerations of duality. This will be done
two steps. Firstly let us call

(13)χµ ≡ πµ − 1

2
θδ0

µπαπα,

and then solve forπ = π(χ) up to first-order inθ to
eliminate the auxiliary fieldπµ in favor of the new
field-variable. Then

(14)

gLNCMCS =
(

χµ + m

2
Aµ

)
F̃µ + 1

2
(1+ θχ0)χ

µχµ.

Next, we definepµ as a shift ofχµ, namely

(15)pµ ≡ χµ + m

2
Aµ,
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in order to put the symplectic sector in a canoni
form. Hence we can write

gLNCMCS = pµF̃µ + 1

2

(
p − m

2
A

)ν(
p − m

2
A

)
ν

(16)×
[
1+ θ

(
p0 − m

2
A0

)]
.

We are now ready to complete the last step of the d
projection with the following canonical transformatio

Aµ = A+
µ + A−

µ,

(17)pµ = m

2

(
A+

µ − A−
µ

)
,

that decouple the fields and diagonalizes the
grangianLNCMCS. The result of such redefinition is

gLNCMCS

=
[

m2

2
(1− mθA−

0 )A−
µA−µ − m

2
εµνλA−

µ∂νA
−
λ

]

(18)+
[
m

2
εµνλA+

µ∂νA
+
λ

]
.

This factorization of the NC-MCS action into a pu
Chern–Simons action for theA+ fields and a dynam
ical action for theA− fields is an outstanding resu
The pure Chern–Simons term is surplus, it has no
namical consequence and carries no propagating
grees of freedom. It is responsible however for
gauge symmetry observed in the original model. T
other part, the one withA− field is not a gauge theory
It carries the same dynamical content of the origi
NC-MCS being therefore dual to it. As so we name
as the noncommutative self-dual model, which rea

(19)

LNCSD= 1

2g
(1− θf0)fµf µ − 1

2mg
εµνλfµ∂νfλ,

after the replacement

(20)mA−
µ → fµ.

It is interesting to observe that it correctly limits
the ordinary self-dual model whenθ → 0. This con-
cludes the search for the noncommutative version
the self-dual model. As a bonus we may obtain direc
from the dual projection procedure the corresponde
among the basic field-variables of both models by tr
ing back the redefinitions done previously, Eqs.(12),
-

(13), (15), (17) and (20). The answer is

(21)f µ = F̃ µ + F̃ µF̃ αθ̃α + 1

2
θ̃µF̃ αF̃α

and, therefore,

(22)F̃ µ = f µ − f µf αθ̃α − 1

2
θ̃µf αfα,

whereθ̃µ ≡ 1
2εµνλθ

νλ, thusθ̃0 = θ andθ̃i = 0.
We have defined a noncommutative extension

the self-dual model that is (supposedly) dual to
NC-MCS theory. Duality will be proven next by d
rectly comparing the equations of motion and the
gebra of the observables obtained from both mode

The classical equations of motion for the NC-MC
model given by(2) and the NC-SD model disclosed
(19)are

(23)

εµνλ∂
ν

(
−F̃ λ − 1

2
θ̃ λF̃ αF̃α − θ̃ αF̃αF̃ λ + mAλ

)
= 0,

(24)fµ − 1

m
εµνλ∂

νf λ − 1

2
θ̃µf αfα − θ̃ αfαfµ = 0,

respectively. Although they look quite distinct at fir
the existence of a congruity between these equat
of motion follows directly from the corresponden
between the basic fields found in(21) which proves
that both models describe the same dynamics. A
natively, by imposing the equality for these equatio
of motion, the field correspondence given in(21)is re-
obtained.

To confirm our result, the algebras will be verifie
The algebra of the NC-MCS model has been compu
in Ref. [11] so we assume it in the sequel.1 To find
the algebra of NC-SD model we shall make use of
symplectic method[19]. It is immediate to realize tha
the presymplectic matrix for the NC-SD fieldsfµ is
singular. Looking up for the zero-mode, the followin
constraint is found

(25)−f0 + 1

m
εij ∂

if j + 1

2
θf ifi + 3

2
θf0f0 = 0,

which is just the zero-component of the field-equ
tions. In this particular example we may follow tw

1 The NC-MCS algebra computed there (see Eq. (14) in[11])
is slightly different from ours due to a minus sign misprint and
absence of the constantg in the initial action.
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different computational routes with identical cons
quences: one may either solve the above constrain
the f0 = f0(fi) and restrict the computation of th
basic brackets for the spatial componentsfi , whose
symplectic matrix is regular or, keep up with the c
variant computation by inserting back the constra
(25) in the kinetic sector of the Lagrangian and co
pute the first-iterated symplectic matrix. After that st
the (covariant) symplectic matrix becomes nondeg
erate, allowing us to extract the generalized brac
(or Dirac brackets) from the entries of its inverse. T
result for the basic brackets, from either procedure
{
f0(�x), f0(�y)

}
∗ = gθ

(
fi(�x) + fi(�y)

)
∂i
(x)δ(�x − �y),{

f0(�x), f i(�y)
}
∗ = g

(
1+ 3θf0(�x)

)
∂i
(x)δ(�x − �y)

+ mgθεijfj (�x)δ(�x − �y),

(26)
{
f i(�x), f j (�y)

}
∗ = −mgεij δ(�x − �y).

Following the prescription in Eq.(21) we find the
algebra for the NC-SD as
{
B(�x),B(�y)

} = 0,{
Ei(�x),B(�y)

} = gεij
(
1+ θB(�x)

)
∂

(x)
j δ(�x − �y),

(27)

{
Ei(�x),Ej (�y)

} = −gmεij (1+ 2θB)δ(�x − �y)

− gθ
(
εkjEi(�x) + εkiEj (�y)

)
× ∂

(x)
k δ(�x − �y),

whereEi ≡ −εij F̃j and B ≡ −F̃0. As expected, it
coincides with the algebra for the NC-MCS fou
in [11].

3. Conclusion

In this Letter we have studied the issue of dua
in the context of the NC-extension of the MCS mod
up to first-order in the parameterθ . We have adopte
the dual projection approach that has been pro
quite useful to study duality in other contexts. O
basic goal was to find the NC-extension of the s
dual model, i.e., the dual companion of the NC-MC
and to compare our results with the existent stud
of the recent literature. Such re-exam of the sub
was demanded due to the controversial outputs c
ing from previous investigations. These studies h
approached duality using different techniques. Ho
ever, none of these studies verified if the candida
to the dual action was able to produce the same s
observable consequences of the original theory.
prisingly enough, we have not found agreement w
any of the previous works.

We have clearly established the dual theory to
noncommutative Maxwell–Chern–Simons theory
sulting from the Seiberg–Witten map application
O(θ). We have found the correspondence among
basic fields and checked that the resulting dual mo
produces the same set of classical field equations
the same algebra of observables. This novel dual
ory is therefore a natural noncommutative extens
of the self-dual model. The duality was proven w
direct and transparent procedures and there wa
need to resort, for example, to the master Lagrang
approach. Nonetheless, not to prove duality, but to
press our result through the traditional approach,
have reinterpret Eq.(14) as a master Lagrangian th
links aforementioned theories[20] and confirms our
results also in this alternative approach.

An interesting question that remains open is how
relate the duality on commutative fieldsAµ andf µ of
the NC-MCS and NC-SD theories to a duality betwe
noncommutative fieldŝAµ and f̂ µ [8]. If there is an
analog map to the Seiberg–Witten map but relatingf µ

with f̂ µ, it would be possible to extend the prese
conclusions to the noncommutative fields. Ref.[11]
suggests this map isf µ = f̂ µ because, in that pape
ordinary self-dual theory was found as a dual theor
NC-MCS theory (up to first order inθ ). On the other
hand, if there were a noncommutative extension
self-dual model with fieldsf̂ µ that is dual to the NC
MCS theory, one could try to find the map betweenf̂ µ

andf µ. We hope to return to this point in the future
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