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Gluonic phase versus LOFF phase in two-flavor quark matter
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Abstract

We study the gluonic phase in a two-flavor color superconductor as a function of the ratio of the gap over the chemical potential mismatch,
Δ/δμ. We find that the gluonic phase resolves the chromomagnetic instability encountered in a two-flavor color superconductor for Δ/δμ <

√
2.

We also calculate approximately the free energies of the gluonic phase and the single plane-wave LOFF phase and show that the former is favored
over the latter for a wide range of coupling strengths.
© 2006 Elsevier B.V.
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It is widely accepted that sufficiently cold and dense quark
matter is a color superconductor [1]. The most likely and, prob-
ably, the only place where color superconductivity can exist in
the universe is the interior of compact stars. Thus, studies of
phases of quark matter under conditions realized in the bulk
of compact stars (i.e., color and electric charge neutrality, and
β-equilibrium) have recently attracted a great deal of interest.
The density regime of relevance for compact stars is up to a
few times the normal nuclear density ρ0 � 0.16 fm−3. In this
“moderate” density regime, the studies of QCD-motivated ef-
fective theories are most useful and have revealed a rich phase
structure [2–4].

One of the most striking features of neutral and β-equilibrat-
ed color-superconducting phases is unconventional cross-flavor
Cooper pairing of quarks with the possibility of gapless su-
perconductivity, e.g., in the form of the gapless 2SC (g2SC)
phase [5] or the gapless color-flavor-locked (gCFL) phase [6].
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It was, however, quickly realized that the 2SC/g2SC phases
suffer from a chromomagnetic instability, indicated by imagi-
nary Meissner screening masses of some gluons [7]. In the 2SC
phase, these instabilities occur when the ratio of the gap over
the mismatch of the chemical potential, Δ/δμ, decreases below
a value

√
2. Similar instabilities were found also in the gCFL

phase [8].
Resolving the chromomagnetic instability and clarifying the

nature of the true ground state of dense quark matter are the
most pressing tasks in the study of color superconductors. It
was proposed that the chromomagnetic instability in two-flavor
quark matter can be removed by the formation of a single plane-
wave LOFF state [9–12] (first studied by Larkin and Ovchin-
nikov [13], and Fulde and Ferrell [14] in the context of solid
state physics, and by Alford et al. [15] for cold, dense quark
matter), or a gluonic phase with vector condensation in the
ground state [16]. (For a recent discussion of this issue, see also
Refs. [17,18].) Alternatives include a mixed phase [19] and, in
the case of three-flavor quark matter, also phases with sponta-
neously induced meson supercurrents [20]. While the neutral
LOFF state is free from the chromomagnetic instability in the
weak-coupling regime [10], this is, in fact, not the case for
somewhat larger values of the coupling [21]. At the same time,
the gluonic phase can resolve the instability there. So far, how-
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ever, the gluonic phase phase has been studied only around the
critical point Δ/δμ = √

2 [16].
The gluonic phase and the LOFF phases are currently

viewed as the most likely candidates for resolving the chro-
momagnetic instability and, thus, for the true ground state of
two-flavor color-superconducting quark matter. (Here we ex-
clude the possibility of phase separation [19] which may have
limitations of its own and deserves a separate in-depth study.)
In order to see which of the two proposed phases is actually
preferred, one first has to extend the analysis of Ref. [16] to
a computation of the free energy away from the critical point
Δ/δμ = √

2, and then compare the results to the free energy
of the single-plane LOFF state.2 This is done in the present
work. We qualitatively confirm the results of Ref. [18] and ex-
tend them by (approximately) including the neutrality condition
and explicitly comparing the free energy of the gluonic phase
to that of the single plane-wave LOFF phase as a function of
the coupling strength.

In order to study various phases of two-flavor quark matter,
we use a gauged Nambu–Jona-Lasinio (NJL) model with mass-
less up and down quarks:

L= ψ̄
(
i/D + μ̂γ 0)ψ + GD

(
ψ̄iγ5εε

bCψ̄T
)(

ψT Ciγ5εε
bψ

)
(1)− 1

4
Fa

μνF
aμν,

where the quark field ψ carries flavor (i, j = 1, . . . ,Nf with
Nf = 2) and color (α,β = 1, . . . ,Nc with Nc = 3) indices, C

is the charge conjugation matrix; (ε)ik = εik and (εb)αβ = εbαβ

are the antisymmetric tensors in flavor and color spaces, respec-
tively. The covariant derivative and the field strength tensor are
defined as

(2a)Dμ = ∂μ − igAa
μT a,

(2b)Fa
μν = ∂μAa

ν − ∂νA
a
μ + gf abcAb

μAc
ν.

To evaluate loop diagrams we use a three-momentum cutoff
Λ. Hence, the model has two phenomenological model para-
meters, the cutoff Λ and the diquark coupling GD . We use
Λ = 653.3 MeV throughout this Letter, but we consider GD

as a free parameter. Henceforth, in order to specify the diquark
coupling we use Δ0 which is the value of the 2SC gap at δμ = 0
(see below).

In β-equilibrated neutral 2SC/g2SC matter, the elements of
the diagonal matrix of quark chemical potentials μ̂ are given
by

(3a)μur = μug = μ̄ − δμ,

(3b)μdr = μdg = μ̄ + δμ,

(3c)μub = μ̄ − δμ − μ8,

(3d)μdb = μ̄ + δμ − μ8,

2 Note that while the comparison with a multi-plane wave LOFF states would
be more desirable, the corresponding free energy cannot be easily estimated
within a microscopic approach. For current state-of-the-art calculations using
an effective theory see Ref. [22].
with

(4)μ̄ = μ − δμ

3
+ μ8

3
, δμ = μe

2
.

In a gauge theory, the self-consistent solution of the Yang–
Mills equations requires background gauge fields [23]. These
can be viewed as electric- and color-chemical potentials which
ensure electric and color-charge neutrality of the system. Note
that a generalization of this holds true even in the case of in-
homogeneous phases. Then, of course, the corresponding fields
would not be constant in space. Instead, they would have a con-
stant central value contribution and, on top of it, a coordinate-
dependent modulation describing color-electric fields induced
by the inhomogeneities.3 The constant contribution would take
care of the global neutrality, while the modulation describes the
local field needed to prevent the local flow of currents.

On the other hand, in NJL-type models without dynamic
gauge fields, one has to ensure electric and color-charge neutral-
ity by introducing appropriate chemical potentials by hand [24].
In the case of the 2SC/g2SC phases, we only require an elec-
tron chemical potential μe, and a color-chemical potential μ8
which ensures that the color-charge density n8 is zero. In prin-
ciple, in other phases like the gluonic phase one has to check
that no other color-charge density is non-vanishing and neces-
sitates the introduction of a respective color-chemical potential.
Indeed, the gluonic phase introduced in Ref. [16] requires a
non-vanishing temporal component of the gluon field of the
third color, 〈A3

0〉. In our gauged NJL model, this is equivalent
to a non-vanishing color-chemical potential μ3 besides μ8. In
this first exploratory study, however, we use the fact that both
μ3 and μ8 are known to be numerically small and we simply
neglect them.

In Nambu–Gor’kov space, the inverse full quark propagator
S−1(p) is written as

(5)S−1(p) =
(

(S+
0 )−1 Φ−
Φ+ (S−

0 )−1

)
,

with

(6a)
(
S+

0

)−1 = γ μpμ + (
μ̄ − δμτ 3)γ 0 + gγ μAa

μT a,

(6b)
(
S−

0

)−1 = γ μpμ − (
μ̄ − δμτ 3)γ 0 − gγ μAa

μT aT ,

and

(7)Φ− = −iεεbγ5Δ, Φ+ = −iεεbγ5Δ.

Here τ 3 = diag(1,−1) is a matrix in flavor space. Following the
usual convention, we choose the diquark condensate to point in
the third (blue) direction in color space.

In the one-loop approximation, the free energy of two-flavor
quark matter at T = 0 is given by

(8)Vg = Δ2

4GD

− 1

2

∫
d4p

(2π)4i
ln DetS−1(p),

3 In the special case of a mixed phase, e.g., a color-electric field is generated
around the boundary layer between the two phases and prevents the generation
of a color-electric current across this layer.
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where “Det” stands for the determinant in Dirac, flavor, color,
and Nambu–Gor’kov space. Unlike the free energy in Ref. [16],
Eq. (8) does not have a quartic term in Aa

μ. This is because we
neglected the color-chemical potential μ8 and, in addition, we
take into account only one dynamic gluonic field (see below).

In the gluonic phase [16], the chromomagnetic instability
at Δ/δμ <

√
2 triggers a non-vanishing vacuum expectation

value of the spatial component of

(9)Kμ = 1√
2

(
A4

μ − iA5
μ

A6
μ − iA7

μ

)
.

(For a simpler version of such a phenomenon, see also
Ref. [25].) Using the SO(3)rot rotational symmetry and the
SU(2)c color symmetry, one can choose B ≡ g〈A6

z〉 �= 0 with-
out loss of generality. Consequently, the non-zero vacuum ex-
pectation value of B breaks SO(3)rot, leaving only SO(2)rot
[16]. Furthermore, a non-vanishing B together with Δ and μe

breaks the original symmetry of QCD down to

(10)U(1)
Q̃

⊗ U(1)τ 3
L

⊗ U(1)τ 3
R

⊗ SO(2)rot,

where U(1)τ 3
L/R

is a subgroup of the SU(2)L/R chiral symmetry

and the charge Q̃ is given by

(11)Q̃ = Qf ⊗ 1c − 1f ⊗ T 3 − 1√
3
1f ⊗ T 8,

with Qf = diag( 2
3 ,− 1

3 ) being the flavor matrix of the electric
charges of quarks.

The reduced symmetry of the ground state with B �= 0 al-
lows for additional condensates, C = g〈A1

z〉 �= 0 and D =
g〈A3

0〉 �= 0. In fact, as discussed in Ref. [16], such condensates
are required by the equation of motion. As discussed above,
the gluonic field D is nothing but a color chemical potential
μ3. The field C, on the other hand, induces electric supercon-
ductivity in the ground state and, therefore, is physically more
interesting. However, including all three gluonic fields makes
the analysis quite involved. In this work, we retain only the B

field that is directly connected to the Meissner masses of gluons
4–7 and, thus, is the most relevant field for the chromomagnetic
instability.

It is straightforward to show that the mass of the B field at
B = 0 (i.e., in the 2SC/g2SC phases) coincides with the Meiss-
ner screening masses of gluons of adjoint color 4–7 calculated
in the hard-dense-loop (HDL) approximation [7],

M2
B = ∂2Vg

∂B2

∣∣∣∣
B=0

(12)= μ̄2

6π2

[
1 − 2δμ2

Δ2
+ 2

δμ
√

δμ2 − Δ2

Δ2
θ(δμ − Δ)

]
.

In order to derive this expression we neglected terms of order
O(μ̄2/Λ2) and O(Δ2/μ2).

In order to study the effect of the condensate field B on the
free energy of the 2SC/g2SC phases, we calculate the differ-
ence of the thermodynamic potentials in a dense medium and
in vacuum at the same value of B ,

(13)Ωg ≡ Vg(Δ,B, δμ,μ) − Vg(0,B,0,0).
Fig. 1. The free energy (13) measured with respect to the normal phase at B = 0,
as a function of Δ/δμ for B = 0 MeV (solid), 50 MeV (dotted), 150 MeV
(dashed), 250 MeV (dot-dashed), 350 MeV (short-dashed). The thin vertical
line denotes the critical point of the chromomagnetic instability Δ/δμ = √

2.
We used μ̄ = 500 MeV and δμ = 80 MeV, and the value of the coupling con-
stant has been chosen so that Δ0 = 132 MeV. The contribution of electrons is
not included.

In a gauge theory, this subtraction in the one-loop free energy
also takes care of the renormalization of the gauge coupling
constant. As a result, the cutoff dependence of the free energy
can be completely removed in this approximation.

Let us look at the free energy Ωg in detail. Fig. 1 shows
the free energy Ωg (measured with respect to the normal phase
at B = 0) as a function of Δ/δμ. The results are plotted for
μ̄ = 500 MeV and δμ = 80 MeV, with the diquark coupling
chosen so that Δ0 = 132 MeV. Here we do not restrict Δ/δμ to
its physical value, determined by the stationary point of Ωg(Δ),
but treat it as a free parameter.

Several important features of the free energy as a function
of the B field are evident from Fig. 1. When Δ/δμ >

√
2, one

can see that the free energy monotonically increases with B .
(Strictly speaking, since our model reproduces the HDL result
only up to terms of order O(μ̄2/Λ2) and O(Δ2/μ2), the ac-
tual critical point is somewhat lower than

√
2.) In other words,

Ωg(B) has a global minimum at B = 0, and the 2SC phase is
stable against gluon condensation in this regime. This is also
clear from a different representation of the results, shown in
Fig. 2.

When Δ/δμ <
√

2, on the other hand, we observe the onset
of the chromomagnetic instability. For small B , the free energy
first decreases with increasing B and then grows at larger B .
This can be seen clearly in Fig. 2. The behavior of Ωg agrees
well with Eq. (12) at small B . In this regime, the 2SC/g2SC
phase is no longer the ground state. It is unstable with respect
to the formation of a non-zero B condensate, i.e., the so-called
gluonic phase. The corresponding ground state is determined by
the minimum of Ωg(B). The Meissner masses squared, which
are given by the curvature of the free energy at the minimum,
are non-negative in this state. (It is interesting to note that, al-
though the free energy in the normal phase, Δ/δμ = 0, cf.
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Fig. 2. The free energy (13) measured with respect to the normal phase at
B = 0, as a function of B in three regimes with different values of Δ/δμ. The
solid lines correspond to the cases of Δ/δμ = 0.8,1.2,1.6 (top to bottom). The
dashed and dotted line denote the free energy at Δ/δμ = 0 and at the critical
point Δ/δμ � √

2, respectively. Other parameters are the same as in Fig. 1.

dashed line in Fig. 2, increases with B , this increase is ex-
tremely slow over quite a large range of B values. The reason
is that the quadratic term in the Taylor expansion of the free en-
ergy is vanishing, see Eq. (12).) Let us note that the results of
Fig. 2 are in qualitative agreement with those shown in Fig. 2
of Ref. [18].

From the results for the free energy it is clear that the
gluonic phase resolves the chromomagnetic instability of the
2SC/g2SC phases. A neutral LOFF state is another candidate
for the solution to the instability: it has been shown that such a
state is free from the chromomagnetic instability, however, only
in the weak-coupling regime [10] (for strong coupling, this is
not the case [21]). In order to determine the energetically most
favored state, it is necessary to compare the free energies of
the 2SC/g2SC phases, the neutral LOFF state and the gluonic
phase.

To this end we use the following approximation derived in
Ref. [21] for the 2SC/g2SC phases and the neutral LOFF state:

(14)Ω = Ω2SC + Ωg2SC/LOFF,

where the 2SC and g2SC/LOFF parts of the free energy are
given by

(15a)

Ω2SC = − μ4
e

12π2
− μ4

ub

12π2
− μ4

db

12π2
− μ̄4

3π2
+ Δ2

4GD

− μ̄2Δ2

π2
ln

4(Λ2 − μ̄2)

Δ2
− Δ2

π2

(
Λ2 − 2μ̄2),

(15b)

Ωg2SC/LOFF = 2μ̄2q2

π2
+ μ̄2

π2

{
(q + δμ)3

q

[
1

2

(
1 − x2

1

)
ln

1 + x1

1 − x1

− x1 + 2

3
x3

1

]
+ (q → −q)

}
,

with the dimensionless parameter x1 being

(16)x1 = θ

(
1 − Δ2

(δμ + q)2

)√
1 − Δ2

(δμ + q)2
Fig. 3. The free energy of the neutral 2SC/g2SC phase (solid line), the neutral
LOFF state (dotted line), and the gluonic phase (dashed line) as a function of
Δ0. The three dots on the bold solid line (Δ0 = 92, 130, 177 MeV from left to
right) denote the edge of the g2SC window with the normal phase, the phase
transition point between 2SC and g2SC phases (Δ = δμ), and the critical point
of the chromomagnetic instability (Δ = √

2δμ). The quark chemical potential
is taken to be μ = 400 MeV.

and

(17)q = |�q|, �q = g

2
√

3

〈 �A8〉.
Note that the wave vector of the diquark condensate �q is equiv-
alent to a gauge field condensate 〈 �A8〉 in the case of single
plane-wave LOFF pairing. In Eq. (15), the 2SC/g2SC part of
the free energy is obtained by taking the q → 0 limit. Also a
non-zero color chemical potential μ8 has been neglected there.

The free energy of a given phase can be computed by solv-
ing the gap equations, e.g., ∂Ω/∂Δ = 0 and ∂Ω/∂q = 0, and
the neutrality condition ∂Ω/∂δμ = 0. To simplify the calcula-
tions in the gluonic phase, we evaluate the free energy approx-
imately as follows: (i) we obtain Δ� and δμ� in the 2SC/g2SC
phase by solving the coupled set of equations ∂Ω/∂Δ = 0
and ∂Ω/∂δμ = 0, (ii) by using these solutions, we calculate
Ωg(B,Δ�, δμ�) which is an approximate value for the free en-
ergy in the gluonic phase. For the densities of interests, B is at
most of the order of 100 MeV, whereas q is of the order of tens
of MeV. We performed a preliminary test of the quality of our
approximation by varying B from 0 to 300 MeV and comput-
ing the value of δμ necessary to ensure electric neutrality. We
found that this value changes at most by 10%.

We illustrate the comparison of the free energies of all three
phases in Fig. 3 (cf. Fig. 2 in Ref. [21]). We take μ = 400 MeV
and choose the normal phase as a reference point for the free
energy. In Ref. [21], it has been demonstrated that the neu-
tral LOFF state is more stable than the 2SC/g2SC phases in
the whole LOFF window 63 MeV < Δ0 < 137 MeV, which
includes the entire g2SC window 92 MeV < Δ0 < 130 MeV.
However, whereas the Meissner masses squared of gluons 4–7
in the weakly coupled neutral LOFF state are positive [9,10],
they remain negative in the intermediate and the strongly cou-
pled regimes (at all values of Δ0 above 81 MeV) [21]. In con-
trast, the gluonic phase removes the instability and is energeti-
cally favored over the 2SC/g2SC phases in the whole window
in which the instability takes place (at all values of Δ/δμ be-
low

√
2). The gluonic phase and the neutral LOFF state coexist
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in the region 92 MeV < Δ0 < 137 MeV, but, as our results in-
dicate, the gluonic phase is more stable than the neutral LOFF
state in a wide region Δ0 > 103 MeV, which is close to the edge
of the g2SC window with the normal phase. We argue therefore
that the instability in the 2SC/g2SC phase is resolved by the
formation of the gluonic phase.

In summary, we explored the gluonic phase away from the
critical point Δ/δμ = √

2. We demonstrated that the energeti-
cally favored state of a neutral two-flavor color superconductor
is not the 2SC/g2SC phase in the intermediate- and strong-
coupling regimes but the gluonic phase in which the dynamic
gluonic field B = g〈A6

z〉 acquires a vacuum expectation value.
In particular, the whole g2SC phase is replaced by the gluonic
phase which is chromomagnetically stable.

We also compared the free energies of the 2SC/g2SC phase,
the neutral LOFF state, and the gluonic phase. We found that the
gluonic phase is energetically favored in the intermediate- and
strong-coupling regimes. The encouraging results of this analy-
sis should be further improved in the future by (i) taking into
account the most general ansatz for the gauge-field configura-
tion in the gluonic phase, (ii) by calculating the free energy in a
self-consistent manner. We already performed a preliminary in-
vestigation including the effect of the gluon field D, responsible
for enforcing Gauss’ law, and found that, for Δ0 � 130 MeV,
the additional cost in the free energy is of order 0.01 MeV/fm3,
and thus negligible. For Δ0 � 130 MeV, however, the effect of
the D field could be an order of magnitude larger.

It is appropriate to mention that the instability related to the
8th gluon was not studied in the present work. In this sense, the
neutral LOFF state is appealing, because the Meissner mass of
the 8th gluon is automatically zero in this state. It should also
be mentioned that in the strongly coupled LOFF state [9,11] the
longitudinal Meissner mass squared of the 8th gluon is negative.
Although this instability was not addressed in this work, it is
unlikely, however, that the LOFF state is energetically favored
in the strong-coupling regime.

Note added

It has recently been demonstrated that, in the three-flavor
case, realistic crystal structures are more robust than a single
plane-wave LOFF state [22]. In the two-flavor case, Bowers
and Rajagopal [26] already indicated that a LOFF state with
multiple plane waves would have a lower free energy than that
with a single plane wave. The result shown in Fig. 3 would be
altered by the inclusion of crystal structures with more plane
waves. This is therefore an important project that needs to be
addressed in future work.
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